1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
5 * (C) 2004 Nadia Yvette Chambers, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21 *
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
26 *
27 */
28
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/proc_fs.h>
41
42 #define pid_hashfn(nr, ns) \
43 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
44 static struct hlist_head *pid_hash;
45 static unsigned int pidhash_shift = 4;
46 struct pid init_struct_pid = INIT_STRUCT_PID;
47
48 int pid_max = PID_MAX_DEFAULT;
49
50 #define RESERVED_PIDS 300
51
52 int pid_max_min = RESERVED_PIDS + 1;
53 int pid_max_max = PID_MAX_LIMIT;
54
mk_pid(struct pid_namespace * pid_ns,struct pidmap * map,int off)55 static inline int mk_pid(struct pid_namespace *pid_ns,
56 struct pidmap *map, int off)
57 {
58 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
59 }
60
61 #define find_next_offset(map, off) \
62 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
63
64 /*
65 * PID-map pages start out as NULL, they get allocated upon
66 * first use and are never deallocated. This way a low pid_max
67 * value does not cause lots of bitmaps to be allocated, but
68 * the scheme scales to up to 4 million PIDs, runtime.
69 */
70 struct pid_namespace init_pid_ns = {
71 .kref = {
72 .refcount = ATOMIC_INIT(2),
73 },
74 .pidmap = {
75 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
76 },
77 .last_pid = 0,
78 .nr_hashed = PIDNS_HASH_ADDING,
79 .level = 0,
80 .child_reaper = &init_task,
81 .user_ns = &init_user_ns,
82 .proc_inum = PROC_PID_INIT_INO,
83 };
84 EXPORT_SYMBOL_GPL(init_pid_ns);
85
86 /*
87 * Note: disable interrupts while the pidmap_lock is held as an
88 * interrupt might come in and do read_lock(&tasklist_lock).
89 *
90 * If we don't disable interrupts there is a nasty deadlock between
91 * detach_pid()->free_pid() and another cpu that does
92 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
93 * read_lock(&tasklist_lock);
94 *
95 * After we clean up the tasklist_lock and know there are no
96 * irq handlers that take it we can leave the interrupts enabled.
97 * For now it is easier to be safe than to prove it can't happen.
98 */
99
100 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
101
free_pidmap(struct upid * upid)102 static void free_pidmap(struct upid *upid)
103 {
104 int nr = upid->nr;
105 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
106 int offset = nr & BITS_PER_PAGE_MASK;
107
108 clear_bit(offset, map->page);
109 atomic_inc(&map->nr_free);
110 }
111
112 /*
113 * If we started walking pids at 'base', is 'a' seen before 'b'?
114 */
pid_before(int base,int a,int b)115 static int pid_before(int base, int a, int b)
116 {
117 /*
118 * This is the same as saying
119 *
120 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
121 * and that mapping orders 'a' and 'b' with respect to 'base'.
122 */
123 return (unsigned)(a - base) < (unsigned)(b - base);
124 }
125
126 /*
127 * We might be racing with someone else trying to set pid_ns->last_pid
128 * at the pid allocation time (there's also a sysctl for this, but racing
129 * with this one is OK, see comment in kernel/pid_namespace.c about it).
130 * We want the winner to have the "later" value, because if the
131 * "earlier" value prevails, then a pid may get reused immediately.
132 *
133 * Since pids rollover, it is not sufficient to just pick the bigger
134 * value. We have to consider where we started counting from.
135 *
136 * 'base' is the value of pid_ns->last_pid that we observed when
137 * we started looking for a pid.
138 *
139 * 'pid' is the pid that we eventually found.
140 */
set_last_pid(struct pid_namespace * pid_ns,int base,int pid)141 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
142 {
143 int prev;
144 int last_write = base;
145 do {
146 prev = last_write;
147 last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
148 } while ((prev != last_write) && (pid_before(base, last_write, pid)));
149 }
150
alloc_pidmap(struct pid_namespace * pid_ns)151 static int alloc_pidmap(struct pid_namespace *pid_ns)
152 {
153 int i, offset, max_scan, pid, last = pid_ns->last_pid;
154 struct pidmap *map;
155
156 pid = last + 1;
157 if (pid >= pid_max)
158 pid = RESERVED_PIDS;
159 offset = pid & BITS_PER_PAGE_MASK;
160 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
161 /*
162 * If last_pid points into the middle of the map->page we
163 * want to scan this bitmap block twice, the second time
164 * we start with offset == 0 (or RESERVED_PIDS).
