• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Driver for Alauda-based card readers
3  *
4  * Current development and maintenance by:
5  *   (c) 2005 Daniel Drake <dsd@gentoo.org>
6  *
7  * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
8  *
9  * Alauda implements a vendor-specific command set to access two media reader
10  * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
11  * which are accepted by these devices.
12  *
13  * The driver was developed through reverse-engineering, with the help of the
14  * sddr09 driver which has many similarities, and with some help from the
15  * (very old) vendor-supplied GPL sma03 driver.
16  *
17  * For protocol info, see http://alauda.sourceforge.net
18  *
19  * This program is free software; you can redistribute it and/or modify it
20  * under the terms of the GNU General Public License as published by the
21  * Free Software Foundation; either version 2, or (at your option) any
22  * later version.
23  *
24  * This program is distributed in the hope that it will be useful, but
25  * WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27  * General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License along
30  * with this program; if not, write to the Free Software Foundation, Inc.,
31  * 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/slab.h>
36 
37 #include <scsi/scsi.h>
38 #include <scsi/scsi_cmnd.h>
39 #include <scsi/scsi_device.h>
40 
41 #include "usb.h"
42 #include "transport.h"
43 #include "protocol.h"
44 #include "debug.h"
45 
46 MODULE_DESCRIPTION("Driver for Alauda-based card readers");
47 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
48 MODULE_LICENSE("GPL");
49 
50 /*
51  * Status bytes
52  */
53 #define ALAUDA_STATUS_ERROR		0x01
54 #define ALAUDA_STATUS_READY		0x40
55 
56 /*
57  * Control opcodes (for request field)
58  */
59 #define ALAUDA_GET_XD_MEDIA_STATUS	0x08
60 #define ALAUDA_GET_SM_MEDIA_STATUS	0x98
61 #define ALAUDA_ACK_XD_MEDIA_CHANGE	0x0a
62 #define ALAUDA_ACK_SM_MEDIA_CHANGE	0x9a
63 #define ALAUDA_GET_XD_MEDIA_SIG		0x86
64 #define ALAUDA_GET_SM_MEDIA_SIG		0x96
65 
66 /*
67  * Bulk command identity (byte 0)
68  */
69 #define ALAUDA_BULK_CMD			0x40
70 
71 /*
72  * Bulk opcodes (byte 1)
73  */
74 #define ALAUDA_BULK_GET_REDU_DATA	0x85
75 #define ALAUDA_BULK_READ_BLOCK		0x94
76 #define ALAUDA_BULK_ERASE_BLOCK		0xa3
77 #define ALAUDA_BULK_WRITE_BLOCK		0xb4
78 #define ALAUDA_BULK_GET_STATUS2		0xb7
79 #define ALAUDA_BULK_RESET_MEDIA		0xe0
80 
81 /*
82  * Port to operate on (byte 8)
83  */
84 #define ALAUDA_PORT_XD			0x00
85 #define ALAUDA_PORT_SM			0x01
86 
87 /*
88  * LBA and PBA are unsigned ints. Special values.
89  */
90 #define UNDEF    0xffff
91 #define SPARE    0xfffe
92 #define UNUSABLE 0xfffd
93 
94 struct alauda_media_info {
95 	unsigned long capacity;		/* total media size in bytes */
96 	unsigned int pagesize;		/* page size in bytes */
97 	unsigned int blocksize;		/* number of pages per block */
98 	unsigned int uzonesize;		/* number of usable blocks per zone */
99 	unsigned int zonesize;		/* number of blocks per zone */
100 	unsigned int blockmask;		/* mask to get page from address */
101 
102 	unsigned char pageshift;
103 	unsigned char blockshift;
104 	unsigned char zoneshift;
105 
106 	u16 **lba_to_pba;		/* logical to physical block map */
107 	u16 **pba_to_lba;		/* physical to logical block map */
108 };
109 
110 struct alauda_info {
111 	struct alauda_media_info port[2];
112 	int wr_ep;			/* endpoint to write data out of */
113 
114 	unsigned char sense_key;
115 	unsigned long sense_asc;	/* additional sense code */
116 	unsigned long sense_ascq;	/* additional sense code qualifier */
117 };
118 
119 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
120 #define LSB_of(s) ((s)&0xFF)
121 #define MSB_of(s) ((s)>>8)
122 
123 #define MEDIA_PORT(us) us->srb->device->lun
124 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
125 
126 #define PBA_LO(pba) ((pba & 0xF) << 5)
127 #define PBA_HI(pba) (pba >> 3)
128 #define PBA_ZONE(pba) (pba >> 11)
129 
130 static int init_alauda(struct us_data *us);
131 
132 
133 /*
134  * The table of devices
135  */
136 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
137 		    vendorName, productName, useProtocol, useTransport, \
138 		    initFunction, flags) \
139 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
140   .driver_info = (flags) }
141 
142 static struct usb_device_id alauda_usb_ids[] = {
143 #	include "unusual_alauda.h"
144 	{ }		/* Terminating entry */
145 };
146 MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
147 
148 #undef UNUSUAL_DEV
149 
150 /*
151  * The flags table
152  */
153 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
154 		    vendor_name, product_name, use_protocol, use_transport, \
155 		    init_function, Flags) \
156 { \
157 	.vendorName = vendor_name,	\
158 	.productName = product_name,	\
159 	.useProtocol = use_protocol,	\
160 	.useTransport = use_transport,	\
161 	.initFunction = init_function,	\
162 }
163 
