1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
141
142 #define GEN8_LR_CONTEXT_ALIGN 4096
143
144 #define RING_EXECLIST_QFULL (1 << 0x2)
145 #define RING_EXECLIST1_VALID (1 << 0x3)
146 #define RING_EXECLIST0_VALID (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
157
158 #define CTX_LRI_HEADER_0 0x01
159 #define CTX_CONTEXT_CONTROL 0x02
160 #define CTX_RING_HEAD 0x04
161 #define CTX_RING_TAIL 0x06
162 #define CTX_RING_BUFFER_START 0x08
163 #define CTX_RING_BUFFER_CONTROL 0x0a
164 #define CTX_BB_HEAD_U 0x0c
165 #define CTX_BB_HEAD_L 0x0e
166 #define CTX_BB_STATE 0x10
167 #define CTX_SECOND_BB_HEAD_U 0x12
168 #define CTX_SECOND_BB_HEAD_L 0x14
169 #define CTX_SECOND_BB_STATE 0x16
170 #define CTX_BB_PER_CTX_PTR 0x18
171 #define CTX_RCS_INDIRECT_CTX 0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173 #define CTX_LRI_HEADER_1 0x21
174 #define CTX_CTX_TIMESTAMP 0x22
175 #define CTX_PDP3_UDW 0x24
176 #define CTX_PDP3_LDW 0x26
177 #define CTX_PDP2_UDW 0x28
178 #define CTX_PDP2_LDW 0x2a
179 #define CTX_PDP1_UDW 0x2c
180 #define CTX_PDP1_LDW 0x2e
181 #define CTX_PDP0_UDW 0x30
182 #define CTX_PDP0_LDW 0x32
183 #define CTX_LRI_HEADER_2 0x41
184 #define CTX_R_PWR_CLK_STATE 0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192 enum {
193 ADVANCED_CONTEXT = 0,
194 LEGACY_CONTEXT,
195 ADVANCED_AD_CONTEXT,
196 LEGACY_64B_CONTEXT
197 };
198 #define GEN8_CTX_MODE_SHIFT 3
199 enum {
200 FAULT_AND_HANG = 0,
201 FAULT_AND_HALT, /* Debug only */
202 FAULT_AND_STREAM,
203 FAULT_AND_CONTINUE /* Unsupported */
204 };
205 #define GEN8_CTX_ID_SHIFT 32
206
207 /**
208 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
209 * @dev: DRM device.
210 * @enable_execlists: value of i915.enable_execlists module parameter.
211 *
212 * Only certain platforms support Execlists (the prerequisites being
213 * support for Logical Ring Contexts and Aliasing PPGTT or better),
214 * and only when enabled via module parameter.
215 *
216 * Return: 1 if Execlists is supported and has to be enabled.
217 */
intel_sanitize_enable_execlists(struct drm_device * dev,int enable_execlists)218 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
219 {
220 WARN_ON(i915.enable_ppgtt == -1);
221
222 if (enable_execlists == 0)
223 return 0;
224
225 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
226 i915.use_mmio_flip >= 0)
227 return 1;
228
229 return 0;
230 }
231
232 /**
233 * intel_execlists_ctx_id() - get the Execlists Context ID
234 * @ctx_obj: Logical Ring Context backing object.
235 *
236 * Do not confuse with ctx->id! Unfortunately we have a name overload
237 * here: the old context ID we pass to userspace as a handler so that
238 * they can refer to a context, and the new context ID we pass to the
239 * ELSP so that the GPU can inform us of the context status via
240 * interrupts.
241 *
242 * Return: 20-bits globally unique context ID.
243 */
intel_execlists_ctx_id(struct drm_i915_gem_object * ctx_obj)244 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
245 {
246 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
247
248 /* LRCA is required to be 4K aligned so the more significant 20 bits
249 * are globally unique */
250 return lrca >> 12;
251 }
252
execlists_ctx_descriptor(struct drm_i915_gem_object * ctx_obj)253 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
254 {
255 uint64_t desc;
256 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
257
258 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
259
260 desc = GEN8_CTX_VALID;
261 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
262 desc |= GEN8_CTX_L3LLC_COHERENT;
263 desc |= GEN8_CTX_PRIVILEGE;
264 desc |= lrca;
265 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
266
267 /* TODO: WaDisableLiteRestore when we start using semaphore
268 * signalling between Command Streamers */
269 /* desc |= GEN8_CTX_FORCE_RESTORE; */
270
271 return desc;
272 }
273
execlists_elsp_write(struct intel_engine_cs * ring,struct drm_i915_gem_object * ctx_obj0,struct drm_i915_gem_object * ctx_obj1)274 static void execlists_elsp_write(struct intel_engine_cs *ring,
275 struct drm_i915_gem_object *ctx_obj0,
276 struct drm_i915_gem_object *ctx_obj1)
277 {
278 struct drm_i915_private *dev_priv = ring->dev->dev_private;
279 uint64_t temp = 0;
280 uint32_t desc[4];
281 unsigned long flags;
282
283 /* XXX: You must always write both descriptors in the order below. */
284 if (ctx_obj1)
285 temp = execlists_ctx_descriptor(ctx_obj1);
286 else
287 temp = 0;
288 desc[1] = (u32)(temp >> 32);
289 desc[0] = (u32)temp;
290
291 temp = execlists_ctx_descriptor(ctx_obj0);
292 desc[3] = (u32)(temp >> 32);
293 desc[2] = (u32)temp;
294
295 /* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
296 * are in progress.
297 *
298 * The other problem is that we can't just call gen6_gt_force_wake_get()
299 * because that function calls intel_runtime_pm_get(), which might sleep.
300 * Instead, we do the runtime_pm_get/put when creating/destroying requests.
