1 /*
2 * Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved.
3 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/sched.h>
35 #include <linux/spinlock.h>
36 #include <linux/idr.h>
37 #include <linux/pci.h>
38 #include <linux/io.h>
39 #include <linux/delay.h>
40 #include <linux/netdevice.h>
41 #include <linux/vmalloc.h>
42 #include <linux/bitmap.h>
43 #include <linux/slab.h>
44 #include <linux/module.h>
45
46 #include "ipath_kernel.h"
47 #include "ipath_verbs.h"
48
49 static void ipath_update_pio_bufs(struct ipath_devdata *);
50
ipath_get_unit_name(int unit)51 const char *ipath_get_unit_name(int unit)
52 {
53 static char iname[16];
54 snprintf(iname, sizeof iname, "infinipath%u", unit);
55 return iname;
56 }
57
58 #define DRIVER_LOAD_MSG "QLogic " IPATH_DRV_NAME " loaded: "
59 #define PFX IPATH_DRV_NAME ": "
60
61 /*
62 * The size has to be longer than this string, so we can append
63 * board/chip information to it in the init code.
64 */
65 const char ib_ipath_version[] = IPATH_IDSTR "\n";
66
67 static struct idr unit_table;
68 DEFINE_SPINLOCK(ipath_devs_lock);
69 LIST_HEAD(ipath_dev_list);
70
71 wait_queue_head_t ipath_state_wait;
72
73 unsigned ipath_debug = __IPATH_INFO;
74
75 module_param_named(debug, ipath_debug, uint, S_IWUSR | S_IRUGO);
76 MODULE_PARM_DESC(debug, "mask for debug prints");
77 EXPORT_SYMBOL_GPL(ipath_debug);
78
79 unsigned ipath_mtu4096 = 1; /* max 4KB IB mtu by default, if supported */
80 module_param_named(mtu4096, ipath_mtu4096, uint, S_IRUGO);
81 MODULE_PARM_DESC(mtu4096, "enable MTU of 4096 bytes, if supported");
82
83 static unsigned ipath_hol_timeout_ms = 13000;
84 module_param_named(hol_timeout_ms, ipath_hol_timeout_ms, uint, S_IRUGO);
85 MODULE_PARM_DESC(hol_timeout_ms,
86 "duration of user app suspension after link failure");
87
88 unsigned ipath_linkrecovery = 1;
89 module_param_named(linkrecovery, ipath_linkrecovery, uint, S_IWUSR | S_IRUGO);
90 MODULE_PARM_DESC(linkrecovery, "enable workaround for link recovery issue");
91
92 MODULE_LICENSE("GPL");
93 MODULE_AUTHOR("QLogic <support@qlogic.com>");
94 MODULE_DESCRIPTION("QLogic InfiniPath driver");
95
96 /*
97 * Table to translate the LINKTRAININGSTATE portion of
98 * IBCStatus to a human-readable form.
99 */
100 const char *ipath_ibcstatus_str[] = {
101 "Disabled",
102 "LinkUp",
103 "PollActive",
104 "PollQuiet",
105 "SleepDelay",
106 "SleepQuiet",
107 "LState6", /* unused */
108 "LState7", /* unused */
109 "CfgDebounce",
110 "CfgRcvfCfg",
111 "CfgWaitRmt",
112 "CfgIdle",
113 "RecovRetrain",
114 "CfgTxRevLane", /* unused before IBA7220 */
115 "RecovWaitRmt",
116 "RecovIdle",
117 /* below were added for IBA7220 */
118 "CfgEnhanced",
119 "CfgTest",
120 "CfgWaitRmtTest",
121 "CfgWaitCfgEnhanced",
122 "SendTS_T",
123 "SendTstIdles",
124 "RcvTS_T",
125 "SendTst_TS1s",
126 "LTState18", "LTState19", "LTState1A", "LTState1B",
127 "LTState1C", "LTState1D", "LTState1E", "LTState1F"
128 };
129
130 static void ipath_remove_one(struct pci_dev *);
131 static int ipath_init_one(struct pci_dev *, const struct pci_device_id *);
132
133 /* Only needed for registration, nothing else needs this info */
134 #define PCI_VENDOR_ID_PATHSCALE 0x1fc1
135 #define PCI_DEVICE_ID_INFINIPATH_HT 0xd
136
137 /* Number of seconds before our card status check... */
138 #define STATUS_TIMEOUT 60
139
140 static const struct pci_device_id ipath_pci_tbl[] = {
141 { PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_HT) },
142 { 0, }
143 };
144
145 MODULE_DEVICE_TABLE(pci, ipath_pci_tbl);
146
147 static struct pci_driver ipath_driver = {
148 .name = IPATH_DRV_NAME,
149 .probe = ipath_init_one,
150 .remove = ipath_remove_one,