164 static struct us_unusual_dev alauda_unusual_dev_list[] = {
165 #	include "unusual_alauda.h"
166 	{ }		/* Terminating entry */
167 };
168 
169 #undef UNUSUAL_DEV
170 
171 
172 /*
173  * Media handling
174  */
175 
176 struct alauda_card_info {
177 	unsigned char id;		/* id byte */
178 	unsigned char chipshift;	/* 1<<cs bytes total capacity */
179 	unsigned char pageshift;	/* 1<<ps bytes in a page */
180 	unsigned char blockshift;	/* 1<<bs pages per block */
181 	unsigned char zoneshift;	/* 1<<zs blocks per zone */
182 };
183 
184 static struct alauda_card_info alauda_card_ids[] = {
185 	/* NAND flash */
186 	{ 0x6e, 20, 8, 4, 8},	/* 1 MB */
187 	{ 0xe8, 20, 8, 4, 8},	/* 1 MB */
188 	{ 0xec, 20, 8, 4, 8},	/* 1 MB */
189 	{ 0x64, 21, 8, 4, 9}, 	/* 2 MB */
190 	{ 0xea, 21, 8, 4, 9},	/* 2 MB */
191 	{ 0x6b, 22, 9, 4, 9},	/* 4 MB */
192 	{ 0xe3, 22, 9, 4, 9},	/* 4 MB */
193 	{ 0xe5, 22, 9, 4, 9},	/* 4 MB */
194 	{ 0xe6, 23, 9, 4, 10},	/* 8 MB */
195 	{ 0x73, 24, 9, 5, 10},	/* 16 MB */
196 	{ 0x75, 25, 9, 5, 10},	/* 32 MB */
197 	{ 0x76, 26, 9, 5, 10},	/* 64 MB */
198 	{ 0x79, 27, 9, 5, 10},	/* 128 MB */
199 	{ 0x71, 28, 9, 5, 10},	/* 256 MB */
200 
201 	/* MASK ROM */
202 	{ 0x5d, 21, 9, 4, 8},	/* 2 MB */
203 	{ 0xd5, 22, 9, 4, 9},	/* 4 MB */
204 	{ 0xd6, 23, 9, 4, 10},	/* 8 MB */
205 	{ 0x57, 24, 9, 4, 11},	/* 16 MB */
206 	{ 0x58, 25, 9, 4, 12},	/* 32 MB */
207 	{ 0,}
208 };
209 
alauda_card_find_id(unsigned char id)210 static struct alauda_card_info *alauda_card_find_id(unsigned char id) {
211 	int i;
212 
213 	for (i = 0; alauda_card_ids[i].id != 0; i++)
214 		if (alauda_card_ids[i].id == id)
215 			return &(alauda_card_ids[i]);
216 	return NULL;
217 }
218 
219 /*
220  * ECC computation.
221  */
222 
223 static unsigned char parity[256];
224 static unsigned char ecc2[256];
225 
nand_init_ecc(void)226 static void nand_init_ecc(void) {
227 	int i, j, a;
228 
229 	parity[0] = 0;
230 	for (i = 1; i < 256; i++)
231 		parity[i] = (parity[i&(i-1)] ^ 1);
232 
233 	for (i = 0; i < 256; i++) {
234 		a = 0;
235 		for (j = 0; j < 8; j++) {
236 			if (i & (1<<j)) {
237 				if ((j & 1) == 0)
238 					a ^= 0x04;
239 				if ((j & 2) == 0)
240 					a ^= 0x10;
241 				if ((j & 4) == 0)
242 					a ^= 0x40;
243 			}
244 		}
245 		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
246 	}
247 }
248 
249 /* compute 3-byte ecc on 256 bytes */
nand_compute_ecc(unsigned char * data,unsigned char * ecc)250 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
251 	int i, j, a;
252 	unsigned char par = 0, bit, bits[8] = {0};
253 
254 	/* collect 16 checksum bits */
255 	for (i = 0; i < 256; i++) {
256 		par ^= data[i];
257 		bit = parity[data[i]];
258 		for (j = 0; j < 8; j++)
259 			if ((i & (1<<j)) == 0)
260 				bits[j] ^= bit;
261 	}
262 
263 	/* put 4+4+4 = 12 bits in the ecc */
264 	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
265 	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
266 
267 	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
268 	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
269 
270 	ecc[2] = ecc2[par];
271 }
272 
nand_compare_ecc(unsigned char * data,unsigned char * ecc)273 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
274 	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
275 }
276 
nand_store_ecc(unsigned char * data,unsigned char * ecc)277 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
278 	memcpy(data, ecc, 3);
279 }
280 
281 /*
282  * Alauda driver
283  */
284 
285 /*
286  * Forget our PBA <---> LBA mappings for a particular port
287  */
alauda_free_maps(struct alauda_media_info * media_info)288 static void alauda_free_maps (struct alauda_media_info *media_info)
289 {
290 	unsigned int shift = media_info->zoneshift
291 		+ media_info->blockshift + media_info->pageshift;
292 	unsigned int num_zones = media_info->capacity >> shift;
293 	unsigned int i;
294 
295 	if (media_info->lba_to_pba != NULL)
296 		for (i = 0; i < num_zones; i++) {
297 			kfree(media_info->lba_to_pba[i]);
298 			media_info->lba_to_pba[i] = NULL;
299 		}
300 
301 	if (media_info->pba_to_lba != NULL)
302 		for (i = 0; i < num_zones; i++) {
303 			kfree(media_info->pba_to_lba[i]);
304 			media_info->pba_to_lba[i] = NULL;
305 		}
306 }
307 
308 /*
309  * Returns 2 bytes of status data
310  * The first byte describes media status, and second byte describes door status
311  */
alauda_get_media_status(struct us_data * us,unsigned char * data)312 static int alauda_get_media_status(struct us_data *us, unsigned char *data)
313 {
314 	int rc;
315 	unsigned char command;
316 
317 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
318 		command = ALAUDA_GET_XD_MEDIA_STATUS;
319 	else
320 		command = ALAUDA_GET_SM_MEDIA_STATUS;
321 
322 	rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
323 		command, 0xc0, 0, 1, data, 2);
324 
325 	usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
326 
327 	return rc;
328 }
329 
330 /*
331  * Clears the "media was changed" bit so that we know when it changes again
332  * in the future.