301 */
302 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
303 if (IS_CHERRYVIEW(dev_priv->dev)) {
304 if (dev_priv->uncore.fw_rendercount++ == 0)
305 dev_priv->uncore.funcs.force_wake_get(dev_priv,
306 FORCEWAKE_RENDER);
307 if (dev_priv->uncore.fw_mediacount++ == 0)
308 dev_priv->uncore.funcs.force_wake_get(dev_priv,
309 FORCEWAKE_MEDIA);
310 } else {
311 if (dev_priv->uncore.forcewake_count++ == 0)
312 dev_priv->uncore.funcs.force_wake_get(dev_priv,
313 FORCEWAKE_ALL);
314 }
315 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
316
317 I915_WRITE(RING_ELSP(ring), desc[1]);
318 I915_WRITE(RING_ELSP(ring), desc[0]);
319 I915_WRITE(RING_ELSP(ring), desc[3]);
320 /* The context is automatically loaded after the following */
321 I915_WRITE(RING_ELSP(ring), desc[2]);
322
323 /* ELSP is a wo register, so use another nearby reg for posting instead */
324 POSTING_READ(RING_EXECLIST_STATUS(ring));
325
326 /* Release Force Wakeup (see the big comment above). */
327 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
328 if (IS_CHERRYVIEW(dev_priv->dev)) {
329 if (--dev_priv->uncore.fw_rendercount == 0)
330 dev_priv->uncore.funcs.force_wake_put(dev_priv,
331 FORCEWAKE_RENDER);
332 if (--dev_priv->uncore.fw_mediacount == 0)
333 dev_priv->uncore.funcs.force_wake_put(dev_priv,
334 FORCEWAKE_MEDIA);
335 } else {
336 if (--dev_priv->uncore.forcewake_count == 0)
337 dev_priv->uncore.funcs.force_wake_put(dev_priv,
338 FORCEWAKE_ALL);
339 }
340
341 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
342 }
343
execlists_ctx_write_tail(struct drm_i915_gem_object * ctx_obj,u32 tail)344 static int execlists_ctx_write_tail(struct drm_i915_gem_object *ctx_obj, u32 tail)
345 {
346 struct page *page;
347 uint32_t *reg_state;
348
349 page = i915_gem_object_get_page(ctx_obj, 1);
350 reg_state = kmap_atomic(page);
351
352 reg_state[CTX_RING_TAIL+1] = tail;
353
354 kunmap_atomic(reg_state);
355
356 return 0;
357 }
358
execlists_submit_context(struct intel_engine_cs * ring,struct intel_context * to0,u32 tail0,struct intel_context * to1,u32 tail1)359 static int execlists_submit_context(struct intel_engine_cs *ring,
360 struct intel_context *to0, u32 tail0,
361 struct intel_context *to1, u32 tail1)
362 {
363 struct drm_i915_gem_object *ctx_obj0;
364 struct drm_i915_gem_object *ctx_obj1 = NULL;
365
366 ctx_obj0 = to0->engine[ring->id].state;
367 BUG_ON(!ctx_obj0);
368 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
369
370 execlists_ctx_write_tail(ctx_obj0, tail0);
371
372 if (to1) {
373 ctx_obj1 = to1->engine[ring->id].state;
374 BUG_ON(!ctx_obj1);
375 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
376
377 execlists_ctx_write_tail(ctx_obj1, tail1);
378 }
379
380 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
381
382 return 0;
383 }
384
execlists_context_unqueue(struct intel_engine_cs * ring)385 static void execlists_context_unqueue(struct intel_engine_cs *ring)
386 {
387 struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
388 struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
389 struct drm_i915_private *dev_priv = ring->dev->dev_private;
390
391 assert_spin_locked(&ring->execlist_lock);
392
393 if (list_empty(&ring->execlist_queue))
394 return;
395
396 /* Try to read in pairs */
397 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
398 execlist_link) {
399 if (!req0) {
400 req0 = cursor;
401 } else if (req0->ctx == cursor->ctx) {
402 /* Same ctx: ignore first request, as second request
403 * will update tail past first request's workload */
404 cursor->elsp_submitted = req0->elsp_submitted;
405 list_del(&req0->execlist_link);
406 queue_work(dev_priv->wq, &req0->work);
407 req0 = cursor;
408 } else {
409 req1 = cursor;
410 break;
411 }
412 }
413
414 WARN_ON(req1 && req1->elsp_submitted);
415
416 WARN_ON(execlists_submit_context(ring, req0->ctx, req0->tail,
417 req1 ? req1->ctx : NULL,
418 req1 ? req1->tail : 0));
419
420 req0->elsp_submitted++;
421 if (req1)
422 req1->elsp_submitted++;
423 }
424
execlists_check_remove_request(struct intel_engine_cs * ring,u32 request_id)425 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
426 u32 request_id)
427 {
428 struct drm_i915_private *dev_priv = ring->dev->dev_private;
429 struct intel_ctx_submit_request *head_req;
430
431 assert_spin_locked(&ring->execlist_lock);
432
433 head_req = list_first_entry_or_null(&ring->execlist_queue,
434 struct intel_ctx_submit_request,
435 execlist_link);
436
437 if (head_req != NULL) {
438 struct drm_i915_gem_object *ctx_obj =
439 head_req->ctx->engine[ring->id].state;
440 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
441 WARN(head_req->elsp_submitted == 0,
442 "Never submitted head request\n");
443
444 if (--head_req->elsp_submitted <= 0) {
445 list_del(&head_req->execlist_link);
446 queue_work(dev_priv->wq, &head_req->work);
447 return true;
448 }
449 }
450 }
451
452 return false;
453 }
454
455 /**
456 * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
457 * @ring: Engine Command Streamer to handle.
458 *
459 * Check the unread Context Status Buffers and manage the submission of new
460 * contexts to the ELSP accordingly.