151 .id_table = ipath_pci_tbl,
152 .driver = {
153 .groups = ipath_driver_attr_groups,
154 },
155 };
156
read_bars(struct ipath_devdata * dd,struct pci_dev * dev,u32 * bar0,u32 * bar1)157 static inline void read_bars(struct ipath_devdata *dd, struct pci_dev *dev,
158 u32 *bar0, u32 *bar1)
159 {
160 int ret;
161
162 ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, bar0);
163 if (ret)
164 ipath_dev_err(dd, "failed to read bar0 before enable: "
165 "error %d\n", -ret);
166
167 ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, bar1);
168 if (ret)
169 ipath_dev_err(dd, "failed to read bar1 before enable: "
170 "error %d\n", -ret);
171
172 ipath_dbg("Read bar0 %x bar1 %x\n", *bar0, *bar1);
173 }
174
ipath_free_devdata(struct pci_dev * pdev,struct ipath_devdata * dd)175 static void ipath_free_devdata(struct pci_dev *pdev,
176 struct ipath_devdata *dd)
177 {
178 unsigned long flags;
179
180 pci_set_drvdata(pdev, NULL);
181
182 if (dd->ipath_unit != -1) {
183 spin_lock_irqsave(&ipath_devs_lock, flags);
184 idr_remove(&unit_table, dd->ipath_unit);
185 list_del(&dd->ipath_list);
186 spin_unlock_irqrestore(&ipath_devs_lock, flags);
187 }
188 vfree(dd);
189 }
190
ipath_alloc_devdata(struct pci_dev * pdev)191 static struct ipath_devdata *ipath_alloc_devdata(struct pci_dev *pdev)
192 {
193 unsigned long flags;
194 struct ipath_devdata *dd;
195 int ret;
196
197 dd = vzalloc(sizeof(*dd));
198 if (!dd) {
199 dd = ERR_PTR(-ENOMEM);
200 goto bail;
201 }
202 dd->ipath_unit = -1;
203
204 idr_preload(GFP_KERNEL);
205 spin_lock_irqsave(&ipath_devs_lock, flags);
206
207 ret = idr_alloc(&unit_table, dd, 0, 0, GFP_NOWAIT);
208 if (ret < 0) {
209 printk(KERN_ERR IPATH_DRV_NAME
210 ": Could not allocate unit ID: error %d\n", -ret);
211 ipath_free_devdata(pdev, dd);
212 dd = ERR_PTR(ret);
213 goto bail_unlock;
214 }
215 dd->ipath_unit = ret;
216
217 dd->pcidev = pdev;
218 pci_set_drvdata(pdev, dd);
219
220 list_add(&dd->ipath_list, &ipath_dev_list);
221
222 bail_unlock:
223 spin_unlock_irqrestore(&ipath_devs_lock, flags);
224 idr_preload_end();
225 bail:
226 return dd;
227 }
228
__ipath_lookup(int unit)229 static inline struct ipath_devdata *__ipath_lookup(int unit)
230 {
231 return idr_find(&unit_table, unit);
232 }
233
ipath_lookup(int unit)234 struct ipath_devdata *ipath_lookup(int unit)
235 {
236 struct ipath_devdata *dd;
237 unsigned long flags;
238
239 spin_lock_irqsave(&ipath_devs_lock, flags);
240 dd = __ipath_lookup(unit);
241 spin_unlock_irqrestore(&ipath_devs_lock, flags);
242
243 return dd;
244 }
245
ipath_count_units(int * npresentp,int * nupp,int * maxportsp)246 int ipath_count_units(int *npresentp, int *nupp, int *maxportsp)
247 {
248 int nunits, npresent, nup;
249 struct ipath_devdata *dd;
250 unsigned long flags;
251 int maxports;
252
253 nunits = npresent = nup = maxports = 0;
254
255 spin_lock_irqsave(&ipath_devs_lock, flags);
256
257 list_for_each_entry(dd, &ipath_dev_list, ipath_list) {
258 nunits++;
259 if ((dd->ipath_flags & IPATH_PRESENT) && dd->ipath_kregbase)
260 npresent++;
261 if (dd->ipath_lid &&
262 !(dd->ipath_flags & (IPATH_DISABLED | IPATH_LINKDOWN
263 | IPATH_LINKUNK)))
264 nup++;
265 if (dd->ipath_cfgports > maxports)
266 maxports = dd->ipath_cfgports;
267 }
268
269 spin_unlock_irqrestore(&ipath_devs_lock, flags);
270
271 if (npresentp)
272 *npresentp = npresent;
273 if (nupp)
274 *nupp = nup;
275 if (maxportsp)
276 *maxportsp = maxports;
277
278 return nunits;
279 }
280
281 /*
282 * These next two routines are placeholders in case we don't have per-arch
283 * code for controlling write combining. If explicit control of write
284 * combining is not available, performance will probably be awful.