333  */
alauda_ack_media(struct us_data * us)334 static int alauda_ack_media(struct us_data *us)
335 {
336 	unsigned char command;
337 
338 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
339 		command = ALAUDA_ACK_XD_MEDIA_CHANGE;
340 	else
341 		command = ALAUDA_ACK_SM_MEDIA_CHANGE;
342 
343 	return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
344 		command, 0x40, 0, 1, NULL, 0);
345 }
346 
347 /*
348  * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
349  * and some other details.
350  */
alauda_get_media_signature(struct us_data * us,unsigned char * data)351 static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
352 {
353 	unsigned char command;
354 
355 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
356 		command = ALAUDA_GET_XD_MEDIA_SIG;
357 	else
358 		command = ALAUDA_GET_SM_MEDIA_SIG;
359 
360 	return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
361 		command, 0xc0, 0, 0, data, 4);
362 }
363 
364 /*
365  * Resets the media status (but not the whole device?)
366  */
alauda_reset_media(struct us_data * us)367 static int alauda_reset_media(struct us_data *us)
368 {
369 	unsigned char *command = us->iobuf;
370 
371 	memset(command, 0, 9);
372 	command[0] = ALAUDA_BULK_CMD;
373 	command[1] = ALAUDA_BULK_RESET_MEDIA;
374 	command[8] = MEDIA_PORT(us);
375 
376 	return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
377 		command, 9, NULL);
378 }
379 
380 /*
381  * Examines the media and deduces capacity, etc.
382  */
alauda_init_media(struct us_data * us)383 static int alauda_init_media(struct us_data *us)
384 {
385 	unsigned char *data = us->iobuf;
386 	int ready = 0;
387 	struct alauda_card_info *media_info;
388 	unsigned int num_zones;
389 
390 	while (ready == 0) {
391 		msleep(20);
392 
393 		if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
394 			return USB_STOR_TRANSPORT_ERROR;
395 
396 		if (data[0] & 0x10)
397 			ready = 1;
398 	}
399 
400 	usb_stor_dbg(us, "We are ready for action!\n");
401 
402 	if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
403 		return USB_STOR_TRANSPORT_ERROR;
404 
405 	msleep(10);
406 
407 	if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
408 		return USB_STOR_TRANSPORT_ERROR;
409 
410 	if (data[0] != 0x14) {
411 		usb_stor_dbg(us, "Media not ready after ack\n");
412 		return USB_STOR_TRANSPORT_ERROR;
413 	}
414 
415 	if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
416 		return USB_STOR_TRANSPORT_ERROR;
417 
418 	usb_stor_dbg(us, "Media signature: %4ph\n", data);
419 	media_info = alauda_card_find_id(data[1]);
420 	if (media_info == NULL) {
421 		pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
422 			data);
423 		return USB_STOR_TRANSPORT_ERROR;
424 	}
425 
426 	MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
427 	usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
428 		     MEDIA_INFO(us).capacity >> 20);
429 
430 	MEDIA_INFO(us).pageshift = media_info->pageshift;
431 	MEDIA_INFO(us).blockshift = media_info->blockshift;
432 	MEDIA_INFO(us).zoneshift = media_info->zoneshift;
433 
434 	MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
435 	MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
436 	MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
437 
438 	MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
439 	MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
440 
441 	num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
442 		+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
443 	MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
444 	MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
445 
446 	if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
447 		return USB_STOR_TRANSPORT_ERROR;
448 
449 	return USB_STOR_TRANSPORT_GOOD;
450 }
451 
452 /*
453  * Examines the media status and does the right thing when the media has gone,
454  * appeared, or changed.