461 */
intel_execlists_handle_ctx_events(struct intel_engine_cs * ring)462 void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
463 {
464 struct drm_i915_private *dev_priv = ring->dev->dev_private;
465 u32 status_pointer;
466 u8 read_pointer;
467 u8 write_pointer;
468 u32 status;
469 u32 status_id;
470 u32 submit_contexts = 0;
471
472 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
473
474 read_pointer = ring->next_context_status_buffer;
475 write_pointer = status_pointer & 0x07;
476 if (read_pointer > write_pointer)
477 write_pointer += 6;
478
479 spin_lock(&ring->execlist_lock);
480
481 while (read_pointer < write_pointer) {
482 read_pointer++;
483 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
484 (read_pointer % 6) * 8);
485 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
486 (read_pointer % 6) * 8 + 4);
487
488 if (status & GEN8_CTX_STATUS_PREEMPTED) {
489 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
490 if (execlists_check_remove_request(ring, status_id))
491 WARN(1, "Lite Restored request removed from queue\n");
492 } else
493 WARN(1, "Preemption without Lite Restore\n");
494 }
495
496 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
497 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
498 if (execlists_check_remove_request(ring, status_id))
499 submit_contexts++;
500 }
501 }
502
503 if (submit_contexts != 0)
504 execlists_context_unqueue(ring);
505
506 spin_unlock(&ring->execlist_lock);
507
508 WARN(submit_contexts > 2, "More than two context complete events?\n");
509 ring->next_context_status_buffer = write_pointer % 6;
510
511 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
512 ((u32)ring->next_context_status_buffer & 0x07) << 8);
513 }
514
execlists_free_request_task(struct work_struct * work)515 static void execlists_free_request_task(struct work_struct *work)
516 {
517 struct intel_ctx_submit_request *req =
518 container_of(work, struct intel_ctx_submit_request, work);
519 struct drm_device *dev = req->ring->dev;
520 struct drm_i915_private *dev_priv = dev->dev_private;
521
522 intel_runtime_pm_put(dev_priv);
523
524 mutex_lock(&dev->struct_mutex);
525 i915_gem_context_unreference(req->ctx);
526 mutex_unlock(&dev->struct_mutex);
527
528 kfree(req);
529 }
530
execlists_context_queue(struct intel_engine_cs * ring,struct intel_context * to,u32 tail)531 static int execlists_context_queue(struct intel_engine_cs *ring,
532 struct intel_context *to,
533 u32 tail)
534 {
535 struct intel_ctx_submit_request *req = NULL, *cursor;
536 struct drm_i915_private *dev_priv = ring->dev->dev_private;
537 unsigned long flags;
538 int num_elements = 0;
539
540 req = kzalloc(sizeof(*req), GFP_KERNEL);
541 if (req == NULL)
542 return -ENOMEM;
543 req->ctx = to;
544 i915_gem_context_reference(req->ctx);
545 req->ring = ring;
546 req->tail = tail;
547 INIT_WORK(&req->work, execlists_free_request_task);
548
549 intel_runtime_pm_get(dev_priv);
550
551 spin_lock_irqsave(&ring->execlist_lock, flags);
552
553 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
554 if (++num_elements > 2)
555 break;
556
557 if (num_elements > 2) {
558 struct intel_ctx_submit_request *tail_req;
559
560 tail_req = list_last_entry(&ring->execlist_queue,
561 struct intel_ctx_submit_request,
562 execlist_link);
563
564 if (to == tail_req->ctx) {
565 WARN(tail_req->elsp_submitted != 0,
566 "More than 2 already-submitted reqs queued\n");
567 list_del(&tail_req->execlist_link);
568 queue_work(dev_priv->wq, &tail_req->work);
569 }
570 }
571
572 list_add_tail(&req->execlist_link, &ring->execlist_queue);
573 if (num_elements == 0)
574 execlists_context_unqueue(ring);
575
576 spin_unlock_irqrestore(&ring->execlist_lock, flags);
577
578 return 0;
579 }
580
logical_ring_invalidate_all_caches(struct intel_ringbuffer * ringbuf)581 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
582 {
583 struct intel_engine_cs *ring = ringbuf->ring;
584 uint32_t flush_domains;
585 int ret;
586
587 flush_domains = 0;
588 if (ring->gpu_caches_dirty)
589 flush_domains = I915_GEM_GPU_DOMAINS;
590
591 ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
592 if (ret)
593 return ret;
594
595 ring->gpu_caches_dirty = false;
596 return 0;
597 }
598
execlists_move_to_gpu(struct intel_ringbuffer * ringbuf,struct list_head * vmas)599 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
600 struct list_head *vmas)
601 {
602 struct intel_engine_cs *ring = ringbuf->ring;
603 struct i915_vma *vma;
604 uint32_t flush_domains = 0;
605 bool flush_chipset = false;
606 int ret;
607
608 list_for_each_entry(vma, vmas, exec_list) {
609 struct drm_i915_gem_object *obj = vma->obj;
610
611 ret = i915_gem_object_sync(obj, ring);
612 if (ret)
613 return ret;
614
615 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
616 flush_chipset |= i915_gem_clflush_object(obj, false);
617
618 flush_domains |= obj->base.write_domain;
619 }
620
621 if (flush_domains & I915_GEM_DOMAIN_GTT)
622 wmb();
623
624 /* Unconditionally invalidate gpu caches and ensure that we do flush
625 * any residual writes from the previous batch.
626 */
627 return logical_ring_invalidate_all_caches(ringbuf);
628 }
629
630 /**
631 * execlists_submission() - submit a batchbuffer for execution, Execlists style
632 * @dev: DRM device.
633 * @file: DRM file.
634 * @ring: Engine Command Streamer to submit to.
635 * @ctx: Context to employ for this submission.
636 * @args: execbuffer call arguments.
637 * @vmas: list of vmas.
638 * @batch_obj: the batchbuffer to submit.
639 * @exec_start: batchbuffer start virtual address pointer.
640 * @flags: translated execbuffer call flags.
641 *
642 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
643 * away the submission details of the execbuffer ioctl call.
644 *
645 * Return: non-zero if the submission fails.
646 */
intel_execlists_submission(struct drm_device * dev,struct drm_file * file,struct intel_engine_cs * ring,struct intel_context * ctx,struct drm_i915_gem_execbuffer2 * args,struct list_head * vmas,struct drm_i915_gem_object * batch_obj,u64 exec_start,u32 flags)647 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
648 struct intel_engine_cs *ring,
649 struct intel_context *ctx,
650 struct drm_i915_gem_execbuffer2 *args,
651 struct list_head *vmas,
652 struct drm_i915_gem_object *batch_obj,
653 u64 exec_start, u32 flags)
654 {
655 struct drm_i915_private *dev_priv = dev->dev_private;
656 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
657 int instp_mode;
658 u32 instp_mask;
659 int ret;
660
661 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
662 instp_mask = I915_EXEC_CONSTANTS_MASK;
663 switch (instp_mode) {
664 case I915_EXEC_CONSTANTS_REL_GENERAL:
665 case I915_EXEC_CONSTANTS_ABSOLUTE:
666 case I915_EXEC_CONSTANTS_REL_SURFACE:
667 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
668 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
669 return -EINVAL;
670 }
671
672 if (instp_mode != dev_priv->relative_constants_mode) {
673 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
674 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
675 return -EINVAL;
676 }
677
678 /* The HW changed the meaning on this bit on gen6 */
679 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
680 }
681 break;
682 default:
683 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
684 return -EINVAL;
685 }
686
687 if (args->num_cliprects != 0) {
688 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
689 return -EINVAL;
690 } else {
691 if (args->DR4 == 0xffffffff) {
692 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
693 args->DR4 = 0;
694 }
695
696 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
697 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
698 return -EINVAL;
699 }
700 }
701
702 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
703 DRM_DEBUG("sol reset is gen7 only\n");
704 return -EINVAL;
705 }
706
707 ret = execlists_move_to_gpu(ringbuf, vmas);
708 if (ret)
709 return ret;
710
711 if (ring == &dev_priv->ring[RCS] &&
712 instp_mode != dev_priv->relative_constants_mode) {
713 ret = intel_logical_ring_begin(ringbuf, 4);
714 if (ret)
715 return ret;
716
717 intel_logical_ring_emit(ringbuf, MI_NOOP);
718 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
719 intel_logical_ring_emit(ringbuf, INSTPM);
720 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
721 intel_logical_ring_advance(ringbuf);
722
723 dev_priv->relative_constants_mode = instp_mode;
724 }
725
726 ret = ring->emit_bb_start(ringbuf, exec_start, flags);
727 if (ret)
728 return ret;
729
730 i915_gem_execbuffer_move_to_active(vmas, ring);
731 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
732
733 return 0;
734 }
735
intel_logical_ring_stop(struct intel_engine_cs * ring)736 void intel_logical_ring_stop(struct intel_engine_cs *ring)
737 {
738 struct drm_i915_private *dev_priv = ring->dev->dev_private;
739 int ret;
740
741 if (!intel_ring_initialized(ring))
742 return;
743
744 ret = intel_ring_idle(ring);
745 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
746 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
747 ring->name, ret);
748
749 /* TODO: Is this correct with Execlists enabled? */
750 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
751 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
752 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
753 return;
754 }
755 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
756 }
757
logical_ring_flush_all_caches(struct intel_ringbuffer * ringbuf)758 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
759 {
760 struct intel_engine_cs *ring = ringbuf->ring;
761 int ret;
762
763 if (!ring->gpu_caches_dirty)
764 return 0;
765
766 ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
767 if (ret)
768 return ret;
769
770 ring->gpu_caches_dirty = false;
771 return 0;
772 }
773
774 /**
775 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
776 * @ringbuf: Logical Ringbuffer to advance.