165 */
166 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
167 for (i = 0; i <= max_scan; ++i) {
168 if (unlikely(!map->page)) {
169 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
170 /*
171 * Free the page if someone raced with us
172 * installing it:
173 */
174 spin_lock_irq(&pidmap_lock);
175 if (!map->page) {
176 map->page = page;
177 page = NULL;
178 }
179 spin_unlock_irq(&pidmap_lock);
180 kfree(page);
181 if (unlikely(!map->page))
182 break;
183 }
184 if (likely(atomic_read(&map->nr_free))) {
185 for ( ; ; ) {
186 if (!test_and_set_bit(offset, map->page)) {
187 atomic_dec(&map->nr_free);
188 set_last_pid(pid_ns, last, pid);
189 return pid;
190 }
191 offset = find_next_offset(map, offset);
192 if (offset >= BITS_PER_PAGE)
193 break;
194 pid = mk_pid(pid_ns, map, offset);
195 if (pid >= pid_max)
196 break;
197 }
198 }
199 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
200 ++map;
201 offset = 0;
202 } else {
203 map = &pid_ns->pidmap[0];
204 offset = RESERVED_PIDS;
205 if (unlikely(last == offset))
206 break;
207 }
208 pid = mk_pid(pid_ns, map, offset);
209 }
210 return -1;
211 }
212
next_pidmap(struct pid_namespace * pid_ns,unsigned int last)213 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
214 {
215 int offset;
216 struct pidmap *map, *end;
217
218 if (last >= PID_MAX_LIMIT)
219 return -1;
220
221 offset = (last + 1) & BITS_PER_PAGE_MASK;
222 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
223 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
224 for (; map < end; map++, offset = 0) {
225 if (unlikely(!map->page))
226 continue;
227 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
228 if (offset < BITS_PER_PAGE)
229 return mk_pid(pid_ns, map, offset);
230 }
231 return -1;
232 }
233
put_pid(struct pid * pid)234 void put_pid(struct pid *pid)
235 {
236 struct pid_namespace *ns;
237
238 if (!pid)
239 return;
240
241 ns = pid->numbers[pid->level].ns;
242 if ((atomic_read(&pid->count) == 1) ||
243 atomic_dec_and_test(&pid->count)) {
244 kmem_cache_free(ns->pid_cachep, pid);
245 put_pid_ns(ns);
246 }
247 }
248 EXPORT_SYMBOL_GPL(put_pid);
249
delayed_put_pid(struct rcu_head * rhp)250 static void delayed_put_pid(struct rcu_head *rhp)
251 {
252 struct pid *pid = container_of(rhp, struct pid, rcu);
253 put_pid(pid);
254 }
255
free_pid(struct pid * pid)256 void free_pid(struct pid *pid)
257 {
258 /* We can be called with write_lock_irq(&tasklist_lock) held */
259 int i;
260 unsigned long flags;
261
262 spin_lock_irqsave(&pidmap_lock, flags);
263 for (i = 0; i <= pid->level; i++) {
264 struct upid *upid = pid->numbers + i;
265 struct pid_namespace *ns = upid->ns;
266 hlist_del_rcu(&upid->pid_chain);
267 switch(--ns->nr_hashed) {
268 case 2:
269 case 1:
270 /* When all that is left in the pid namespace
271 * is the reaper wake up the reaper. The reaper
272 * may be sleeping in zap_pid_ns_processes().