455  */
alauda_check_media(struct us_data * us)456 static int alauda_check_media(struct us_data *us)
457 {
458 	struct alauda_info *info = (struct alauda_info *) us->extra;
459 	unsigned char status[2];
460 	int rc;
461 
462 	rc = alauda_get_media_status(us, status);
463 
464 	/* Check for no media or door open */
465 	if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
466 		|| ((status[1] & 0x01) == 0)) {
467 		usb_stor_dbg(us, "No media, or door open\n");
468 		alauda_free_maps(&MEDIA_INFO(us));
469 		info->sense_key = 0x02;
470 		info->sense_asc = 0x3A;
471 		info->sense_ascq = 0x00;
472 		return USB_STOR_TRANSPORT_FAILED;
473 	}
474 
475 	/* Check for media change */
476 	if (status[0] & 0x08) {
477 		usb_stor_dbg(us, "Media change detected\n");
478 		alauda_free_maps(&MEDIA_INFO(us));
479 		alauda_init_media(us);
480 
481 		info->sense_key = UNIT_ATTENTION;
482 		info->sense_asc = 0x28;
483 		info->sense_ascq = 0x00;
484 		return USB_STOR_TRANSPORT_FAILED;
485 	}
486 
487 	return USB_STOR_TRANSPORT_GOOD;
488 }
489 
490 /*
491  * Checks the status from the 2nd status register
492  * Returns 3 bytes of status data, only the first is known
493  */
alauda_check_status2(struct us_data * us)494 static int alauda_check_status2(struct us_data *us)
495 {
496 	int rc;
497 	unsigned char command[] = {
498 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
499 		0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
500 	};
501 	unsigned char data[3];
502 
503 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
504 		command, 9, NULL);
505 	if (rc != USB_STOR_XFER_GOOD)
506 		return rc;
507 
508 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
509 		data, 3, NULL);
510 	if (rc != USB_STOR_XFER_GOOD)
511 		return rc;
512 
513 	usb_stor_dbg(us, "%3ph\n", data);
514 	if (data[0] & ALAUDA_STATUS_ERROR)
515 		return USB_STOR_XFER_ERROR;
516 
517 	return USB_STOR_XFER_GOOD;
518 }
519 
520 /*
521  * Gets the redundancy data for the first page of a PBA
522  * Returns 16 bytes.
523  */
alauda_get_redu_data(struct us_data * us,u16 pba,unsigned char * data)524 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
525 {
526 	int rc;
527 	unsigned char command[] = {
528 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
529 		PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
530 	};
531 
532 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
533 		command, 9, NULL);
534 	if (rc != USB_STOR_XFER_GOOD)
535 		return rc;
536 
537 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
538 		data, 16, NULL);
539 }
540 
541 /*
542  * Finds the first unused PBA in a zone
543  * Returns the absolute PBA of an unused PBA, or 0 if none found.
544  */
alauda_find_unused_pba(struct alauda_media_info * info,unsigned int zone)545 static u16 alauda_find_unused_pba(struct alauda_media_info *info,
546 	unsigned int zone)
547 {
548 	u16 *pba_to_lba = info->pba_to_lba[zone];
549 	unsigned int i;
550 
551 	for (i = 0; i < info->zonesize; i++)
552 		if (pba_to_lba[i] == UNDEF)
553 			return (zone << info->zoneshift) + i;
554 
555 	return 0;
556 }
557 
558 /*
559  * Reads the redundancy data for all PBA's in a zone
560  * Produces lba <--> pba mappings
561  */
alauda_read_map(struct us_data * us,unsigned int zone)562 static int alauda_read_map(struct us_data *us, unsigned int zone)
563 {
564 	unsigned char *data = us->iobuf;
565 	int result;
566 	int i, j;
567 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
568 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
569 	unsigned int lba_offset, lba_real, blocknum;
570 	unsigned int zone_base_lba = zone * uzonesize;
571 	unsigned int zone_base_pba = zone * zonesize;
572 	u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
573 	u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
574 	if (lba_to_pba == NULL || pba_to_lba == NULL) {
575 		result = USB_STOR_TRANSPORT_ERROR;
576 		goto error;
577 	}
578 
579 	usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
580 
581 	/* 1024 PBA's per zone */
582 	for (i = 0; i < zonesize; i++)
583 		lba_to_pba[i] = pba_to_lba[i] = UNDEF;
584 
585 	for (i = 0; i < zonesize; i++) {
586 		blocknum = zone_base_pba + i;
587 
588 		result = alauda_get_redu_data(us, blocknum, data);
589 		if (result != USB_STOR_XFER_GOOD) {
590 			result = USB_STOR_TRANSPORT_ERROR;
591 			goto error;
592 		}
593 
594 		/* special PBAs have control field 0^16 */
595 		for (j = 0; j < 16; j++)
596 			if (data[j] != 0)
597 				goto nonz;
598 		pba_to_lba[i] = UNUSABLE;
599 		usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
600 		continue;
601 
602 	nonz:
603 		/* unwritten PBAs have control field FF^16 */
604 		for (j = 0; j < 16; j++)
605 			if (data[j] != 0xff)
606 				goto nonff;
607 		continue;
608 
609 	nonff:
610 		/* normal PBAs start with six FFs */
611 		if (j < 6) {
612 			usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
613 				     blocknum,
614 				     data[0], data[1], data[2], data[3],
615 				     data[4], data[5]);
616 			pba_to_lba[i] = UNUSABLE;
617 			continue;
618 		}
619 
620 		if ((data[6] >> 4) != 0x01) {
621 			usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
622 				     blocknum, data[6], data[7],
623 				     data[11], data[12]);
624 			pba_to_lba[i] = UNUSABLE;
625 			continue;
626 		}
627 
628 		/* check even parity */
629 		if (parity[data[6] ^ data[7]]) {
630 			printk(KERN_WARNING
631 			       "alauda_read_map: Bad parity in LBA for block %d"
632 			       " (%02X %02X)\n", i, data[6], data[7]);
633 			pba_to_lba[i] = UNUSABLE;
634 			continue;
635 		}
636 
637 		lba_offset = short_pack(data[7], data[6]);
638 		lba_offset = (lba_offset & 0x07FF) >> 1;
639 		lba_real = lba_offset + zone_base_lba;
640 
641 		/*
642 		 * Every 1024 physical blocks ("zone"), the LBA numbers
643 		 * go back to zero, but are within a higher block of LBA's.