777 *
778 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
779 * really happens during submission is that the context and current tail will be placed
780 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
781 * point, the tail *inside* the context is updated and the ELSP written to.
782 */
intel_logical_ring_advance_and_submit(struct intel_ringbuffer * ringbuf)783 void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
784 {
785 struct intel_engine_cs *ring = ringbuf->ring;
786 struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
787
788 intel_logical_ring_advance(ringbuf);
789
790 if (intel_ring_stopped(ring))
791 return;
792
793 execlists_context_queue(ring, ctx, ringbuf->tail);
794 }
795
logical_ring_alloc_seqno(struct intel_engine_cs * ring,struct intel_context * ctx)796 static int logical_ring_alloc_seqno(struct intel_engine_cs *ring,
797 struct intel_context *ctx)
798 {
799 if (ring->outstanding_lazy_seqno)
800 return 0;
801
802 if (ring->preallocated_lazy_request == NULL) {
803 struct drm_i915_gem_request *request;
804
805 request = kmalloc(sizeof(*request), GFP_KERNEL);
806 if (request == NULL)
807 return -ENOMEM;
808
809 /* Hold a reference to the context this request belongs to
810 * (we will need it when the time comes to emit/retire the
811 * request).
812 */
813 request->ctx = ctx;
814 i915_gem_context_reference(request->ctx);
815
816 ring->preallocated_lazy_request = request;
817 }
818
819 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
820 }
821
logical_ring_wait_request(struct intel_ringbuffer * ringbuf,int bytes)822 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
823 int bytes)
824 {
825 struct intel_engine_cs *ring = ringbuf->ring;
826 struct drm_i915_gem_request *request;
827 u32 seqno = 0;
828 int ret;
829
830 if (ringbuf->last_retired_head != -1) {
831 ringbuf->head = ringbuf->last_retired_head;
832 ringbuf->last_retired_head = -1;
833
834 ringbuf->space = intel_ring_space(ringbuf);
835 if (ringbuf->space >= bytes)
836 return 0;
837 }
838
839 list_for_each_entry(request, &ring->request_list, list) {
840 if (__intel_ring_space(request->tail, ringbuf->tail,
841 ringbuf->size) >= bytes) {
842 seqno = request->seqno;
843 break;
844 }
845 }
846
847 if (seqno == 0)
848 return -ENOSPC;
849
850 ret = i915_wait_seqno(ring, seqno);
851 if (ret)
852 return ret;
853
854 i915_gem_retire_requests_ring(ring);
855 ringbuf->head = ringbuf->last_retired_head;
856 ringbuf->last_retired_head = -1;
857
858 ringbuf->space = intel_ring_space(ringbuf);
859 return 0;
860 }
861
logical_ring_wait_for_space(struct intel_ringbuffer * ringbuf,int bytes)862 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
863 int bytes)
864 {
865 struct intel_engine_cs *ring = ringbuf->ring;
866 struct drm_device *dev = ring->dev;
867 struct drm_i915_private *dev_priv = dev->dev_private;
868 unsigned long end;
869 int ret;
870
871 ret = logical_ring_wait_request(ringbuf, bytes);
872 if (ret != -ENOSPC)
873 return ret;
874
875 /* Force the context submission in case we have been skipping it */
876 intel_logical_ring_advance_and_submit(ringbuf);
877
878 /* With GEM the hangcheck timer should kick us out of the loop,
879 * leaving it early runs the risk of corrupting GEM state (due
880 * to running on almost untested codepaths). But on resume
881 * timers don't work yet, so prevent a complete hang in that
882 * case by choosing an insanely large timeout. */
883 end = jiffies + 60 * HZ;
884
885 do {
886 ringbuf->head = I915_READ_HEAD(ring);
887 ringbuf->space = intel_ring_space(ringbuf);
888 if (ringbuf->space >= bytes) {
889 ret = 0;
890 break;
891 }
892
893 msleep(1);
894
895 if (dev_priv->mm.interruptible && signal_pending(current)) {
896 ret = -ERESTARTSYS;
897 break;
898 }
899
900 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
901 dev_priv->mm.interruptible);
902 if (ret)
903 break;
904
905 if (time_after(jiffies, end)) {
906 ret = -EBUSY;
907 break;
908 }
909 } while (1);
910
911 return ret;
912 }
913
logical_ring_wrap_buffer(struct intel_ringbuffer * ringbuf)914 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
915 {
916 uint32_t __iomem *virt;
917 int rem = ringbuf->size - ringbuf->tail;
918
919 if (ringbuf->space < rem) {
920 int ret = logical_ring_wait_for_space(ringbuf, rem);
921
922 if (ret)
923 return ret;
924 }
925
926 virt = ringbuf->virtual_start + ringbuf->tail;
927 rem /= 4;
928 while (rem--)
929 iowrite32(MI_NOOP, virt++);
930
931 ringbuf->tail = 0;
932 ringbuf->space = intel_ring_space(ringbuf);
933
934 return 0;
935 }
936
logical_ring_prepare(struct intel_ringbuffer * ringbuf,int bytes)937 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
938 {
939 int ret;
940
941 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
942 ret = logical_ring_wrap_buffer(ringbuf);
943 if (unlikely(ret))
944 return ret;
945 }
946
947 if (unlikely(ringbuf->space < bytes)) {
948 ret = logical_ring_wait_for_space(ringbuf, bytes);
949 if (unlikely(ret))
950 return ret;
951 }
952
953 return 0;
954 }
955
956 /**
957 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
958 *
959 * @ringbuf: Logical ringbuffer.
