• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 
139 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
141 
142 #define GEN8_LR_CONTEXT_ALIGN 4096
143 
144 #define RING_EXECLIST_QFULL		(1 << 0x2)
145 #define RING_EXECLIST1_VALID		(1 << 0x3)
146 #define RING_EXECLIST0_VALID		(1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
150 
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
157 
158 #define CTX_LRI_HEADER_0		0x01
159 #define CTX_CONTEXT_CONTROL		0x02
160 #define CTX_RING_HEAD			0x04
161 #define CTX_RING_TAIL			0x06
162 #define CTX_RING_BUFFER_START		0x08
163 #define CTX_RING_BUFFER_CONTROL		0x0a
164 #define CTX_BB_HEAD_U			0x0c
165 #define CTX_BB_HEAD_L			0x0e
166 #define CTX_BB_STATE			0x10
167 #define CTX_SECOND_BB_HEAD_U		0x12
168 #define CTX_SECOND_BB_HEAD_L		0x14
169 #define CTX_SECOND_BB_STATE		0x16
170 #define CTX_BB_PER_CTX_PTR		0x18
171 #define CTX_RCS_INDIRECT_CTX		0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
173 #define CTX_LRI_HEADER_1		0x21
174 #define CTX_CTX_TIMESTAMP		0x22
175 #define CTX_PDP3_UDW			0x24
176 #define CTX_PDP3_LDW			0x26
177 #define CTX_PDP2_UDW			0x28
178 #define CTX_PDP2_LDW			0x2a
179 #define CTX_PDP1_UDW			0x2c
180 #define CTX_PDP1_LDW			0x2e
181 #define CTX_PDP0_UDW			0x30
182 #define CTX_PDP0_LDW			0x32
183 #define CTX_LRI_HEADER_2		0x41
184 #define CTX_R_PWR_CLK_STATE		0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
186 
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192 enum {
193 	ADVANCED_CONTEXT = 0,
194 	LEGACY_CONTEXT,
195 	ADVANCED_AD_CONTEXT,
196 	LEGACY_64B_CONTEXT
197 };
198 #define GEN8_CTX_MODE_SHIFT 3
199 enum {
200 	FAULT_AND_HANG = 0,
201 	FAULT_AND_HALT, /* Debug only */
202 	FAULT_AND_STREAM,
203 	FAULT_AND_CONTINUE /* Unsupported */
204 };
205 #define GEN8_CTX_ID_SHIFT 32
206 
207 /**
208  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
209  * @dev: DRM device.
210  * @enable_execlists: value of i915.enable_execlists module parameter.
211  *
212  * Only certain platforms support Execlists (the prerequisites being
213  * support for Logical Ring Contexts and Aliasing PPGTT or better),
214  * and only when enabled via module parameter.
215  *
216  * Return: 1 if Execlists is supported and has to be enabled.
217  */
intel_sanitize_enable_execlists(struct drm_device * dev,int enable_execlists)218 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
219 {
220 	WARN_ON(i915.enable_ppgtt == -1);
221 
222 	if (enable_execlists == 0)
223 		return 0;
224 
225 	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
226 	    i915.use_mmio_flip >= 0)
227 		return 1;
228 
229 	return 0;
230 }
231 
232 /**
233  * intel_execlists_ctx_id() - get the Execlists Context ID
234  * @ctx_obj: Logical Ring Context backing object.
235  *
236  * Do not confuse with ctx->id! Unfortunately we have a name overload
237  * here: the old context ID we pass to userspace as a handler so that
238  * they can refer to a context, and the new context ID we pass to the
239  * ELSP so that the GPU can inform us of the context status via
240  * interrupts.
241  *
242  * Return: 20-bits globally unique context ID.
243  */
intel_execlists_ctx_id(struct drm_i915_gem_object * ctx_obj)244 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
245 {
246 	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
247 
248 	/* LRCA is required to be 4K aligned so the more significant 20 bits
249 	 * are globally unique */
250 	return lrca >> 12;
251 }
252 
execlists_ctx_descriptor(struct drm_i915_gem_object * ctx_obj)253 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
254 {
255 	uint64_t desc;
256 	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
257 
258 	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
259 
260 	desc = GEN8_CTX_VALID;
261 	desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
262 	desc |= GEN8_CTX_L3LLC_COHERENT;
263 	desc |= GEN8_CTX_PRIVILEGE;
264 	desc |= lrca;
265 	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
266 
267 	/* TODO: WaDisableLiteRestore when we start using semaphore
268 	 * signalling between Command Streamers */
269 	/* desc |= GEN8_CTX_FORCE_RESTORE; */
270 
271 	return desc;
272 }
273 
execlists_elsp_write(struct intel_engine_cs * ring,struct drm_i915_gem_object * ctx_obj0,struct drm_i915_gem_object * ctx_obj1)274 static void execlists_elsp_write(struct intel_engine_cs *ring,
275 				 struct drm_i915_gem_object *ctx_obj0,
276 				 struct drm_i915_gem_object *ctx_obj1)
277 {
278 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
279 	uint64_t temp = 0;
280 	uint32_t desc[4];
281 	unsigned long flags;
282 
283 	/* XXX: You must always write both descriptors in the order below. */
284 	if (ctx_obj1)
285 		temp = execlists_ctx_descriptor(ctx_obj1);
286 	else
287 		temp = 0;
288 	desc[1] = (u32)(temp >> 32);
289 	desc[0] = (u32)temp;
290 
291 	temp = execlists_ctx_descriptor(ctx_obj0);
292 	desc[3] = (u32)(temp >> 32);
293 	desc[2] = (u32)temp;
294 
295 	/* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
296 	 * are in progress.
297 	 *
298 	 * The other problem is that we can't just call gen6_gt_force_wake_get()
299 	 * because that function calls intel_runtime_pm_get(), which might sleep.
300 	 * Instead, we do the runtime_pm_get/put when creating/destroying requests.