644 		 * Also, there is a maximum of 1000 LBA's per zone.
645 		 * In other words, in PBA 1024-2047 you will find LBA 0-999
646 		 * which are really LBA 1000-1999. This allows for 24 bad
647 		 * or special physical blocks per zone.
648 		 */
649 
650 		if (lba_offset >= uzonesize) {
651 			printk(KERN_WARNING
652 			       "alauda_read_map: Bad low LBA %d for block %d\n",
653 			       lba_real, blocknum);
654 			continue;
655 		}
656 
657 		if (lba_to_pba[lba_offset] != UNDEF) {
658 			printk(KERN_WARNING
659 			       "alauda_read_map: "
660 			       "LBA %d seen for PBA %d and %d\n",
661 			       lba_real, lba_to_pba[lba_offset], blocknum);
662 			continue;
663 		}
664 
665 		pba_to_lba[i] = lba_real;
666 		lba_to_pba[lba_offset] = blocknum;
667 		continue;
668 	}
669 
670 	MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
671 	MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
672 	result = 0;
673 	goto out;
674 
675 error:
676 	kfree(lba_to_pba);
677 	kfree(pba_to_lba);
678 out:
679 	return result;
680 }
681 
682 /*
683  * Checks to see whether we have already mapped a certain zone
684  * If we haven't, the map is generated
685  */
alauda_ensure_map_for_zone(struct us_data * us,unsigned int zone)686 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
687 {
688 	if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
689 		|| MEDIA_INFO(us).pba_to_lba[zone] == NULL)
690 		alauda_read_map(us, zone);
691 }
692 
693 /*
694  * Erases an entire block
695  */
alauda_erase_block(struct us_data * us,u16 pba)696 static int alauda_erase_block(struct us_data *us, u16 pba)
697 {
698 	int rc;
699 	unsigned char command[] = {
700 		ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
701 		PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
702 	};
703 	unsigned char buf[2];
704 
705 	usb_stor_dbg(us, "Erasing PBA %d\n", pba);
706 
707 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
708 		command, 9, NULL);
709 	if (rc != USB_STOR_XFER_GOOD)
710 		return rc;
711 
712 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
713 		buf, 2, NULL);
714 	if (rc != USB_STOR_XFER_GOOD)
715 		return rc;
716 
717 	usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
718 	return rc;
719 }
720 
721 /*
722  * Reads data from a certain offset page inside a PBA, including interleaved
723  * redundancy data. Returns (pagesize+64)*pages bytes in data.
724  */
alauda_read_block_raw(struct us_data * us,u16 pba,unsigned int page,unsigned int pages,unsigned char * data)725 static int alauda_read_block_raw(struct us_data *us, u16 pba,
726 		unsigned int page, unsigned int pages, unsigned char *data)
727 {
728 	int rc;
729 	unsigned char command[] = {
730 		ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
731 		PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
732 	};
733 
734 	usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
735 
736 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
737 		command, 9, NULL);
738 	if (rc != USB_STOR_XFER_GOOD)
739 		return rc;
740 
741 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
742 		data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
743 }
744 
745 /*
746  * Reads data from a certain offset page inside a PBA, excluding redundancy
747  * data. Returns pagesize*pages bytes in data. Note that data must be big enough
748  * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
749  * trailing bytes outside this function.
750  */
alauda_read_block(struct us_data * us,u16 pba,unsigned int page,unsigned int pages,unsigned char * data)751 static int alauda_read_block(struct us_data *us, u16 pba,
752 		unsigned int page, unsigned int pages, unsigned char *data)
753 {
754 	int i, rc;
755 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
756 
757 	rc = alauda_read_block_raw(us, pba, page, pages, data);
758 	if (rc != USB_STOR_XFER_GOOD)
759 		return rc;
760 
761 	/* Cut out the redundancy data */
762 	for (i = 0; i < pages; i++) {
763 		int dest_offset = i * pagesize;
764 		int src_offset = i * (pagesize + 64);
765 		memmove(data + dest_offset, data + src_offset, pagesize);
766 	}
767 
768 	return rc;
769 }
770 
771 /*
772  * Writes an entire block of data and checks status after write.
773  * Redundancy data must be already included in data. Data should be
774  * (pagesize+64)*blocksize bytes in length.
775  */
alauda_write_block(struct us_data * us,u16 pba,unsigned char * data)776 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
777 {
778 	int rc;
779 	struct alauda_info *info = (struct alauda_info *) us->extra;
780 	unsigned char command[] = {
781 		ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
782 		PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
783 	};
784 
785 	usb_stor_dbg(us, "pba %d\n", pba);
786 
787 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
788 		command, 9, NULL);
789 	if (rc != USB_STOR_XFER_GOOD)
790 		return rc;
791 
792 	rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
793 		(MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
794 		NULL);
795 	if (rc != USB_STOR_XFER_GOOD)
796 		return rc;
797 
798 	return alauda_check_status2(us);
799 }
800 
801 /*
802  * Write some data to a specific LBA.