960 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
961 *
962 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
963 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
964 * and also preallocates a request (every workload submission is still mediated through
965 * requests, same as it did with legacy ringbuffer submission).
966 *
967 * Return: non-zero if the ringbuffer is not ready to be written to.
968 */
intel_logical_ring_begin(struct intel_ringbuffer * ringbuf,int num_dwords)969 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
970 {
971 struct intel_engine_cs *ring = ringbuf->ring;
972 struct drm_device *dev = ring->dev;
973 struct drm_i915_private *dev_priv = dev->dev_private;
974 int ret;
975
976 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
977 dev_priv->mm.interruptible);
978 if (ret)
979 return ret;
980
981 ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
982 if (ret)
983 return ret;
984
985 /* Preallocate the olr before touching the ring */
986 ret = logical_ring_alloc_seqno(ring, ringbuf->FIXME_lrc_ctx);
987 if (ret)
988 return ret;
989
990 ringbuf->space -= num_dwords * sizeof(uint32_t);
991 return 0;
992 }
993
gen8_init_common_ring(struct intel_engine_cs * ring)994 static int gen8_init_common_ring(struct intel_engine_cs *ring)
995 {
996 struct drm_device *dev = ring->dev;
997 struct drm_i915_private *dev_priv = dev->dev_private;
998
999 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1000 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1001
1002 I915_WRITE(RING_MODE_GEN7(ring),
1003 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1004 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1005 POSTING_READ(RING_MODE_GEN7(ring));
1006 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1007
1008 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1009
1010 return 0;
1011 }
1012
gen8_init_render_ring(struct intel_engine_cs * ring)1013 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1014 {
1015 struct drm_device *dev = ring->dev;
1016 struct drm_i915_private *dev_priv = dev->dev_private;
1017 int ret;
1018
1019 ret = gen8_init_common_ring(ring);
1020 if (ret)
1021 return ret;
1022
1023 /* We need to disable the AsyncFlip performance optimisations in order
1024 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1025 * programmed to '1' on all products.
1026 *
1027 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1028 */
1029 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1030
1031 ret = intel_init_pipe_control(ring);
1032 if (ret)
1033 return ret;
1034
1035 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1036
1037 return ret;
1038 }
1039
gen8_emit_bb_start(struct intel_ringbuffer * ringbuf,u64 offset,unsigned flags)1040 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1041 u64 offset, unsigned flags)
1042 {
1043 bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1044 int ret;
1045
1046 ret = intel_logical_ring_begin(ringbuf, 4);
1047 if (ret)
1048 return ret;
1049
1050 /* FIXME(BDW): Address space and security selectors. */
1051 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1052 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1053 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1054 intel_logical_ring_emit(ringbuf, MI_NOOP);
1055 intel_logical_ring_advance(ringbuf);
1056
1057 return 0;
1058 }
1059
gen8_logical_ring_get_irq(struct intel_engine_cs * ring)1060 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1061 {
1062 struct drm_device *dev = ring->dev;
1063 struct drm_i915_private *dev_priv = dev->dev_private;
1064 unsigned long flags;
1065
1066 if (!dev->irq_enabled)
1067 return false;
1068
1069 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1070 if (ring->irq_refcount++ == 0) {
1071 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1072 POSTING_READ(RING_IMR(ring->mmio_base));
1073 }
1074 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1075
1076 return true;
1077 }
1078
gen8_logical_ring_put_irq(struct intel_engine_cs * ring)1079 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1080 {
1081 struct drm_device *dev = ring->dev;
1082 struct drm_i915_private *dev_priv = dev->dev_private;
1083 unsigned long flags;
1084
1085 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1086 if (--ring->irq_refcount == 0) {
1087 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1088 POSTING_READ(RING_IMR(ring->mmio_base));
1089 }
1090 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1091 }
1092
gen8_emit_flush(struct intel_ringbuffer * ringbuf,u32 invalidate_domains,u32 unused)1093 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1094 u32 invalidate_domains,
1095 u32 unused)
1096 {
1097 struct intel_engine_cs *ring = ringbuf->ring;
1098 struct drm_device *dev = ring->dev;
1099 struct drm_i915_private *dev_priv = dev->dev_private;
1100 uint32_t cmd;
1101 int ret;
1102
1103 ret = intel_logical_ring_begin(ringbuf, 4);
1104 if (ret)
1105 return ret;
1106
1107 cmd = MI_FLUSH_DW + 1;
1108
1109 /* We always require a command barrier so that subsequent
1110 * commands, such as breadcrumb interrupts, are strictly ordered
1111 * wrt the contents of the write cache being flushed to memory
1112 * (and thus being coherent from the CPU).