285 */
286
ipath_enable_wc(struct ipath_devdata * dd)287 int __attribute__((weak)) ipath_enable_wc(struct ipath_devdata *dd)
288 {
289 return -EOPNOTSUPP;
290 }
291
ipath_disable_wc(struct ipath_devdata * dd)292 void __attribute__((weak)) ipath_disable_wc(struct ipath_devdata *dd)
293 {
294 }
295
296 /*
297 * Perform a PIO buffer bandwidth write test, to verify proper system
298 * configuration. Even when all the setup calls work, occasionally
299 * BIOS or other issues can prevent write combining from working, or
300 * can cause other bandwidth problems to the chip.
301 *
302 * This test simply writes the same buffer over and over again, and
303 * measures close to the peak bandwidth to the chip (not testing
304 * data bandwidth to the wire). On chips that use an address-based
305 * trigger to send packets to the wire, this is easy. On chips that
306 * use a count to trigger, we want to make sure that the packet doesn't
307 * go out on the wire, or trigger flow control checks.
308 */
ipath_verify_pioperf(struct ipath_devdata * dd)309 static void ipath_verify_pioperf(struct ipath_devdata *dd)
310 {
311 u32 pbnum, cnt, lcnt;
312 u32 __iomem *piobuf;
313 u32 *addr;
314 u64 msecs, emsecs;
315
316 piobuf = ipath_getpiobuf(dd, 0, &pbnum);
317 if (!piobuf) {
318 dev_info(&dd->pcidev->dev,
319 "No PIObufs for checking perf, skipping\n");
320 return;
321 }
322
323 /*
324 * Enough to give us a reasonable test, less than piobuf size, and
325 * likely multiple of store buffer length.
326 */
327 cnt = 1024;
328
329 addr = vmalloc(cnt);
330 if (!addr) {
331 dev_info(&dd->pcidev->dev,
332 "Couldn't get memory for checking PIO perf,"
333 " skipping\n");
334 goto done;
335 }
336
337 preempt_disable(); /* we want reasonably accurate elapsed time */
338 msecs = 1 + jiffies_to_msecs(jiffies);
339 for (lcnt = 0; lcnt < 10000U; lcnt++) {
340 /* wait until we cross msec boundary */
341 if (jiffies_to_msecs(jiffies) >= msecs)
342 break;
343 udelay(1);
344 }
345
346 ipath_disable_armlaunch(dd);
347
348 /*
349 * length 0, no dwords actually sent, and mark as VL15
350 * on chips where that may matter (due to IB flowcontrol)
351 */
352 if ((dd->ipath_flags & IPATH_HAS_PBC_CNT))
353 writeq(1UL << 63, piobuf);
354 else
355 writeq(0, piobuf);
356 ipath_flush_wc();
357
358 /*
359 * this is only roughly accurate, since even with preempt we
360 * still take interrupts that could take a while. Running for
361 * >= 5 msec seems to get us "close enough" to accurate values
362 */
363 msecs = jiffies_to_msecs(jiffies);
364 for (emsecs = lcnt = 0; emsecs <= 5UL; lcnt++) {
365 __iowrite32_copy(piobuf + 64, addr, cnt >> 2);
366 emsecs = jiffies_to_msecs(jiffies) - msecs;
367 }
368
369 /* 1 GiB/sec, slightly over IB SDR line rate */
370 if (lcnt < (emsecs * 1024U))
371 ipath_dev_err(dd,
372 "Performance problem: bandwidth to PIO buffers is "
373 "only %u MiB/sec\n",
374 lcnt / (u32) emsecs);
375 else