273 */
274 wake_up_process(ns->child_reaper);
275 break;
276 case PIDNS_HASH_ADDING:
277 /* Handle a fork failure of the first process */
278 WARN_ON(ns->child_reaper);
279 ns->nr_hashed = 0;
280 /* fall through */
281 case 0:
282 schedule_work(&ns->proc_work);
283 break;
284 }
285 }
286 spin_unlock_irqrestore(&pidmap_lock, flags);
287
288 for (i = 0; i <= pid->level; i++)
289 free_pidmap(pid->numbers + i);
290
291 call_rcu(&pid->rcu, delayed_put_pid);
292 }
293
alloc_pid(struct pid_namespace * ns)294 struct pid *alloc_pid(struct pid_namespace *ns)
295 {
296 struct pid *pid;
297 enum pid_type type;
298 int i, nr;
299 struct pid_namespace *tmp;
300 struct upid *upid;
301
302 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
303 if (!pid)
304 goto out;
305
306 tmp = ns;
307 pid->level = ns->level;
308 for (i = ns->level; i >= 0; i--) {
309 nr = alloc_pidmap(tmp);
310 if (nr < 0)
311 goto out_free;
312
313 pid->numbers[i].nr = nr;
314 pid->numbers[i].ns = tmp;
315 tmp = tmp->parent;
316 }
317
318 if (unlikely(is_child_reaper(pid))) {
319 if (pid_ns_prepare_proc(ns))
320 goto out_free;
321 }
322
323 get_pid_ns(ns);
324 atomic_set(&pid->count, 1);
325 for (type = 0; type < PIDTYPE_MAX; ++type)
326 INIT_HLIST_HEAD(&pid->tasks[type]);
327
328 upid = pid->numbers + ns->level;
329 spin_lock_irq(&pidmap_lock);
330 if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
331 goto out_unlock;
332 for ( ; upid >= pid->numbers; --upid) {
333 hlist_add_head_rcu(&upid->pid_chain,
334 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
335 upid->ns->nr_hashed++;
336 }
337 spin_unlock_irq(&pidmap_lock);
338
339 out:
340 return pid;
341
342 out_unlock:
343 spin_unlock_irq(&pidmap_lock);
344 put_pid_ns(ns);
345
346 out_free:
347 while (++i <= ns->level)
348 free_pidmap(pid->numbers + i);
349
350 kmem_cache_free(ns->pid_cachep, pid);
351 pid = NULL;
352 goto out;
353 }
354
disable_pid_allocation(struct pid_namespace * ns)355 void disable_pid_allocation(struct pid_namespace *ns)
356 {
357 spin_lock_irq(&pidmap_lock);
358 ns->nr_hashed &= ~PIDNS_HASH_ADDING;
359 spin_unlock_irq(&pidmap_lock);
360 }
361
find_pid_ns(int nr,struct pid_namespace * ns)362 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
363 {
364 struct upid *pnr;
365
366 hlist_for_each_entry_rcu(pnr,
367 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
368 if (pnr->nr == nr && pnr->ns == ns)
369 return container_of(pnr, struct pid,
370 numbers[ns->level]);
371
372 return NULL;
373 }
374 EXPORT_SYMBOL_GPL(find_pid_ns);
375
find_vpid(int nr)376 struct pid *find_vpid(int nr)
377 {
378 return find_pid_ns(nr, task_active_pid_ns(current));
379 }
380 EXPORT_SYMBOL_GPL(find_vpid);
381
382 /*
383 * attach_pid() must be called with the tasklist_lock write-held.
384 */
attach_pid(struct task_struct * task,enum pid_type type)385 void attach_pid(struct task_struct *task, enum pid_type type)
386 {
387 struct pid_link *link = &task->pids[type];
388 hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
389 }
390
__change_pid(struct task_struct * task,enum pid_type type,struct pid * new)391 static void __change_pid(struct task_struct *task, enum pid_type type,
392 struct pid *new)
393 {
394 struct pid_link *link;
395 struct pid *pid;
396 int tmp;
397
398 link = &task->pids[type];
399 pid = link->pid;
400
401 hlist_del_rcu(&link->node);
402 link->pid = new;
403
404 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
405 if (!hlist_empty(&pid->tasks[tmp]))
406 return;
407
408 free_pid(pid);
409 }
410
detach_pid(struct task_struct * task,enum pid_type type)411 void detach_pid(struct task_struct *task, enum pid_type type)
412 {
413 __change_pid(task, type, NULL);
414 }
415
change_pid(struct task_struct * task,enum pid_type type,struct pid * pid)416 void change_pid(struct task_struct *task, enum pid_type type,
417 struct pid *pid)
418 {
419 __change_pid(task, type, pid);
420 attach_pid(task, type);
421 }
422
423 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
transfer_pid(struct task_struct * old,struct task_struct * new,enum pid_type type)424 void transfer_pid(struct task_struct *old, struct task_struct *new,
425 enum pid_type type)
426 {
427 new->pids[type].pid = old->pids[type].pid;
428 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
429 }
430
pid_task(struct pid * pid,enum pid_type type)431 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
432 {
433 struct task_struct *result = NULL;
434 if (pid) {
435 struct hlist_node *first;
436 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
437 lockdep_tasklist_lock_is_held());
438 if (first)
439 result = hlist_entry(first, struct task_struct, pids[(type)].node);
440 }
441 return result;
442 }
443 EXPORT_SYMBOL(pid_task);
444
445 /*
446 * Must be called under rcu_read_lock().