1113 */
1114 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1115
1116 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1117 cmd |= MI_INVALIDATE_TLB;
1118 if (ring == &dev_priv->ring[VCS])
1119 cmd |= MI_INVALIDATE_BSD;
1120 }
1121
1122 intel_logical_ring_emit(ringbuf, cmd);
1123 intel_logical_ring_emit(ringbuf,
1124 I915_GEM_HWS_SCRATCH_ADDR |
1125 MI_FLUSH_DW_USE_GTT);
1126 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1127 intel_logical_ring_emit(ringbuf, 0); /* value */
1128 intel_logical_ring_advance(ringbuf);
1129
1130 return 0;
1131 }
1132
gen8_emit_flush_render(struct intel_ringbuffer * ringbuf,u32 invalidate_domains,u32 flush_domains)1133 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1134 u32 invalidate_domains,
1135 u32 flush_domains)
1136 {
1137 struct intel_engine_cs *ring = ringbuf->ring;
1138 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1139 u32 flags = 0;
1140 int ret;
1141
1142 flags |= PIPE_CONTROL_CS_STALL;
1143
1144 if (flush_domains) {
1145 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1146 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1147 }
1148
1149 if (invalidate_domains) {
1150 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1151 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1152 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1153 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1154 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1155 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1156 flags |= PIPE_CONTROL_QW_WRITE;
1157 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1158 }
1159
1160 ret = intel_logical_ring_begin(ringbuf, 6);
1161 if (ret)
1162 return ret;
1163
1164 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1165 intel_logical_ring_emit(ringbuf, flags);
1166 intel_logical_ring_emit(ringbuf, scratch_addr);
1167 intel_logical_ring_emit(ringbuf, 0);
1168 intel_logical_ring_emit(ringbuf, 0);
1169 intel_logical_ring_emit(ringbuf, 0);
1170 intel_logical_ring_advance(ringbuf);
1171
1172 return 0;
1173 }
1174
gen8_get_seqno(struct intel_engine_cs * ring,bool lazy_coherency)1175 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1176 {
1177 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1178 }
1179
gen8_set_seqno(struct intel_engine_cs * ring,u32 seqno)1180 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1181 {
1182 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1183 }
1184
gen8_emit_request(struct intel_ringbuffer * ringbuf)1185 static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1186 {
1187 struct intel_engine_cs *ring = ringbuf->ring;
1188 u32 cmd;
1189 int ret;
1190
1191 ret = intel_logical_ring_begin(ringbuf, 6);
1192 if (ret)
1193 return ret;
1194
1195 cmd = MI_STORE_DWORD_IMM_GEN8;
1196 cmd |= MI_GLOBAL_GTT;
1197
1198 intel_logical_ring_emit(ringbuf, cmd);
1199 intel_logical_ring_emit(ringbuf,
1200 (ring->status_page.gfx_addr +
1201 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1202 intel_logical_ring_emit(ringbuf, 0);
1203 intel_logical_ring_emit(ringbuf, ring->outstanding_lazy_seqno);
1204 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1205 intel_logical_ring_emit(ringbuf, MI_NOOP);
1206 intel_logical_ring_advance_and_submit(ringbuf);
1207
1208 return 0;
1209 }
1210
1211 /**
1212 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1213 *
1214 * @ring: Engine Command Streamer.
1215 *
1216 */
intel_logical_ring_cleanup(struct intel_engine_cs * ring)1217 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1218 {
1219 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1220
1221 if (!intel_ring_initialized(ring))
1222 return;
1223
1224 intel_logical_ring_stop(ring);
1225 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1226 ring->preallocated_lazy_request = NULL;
1227 ring->outstanding_lazy_seqno = 0;
1228
1229 if (ring->cleanup)
1230 ring->cleanup(ring);
1231
1232 i915_cmd_parser_fini_ring(ring);
1233
1234 if (ring->status_page.obj) {
1235 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1236 ring->status_page.obj = NULL;
1237 }
1238 }
1239
logical_ring_init(struct drm_device * dev,struct intel_engine_cs * ring)1240 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1241 {
1242 int ret;
1243
1244 /* Intentionally left blank. */
1245 ring->buffer = NULL;
1246
1247 ring->dev = dev;
1248 INIT_LIST_HEAD(&ring->active_list);
1249 INIT_LIST_HEAD(&ring->request_list);
1250 init_waitqueue_head(&ring->irq_queue);
1251
1252 INIT_LIST_HEAD(&ring->execlist_queue);
1253 spin_lock_init(&ring->execlist_lock);
1254 ring->next_context_status_buffer = 0;
1255
1256 ret = i915_cmd_parser_init_ring(ring);
1257 if (ret)
1258 return ret;
1259
1260 if (ring->init) {
1261 ret = ring->init(ring);
1262 if (ret)
1263 return ret;
1264 }
1265
1266 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1267
1268 return ret;
1269 }
1270
logical_render_ring_init(struct drm_device * dev)1271 static int logical_render_ring_init(struct drm_device *dev)
1272 {
1273 struct drm_i915_private *dev_priv = dev->dev_private;
1274 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1275
1276 ring->name = "render ring";
1277 ring->id = RCS;
1278 ring->mmio_base = RENDER_RING_BASE;
1279 ring->irq_enable_mask =
1280 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1281 ring->irq_keep_mask =
1282 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1283 if (HAS_L3_DPF(dev))
1284 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1285
1286 ring->init = gen8_init_render_ring;
1287 ring->cleanup = intel_fini_pipe_control;
1288 ring->get_seqno = gen8_get_seqno;
1289 ring->set_seqno = gen8_set_seqno;
1290 ring->emit_request = gen8_emit_request;
1291 ring->emit_flush = gen8_emit_flush_render;
1292 ring->irq_get = gen8_logical_ring_get_irq;
1293 ring->irq_put = gen8_logical_ring_put_irq;
1294 ring->emit_bb_start = gen8_emit_bb_start;
1295
1296 return logical_ring_init(dev, ring);
1297 }
1298
logical_bsd_ring_init(struct drm_device * dev)1299 static int logical_bsd_ring_init(struct drm_device *dev)
1300 {
1301 struct drm_i915_private *dev_priv = dev->dev_private;
1302 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1303
1304 ring->name = "bsd ring";
1305 ring->id = VCS;
1306 ring->mmio_base = GEN6_BSD_RING_BASE;
1307 ring->irq_enable_mask =
1308 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1309 ring->irq_keep_mask =
1310 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1311
1312 ring->init = gen8_init_common_ring;
1313 ring->get_seqno = gen8_get_seqno;
1314 ring->set_seqno = gen8_set_seqno;
1315 ring->emit_request = gen8_emit_request;
1316 ring->emit_flush = gen8_emit_flush;
1317 ring->irq_get = gen8_logical_ring_get_irq;
1318 ring->irq_put = gen8_logical_ring_put_irq;
1319 ring->emit_bb_start = gen8_emit_bb_start;
1320
1321 return logical_ring_init(dev, ring);
1322 }
1323
logical_bsd2_ring_init(struct drm_device * dev)1324 static int logical_bsd2_ring_init(struct drm_device *dev)
1325 {
1326 struct drm_i915_private *dev_priv = dev->dev_private;
1327 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1328
1329 ring->name = "bds2 ring";
1330 ring->id = VCS2;
1331 ring->mmio_base = GEN8_BSD2_RING_BASE;
1332 ring->irq_enable_mask =
1333 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1334 ring->irq_keep_mask =
1335 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1336
1337 ring->init = gen8_init_common_ring;
1338 ring->get_seqno = gen8_get_seqno;
1339 ring->set_seqno = gen8_set_seqno;
1340 ring->emit_request = gen8_emit_request;
1341 ring->emit_flush = gen8_emit_flush;
1342 ring->irq_get = gen8_logical_ring_get_irq;
1343 ring->irq_put = gen8_logical_ring_put_irq;
1344 ring->emit_bb_start = gen8_emit_bb_start;
1345
1346 return logical_ring_init(dev, ring);
1347 }
1348
logical_blt_ring_init(struct drm_device * dev)1349 static int logical_blt_ring_init(struct drm_device *dev)
1350 {
1351 struct drm_i915_private *dev_priv = dev->dev_private;
1352 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1353
1354 ring->name = "blitter ring";
1355 ring->id = BCS;
1356 ring->mmio_base = BLT_RING_BASE;
1357 ring->irq_enable_mask =
1358 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1359 ring->irq_keep_mask =
1360 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1361
1362 ring->init = gen8_init_common_ring;
1363 ring->get_seqno = gen8_get_seqno;
1364 ring->set_seqno = gen8_set_seqno;
1365 ring->emit_request = gen8_emit_request;
1366 ring->emit_flush = gen8_emit_flush;
1367 ring->irq_get = gen8_logical_ring_get_irq;
1368 ring->irq_put = gen8_logical_ring_put_irq;
1369 ring->emit_bb_start = gen8_emit_bb_start;
1370
1371 return logical_ring_init(dev, ring);
1372 }
1373
logical_vebox_ring_init(struct drm_device * dev)1374 static int logical_vebox_ring_init(struct drm_device *dev)