376 ipath_dbg("PIO buffer bandwidth %u MiB/sec is OK\n",
377 lcnt / (u32) emsecs);
378
379 preempt_enable();
380
381 vfree(addr);
382
383 done:
384 /* disarm piobuf, so it's available again */
385 ipath_disarm_piobufs(dd, pbnum, 1);
386 ipath_enable_armlaunch(dd);
387 }
388
389 static void cleanup_device(struct ipath_devdata *dd);
390
ipath_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)391 static int ipath_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
392 {
393 int ret, len, j;
394 struct ipath_devdata *dd;
395 unsigned long long addr;
396 u32 bar0 = 0, bar1 = 0;
397
398 dd = ipath_alloc_devdata(pdev);
399 if (IS_ERR(dd)) {
400 ret = PTR_ERR(dd);
401 printk(KERN_ERR IPATH_DRV_NAME
402 ": Could not allocate devdata: error %d\n", -ret);
403 goto bail;
404 }
405
406 ipath_cdbg(VERBOSE, "initializing unit #%u\n", dd->ipath_unit);
407
408 ret = pci_enable_device(pdev);
409 if (ret) {
410 /* This can happen iff:
411 *
412 * We did a chip reset, and then failed to reprogram the
413 * BAR, or the chip reset due to an internal error. We then
414 * unloaded the driver and reloaded it.
415 *
416 * Both reset cases set the BAR back to initial state. For
417 * the latter case, the AER sticky error bit at offset 0x718
418 * should be set, but the Linux kernel doesn't yet know
419 * about that, it appears. If the original BAR was retained
420 * in the kernel data structures, this may be OK.
421 */
422 ipath_dev_err(dd, "enable unit %d failed: error %d\n",
423 dd->ipath_unit, -ret);
424 goto bail_devdata;
425 }
426 addr = pci_resource_start(pdev, 0);
427 len = pci_resource_len(pdev, 0);
428 ipath_cdbg(VERBOSE, "regbase (0) %llx len %d irq %d, vend %x/%x "
429 "driver_data %lx\n", addr, len, pdev->irq, ent->vendor,
430 ent->device, ent->driver_data);
431
432 read_bars(dd, pdev, &bar0, &bar1);
433
434 if (!bar1 && !(bar0 & ~0xf)) {
435 if (addr) {
436 dev_info(&pdev->dev, "BAR is 0 (probable RESET), "
437 "rewriting as %llx\n", addr);
438 ret = pci_write_config_dword(
439 pdev, PCI_BASE_ADDRESS_0, addr);
440 if (ret) {
441 ipath_dev_err(dd, "rewrite of BAR0 "
442 "failed: err %d\n", -ret);
443 goto bail_disable;
444 }
445 ret = pci_write_config_dword(
446 pdev, PCI_BASE_ADDRESS_1, addr >> 32);
447 if (ret) {
448 ipath_dev_err(dd, "rewrite of BAR1 "
449 "failed: err %d\n", -ret);
450 goto bail_disable;
451 }
452 } else {
453 ipath_dev_err(dd, "BAR is 0 (probable RESET), "
454 "not usable until reboot\n");
455 ret = -ENODEV;
456 goto bail_disable;
457 }
458 }
459
460 ret = pci_request_regions(pdev, IPATH_DRV_NAME);
461 if (ret) {
462 dev_info(&pdev->dev, "pci_request_regions unit %u fails: "
463 "err %d\n", dd->ipath_unit, -ret);
464 goto bail_disable;
465 }
466
467 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
468 if (ret) {
469 /*
470 * if the 64 bit setup fails, try 32 bit. Some systems
471 * do not setup 64 bit maps on systems with 2GB or less
472 * memory installed.