447 */
find_task_by_pid_ns(pid_t nr,struct pid_namespace * ns)448 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
449 {
450 rcu_lockdep_assert(rcu_read_lock_held(),
451 "find_task_by_pid_ns() needs rcu_read_lock()"
452 " protection");
453 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
454 }
455
find_task_by_vpid(pid_t vnr)456 struct task_struct *find_task_by_vpid(pid_t vnr)
457 {
458 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
459 }
460
get_task_pid(struct task_struct * task,enum pid_type type)461 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
462 {
463 struct pid *pid;
464 rcu_read_lock();
465 if (type != PIDTYPE_PID)
466 task = task->group_leader;
467 pid = get_pid(task->pids[type].pid);
468 rcu_read_unlock();
469 return pid;
470 }
471 EXPORT_SYMBOL_GPL(get_task_pid);
472
get_pid_task(struct pid * pid,enum pid_type type)473 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
474 {
475 struct task_struct *result;
476 rcu_read_lock();
477 result = pid_task(pid, type);
478 if (result)
479 get_task_struct(result);
480 rcu_read_unlock();
481 return result;
482 }
483 EXPORT_SYMBOL_GPL(get_pid_task);
484
find_get_pid(pid_t nr)485 struct pid *find_get_pid(pid_t nr)
486 {
487 struct pid *pid;
488
489 rcu_read_lock();
490 pid = get_pid(find_vpid(nr));
491 rcu_read_unlock();
492
493 return pid;
494 }
495 EXPORT_SYMBOL_GPL(find_get_pid);
496
pid_nr_ns(struct pid * pid,struct pid_namespace * ns)497 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
498 {
499 struct upid *upid;
500 pid_t nr = 0;
501
502 if (pid && ns->level <= pid->level) {
503 upid = &pid->numbers[ns->level];
504 if (upid->ns == ns)
505 nr = upid->nr;
506 }
507 return nr;
508 }
509 EXPORT_SYMBOL_GPL(pid_nr_ns);
510
pid_vnr(struct pid * pid)511 pid_t pid_vnr(struct pid *pid)
512 {
513 return pid_nr_ns(pid, task_active_pid_ns(current));
514 }
515 EXPORT_SYMBOL_GPL(pid_vnr);
516
__task_pid_nr_ns(struct task_struct * task,enum pid_type type,struct pid_namespace * ns)517 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
518 struct pid_namespace *ns)
519 {
520 pid_t nr = 0;
521
522 rcu_read_lock();
523 if (!ns)
524 ns = task_active_pid_ns(current);
525 if (likely(pid_alive(task))) {
526 if (type != PIDTYPE_PID) {
527 if (type == __PIDTYPE_TGID)
528 type = PIDTYPE_PID;
529 task = task->group_leader;
530 }
531 nr = pid_nr_ns(task->pids[type].pid, ns);
532 }
533 rcu_read_unlock();
534
535 return nr;
536 }
537 EXPORT_SYMBOL(__task_pid_nr_ns);
538
task_active_pid_ns(struct task_struct * tsk)539 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
540 {
541 return ns_of_pid(task_pid(tsk));
542 }
543 EXPORT_SYMBOL_GPL(task_active_pid_ns);
544
545 /*
546 * Used by proc to find the first pid that is greater than or equal to nr.
547 *
548 * If there is a pid at nr this function is exactly the same as find_pid_ns.
549 */
find_ge_pid(int nr,struct pid_namespace * ns)550 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
551 {
552 struct pid *pid;
553
554 do {
555 pid = find_pid_ns(nr, ns);
556 if (pid)
557 break;
558 nr = next_pidmap(ns, nr);
559 } while (nr > 0);
560
561 return pid;
562 }
563
564 /*
565 * The pid hash table is scaled according to the amount of memory in the
566 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
567 * more.
568 */
pidhash_init(void)569 void __init pidhash_init(void)
570 {
571 unsigned int i, pidhash_size;
572
573 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
574 HASH_EARLY | HASH_SMALL,
575 &pidhash_shift, NULL,
576 0, 4096);
577 pidhash_size = 1U << pidhash_shift;
578
579 for (i = 0; i < pidhash_size; i++)
580 INIT_HLIST_HEAD(&pid_hash[i]);
581 }
582
pidmap_init(void)583 void __init pidmap_init(void)
584 {
585 /* Veryify no one has done anything silly */
586 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
587
588 /* bump default and minimum pid_max based on number of cpus */
589 pid_max = min(pid_max_max, max_t(int, pid_max,
590 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
591 pid_max_min = max_t(int, pid_max_min,
592 PIDS_PER_CPU_MIN * num_possible_cpus());
593 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
594
595 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
596 /* Reserve PID 0. We never call free_pidmap(0) */
597 set_bit(0, init_pid_ns.pidmap[0].page);
598 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
599
600 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
601 SLAB_HWCACHE_ALIGN | SLAB_PANIC);
602 }
603