803  */
alauda_write_lba(struct us_data * us,u16 lba,unsigned int page,unsigned int pages,unsigned char * ptr,unsigned char * blockbuffer)804 static int alauda_write_lba(struct us_data *us, u16 lba,
805 		 unsigned int page, unsigned int pages,
806 		 unsigned char *ptr, unsigned char *blockbuffer)
807 {
808 	u16 pba, lbap, new_pba;
809 	unsigned char *bptr, *cptr, *xptr;
810 	unsigned char ecc[3];
811 	int i, result;
812 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
813 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
814 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
815 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
816 	unsigned int lba_offset = lba % uzonesize;
817 	unsigned int new_pba_offset;
818 	unsigned int zone = lba / uzonesize;
819 
820 	alauda_ensure_map_for_zone(us, zone);
821 
822 	pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
823 	if (pba == 1) {
824 		/* Maybe it is impossible to write to PBA 1.
825 		   Fake success, but don't do anything. */
826 		printk(KERN_WARNING
827 		       "alauda_write_lba: avoid writing to pba 1\n");
828 		return USB_STOR_TRANSPORT_GOOD;
829 	}
830 
831 	new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
832 	if (!new_pba) {
833 		printk(KERN_WARNING
834 		       "alauda_write_lba: Out of unused blocks\n");
835 		return USB_STOR_TRANSPORT_ERROR;
836 	}
837 
838 	/* read old contents */
839 	if (pba != UNDEF) {
840 		result = alauda_read_block_raw(us, pba, 0,
841 			blocksize, blockbuffer);
842 		if (result != USB_STOR_XFER_GOOD)
843 			return result;
844 	} else {
845 		memset(blockbuffer, 0, blocksize * (pagesize + 64));
846 	}
847 
848 	lbap = (lba_offset << 1) | 0x1000;
849 	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
850 		lbap ^= 1;
851 
852 	/* check old contents and fill lba */
853 	for (i = 0; i < blocksize; i++) {
854 		bptr = blockbuffer + (i * (pagesize + 64));
855 		cptr = bptr + pagesize;
856 		nand_compute_ecc(bptr, ecc);
857 		if (!nand_compare_ecc(cptr+13, ecc)) {
858 			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
859 				     i, pba);
860 			nand_store_ecc(cptr+13, ecc);
861 		}
862 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
863 		if (!nand_compare_ecc(cptr+8, ecc)) {
864 			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
865 				     i, pba);
866 			nand_store_ecc(cptr+8, ecc);
867 		}
868 		cptr[6] = cptr[11] = MSB_of(lbap);
869 		cptr[7] = cptr[12] = LSB_of(lbap);
870 	}
871 
872 	/* copy in new stuff and compute ECC */
873 	xptr = ptr;
874 	for (i = page; i < page+pages; i++) {
875 		bptr = blockbuffer + (i * (pagesize + 64));
876 		cptr = bptr + pagesize;
877 		memcpy(bptr, xptr, pagesize);
878 		xptr += pagesize;
879 		nand_compute_ecc(bptr, ecc);
880 		nand_store_ecc(cptr+13, ecc);
881 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
882 		nand_store_ecc(cptr+8, ecc);
883 	}
884 
885 	result = alauda_write_block(us, new_pba, blockbuffer);
886 	if (result != USB_STOR_XFER_GOOD)
887 		return result;
888 
889 	new_pba_offset = new_pba - (zone * zonesize);
890 	MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
891 	MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
892 	usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
893 
894 	if (pba != UNDEF) {
895 		unsigned int pba_offset = pba - (zone * zonesize);
896 		result = alauda_erase_block(us, pba);
897 		if (result != USB_STOR_XFER_GOOD)
898 			return result;
899 		MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
900 	}
901 
902 	return USB_STOR_TRANSPORT_GOOD;
903 }
904 
905 /*
906  * Read data from a specific sector address
907  */
alauda_read_data(struct us_data * us,unsigned long address,unsigned int sectors)908 static int alauda_read_data(struct us_data *us, unsigned long address,
909 		unsigned int sectors)
910 {
911 	unsigned char *buffer;
912 	u16 lba, max_lba;
913 	unsigned int page, len, offset;
914 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
915 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
916 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
917 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
918 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
919 	struct scatterlist *sg;
920 	int result;
921 
922 	/*
923 	 * Since we only read in one block at a time, we have to create
924 	 * a bounce buffer and move the data a piece at a time between the
925 	 * bounce buffer and the actual transfer buffer.
926 	 * We make this buffer big enough to hold temporary redundancy data,
927 	 * which we use when reading the data blocks.
928 	 */
929 
930 	len = min(sectors, blocksize) * (pagesize + 64);
931 	buffer = kmalloc(len, GFP_NOIO);
932 	if (buffer == NULL) {
933 		printk(KERN_WARNING "alauda_read_data: Out of memory\n");
934 		return USB_STOR_TRANSPORT_ERROR;
935 	}
936 
937 	/* Figure out the initial LBA and page */
938 	lba = address >> blockshift;
939 	page = (address & MEDIA_INFO(us).blockmask);
940 	max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
941 
942 	result = USB_STOR_TRANSPORT_GOOD;
943 	offset = 0;
944 	sg = NULL;
945 
946 	while (sectors > 0) {
947 		unsigned int zone = lba / uzonesize; /* integer division */
948 		unsigned int lba_offset = lba - (zone * uzonesize);
949 		unsigned int pages;
950 		u16 pba;
951 		alauda_ensure_map_for_zone(us, zone);
952 
953 		/* Not overflowing capacity? */
954 		if (lba >= max_lba) {
955 			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
956 				     lba, max_lba);
957 			result = USB_STOR_TRANSPORT_ERROR;
958 			break;
959 		}
960 
961 		/* Find number of pages we can read in this block */
962 		pages = min(sectors, blocksize - page);
963 		len = pages << pageshift;
964 
965 		/* Find where this lba lives on disk */
966 		pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
967 
968 		if (pba == UNDEF) {	/* this lba was never written */
969 			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
970 				     pages, lba, page);
971 
972 			/* This is not really an error. It just means
973 			   that the block has never been written.