301 	 */
302 	spin_lock_irqsave(&dev_priv->uncore.lock, flags);
303 	if (IS_CHERRYVIEW(dev_priv->dev)) {
304 		if (dev_priv->uncore.fw_rendercount++ == 0)
305 			dev_priv->uncore.funcs.force_wake_get(dev_priv,
306 							      FORCEWAKE_RENDER);
307 		if (dev_priv->uncore.fw_mediacount++ == 0)
308 			dev_priv->uncore.funcs.force_wake_get(dev_priv,
309 							      FORCEWAKE_MEDIA);
310 	} else {
311 		if (dev_priv->uncore.forcewake_count++ == 0)
312 			dev_priv->uncore.funcs.force_wake_get(dev_priv,
313 							      FORCEWAKE_ALL);
314 	}
315 	spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
316 
317 	I915_WRITE(RING_ELSP(ring), desc[1]);
318 	I915_WRITE(RING_ELSP(ring), desc[0]);
319 	I915_WRITE(RING_ELSP(ring), desc[3]);
320 	/* The context is automatically loaded after the following */
321 	I915_WRITE(RING_ELSP(ring), desc[2]);
322 
323 	/* ELSP is a wo register, so use another nearby reg for posting instead */
324 	POSTING_READ(RING_EXECLIST_STATUS(ring));
325 
326 	/* Release Force Wakeup (see the big comment above). */
327 	spin_lock_irqsave(&dev_priv->uncore.lock, flags);
328 	if (IS_CHERRYVIEW(dev_priv->dev)) {
329 		if (--dev_priv->uncore.fw_rendercount == 0)
330 			dev_priv->uncore.funcs.force_wake_put(dev_priv,
331 							      FORCEWAKE_RENDER);
332 		if (--dev_priv->uncore.fw_mediacount == 0)
333 			dev_priv->uncore.funcs.force_wake_put(dev_priv,
334 							      FORCEWAKE_MEDIA);
335 	} else {
336 		if (--dev_priv->uncore.forcewake_count == 0)
337 			dev_priv->uncore.funcs.force_wake_put(dev_priv,
338 							      FORCEWAKE_ALL);
339 	}
340 
341 	spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
342 }
343 
execlists_ctx_write_tail(struct drm_i915_gem_object * ctx_obj,u32 tail)344 static int execlists_ctx_write_tail(struct drm_i915_gem_object *ctx_obj, u32 tail)
345 {
346 	struct page *page;
347 	uint32_t *reg_state;
348 
349 	page = i915_gem_object_get_page(ctx_obj, 1);
350 	reg_state = kmap_atomic(page);
351 
352 	reg_state[CTX_RING_TAIL+1] = tail;
353 
354 	kunmap_atomic(reg_state);
355 
356 	return 0;
357 }
358 
execlists_submit_context(struct intel_engine_cs * ring,struct intel_context * to0,u32 tail0,struct intel_context * to1,u32 tail1)359 static int execlists_submit_context(struct intel_engine_cs *ring,
360 				    struct intel_context *to0, u32 tail0,
361 				    struct intel_context *to1, u32 tail1)
362 {
363 	struct drm_i915_gem_object *ctx_obj0;
364 	struct drm_i915_gem_object *ctx_obj1 = NULL;
365 
366 	ctx_obj0 = to0->engine[ring->id].state;
367 	BUG_ON(!ctx_obj0);
368 	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
369 
370 	execlists_ctx_write_tail(ctx_obj0, tail0);
371 
372 	if (to1) {
373 		ctx_obj1 = to1->engine[ring->id].state;
374 		BUG_ON(!ctx_obj1);
375 		WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
376 
377 		execlists_ctx_write_tail(ctx_obj1, tail1);
378 	}
379 
380 	execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
381 
382 	return 0;
383 }
384 
execlists_context_unqueue(struct intel_engine_cs * ring)385 static void execlists_context_unqueue(struct intel_engine_cs *ring)
386 {
387 	struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
388 	struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
389 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
390 
391 	assert_spin_locked(&ring->execlist_lock);
392 
393 	if (list_empty(&ring->execlist_queue))
394 		return;
395 
396 	/* Try to read in pairs */
397 	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
398 				 execlist_link) {
399 		if (!req0) {
400 			req0 = cursor;
401 		} else if (req0->ctx == cursor->ctx) {
402 			/* Same ctx: ignore first request, as second request
403 			 * will update tail past first request's workload */
404 			cursor->elsp_submitted = req0->elsp_submitted;
405 			list_del(&req0->execlist_link);
406 			queue_work(dev_priv->wq, &req0->work);
407 			req0 = cursor;
408 		} else {
409 			req1 = cursor;
410 			break;
411 		}
412 	}
413 
414 	WARN_ON(req1 && req1->elsp_submitted);
415 
416 	WARN_ON(execlists_submit_context(ring, req0->ctx, req0->tail,
417 					 req1 ? req1->ctx : NULL,
418 					 req1 ? req1->tail : 0));
419 
420 	req0->elsp_submitted++;
421 	if (req1)
422 		req1->elsp_submitted++;
423 }
424 
execlists_check_remove_request(struct intel_engine_cs * ring,u32 request_id)425 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
426 					   u32 request_id)
427 {
428 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
429 	struct intel_ctx_submit_request *head_req;
430 
431 	assert_spin_locked(&ring->execlist_lock);
432 
433 	head_req = list_first_entry_or_null(&ring->execlist_queue,
434 					    struct intel_ctx_submit_request,
435 					    execlist_link);
436 
437 	if (head_req != NULL) {
438 		struct drm_i915_gem_object *ctx_obj =
439 				head_req->ctx->engine[ring->id].state;
440 		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
441 			WARN(head_req->elsp_submitted == 0,
442 			     "Never submitted head request\n");
443 
444 			if (--head_req->elsp_submitted <= 0) {
445 				list_del(&head_req->execlist_link);
446 				queue_work(dev_priv->wq, &head_req->work);
447 				return true;
448 			}
449 		}
450 	}
451 
452 	return false;
453 }
454 
455 /**
456  * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
457  * @ring: Engine Command Streamer to handle.
458  *
459  * Check the unread Context Status Buffers and manage the submission of new
460  * contexts to the ELSP accordingly.