473 */
474 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
475 if (ret) {
476 dev_info(&pdev->dev,
477 "Unable to set DMA mask for unit %u: %d\n",
478 dd->ipath_unit, ret);
479 goto bail_regions;
480 }
481 else {
482 ipath_dbg("No 64bit DMA mask, used 32 bit mask\n");
483 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
484 if (ret)
485 dev_info(&pdev->dev,
486 "Unable to set DMA consistent mask "
487 "for unit %u: %d\n",
488 dd->ipath_unit, ret);
489
490 }
491 }
492 else {
493 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
494 if (ret)
495 dev_info(&pdev->dev,
496 "Unable to set DMA consistent mask "
497 "for unit %u: %d\n",
498 dd->ipath_unit, ret);
499 }
500
501 pci_set_master(pdev);
502
503 /*
504 * Save BARs to rewrite after device reset. Save all 64 bits of
505 * BAR, just in case.
506 */
507 dd->ipath_pcibar0 = addr;
508 dd->ipath_pcibar1 = addr >> 32;
509 dd->ipath_deviceid = ent->device; /* save for later use */
510 dd->ipath_vendorid = ent->vendor;
511
512 /* setup the chip-specific functions, as early as possible. */
513 switch (ent->device) {
514 case PCI_DEVICE_ID_INFINIPATH_HT:
515 ipath_init_iba6110_funcs(dd);
516 break;
517
518 default:
519 ipath_dev_err(dd, "Found unknown QLogic deviceid 0x%x, "
520 "failing\n", ent->device);
521 return -ENODEV;
522 }
523
524 for (j = 0; j < 6; j++) {
525 if (!pdev->resource[j].start)
526 continue;
527 ipath_cdbg(VERBOSE, "BAR %d %pR, len %llx\n",
528 j, &pdev->resource[j],
529 (unsigned long long)pci_resource_len(pdev, j));
530 }
531
532 if (!addr) {
533 ipath_dev_err(dd, "No valid address in BAR 0!\n");
534 ret = -ENODEV;
535 goto bail_regions;
536 }
537
538 dd->ipath_pcirev = pdev->revision;
539
540 #if defined(__powerpc__)
541 /* There isn't a generic way to specify writethrough mappings */
542 dd->ipath_kregbase = __ioremap(addr, len,
543 (_PAGE_NO_CACHE|_PAGE_WRITETHRU));
544 #else
545 dd->ipath_kregbase = ioremap_nocache(addr, len);
546 #endif
547
548 if (!dd->ipath_kregbase) {
549 ipath_dbg("Unable to map io addr %llx to kvirt, failing\n",
550 addr);
551 ret = -ENOMEM;
552 goto bail_iounmap;
553 }
554 dd->ipath_kregend = (u64 __iomem *)
555 ((void __iomem *)dd->ipath_kregbase + len);
556 dd->ipath_physaddr = addr; /* used for io_remap, etc. */
557 /* for user mmap */
558 ipath_cdbg(VERBOSE, "mapped io addr %llx to kregbase %p\n",
559 addr, dd->ipath_kregbase);
560
561 if (dd->ipath_f_bus(dd, pdev))
562 ipath_dev_err(dd, "Failed to setup config space; "
563 "continuing anyway\n");
564
565 /*
566 * set up our interrupt handler; IRQF_SHARED probably not needed,
567 * since MSI interrupts shouldn't be shared but won't hurt for now.