974 			   Instead of returning USB_STOR_TRANSPORT_ERROR
975 			   it is better to return all zero data. */
976 
977 			memset(buffer, 0, len);
978 		} else {
979 			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
980 				     pages, pba, lba, page);
981 
982 			result = alauda_read_block(us, pba, page, pages, buffer);
983 			if (result != USB_STOR_TRANSPORT_GOOD)
984 				break;
985 		}
986 
987 		/* Store the data in the transfer buffer */
988 		usb_stor_access_xfer_buf(buffer, len, us->srb,
989 				&sg, &offset, TO_XFER_BUF);
990 
991 		page = 0;
992 		lba++;
993 		sectors -= pages;
994 	}
995 
996 	kfree(buffer);
997 	return result;
998 }
999 
1000 /*
1001  * Write data to a specific sector address
1002  */
alauda_write_data(struct us_data * us,unsigned long address,unsigned int sectors)1003 static int alauda_write_data(struct us_data *us, unsigned long address,
1004 		unsigned int sectors)
1005 {
1006 	unsigned char *buffer, *blockbuffer;
1007 	unsigned int page, len, offset;
1008 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
1009 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
1010 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
1011 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
1012 	struct scatterlist *sg;
1013 	u16 lba, max_lba;
1014 	int result;
1015 
1016 	/*
1017 	 * Since we don't write the user data directly to the device,
1018 	 * we have to create a bounce buffer and move the data a piece
1019 	 * at a time between the bounce buffer and the actual transfer buffer.
1020 	 */
1021 
1022 	len = min(sectors, blocksize) * pagesize;
1023 	buffer = kmalloc(len, GFP_NOIO);
1024 	if (buffer == NULL) {
1025 		printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1026 		return USB_STOR_TRANSPORT_ERROR;
1027 	}
1028 
1029 	/*
1030 	 * We also need a temporary block buffer, where we read in the old data,
1031 	 * overwrite parts with the new data, and manipulate the redundancy data
1032 	 */
1033 	blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
1034 	if (blockbuffer == NULL) {
1035 		printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1036 		kfree(buffer);
1037 		return USB_STOR_TRANSPORT_ERROR;
1038 	}
1039 
1040 	/* Figure out the initial LBA and page */
1041 	lba = address >> blockshift;
1042 	page = (address & MEDIA_INFO(us).blockmask);
1043 	max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1044 
1045 	result = USB_STOR_TRANSPORT_GOOD;
1046 	offset = 0;
1047 	sg = NULL;
1048 
1049 	while (sectors > 0) {
1050 		/* Write as many sectors as possible in this block */
1051 		unsigned int pages = min(sectors, blocksize - page);
1052 		len = pages << pageshift;
1053 
1054 		/* Not overflowing capacity? */
1055 		if (lba >= max_lba) {
1056 			usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1057 				     lba, max_lba);
1058 			result = USB_STOR_TRANSPORT_ERROR;
1059 			break;
1060 		}
1061 
1062 		/* Get the data from the transfer buffer */
1063 		usb_stor_access_xfer_buf(buffer, len, us->srb,
1064 				&sg, &offset, FROM_XFER_BUF);
1065 
1066 		result = alauda_write_lba(us, lba, page, pages, buffer,
1067 			blockbuffer);
1068 		if (result != USB_STOR_TRANSPORT_GOOD)
1069 			break;
1070 
1071 		page = 0;
1072 		lba++;
1073 		sectors -= pages;
1074 	}
1075 
1076 	kfree(buffer);
1077 	kfree(blockbuffer);
1078 	return result;
1079 }
1080 
1081 /*
1082  * Our interface with the rest of the world
1083  */
1084 
alauda_info_destructor(void * extra)1085 static void alauda_info_destructor(void *extra)
1086 {
1087 	struct alauda_info *info = (struct alauda_info *) extra;
1088 	int port;
1089 
1090 	if (!info)
1091 		return;
1092 
1093 	for (port = 0; port < 2; port++) {
1094 		struct alauda_media_info *media_info = &info->port[port];
1095 
1096 		alauda_free_maps(media_info);
1097 		kfree(media_info->lba_to_pba);
1098 		kfree(media_info->pba_to_lba);
1099 	}
1100 }
1101 
1102 /*
1103  * Initialize alauda_info struct and find the data-write endpoint
1104  */
init_alauda(struct us_data * us)1105 static int init_alauda(struct us_data *us)
1106 {
1107 	struct alauda_info *info;
1108 	struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1109 	nand_init_ecc();
1110 
1111 	us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1112 	if (!us->extra)
1113 		return USB_STOR_TRANSPORT_ERROR;
1114 
1115 	info = (struct alauda_info *) us->extra;
1116 	us->extra_destructor = alauda_info_destructor;
1117 
1118 	info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1119 		altsetting->endpoint[0].desc.bEndpointAddress