461  */
intel_execlists_handle_ctx_events(struct intel_engine_cs * ring)462 void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
463 {
464 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
465 	u32 status_pointer;
466 	u8 read_pointer;
467 	u8 write_pointer;
468 	u32 status;
469 	u32 status_id;
470 	u32 submit_contexts = 0;
471 
472 	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
473 
474 	read_pointer = ring->next_context_status_buffer;
475 	write_pointer = status_pointer & 0x07;
476 	if (read_pointer > write_pointer)
477 		write_pointer += 6;
478 
479 	spin_lock(&ring->execlist_lock);
480 
481 	while (read_pointer < write_pointer) {
482 		read_pointer++;
483 		status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
484 				(read_pointer % 6) * 8);
485 		status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
486 				(read_pointer % 6) * 8 + 4);
487 
488 		if (status & GEN8_CTX_STATUS_PREEMPTED) {
489 			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
490 				if (execlists_check_remove_request(ring, status_id))
491 					WARN(1, "Lite Restored request removed from queue\n");
492 			} else
493 				WARN(1, "Preemption without Lite Restore\n");
494 		}
495 
496 		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
497 		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
498 			if (execlists_check_remove_request(ring, status_id))
499 				submit_contexts++;
500 		}
501 	}
502 
503 	if (submit_contexts != 0)
504 		execlists_context_unqueue(ring);
505 
506 	spin_unlock(&ring->execlist_lock);
507 
508 	WARN(submit_contexts > 2, "More than two context complete events?\n");
509 	ring->next_context_status_buffer = write_pointer % 6;
510 
511 	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
512 		   ((u32)ring->next_context_status_buffer & 0x07) << 8);
513 }
514 
execlists_free_request_task(struct work_struct * work)515 static void execlists_free_request_task(struct work_struct *work)
516 {
517 	struct intel_ctx_submit_request *req =
518 		container_of(work, struct intel_ctx_submit_request, work);
519 	struct drm_device *dev = req->ring->dev;
520 	struct drm_i915_private *dev_priv = dev->dev_private;
521 
522 	intel_runtime_pm_put(dev_priv);
523 
524 	mutex_lock(&dev->struct_mutex);
525 	i915_gem_context_unreference(req->ctx);
526 	mutex_unlock(&dev->struct_mutex);
527 
528 	kfree(req);
529 }
530 
execlists_context_queue(struct intel_engine_cs * ring,struct intel_context * to,u32 tail)531 static int execlists_context_queue(struct intel_engine_cs *ring,
532 				   struct intel_context *to,
533 				   u32 tail)
534 {
535 	struct intel_ctx_submit_request *req = NULL, *cursor;
536 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
537 	unsigned long flags;
538 	int num_elements = 0;
539 
540 	req = kzalloc(sizeof(*req), GFP_KERNEL);
541 	if (req == NULL)
542 		return -ENOMEM;
543 	req->ctx = to;
544 	i915_gem_context_reference(req->ctx);
545 	req->ring = ring;
546 	req->tail = tail;
547 	INIT_WORK(&req->work, execlists_free_request_task);
548 
549 	intel_runtime_pm_get(dev_priv);
550 
551 	spin_lock_irqsave(&ring->execlist_lock, flags);
552 
553 	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
554 		if (++num_elements > 2)
555 			break;
556 
557 	if (num_elements > 2) {
558 		struct intel_ctx_submit_request *tail_req;
559 
560 		tail_req = list_last_entry(&ring->execlist_queue,
561 					   struct intel_ctx_submit_request,
562 					   execlist_link);
563 
564 		if (to == tail_req->ctx) {
565 			WARN(tail_req->elsp_submitted != 0,
566 			     "More than 2 already-submitted reqs queued\n");
567 			list_del(&tail_req->execlist_link);
568 			queue_work(dev_priv->wq, &tail_req->work);
569 		}
570 	}
571 
572 	list_add_tail(&req->execlist_link, &ring->execlist_queue);
573 	if (num_elements == 0)
574 		execlists_context_unqueue(ring);
575 
576 	spin_unlock_irqrestore(&ring->execlist_lock, flags);
577 
578 	return 0;
579 }
580 
logical_ring_invalidate_all_caches(struct intel_ringbuffer * ringbuf)581 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
582 {
583 	struct intel_engine_cs *ring = ringbuf->ring;
584 	uint32_t flush_domains;
585 	int ret;
586 
587 	flush_domains = 0;
588 	if (ring->gpu_caches_dirty)
589 		flush_domains = I915_GEM_GPU_DOMAINS;
590 
591 	ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
592 	if (ret)
593 		return ret;
594 
595 	ring->gpu_caches_dirty = false;
596 	return 0;
597 }
598 
execlists_move_to_gpu(struct intel_ringbuffer * ringbuf,struct list_head * vmas)599 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
600 				 struct list_head *vmas)
601 {
602 	struct intel_engine_cs *ring = ringbuf->ring;
603 	struct i915_vma *vma;
604 	uint32_t flush_domains = 0;
605 	bool flush_chipset = false;
606 	int ret;
607 
608 	list_for_each_entry(vma, vmas, exec_list) {
609 		struct drm_i915_gem_object *obj = vma->obj;
610 
611 		ret = i915_gem_object_sync(obj, ring);
612 		if (ret)
613 			return ret;
614 
615 		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
616 			flush_chipset |= i915_gem_clflush_object(obj, false);
617 
618 		flush_domains |= obj->base.write_domain;
619 	}
620 
621 	if (flush_domains & I915_GEM_DOMAIN_GTT)
622 		wmb();
623 
624 	/* Unconditionally invalidate gpu caches and ensure that we do flush
625 	 * any residual writes from the previous batch.
626 	 */
627 	return logical_ring_invalidate_all_caches(ringbuf);
628 }
629 
630 /**
631  * execlists_submission() - submit a batchbuffer for execution, Execlists style
632  * @dev: DRM device.
633  * @file: DRM file.
634  * @ring: Engine Command Streamer to submit to.
635  * @ctx: Context to employ for this submission.
636  * @args: execbuffer call arguments.
637  * @vmas: list of vmas.
638  * @batch_obj: the batchbuffer to submit.
639  * @exec_start: batchbuffer start virtual address pointer.
640  * @flags: translated execbuffer call flags.
641  *
642  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
643  * away the submission details of the execbuffer ioctl call.
644  *
645  * Return: non-zero if the submission fails.
646  */
intel_execlists_submission(struct drm_device * dev,struct drm_file * file,struct intel_engine_cs * ring,struct intel_context * ctx,struct drm_i915_gem_execbuffer2 * args,struct list_head * vmas,struct drm_i915_gem_object * batch_obj,u64 exec_start,u32 flags)647 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
648 			       struct intel_engine_cs *ring,
649 			       struct intel_context *ctx,
650 			       struct drm_i915_gem_execbuffer2 *args,
651 			       struct list_head *vmas,
652 			       struct drm_i915_gem_object *batch_obj,
653 			       u64 exec_start, u32 flags)
654 {
655 	struct drm_i915_private *dev_priv = dev->dev_private;
656 	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
657 	int instp_mode;
658 	u32 instp_mask;
659 	int ret;
660 
661 	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
662 	instp_mask = I915_EXEC_CONSTANTS_MASK;
663 	switch (instp_mode) {
664 	case I915_EXEC_CONSTANTS_REL_GENERAL:
665 	case I915_EXEC_CONSTANTS_ABSOLUTE:
666 	case I915_EXEC_CONSTANTS_REL_SURFACE:
667 		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
668 			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
669 			return -EINVAL;
670 		}
671 
672 		if (instp_mode != dev_priv->relative_constants_mode) {
673 			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
674 				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
675 				return -EINVAL;
676 			}
677 
678 			/* The HW changed the meaning on this bit on gen6 */
679 			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
680 		}
681 		break;
682 	default:
683 		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
684 		return -EINVAL;
685 	}
686 
687 	if (args->num_cliprects != 0) {
688 		DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
689 		return -EINVAL;
690 	} else {
691 		if (args->DR4 == 0xffffffff) {
692 			DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
693 			args->DR4 = 0;
694 		}
695 
696 		if (args->DR1 || args->DR4 || args->cliprects_ptr) {
697 			DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
698 			return -EINVAL;
699 		}
700 	}
701 
702 	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
703 		DRM_DEBUG("sol reset is gen7 only\n");
704 		return -EINVAL;
705 	}
706 
707 	ret = execlists_move_to_gpu(ringbuf, vmas);
708 	if (ret)
709 		return ret;
710 
711 	if (ring == &dev_priv->ring[RCS] &&
712 	    instp_mode != dev_priv->relative_constants_mode) {
713 		ret = intel_logical_ring_begin(ringbuf, 4);
714 		if (ret)
715 			return ret;
716 
717 		intel_logical_ring_emit(ringbuf, MI_NOOP);
718 		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
719 		intel_logical_ring_emit(ringbuf, INSTPM);
720 		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
721 		intel_logical_ring_advance(ringbuf);
722 
723 		dev_priv->relative_constants_mode = instp_mode;
724 	}
725 
726 	ret = ring->emit_bb_start(ringbuf, exec_start, flags);
727 	if (ret)
728 		return ret;
729 
730 	i915_gem_execbuffer_move_to_active(vmas, ring);
731 	i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
732 
733 	return 0;
734 }
735 
intel_logical_ring_stop(struct intel_engine_cs * ring)736 void intel_logical_ring_stop(struct intel_engine_cs *ring)
737 {
738 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
739 	int ret;
740 
741 	if (!intel_ring_initialized(ring))
742 		return;
743 
744 	ret = intel_ring_idle(ring);
745 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
746 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
747 			  ring->name, ret);
748 
749 	/* TODO: Is this correct with Execlists enabled? */
750 	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
751 	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
752 		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
753 		return;
754 	}
755 	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
756 }
757 
logical_ring_flush_all_caches(struct intel_ringbuffer * ringbuf)758 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
759 {
760 	struct intel_engine_cs *ring = ringbuf->ring;
761 	int ret;
762 
763 	if (!ring->gpu_caches_dirty)
764 		return 0;
765 
766 	ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
767 	if (ret)
768 		return ret;
769 
770 	ring->gpu_caches_dirty = false;
771 	return 0;
772 }
773 
774 /**
775  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
776  * @ringbuf: Logical Ringbuffer to advance.