568 * check 0 irq after we return from chip-specific bus setup, since
569 * that can affect this due to setup
570 */
571 if (!dd->ipath_irq)
572 ipath_dev_err(dd, "irq is 0, BIOS error? Interrupts won't "
573 "work\n");
574 else {
575 ret = request_irq(dd->ipath_irq, ipath_intr, IRQF_SHARED,
576 IPATH_DRV_NAME, dd);
577 if (ret) {
578 ipath_dev_err(dd, "Couldn't setup irq handler, "
579 "irq=%d: %d\n", dd->ipath_irq, ret);
580 goto bail_iounmap;
581 }
582 }
583
584 ret = ipath_init_chip(dd, 0); /* do the chip-specific init */
585 if (ret)
586 goto bail_irqsetup;
587
588 ret = ipath_enable_wc(dd);
589
590 if (ret) {
591 ipath_dev_err(dd, "Write combining not enabled "
592 "(err %d): performance may be poor\n",
593 -ret);
594 ret = 0;
595 }
596
597 ipath_verify_pioperf(dd);
598
599 ipath_device_create_group(&pdev->dev, dd);
600 ipathfs_add_device(dd);
601 ipath_user_add(dd);
602 ipath_diag_add(dd);
603 ipath_register_ib_device(dd);
604
605 goto bail;
606
607 bail_irqsetup:
608 cleanup_device(dd);
609
610 if (dd->ipath_irq)
611 dd->ipath_f_free_irq(dd);
612
613 if (dd->ipath_f_cleanup)
614 dd->ipath_f_cleanup(dd);
615
616 bail_iounmap:
617 iounmap((volatile void __iomem *) dd->ipath_kregbase);
618
619 bail_regions:
620 pci_release_regions(pdev);
621
622 bail_disable:
623 pci_disable_device(pdev);
624
625 bail_devdata:
626 ipath_free_devdata(pdev, dd);
627
628 bail:
629 return ret;
630 }
631
cleanup_device(struct ipath_devdata * dd)632 static void cleanup_device(struct ipath_devdata *dd)
633 {
634 int port;
635 struct ipath_portdata **tmp;
636 unsigned long flags;
637
638 if (*dd->ipath_statusp & IPATH_STATUS_CHIP_PRESENT) {
639 /* can't do anything more with chip; needs re-init */
640 *dd->ipath_statusp &= ~IPATH_STATUS_CHIP_PRESENT;
641 if (dd->ipath_kregbase) {
642 /*
643 * if we haven't already cleaned up before these are
644 * to ensure any register reads/writes "fail" until
645 * re-init
646 */
647 dd->ipath_kregbase = NULL;
648 dd->ipath_uregbase = 0;
649 dd->ipath_sregbase = 0;
650 dd->ipath_cregbase = 0;
651 dd->ipath_kregsize = 0;
652 }
653 ipath_disable_wc(dd);
654 }
655
656 if (dd->ipath_spectriggerhit)
657 dev_info(&dd->pcidev->dev, "%lu special trigger hits\n",
658 dd->ipath_spectriggerhit);
659
660 if (dd->ipath_pioavailregs_dma) {
661 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
662 (void *) dd->ipath_pioavailregs_dma,
663 dd->ipath_pioavailregs_phys);
664 dd->ipath_pioavailregs_dma = NULL;
665 }
666 if (dd->ipath_dummy_hdrq) {
667 dma_free_coherent(&dd->pcidev->dev,
668 dd->ipath_pd[0]->port_rcvhdrq_size,
669 dd->ipath_dummy_hdrq, dd->ipath_dummy_hdrq_phys);
670 dd->ipath_dummy_hdrq = NULL;
671 }
672
673 if (dd->ipath_pageshadow) {
674 struct page **tmpp = dd->ipath_pageshadow;
675 dma_addr_t *tmpd = dd->ipath_physshadow;
676 int i, cnt = 0;
677
678 ipath_cdbg(VERBOSE, "Unlocking any expTID pages still "
679 "locked\n");
680 for (port = 0; port < dd->ipath_cfgports; port++) {
681 int port_tidbase = port * dd->ipath_rcvtidcnt;
682 int maxtid = port_tidbase + dd->ipath_rcvtidcnt;
683 for (i = port_tidbase; i < maxtid; i++) {
684 if (!tmpp[i])
685 continue;
686 pci_unmap_page(dd->pcidev, tmpd[i],
687 PAGE_SIZE, PCI_DMA_FROMDEVICE);
688 ipath_release_user_pages(&tmpp[i], 1);
689 tmpp[i] = NULL;
690 cnt++;
691 }
692 }
693 if (cnt) {
694 ipath_stats.sps_pageunlocks += cnt;
695 ipath_cdbg(VERBOSE, "There were still %u expTID "
696 "entries locked\n", cnt);
697 }
698 if (ipath_stats.sps_pagelocks ||
699 ipath_stats.sps_pageunlocks)
700 ipath_cdbg(VERBOSE, "%llu pages locked, %llu "
701 "unlocked via ipath_m{un}lock\n",
702 (unsigned long long)
703 ipath_stats.sps_pagelocks,
704 (unsigned long long)
705 ipath_stats.sps_pageunlocks);
706
707 ipath_cdbg(VERBOSE, "Free shadow page tid array at %p\n",
708 dd->ipath_pageshadow);
709 tmpp = dd->ipath_pageshadow;
710 dd->ipath_pageshadow = NULL;
711 vfree(tmpp);
712
713 dd->ipath_egrtidbase = NULL;
714 }
715
716 /*
717 * free any resources still in use (usually just kernel ports)
718 * at unload; we do for portcnt, because that's what we allocate.