1375 {
1376 struct drm_i915_private *dev_priv = dev->dev_private;
1377 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1378
1379 ring->name = "video enhancement ring";
1380 ring->id = VECS;
1381 ring->mmio_base = VEBOX_RING_BASE;
1382 ring->irq_enable_mask =
1383 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1384 ring->irq_keep_mask =
1385 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1386
1387 ring->init = gen8_init_common_ring;
1388 ring->get_seqno = gen8_get_seqno;
1389 ring->set_seqno = gen8_set_seqno;
1390 ring->emit_request = gen8_emit_request;
1391 ring->emit_flush = gen8_emit_flush;
1392 ring->irq_get = gen8_logical_ring_get_irq;
1393 ring->irq_put = gen8_logical_ring_put_irq;
1394 ring->emit_bb_start = gen8_emit_bb_start;
1395
1396 return logical_ring_init(dev, ring);
1397 }
1398
1399 /**
1400 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1401 * @dev: DRM device.
1402 *
1403 * This function inits the engines for an Execlists submission style (the equivalent in the
1404 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1405 * those engines that are present in the hardware.
1406 *
1407 * Return: non-zero if the initialization failed.
1408 */
intel_logical_rings_init(struct drm_device * dev)1409 int intel_logical_rings_init(struct drm_device *dev)
1410 {
1411 struct drm_i915_private *dev_priv = dev->dev_private;
1412 int ret;
1413
1414 ret = logical_render_ring_init(dev);
1415 if (ret)
1416 return ret;
1417
1418 if (HAS_BSD(dev)) {
1419 ret = logical_bsd_ring_init(dev);
1420 if (ret)
1421 goto cleanup_render_ring;
1422 }
1423
1424 if (HAS_BLT(dev)) {
1425 ret = logical_blt_ring_init(dev);
1426 if (ret)
1427 goto cleanup_bsd_ring;
1428 }
1429
1430 if (HAS_VEBOX(dev)) {
1431 ret = logical_vebox_ring_init(dev);
1432 if (ret)
1433 goto cleanup_blt_ring;
1434 }
1435
1436 if (HAS_BSD2(dev)) {
1437 ret = logical_bsd2_ring_init(dev);
1438 if (ret)
1439 goto cleanup_vebox_ring;
1440 }
1441
1442 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1443 if (ret)
1444 goto cleanup_bsd2_ring;
1445
1446 return 0;
1447
1448 cleanup_bsd2_ring:
1449 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1450 cleanup_vebox_ring:
1451 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1452 cleanup_blt_ring:
1453 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1454 cleanup_bsd_ring:
1455 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1456 cleanup_render_ring:
1457 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1458
1459 return ret;
1460 }
1461
intel_lr_context_render_state_init(struct intel_engine_cs * ring,struct intel_context * ctx)1462 int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1463 struct intel_context *ctx)
1464 {
1465 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1466 struct render_state so;
1467 struct drm_i915_file_private *file_priv = ctx->file_priv;
1468 struct drm_file *file = file_priv ? file_priv->file : NULL;
1469 int ret;
1470
1471 ret = i915_gem_render_state_prepare(ring, &so);
1472 if (ret)
1473 return ret;
1474
1475 if (so.rodata == NULL)
1476 return 0;
1477
1478 ret = ring->emit_bb_start(ringbuf,
1479 so.ggtt_offset,
1480 I915_DISPATCH_SECURE);
1481 if (ret)
1482 goto out;
1483
1484 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1485
1486 ret = __i915_add_request(ring, file, so.obj, NULL);
1487 /* intel_logical_ring_add_request moves object to inactive if it
1488 * fails */
1489 out:
1490 i915_gem_render_state_fini(&so);
1491 return ret;
1492 }
1493
1494 static int
populate_lr_context(struct intel_context * ctx,struct drm_i915_gem_object * ctx_obj,struct intel_engine_cs * ring,struct intel_ringbuffer * ringbuf)1495 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1496 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1497 {
1498 struct drm_device *dev = ring->dev;
1499 struct drm_i915_private *dev_priv = dev->dev_private;
1500 struct drm_i915_gem_object *ring_obj = ringbuf->obj;
1501 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1502 struct page *page;
1503 uint32_t *reg_state;
1504 int ret;
1505
1506 if (!ppgtt)
1507 ppgtt = dev_priv->mm.aliasing_ppgtt;
1508
1509 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1510 if (ret) {
1511 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1512 return ret;
1513 }
1514
1515 ret = i915_gem_object_get_pages(ctx_obj);
1516 if (ret) {
1517 DRM_DEBUG_DRIVER("Could not get object pages\n");
1518 return ret;
1519 }
1520
1521 i915_gem_object_pin_pages(ctx_obj);
1522
1523 /* The second page of the context object contains some fields which must
1524 * be set up prior to the first execution. */
1525 page = i915_gem_object_get_page(ctx_obj, 1);
1526 reg_state = kmap_atomic(page);
1527
1528 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1529 * commands followed by (reg, value) pairs. The values we are setting here are
1530 * only for the first context restore: on a subsequent save, the GPU will
1531 * recreate this batchbuffer with new values (including all the missing
1532 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1533 if (ring->id == RCS)
1534 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1535 else
1536 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1537 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1538 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1539 reg_state[CTX_CONTEXT_CONTROL+1] =
1540 _MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1541 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1542 reg_state[CTX_RING_HEAD+1] = 0;
1543 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1544 reg_state[CTX_RING_TAIL+1] = 0;
1545 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1546 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
1547 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1548 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1549 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1550 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1551 reg_state[CTX_BB_HEAD_U+1] = 0;
1552 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1553 reg_state[CTX_BB_HEAD_L+1] = 0;
1554 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1555 reg_state[CTX_BB_STATE+1] = (1<<5);
1556 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1557 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1558 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1559 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1560 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1561 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1562 if (ring->id == RCS) {
1563 /* TODO: according to BSpec, the register state context
1564 * for CHV does not have these. OTOH, these registers do
1565 * exist in CHV. I'm waiting for a clarification */
1566 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1567 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1568 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1569 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1570 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1571 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1572 }
1573 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1574 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1575 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1576 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1577 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1578 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1579 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1580 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1581 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1582 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1583 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1584 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1585 reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1586 reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1587 reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1588 reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1589 reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1590 reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1591 reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1592 reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1593 if (ring->id == RCS) {
1594 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1595 reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1596 reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1597 }
1598
1599 kunmap_atomic(reg_state);
1600
1601 ctx_obj->dirty = 1;
1602 set_page_dirty(page);
1603 i915_gem_object_unpin_pages(ctx_obj);
1604
1605 return 0;
1606 }
1607
1608 /**
1609 * intel_lr_context_free() - free the LRC specific bits of a context
1610 * @ctx: the LR context to free.