1120 		& USB_ENDPOINT_NUMBER_MASK);
1121 
1122 	return USB_STOR_TRANSPORT_GOOD;
1123 }
1124 
alauda_transport(struct scsi_cmnd * srb,struct us_data * us)1125 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1126 {
1127 	int rc;
1128 	struct alauda_info *info = (struct alauda_info *) us->extra;
1129 	unsigned char *ptr = us->iobuf;
1130 	static unsigned char inquiry_response[36] = {
1131 		0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1132 	};
1133 
1134 	if (srb->cmnd[0] == INQUIRY) {
1135 		usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1136 		memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1137 		fill_inquiry_response(us, ptr, 36);
1138 		return USB_STOR_TRANSPORT_GOOD;
1139 	}
1140 
1141 	if (srb->cmnd[0] == TEST_UNIT_READY) {
1142 		usb_stor_dbg(us, "TEST_UNIT_READY\n");
1143 		return alauda_check_media(us);
1144 	}
1145 
1146 	if (srb->cmnd[0] == READ_CAPACITY) {
1147 		unsigned int num_zones;
1148 		unsigned long capacity;
1149 
1150 		rc = alauda_check_media(us);
1151 		if (rc != USB_STOR_TRANSPORT_GOOD)
1152 			return rc;
1153 
1154 		num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1155 			+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1156 
1157 		capacity = num_zones * MEDIA_INFO(us).uzonesize
1158 			* MEDIA_INFO(us).blocksize;
1159 
1160 		/* Report capacity and page size */
1161 		((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1162 		((__be32 *) ptr)[1] = cpu_to_be32(512);
1163 
1164 		usb_stor_set_xfer_buf(ptr, 8, srb);
1165 		return USB_STOR_TRANSPORT_GOOD;
1166 	}
1167 
1168 	if (srb->cmnd[0] == READ_10) {
1169 		unsigned int page, pages;
1170 
1171 		rc = alauda_check_media(us);
1172 		if (rc != USB_STOR_TRANSPORT_GOOD)
1173 			return rc;
1174 
1175 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1176 		page <<= 16;
1177 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1178 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1179 
1180 		usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1181 
1182 		return alauda_read_data(us, page, pages);
1183 	}
1184 
1185 	if (srb->cmnd[0] == WRITE_10) {
1186 		unsigned int page, pages;
1187 
1188 		rc = alauda_check_media(us);
1189 		if (rc != USB_STOR_TRANSPORT_GOOD)
1190 			return rc;
1191 
1192 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1193 		page <<= 16;
1194 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1195 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1196 
1197 		usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1198 
1199 		return alauda_write_data(us, page, pages);
1200 	}
1201 
1202 	if (srb->cmnd[0] == REQUEST_SENSE) {
1203 		usb_stor_dbg(us, "REQUEST_SENSE\n");
1204 
1205 		memset(ptr, 0, 18);
1206 		ptr[0] = 0xF0;
1207 		ptr[2] = info->sense_key;
1208 		ptr[7] = 11;
1209 		ptr[12] = info->sense_asc;
1210 		ptr[13] = info->sense_ascq;
1211 		usb_stor_set_xfer_buf(ptr, 18, srb);
1212 
1213 		return USB_STOR_TRANSPORT_GOOD;
1214 	}
1215 
1216 	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1217 		/* sure.  whatever.  not like we can stop the user from popping
1218 		   the media out of the device (no locking doors, etc) */
1219 		return USB_STOR_TRANSPORT_GOOD;
1220 	}
1221 
1222 	usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1223 		     srb->cmnd[0], srb->cmnd[0]);
1224 	info->sense_key = 0x05;
1225 	info->sense_asc = 0x20;
1226 	info->sense_ascq = 0x00;
1227 	return USB_STOR_TRANSPORT_FAILED;
1228 }
1229 
alauda_probe(struct usb_interface * intf,const struct usb_device_id * id)1230 static int alauda_probe(struct usb_interface *intf,
1231 			 const struct usb_device_id *id)
1232 {
1233 	struct us_data *us;
1234 	int result;
1235 
1236 	result = usb_stor_probe1(&us, intf, id,
1237 			(id - alauda_usb_ids) + alauda_unusual_dev_list);
1238 	if (result)
1239 		return result;
1240 
1241 	us->transport_name  = "Alauda Control/Bulk";
1242 	us->transport = alauda_transport;
1243 	us->transport_reset = usb_stor_Bulk_reset;
1244 	us->max_lun = 1;
1245 
1246 	result = usb_stor_probe2(us);
1247 	return result;
1248 }
1249 
1250 static struct usb_driver alauda_driver = {
1251 	.name =		"ums-alauda",
1252 	.probe =	alauda_probe,
1253 	.disconnect =	usb_stor_disconnect,
1254 	.suspend =	usb_stor_suspend,
1255 	.resume =	usb_stor_resume,
1256 	.reset_resume =	usb_stor_reset_resume,
1257 	.pre_reset =	usb_stor_pre_reset,
1258 	.post_reset =	usb_stor_post_reset,
1259 	.id_table =	alauda_usb_ids,
1260 	.soft_unbind =	1,
1261 	.no_dynamic_id = 1,
1262 };
1263 
1264 module_usb_driver(alauda_driver);
1265