719 * We acquire lock to be really paranoid that ipath_pd isn't being
720 * accessed from some interrupt-related code (that should not happen,
721 * but best to be sure).
722 */
723 spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
724 tmp = dd->ipath_pd;
725 dd->ipath_pd = NULL;
726 spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
727 for (port = 0; port < dd->ipath_portcnt; port++) {
728 struct ipath_portdata *pd = tmp[port];
729 tmp[port] = NULL; /* debugging paranoia */
730 ipath_free_pddata(dd, pd);
731 }
732 kfree(tmp);
733 }
734
ipath_remove_one(struct pci_dev * pdev)735 static void ipath_remove_one(struct pci_dev *pdev)
736 {
737 struct ipath_devdata *dd = pci_get_drvdata(pdev);
738
739 ipath_cdbg(VERBOSE, "removing, pdev=%p, dd=%p\n", pdev, dd);
740
741 /*
742 * disable the IB link early, to be sure no new packets arrive, which
743 * complicates the shutdown process
744 */
745 ipath_shutdown_device(dd);
746
747 flush_workqueue(ib_wq);
748
749 if (dd->verbs_dev)
750 ipath_unregister_ib_device(dd->verbs_dev);
751
752 ipath_diag_remove(dd);
753 ipath_user_remove(dd);
754 ipathfs_remove_device(dd);
755 ipath_device_remove_group(&pdev->dev, dd);
756
757 ipath_cdbg(VERBOSE, "Releasing pci memory regions, dd %p, "
758 "unit %u\n", dd, (u32) dd->ipath_unit);
759
760 cleanup_device(dd);
761
762 /*
763 * turn off rcv, send, and interrupts for all ports, all drivers
764 * should also hard reset the chip here?
765 * free up port 0 (kernel) rcvhdr, egr bufs, and eventually tid bufs
766 * for all versions of the driver, if they were allocated
767 */
768 if (dd->ipath_irq) {
769 ipath_cdbg(VERBOSE, "unit %u free irq %d\n",
770 dd->ipath_unit, dd->ipath_irq);
771 dd->ipath_f_free_irq(dd);
772 } else
773 ipath_dbg("irq is 0, not doing free_irq "
774 "for unit %u\n", dd->ipath_unit);
775 /*
776 * we check for NULL here, because it's outside
777 * the kregbase check, and we need to call it
778 * after the free_irq. Thus it's possible that
779 * the function pointers were never initialized.
780 */
781 if (dd->ipath_f_cleanup)
782 /* clean up chip-specific stuff */
783 dd->ipath_f_cleanup(dd);
784
785 ipath_cdbg(VERBOSE, "Unmapping kregbase %p\n", dd->ipath_kregbase);
786 iounmap((volatile void __iomem *) dd->ipath_kregbase);
787 pci_release_regions(pdev);
788 ipath_cdbg(VERBOSE, "calling pci_disable_device\n");
789 pci_disable_device(pdev);
790
791 ipath_free_devdata(pdev, dd);
792 }
793
794 /* general driver use */
795 DEFINE_MUTEX(ipath_mutex);
796
797 static DEFINE_SPINLOCK(ipath_pioavail_lock);
798
799 /**
800 * ipath_disarm_piobufs - cancel a range of PIO buffers
801 * @dd: the infinipath device
802 * @first: the first PIO buffer to cancel
803 * @cnt: the number of PIO buffers to cancel
804 *
805 * cancel a range of PIO buffers, used when they might be armed, but
806 * not triggered. Used at init to ensure buffer state, and also user
807 * process close, in case it died while writing to a PIO buffer
808 * Also after errors.