777  *
778  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
779  * really happens during submission is that the context and current tail will be placed
780  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
781  * point, the tail *inside* the context is updated and the ELSP written to.
782  */
intel_logical_ring_advance_and_submit(struct intel_ringbuffer * ringbuf)783 void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
784 {
785 	struct intel_engine_cs *ring = ringbuf->ring;
786 	struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
787 
788 	intel_logical_ring_advance(ringbuf);
789 
790 	if (intel_ring_stopped(ring))
791 		return;
792 
793 	execlists_context_queue(ring, ctx, ringbuf->tail);
794 }
795 
logical_ring_alloc_seqno(struct intel_engine_cs * ring,struct intel_context * ctx)796 static int logical_ring_alloc_seqno(struct intel_engine_cs *ring,
797 				    struct intel_context *ctx)
798 {
799 	if (ring->outstanding_lazy_seqno)
800 		return 0;
801 
802 	if (ring->preallocated_lazy_request == NULL) {
803 		struct drm_i915_gem_request *request;
804 
805 		request = kmalloc(sizeof(*request), GFP_KERNEL);
806 		if (request == NULL)
807 			return -ENOMEM;
808 
809 		/* Hold a reference to the context this request belongs to
810 		 * (we will need it when the time comes to emit/retire the
811 		 * request).
812 		 */
813 		request->ctx = ctx;
814 		i915_gem_context_reference(request->ctx);
815 
816 		ring->preallocated_lazy_request = request;
817 	}
818 
819 	return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
820 }
821 
logical_ring_wait_request(struct intel_ringbuffer * ringbuf,int bytes)822 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
823 				     int bytes)
824 {
825 	struct intel_engine_cs *ring = ringbuf->ring;
826 	struct drm_i915_gem_request *request;
827 	u32 seqno = 0;
828 	int ret;
829 
830 	if (ringbuf->last_retired_head != -1) {
831 		ringbuf->head = ringbuf->last_retired_head;
832 		ringbuf->last_retired_head = -1;
833 
834 		ringbuf->space = intel_ring_space(ringbuf);
835 		if (ringbuf->space >= bytes)
836 			return 0;
837 	}
838 
839 	list_for_each_entry(request, &ring->request_list, list) {
840 		if (__intel_ring_space(request->tail, ringbuf->tail,
841 				       ringbuf->size) >= bytes) {
842 			seqno = request->seqno;
843 			break;
844 		}
845 	}
846 
847 	if (seqno == 0)
848 		return -ENOSPC;
849 
850 	ret = i915_wait_seqno(ring, seqno);
851 	if (ret)
852 		return ret;
853 
854 	i915_gem_retire_requests_ring(ring);
855 	ringbuf->head = ringbuf->last_retired_head;
856 	ringbuf->last_retired_head = -1;
857 
858 	ringbuf->space = intel_ring_space(ringbuf);
859 	return 0;
860 }
861 
logical_ring_wait_for_space(struct intel_ringbuffer * ringbuf,int bytes)862 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
863 				       int bytes)
864 {
865 	struct intel_engine_cs *ring = ringbuf->ring;
866 	struct drm_device *dev = ring->dev;
867 	struct drm_i915_private *dev_priv = dev->dev_private;
868 	unsigned long end;
869 	int ret;
870 
871 	ret = logical_ring_wait_request(ringbuf, bytes);
872 	if (ret != -ENOSPC)
873 		return ret;
874 
875 	/* Force the context submission in case we have been skipping it */
876 	intel_logical_ring_advance_and_submit(ringbuf);
877 
878 	/* With GEM the hangcheck timer should kick us out of the loop,
879 	 * leaving it early runs the risk of corrupting GEM state (due
880 	 * to running on almost untested codepaths). But on resume
881 	 * timers don't work yet, so prevent a complete hang in that
882 	 * case by choosing an insanely large timeout. */
883 	end = jiffies + 60 * HZ;
884 
885 	do {
886 		ringbuf->head = I915_READ_HEAD(ring);
887 		ringbuf->space = intel_ring_space(ringbuf);
888 		if (ringbuf->space >= bytes) {
889 			ret = 0;
890 			break;
891 		}
892 
893 		msleep(1);
894 
895 		if (dev_priv->mm.interruptible && signal_pending(current)) {
896 			ret = -ERESTARTSYS;
897 			break;
898 		}
899 
900 		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
901 					   dev_priv->mm.interruptible);
902 		if (ret)
903 			break;
904 
905 		if (time_after(jiffies, end)) {
906 			ret = -EBUSY;
907 			break;
908 		}
909 	} while (1);
910 
911 	return ret;
912 }
913 
logical_ring_wrap_buffer(struct intel_ringbuffer * ringbuf)914 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
915 {
916 	uint32_t __iomem *virt;
917 	int rem = ringbuf->size - ringbuf->tail;
918 
919 	if (ringbuf->space < rem) {
920 		int ret = logical_ring_wait_for_space(ringbuf, rem);
921 
922 		if (ret)
923 			return ret;
924 	}
925 
926 	virt = ringbuf->virtual_start + ringbuf->tail;
927 	rem /= 4;
928 	while (rem--)
929 		iowrite32(MI_NOOP, virt++);
930 
931 	ringbuf->tail = 0;
932 	ringbuf->space = intel_ring_space(ringbuf);
933 
934 	return 0;
935 }
936 
logical_ring_prepare(struct intel_ringbuffer * ringbuf,int bytes)937 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
938 {
939 	int ret;
940 
941 	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
942 		ret = logical_ring_wrap_buffer(ringbuf);
943 		if (unlikely(ret))
944 			return ret;
945 	}
946 
947 	if (unlikely(ringbuf->space < bytes)) {
948 		ret = logical_ring_wait_for_space(ringbuf, bytes);
949 		if (unlikely(ret))
950 			return ret;
951 	}
952 
953 	return 0;
954 }
955 
956 /**
957  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
958  *
959  * @ringbuf: Logical ringbuffer.