1611 *
1612 * The real context freeing is done in i915_gem_context_free: this only
1613 * takes care of the bits that are LRC related: the per-engine backing
1614 * objects and the logical ringbuffer.
1615 */
intel_lr_context_free(struct intel_context * ctx)1616 void intel_lr_context_free(struct intel_context *ctx)
1617 {
1618 int i;
1619
1620 for (i = 0; i < I915_NUM_RINGS; i++) {
1621 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1622 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
1623
1624 if (ctx_obj) {
1625 intel_destroy_ringbuffer_obj(ringbuf);
1626 kfree(ringbuf);
1627 i915_gem_object_ggtt_unpin(ctx_obj);
1628 drm_gem_object_unreference(&ctx_obj->base);
1629 }
1630 }
1631 }
1632
get_lr_context_size(struct intel_engine_cs * ring)1633 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1634 {
1635 int ret = 0;
1636
1637 WARN_ON(INTEL_INFO(ring->dev)->gen != 8);
1638
1639 switch (ring->id) {
1640 case RCS:
1641 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1642 break;
1643 case VCS:
1644 case BCS:
1645 case VECS:
1646 case VCS2:
1647 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1648 break;
1649 }
1650
1651 return ret;
1652 }
1653
1654 /**
1655 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1656 * @ctx: LR context to create.
1657 * @ring: engine to be used with the context.
1658 *
1659 * This function can be called more than once, with different engines, if we plan
1660 * to use the context with them. The context backing objects and the ringbuffers
1661 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1662 * the creation is a deferred call: it's better to make sure first that we need to use
1663 * a given ring with the context.
1664 *
1665 * Return: non-zero on eror.
1666 */
intel_lr_context_deferred_create(struct intel_context * ctx,struct intel_engine_cs * ring)1667 int intel_lr_context_deferred_create(struct intel_context *ctx,
1668 struct intel_engine_cs *ring)
1669 {
1670 struct drm_device *dev = ring->dev;
1671 struct drm_i915_gem_object *ctx_obj;
1672 uint32_t context_size;
1673 struct intel_ringbuffer *ringbuf;
1674 int ret;
1675
1676 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1677 if (ctx->engine[ring->id].state)
1678 return 0;
1679
1680 context_size = round_up(get_lr_context_size(ring), 4096);
1681
1682 ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1683 if (IS_ERR(ctx_obj)) {
1684 ret = PTR_ERR(ctx_obj);
1685 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1686 return ret;
1687 }
1688
1689 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1690 if (ret) {
1691 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n", ret);
1692 drm_gem_object_unreference(&ctx_obj->base);
1693 return ret;
1694 }
1695
1696 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1697 if (!ringbuf) {
1698 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1699 ring->name);
1700 i915_gem_object_ggtt_unpin(ctx_obj);
1701 drm_gem_object_unreference(&ctx_obj->base);
1702 ret = -ENOMEM;
1703 return ret;
1704 }
1705
1706 ringbuf->ring = ring;
1707 ringbuf->FIXME_lrc_ctx = ctx;
1708
1709 ringbuf->size = 32 * PAGE_SIZE;
1710 ringbuf->effective_size = ringbuf->size;
1711 ringbuf->head = 0;
1712 ringbuf->tail = 0;
1713 ringbuf->space = ringbuf->size;
1714 ringbuf->last_retired_head = -1;
1715
1716 /* TODO: For now we put this in the mappable region so that we can reuse
1717 * the existing ringbuffer code which ioremaps it. When we start
1718 * creating many contexts, this will no longer work and we must switch
1719 * to a kmapish interface.
1720 */
1721 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1722 if (ret) {
1723 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer obj %s: %d\n",
1724 ring->name, ret);
1725 goto error;
1726 }
1727
1728 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1729 if (ret) {
1730 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1731 intel_destroy_ringbuffer_obj(ringbuf);
1732 goto error;
1733 }
1734
1735 ctx->engine[ring->id].ringbuf = ringbuf;
1736 ctx->engine[ring->id].state = ctx_obj;
1737
1738 if (ctx == ring->default_context) {
1739 /* The status page is offset 0 from the default context object
1740 * in LRC mode. */
1741 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(ctx_obj);
1742 ring->status_page.page_addr =
1743 kmap(sg_page(ctx_obj->pages->sgl));
1744 if (ring->status_page.page_addr == NULL)
1745 return -ENOMEM;
1746 ring->status_page.obj = ctx_obj;
1747 }
1748
1749 if (ring->id == RCS && !ctx->rcs_initialized) {
1750 ret = intel_lr_context_render_state_init(ring, ctx);
1751 if (ret) {
1752 DRM_ERROR("Init render state failed: %d\n", ret);
1753 ctx->engine[ring->id].ringbuf = NULL;
1754 ctx->engine[ring->id].state = NULL;
1755 intel_destroy_ringbuffer_obj(ringbuf);
1756 goto error;
1757 }
1758 ctx->rcs_initialized = true;
1759 }
1760
1761 return 0;
1762
1763 error:
1764 kfree(ringbuf);
1765 i915_gem_object_ggtt_unpin(ctx_obj);
1766 drm_gem_object_unreference(&ctx_obj->base);
1767 return ret;
1768 }
1769