960  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
961  *
962  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
963  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
964  * and also preallocates a request (every workload submission is still mediated through
965  * requests, same as it did with legacy ringbuffer submission).
966  *
967  * Return: non-zero if the ringbuffer is not ready to be written to.
968  */
intel_logical_ring_begin(struct intel_ringbuffer * ringbuf,int num_dwords)969 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
970 {
971 	struct intel_engine_cs *ring = ringbuf->ring;
972 	struct drm_device *dev = ring->dev;
973 	struct drm_i915_private *dev_priv = dev->dev_private;
974 	int ret;
975 
976 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
977 				   dev_priv->mm.interruptible);
978 	if (ret)
979 		return ret;
980 
981 	ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
982 	if (ret)
983 		return ret;
984 
985 	/* Preallocate the olr before touching the ring */
986 	ret = logical_ring_alloc_seqno(ring, ringbuf->FIXME_lrc_ctx);
987 	if (ret)
988 		return ret;
989 
990 	ringbuf->space -= num_dwords * sizeof(uint32_t);
991 	return 0;
992 }
993 
gen8_init_common_ring(struct intel_engine_cs * ring)994 static int gen8_init_common_ring(struct intel_engine_cs *ring)
995 {
996 	struct drm_device *dev = ring->dev;
997 	struct drm_i915_private *dev_priv = dev->dev_private;
998 
999 	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1000 	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1001 
1002 	I915_WRITE(RING_MODE_GEN7(ring),
1003 		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1004 		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1005 	POSTING_READ(RING_MODE_GEN7(ring));
1006 	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1007 
1008 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1009 
1010 	return 0;
1011 }
1012 
gen8_init_render_ring(struct intel_engine_cs * ring)1013 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1014 {
1015 	struct drm_device *dev = ring->dev;
1016 	struct drm_i915_private *dev_priv = dev->dev_private;
1017 	int ret;
1018 
1019 	ret = gen8_init_common_ring(ring);
1020 	if (ret)
1021 		return ret;
1022 
1023 	/* We need to disable the AsyncFlip performance optimisations in order
1024 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1025 	 * programmed to '1' on all products.
1026 	 *
1027 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1028 	 */
1029 	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1030 
1031 	ret = intel_init_pipe_control(ring);
1032 	if (ret)
1033 		return ret;
1034 
1035 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1036 
1037 	return ret;
1038 }
1039 
gen8_emit_bb_start(struct intel_ringbuffer * ringbuf,u64 offset,unsigned flags)1040 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1041 			      u64 offset, unsigned flags)
1042 {
1043 	bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1044 	int ret;
1045 
1046 	ret = intel_logical_ring_begin(ringbuf, 4);
1047 	if (ret)
1048 		return ret;
1049 
1050 	/* FIXME(BDW): Address space and security selectors. */
1051 	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1052 	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1053 	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1054 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1055 	intel_logical_ring_advance(ringbuf);
1056 
1057 	return 0;
1058 }
1059 
gen8_logical_ring_get_irq(struct intel_engine_cs * ring)1060 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1061 {
1062 	struct drm_device *dev = ring->dev;
1063 	struct drm_i915_private *dev_priv = dev->dev_private;
1064 	unsigned long flags;
1065 
1066 	if (!dev->irq_enabled)
1067 		return false;
1068 
1069 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1070 	if (ring->irq_refcount++ == 0) {
1071 		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1072 		POSTING_READ(RING_IMR(ring->mmio_base));
1073 	}
1074 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1075 
1076 	return true;
1077 }
1078 
gen8_logical_ring_put_irq(struct intel_engine_cs * ring)1079 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1080 {
1081 	struct drm_device *dev = ring->dev;
1082 	struct drm_i915_private *dev_priv = dev->dev_private;
1083 	unsigned long flags;
1084 
1085 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1086 	if (--ring->irq_refcount == 0) {
1087 		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1088 		POSTING_READ(RING_IMR(ring->mmio_base));
1089 	}
1090 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1091 }
1092 
gen8_emit_flush(struct intel_ringbuffer * ringbuf,u32 invalidate_domains,u32 unused)1093 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1094 			   u32 invalidate_domains,
1095 			   u32 unused)
1096 {
1097 	struct intel_engine_cs *ring = ringbuf->ring;
1098 	struct drm_device *dev = ring->dev;
1099 	struct drm_i915_private *dev_priv = dev->dev_private;
1100 	uint32_t cmd;
1101 	int ret;
1102 
1103 	ret = intel_logical_ring_begin(ringbuf, 4);
1104 	if (ret)
1105 		return ret;
1106 
1107 	cmd = MI_FLUSH_DW + 1;
1108 
1109 	/* We always require a command barrier so that subsequent
1110 	 * commands, such as breadcrumb interrupts, are strictly ordered
1111 	 * wrt the contents of the write cache being flushed to memory
1112 	 * (and thus being coherent from the CPU).
1113 	 */
1114 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1115 
1116 	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1117 		cmd |= MI_INVALIDATE_TLB;
1118 		if (ring == &dev_priv->ring[VCS])
1119 			cmd |= MI_INVALIDATE_BSD;
1120 	}
1121 
1122 	intel_logical_ring_emit(ringbuf, cmd);
1123 	intel_logical_ring_emit(ringbuf,
1124 				I915_GEM_HWS_SCRATCH_ADDR |
1125 				MI_FLUSH_DW_USE_GTT);
1126 	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1127 	intel_logical_ring_emit(ringbuf, 0); /* value */
1128 	intel_logical_ring_advance(ringbuf);
1129 
1130 	return 0;
1131 }
1132 
gen8_emit_flush_render(struct intel_ringbuffer * ringbuf,u32 invalidate_domains,u32 flush_domains)1133 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1134 				  u32 invalidate_domains,
1135 				  u32 flush_domains)
1136 {
1137 	struct intel_engine_cs *ring = ringbuf->ring;
1138 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1139 	u32 flags = 0;
1140 	int ret;
1141 
1142 	flags |= PIPE_CONTROL_CS_STALL;
1143 
1144 	if (flush_domains) {
1145 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1146 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1147 	}
1148 
1149 	if (invalidate_domains) {
1150 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1151 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1152 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1153 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1154 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1155 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1156 		flags |= PIPE_CONTROL_QW_WRITE;
1157 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1158 	}
1159 
1160 	ret = intel_logical_ring_begin(ringbuf, 6);
1161 	if (ret)
1162 		return ret;
1163 
1164 	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1165 	intel_logical_ring_emit(ringbuf, flags);
1166 	intel_logical_ring_emit(ringbuf, scratch_addr);
1167 	intel_logical_ring_emit(ringbuf, 0);
1168 	intel_logical_ring_emit(ringbuf, 0);
1169 	intel_logical_ring_emit(ringbuf, 0);
1170 	intel_logical_ring_advance(ringbuf);
1171 
1172 	return 0;
1173 }
1174 
gen8_get_seqno(struct intel_engine_cs * ring,bool lazy_coherency)1175 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1176 {
1177 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1178 }
1179 
gen8_set_seqno(struct intel_engine_cs * ring,u32 seqno)1180 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1181 {
1182 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1183 }
1184 
gen8_emit_request(struct intel_ringbuffer * ringbuf)1185 static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1186 {
1187 	struct intel_engine_cs *ring = ringbuf->ring;
1188 	u32 cmd;
1189 	int ret;
1190 
1191 	ret = intel_logical_ring_begin(ringbuf, 6);
1192 	if (ret)
1193 		return ret;
1194 
1195 	cmd = MI_STORE_DWORD_IMM_GEN8;
1196 	cmd |= MI_GLOBAL_GTT;
1197 
1198 	intel_logical_ring_emit(ringbuf, cmd);
1199 	intel_logical_ring_emit(ringbuf,
1200 				(ring->status_page.gfx_addr +
1201 				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1202 	intel_logical_ring_emit(ringbuf, 0);
1203 	intel_logical_ring_emit(ringbuf, ring->outstanding_lazy_seqno);
1204 	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1205 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1206 	intel_logical_ring_advance_and_submit(ringbuf);
1207 
1208 	return 0;
1209 }
1210 
1211 /**
1212  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1213  *
1214  * @ring: Engine Command Streamer.
1215  *
1216  */
intel_logical_ring_cleanup(struct intel_engine_cs * ring)1217 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1218 {
1219 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1220 
1221 	if (!intel_ring_initialized(ring))
1222 		return;
1223 
1224 	intel_logical_ring_stop(ring);
1225 	WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1226 	ring->preallocated_lazy_request = NULL;
1227 	ring->outstanding_lazy_seqno = 0;
1228 
1229 	if (ring->cleanup)
1230 		ring->cleanup(ring);
1231 
1232 	i915_cmd_parser_fini_ring(ring);
1233 
1234 	if (ring->status_page.obj) {
1235 		kunmap(sg_page(ring->status_page.obj->pages->sgl));
1236 		ring->status_page.obj = NULL;
1237 	}
1238 }
1239 
logical_ring_init(struct drm_device * dev,struct intel_engine_cs * ring)1240 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1241 {
1242 	int ret;
1243 
1244 	/* Intentionally left blank. */
1245 	ring->buffer = NULL;
1246 
1247 	ring->dev = dev;
1248 	INIT_LIST_HEAD(&ring->active_list);
1249 	INIT_LIST_HEAD(&ring->request_list);
1250 	init_waitqueue_head(&ring->irq_queue);
1251 
1252 	INIT_LIST_HEAD(&ring->execlist_queue);
1253 	spin_lock_init(&ring->execlist_lock);
1254 	ring->next_context_status_buffer = 0;
1255 
1256 	ret = i915_cmd_parser_init_ring(ring);
1257 	if (ret)
1258 		return ret;
1259 
1260 	if (ring->init) {
1261 		ret = ring->init(ring);
1262 		if (ret)
1263 			return ret;
1264 	}
1265 
1266 	ret = intel_lr_context_deferred_create(ring->default_context, ring);
1267 
1268 	return ret;
1269 }
1270 
logical_render_ring_init(struct drm_device * dev)1271 static int logical_render_ring_init(struct drm_device *dev)
1272 {
1273 	struct drm_i915_private *dev_priv = dev->dev_private;
1274 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1275 
1276 	ring->name = "render ring";
1277 	ring->id = RCS;
1278 	ring->mmio_base = RENDER_RING_BASE;
1279 	ring->irq_enable_mask =
1280 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1281 	ring->irq_keep_mask =
1282 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1283 	if (HAS_L3_DPF(dev))
1284 		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1285 
1286 	ring->init = gen8_init_render_ring;
1287 	ring->cleanup = intel_fini_pipe_control;
1288 	ring->get_seqno = gen8_get_seqno;
1289 	ring->set_seqno = gen8_set_seqno;
1290 	ring->emit_request = gen8_emit_request;
1291 	ring->emit_flush = gen8_emit_flush_render;
1292 	ring->irq_get = gen8_logical_ring_get_irq;
1293 	ring->irq_put = gen8_logical_ring_put_irq;
1294 	ring->emit_bb_start = gen8_emit_bb_start;
1295 
1296 	return logical_ring_init(dev, ring);
1297 }
1298 
logical_bsd_ring_init(struct drm_device * dev)1299 static int logical_bsd_ring_init(struct drm_device *dev)
1300 {
1301 	struct drm_i915_private *dev_priv = dev->dev_private;
1302 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1303 
1304 	ring->name = "bsd ring";
1305 	ring->id = VCS;
1306 	ring->mmio_base = GEN6_BSD_RING_BASE;
1307 	ring->irq_enable_mask =
1308 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1309 	ring->irq_keep_mask =
1310 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1311 
1312 	ring->init = gen8_init_common_ring;
1313 	ring->get_seqno = gen8_get_seqno;
1314 	ring->set_seqno = gen8_set_seqno;
1315 	ring->emit_request = gen8_emit_request;
1316 	ring->emit_flush = gen8_emit_flush;
1317 	ring->irq_get = gen8_logical_ring_get_irq;
1318 	ring->irq_put = gen8_logical_ring_put_irq;
1319 	ring->emit_bb_start = gen8_emit_bb_start;
1320 
1321 	return logical_ring_init(dev, ring);
1322 }
1323 
logical_bsd2_ring_init(struct drm_device * dev)1324 static int logical_bsd2_ring_init(struct drm_device *dev)
1325 {
1326 	struct drm_i915_private *dev_priv = dev->dev_private;
1327 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1328 
1329 	ring->name = "bds2 ring";
1330 	ring->id = VCS2;
1331 	ring->mmio_base = GEN8_BSD2_RING_BASE;
1332 	ring->irq_enable_mask =
1333 		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1334 	ring->irq_keep_mask =
1335 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1336 
1337 	ring->init = gen8_init_common_ring;
1338 	ring->get_seqno = gen8_get_seqno;
1339 	ring->set_seqno = gen8_set_seqno;
1340 	ring->emit_request = gen8_emit_request;
1341 	ring->emit_flush = gen8_emit_flush;
1342 	ring->irq_get = gen8_logical_ring_get_irq;
1343 	ring->irq_put = gen8_logical_ring_put_irq;
1344 	ring->emit_bb_start = gen8_emit_bb_start;
1345 
1346 	return logical_ring_init(dev, ring);
1347 }
1348 
logical_blt_ring_init(struct drm_device * dev)1349 static int logical_blt_ring_init(struct drm_device *dev)
1350 {
1351 	struct drm_i915_private *dev_priv = dev->dev_private;
1352 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1353 
1354 	ring->name = "blitter ring";
1355 	ring->id = BCS;
1356 	ring->mmio_base = BLT_RING_BASE;
1357 	ring->irq_enable_mask =
1358 		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1359 	ring->irq_keep_mask =
1360 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1361 
1362 	ring->init = gen8_init_common_ring;
1363 	ring->get_seqno = gen8_get_seqno;
1364 	ring->set_seqno = gen8_set_seqno;
1365 	ring->emit_request = gen8_emit_request;
1366 	ring->emit_flush = gen8_emit_flush;
1367 	ring->irq_get = gen8_logical_ring_get_irq;
1368 	ring->irq_put = gen8_logical_ring_put_irq;
1369 	ring->emit_bb_start = gen8_emit_bb_start;
1370 
1371 	return logical_ring_init(dev, ring);
1372 }
1373 
logical_vebox_ring_init(struct drm_device * dev)1374 static int logical_vebox_ring_init(struct drm_device *dev)
1375 {
1376 	struct drm_i915_private *dev_priv = dev->dev_private;
1377 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1378 
1379 	ring->name = "video enhancement ring";
1380 	ring->id = VECS;
1381 	ring->mmio_base = VEBOX_RING_BASE;
1382 	ring->irq_enable_mask =
1383 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1384 	ring->irq_keep_mask =
1385 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1386 
1387 	ring->init = gen8_init_common_ring;
1388 	ring->get_seqno = gen8_get_seqno;
1389 	ring->set_seqno = gen8_set_seqno;
1390 	ring->emit_request = gen8_emit_request;
1391 	ring->emit_flush = gen8_emit_flush;
1392 	ring->irq_get = gen8_logical_ring_get_irq;
1393 	ring->irq_put = gen8_logical_ring_put_irq;
1394 	ring->emit_bb_start = gen8_emit_bb_start;
1395 
1396 	return logical_ring_init(dev, ring);
1397 }
1398 
1399 /**
1400  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1401  * @dev: DRM device.
1402  *
1403  * This function inits the engines for an Execlists submission style (the equivalent in the
1404  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1405  * those engines that are present in the hardware.
1406  *
1407  * Return: non-zero if the initialization failed.
1408  */
intel_logical_rings_init(struct drm_device * dev)1409 int intel_logical_rings_init(struct drm_device *dev)
1410 {
1411 	struct drm_i915_private *dev_priv = dev->dev_private;
1412 	int ret;
1413 
1414 	ret = logical_render_ring_init(dev);
1415 	if (ret)
1416 		return ret;
1417 
1418 	if (HAS_BSD(dev)) {
1419 		ret = logical_bsd_ring_init(dev);
1420 		if (ret)
1421 			goto cleanup_render_ring;
1422 	}
1423 
1424 	if (HAS_BLT(dev)) {
1425 		ret = logical_blt_ring_init(dev);
1426 		if (ret)
1427 			goto cleanup_bsd_ring;
1428 	}
1429 
1430 	if (HAS_VEBOX(dev)) {
1431 		ret = logical_vebox_ring_init(dev);
1432 		if (ret)
1433 			goto cleanup_blt_ring;
1434 	}
1435 
1436 	if (HAS_BSD2(dev)) {
1437 		ret = logical_bsd2_ring_init(dev);
1438 		if (ret)
1439 			goto cleanup_vebox_ring;
1440 	}
1441 
1442 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1443 	if (ret)
1444 		goto cleanup_bsd2_ring;
1445 
1446 	return 0;
1447 
1448 cleanup_bsd2_ring:
1449 	intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1450 cleanup_vebox_ring:
1451 	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1452 cleanup_blt_ring:
1453 	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1454 cleanup_bsd_ring:
1455 	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1456 cleanup_render_ring:
1457 	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1458 
1459 	return ret;
1460 }
1461 
intel_lr_context_render_state_init(struct intel_engine_cs * ring,struct intel_context * ctx)1462 int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1463 				       struct intel_context *ctx)
1464 {
1465 	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1466 	struct render_state so;
1467 	struct drm_i915_file_private *file_priv = ctx->file_priv;
1468 	struct drm_file *file = file_priv ? file_priv->file : NULL;
1469 	int ret;
1470 
1471 	ret = i915_gem_render_state_prepare(ring, &so);
1472 	if (ret)
1473 		return ret;
1474 
1475 	if (so.rodata == NULL)
1476 		return 0;
1477 
1478 	ret = ring->emit_bb_start(ringbuf,
1479 			so.ggtt_offset,
1480 			I915_DISPATCH_SECURE);
1481 	if (ret)
1482 		goto out;
1483 
1484 	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1485 
1486 	ret = __i915_add_request(ring, file, so.obj, NULL);
1487 	/* intel_logical_ring_add_request moves object to inactive if it
1488 	 * fails */
1489 out:
1490 	i915_gem_render_state_fini(&so);
1491 	return ret;
1492 }
1493 
1494 static int
populate_lr_context(struct intel_context * ctx,struct drm_i915_gem_object * ctx_obj,struct intel_engine_cs * ring,struct intel_ringbuffer * ringbuf)1495 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1496 		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1497 {
1498 	struct drm_device *dev = ring->dev;
1499 	struct drm_i915_private *dev_priv = dev->dev_private;
1500 	struct drm_i915_gem_object *ring_obj = ringbuf->obj;
1501 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1502 	struct page *page;
1503 	uint32_t *reg_state;
1504 	int ret;
1505 
1506 	if (!ppgtt)
1507 		ppgtt = dev_priv->mm.aliasing_ppgtt;
1508 
1509 	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1510 	if (ret) {
1511 		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1512 		return ret;
1513 	}
1514 
1515 	ret = i915_gem_object_get_pages(ctx_obj);
1516 	if (ret) {
1517 		DRM_DEBUG_DRIVER("Could not get object pages\n");
1518 		return ret;
1519 	}
1520 
1521 	i915_gem_object_pin_pages(ctx_obj);
1522 
1523 	/* The second page of the context object contains some fields which must
1524 	 * be set up prior to the first execution. */
1525 	page = i915_gem_object_get_page(ctx_obj, 1);
1526 	reg_state = kmap_atomic(page);
1527 
1528 	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1529 	 * commands followed by (reg, value) pairs. The values we are setting here are
1530 	 * only for the first context restore: on a subsequent save, the GPU will
1531 	 * recreate this batchbuffer with new values (including all the missing
1532 	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1533 	if (ring->id == RCS)
1534 		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1535 	else
1536 		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1537 	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1538 	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1539 	reg_state[CTX_CONTEXT_CONTROL+1] =
1540 			_MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1541 	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1542 	reg_state[CTX_RING_HEAD+1] = 0;
1543 	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1544 	reg_state[CTX_RING_TAIL+1] = 0;
1545 	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1546 	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
1547 	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1548 	reg_state[CTX_RING_BUFFER_CONTROL+1] =
1549 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1550 	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1551 	reg_state[CTX_BB_HEAD_U+1] = 0;
1552 	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1553 	reg_state[CTX_BB_HEAD_L+1] = 0;
1554 	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1555 	reg_state[CTX_BB_STATE+1] = (1<<5);
1556 	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1557 	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1558 	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1559 	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1560 	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1561 	reg_state[CTX_SECOND_BB_STATE+1] = 0;
1562 	if (ring->id == RCS) {
1563 		/* TODO: according to BSpec, the register state context
1564 		 * for CHV does not have these. OTOH, these registers do
1565 		 * exist in CHV. I'm waiting for a clarification */
1566 		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1567 		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1568 		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1569 		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1570 		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1571 		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1572 	}
1573 	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1574 	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1575 	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1576 	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1577 	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1578 	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1579 	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1580 	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1581 	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1582 	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1583 	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1584 	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1585 	reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1586 	reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1587 	reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1588 	reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1589 	reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1590 	reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1591 	reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1592 	reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1593 	if (ring->id == RCS) {
1594 		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1595 		reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1596 		reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1597 	}
1598 
1599 	kunmap_atomic(reg_state);
1600 
1601 	ctx_obj->dirty = 1;
1602 	set_page_dirty(page);
1603 	i915_gem_object_unpin_pages(ctx_obj);
1604 
1605 	return 0;
1606 }
1607 
1608 /**
1609  * intel_lr_context_free() - free the LRC specific bits of a context
1610  * @ctx: the LR context to free.
1611  *
1612  * The real context freeing is done in i915_gem_context_free: this only
1613  * takes care of the bits that are LRC related: the per-engine backing
1614  * objects and the logical ringbuffer.
1615  */
intel_lr_context_free(struct intel_context * ctx)1616 void intel_lr_context_free(struct intel_context *ctx)
1617 {
1618 	int i;
1619 
1620 	for (i = 0; i < I915_NUM_RINGS; i++) {
1621 		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1622 		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
1623 
1624 		if (ctx_obj) {
1625 			intel_destroy_ringbuffer_obj(ringbuf);
1626 			kfree(ringbuf);
1627 			i915_gem_object_ggtt_unpin(ctx_obj);
1628 			drm_gem_object_unreference(&ctx_obj->base);
1629 		}
1630 	}
1631 }
1632 
get_lr_context_size(struct intel_engine_cs * ring)1633 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1634 {
1635 	int ret = 0;
1636 
1637 	WARN_ON(INTEL_INFO(ring->dev)->gen != 8);
1638 
1639 	switch (ring->id) {
1640 	case RCS:
1641 		ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1642 		break;
1643 	case VCS:
1644 	case BCS:
1645 	case VECS:
1646 	case VCS2:
1647 		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1648 		break;
1649 	}
1650 
1651 	return ret;
1652 }
1653 
1654 /**
1655  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1656  * @ctx: LR context to create.
1657  * @ring: engine to be used with the context.
1658  *
1659  * This function can be called more than once, with different engines, if we plan
1660  * to use the context with them. The context backing objects and the ringbuffers
1661  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1662  * the creation is a deferred call: it's better to make sure first that we need to use
1663  * a given ring with the context.
1664  *
1665  * Return: non-zero on eror.
1666  */
intel_lr_context_deferred_create(struct intel_context * ctx,struct intel_engine_cs * ring)1667 int intel_lr_context_deferred_create(struct intel_context *ctx,
1668 				     struct intel_engine_cs *ring)
1669 {
1670 	struct drm_device *dev = ring->dev;
1671 	struct drm_i915_gem_object *ctx_obj;
1672 	uint32_t context_size;
1673 	struct intel_ringbuffer *ringbuf;
1674 	int ret;
1675 
1676 	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1677 	if (ctx->engine[ring->id].state)
1678 		return 0;
1679 
1680 	context_size = round_up(get_lr_context_size(ring), 4096);
1681 
1682 	ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1683 	if (IS_ERR(ctx_obj)) {
1684 		ret = PTR_ERR(ctx_obj);
1685 		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1686 		return ret;
1687 	}
1688 
1689 	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1690 	if (ret) {
1691 		DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n", ret);
1692 		drm_gem_object_unreference(&ctx_obj->base);
1693 		return ret;
1694 	}
1695 
1696 	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1697 	if (!ringbuf) {
1698 		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1699 				ring->name);
1700 		i915_gem_object_ggtt_unpin(ctx_obj);
1701 		drm_gem_object_unreference(&ctx_obj->base);
1702 		ret = -ENOMEM;
1703 		return ret;
1704 	}
1705 
1706 	ringbuf->ring = ring;
1707 	ringbuf->FIXME_lrc_ctx = ctx;
1708 
1709 	ringbuf->size = 32 * PAGE_SIZE;
1710 	ringbuf->effective_size = ringbuf->size;
1711 	ringbuf->head = 0;
1712 	ringbuf->tail = 0;
1713 	ringbuf->space = ringbuf->size;
1714 	ringbuf->last_retired_head = -1;
1715 
1716 	/* TODO: For now we put this in the mappable region so that we can reuse
1717 	 * the existing ringbuffer code which ioremaps it. When we start
1718 	 * creating many contexts, this will no longer work and we must switch
1719 	 * to a kmapish interface.
1720 	 */
1721 	ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1722 	if (ret) {
1723 		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer obj %s: %d\n",
1724 				ring->name, ret);
1725 		goto error;
1726 	}
1727 
1728 	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1729 	if (ret) {
1730 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1731 		intel_destroy_ringbuffer_obj(ringbuf);
1732 		goto error;
1733 	}
1734 
1735 	ctx->engine[ring->id].ringbuf = ringbuf;
1736 	ctx->engine[ring->id].state = ctx_obj;
1737 
1738 	if (ctx == ring->default_context) {
1739 		/* The status page is offset 0 from the default context object
1740 		 * in LRC mode. */
1741 		ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(ctx_obj);
1742 		ring->status_page.page_addr =
1743 				kmap(sg_page(ctx_obj->pages->sgl));
1744 		if (ring->status_page.page_addr == NULL)
1745 			return -ENOMEM;
1746 		ring->status_page.obj = ctx_obj;
1747 	}
1748 
1749 	if (ring->id == RCS && !ctx->rcs_initialized) {
1750 		ret = intel_lr_context_render_state_init(ring, ctx);
1751 		if (ret) {
1752 			DRM_ERROR("Init render state failed: %d\n", ret);
1753 			ctx->engine[ring->id].ringbuf = NULL;
1754 			ctx->engine[ring->id].state = NULL;
1755 			intel_destroy_ringbuffer_obj(ringbuf);
1756 			goto error;
1757 		}
1758 		ctx->rcs_initialized = true;
1759 	}
1760 
1761 	return 0;
1762 
1763 error:
1764 	kfree(ringbuf);
1765 	i915_gem_object_ggtt_unpin(ctx_obj);
1766 	drm_gem_object_unreference(&ctx_obj->base);
1767 	return ret;
1768 }
1769