809 */
ipath_disarm_piobufs(struct ipath_devdata * dd,unsigned first,unsigned cnt)810 void ipath_disarm_piobufs(struct ipath_devdata *dd, unsigned first,
811 unsigned cnt)
812 {
813 unsigned i, last = first + cnt;
814 unsigned long flags;
815
816 ipath_cdbg(PKT, "disarm %u PIObufs first=%u\n", cnt, first);
817 for (i = first; i < last; i++) {
818 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
819 /*
820 * The disarm-related bits are write-only, so it
821 * is ok to OR them in with our copy of sendctrl
822 * while we hold the lock.
823 */
824 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
825 dd->ipath_sendctrl | INFINIPATH_S_DISARM |
826 (i << INFINIPATH_S_DISARMPIOBUF_SHIFT));
827 /* can't disarm bufs back-to-back per iba7220 spec */
828 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
829 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
830 }
831 /* on some older chips, update may not happen after cancel */
832 ipath_force_pio_avail_update(dd);
833 }
834
835 /**
836 * ipath_wait_linkstate - wait for an IB link state change to occur
837 * @dd: the infinipath device
838 * @state: the state to wait for
839 * @msecs: the number of milliseconds to wait
840 *
841 * wait up to msecs milliseconds for IB link state change to occur for
842 * now, take the easy polling route. Currently used only by
843 * ipath_set_linkstate. Returns 0 if state reached, otherwise
844 * -ETIMEDOUT state can have multiple states set, for any of several
845 * transitions.
846 */
ipath_wait_linkstate(struct ipath_devdata * dd,u32 state,int msecs)847 int ipath_wait_linkstate(struct ipath_devdata *dd, u32 state, int msecs)
848 {
849 dd->ipath_state_wanted = state;
850 wait_event_interruptible_timeout(ipath_state_wait,
851 (dd->ipath_flags & state),
852 msecs_to_jiffies(msecs));
853 dd->ipath_state_wanted = 0;
854
855 if (!(dd->ipath_flags & state)) {
856 u64 val;
857 ipath_cdbg(VERBOSE, "Didn't reach linkstate %s within %u"
858 " ms\n",
859 /* test INIT ahead of DOWN, both can be set */
860 (state & IPATH_LINKINIT) ? "INIT" :
861 ((state & IPATH_LINKDOWN) ? "DOWN" :
862 ((state & IPATH_LINKARMED) ? "ARM" : "ACTIVE")),
863 msecs);
864 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
865 ipath_cdbg(VERBOSE, "ibcc=%llx ibcstatus=%llx (%s)\n",
866 (unsigned long long) ipath_read_kreg64(
867 dd, dd->ipath_kregs->kr_ibcctrl),
868 (unsigned long long) val,
869 ipath_ibcstatus_str[val & dd->ibcs_lts_mask]);
870 }
871 return (dd->ipath_flags & state) ? 0 : -ETIMEDOUT;
872 }
873
decode_sdma_errs(struct ipath_devdata * dd,ipath_err_t err,char * buf,size_t blen)874 static void decode_sdma_errs(struct ipath_devdata *dd, ipath_err_t err,
875 char *buf, size_t blen)
876 {
877 static const struct {
878 ipath_err_t err;
879 const char *msg;
880 } errs[] = {
881 { INFINIPATH_E_SDMAGENMISMATCH, "SDmaGenMismatch" },
882 { INFINIPATH_E_SDMAOUTOFBOUND, "SDmaOutOfBound" },
883 { INFINIPATH_E_SDMATAILOUTOFBOUND, "SDmaTailOutOfBound" },
884 { INFINIPATH_E_SDMABASE, "SDmaBase" },
885 { INFINIPATH_E_SDMA1STDESC, "SDma1stDesc" },
886 { INFINIPATH_E_SDMARPYTAG, "SDmaRpyTag" },
887 { INFINIPATH_E_SDMADWEN, "SDmaDwEn" },
888 { INFINIPATH_E_SDMAMISSINGDW, "SDmaMissingDw" },
889 { INFINIPATH_E_SDMAUNEXPDATA, "SDmaUnexpData" },
890 { INFINIPATH_E_SDMADESCADDRMISALIGN, "SDmaDescAddrMisalign" },
891 { INFINIPATH_E_SENDBUFMISUSE, "SendBufMisuse" },
892 { INFINIPATH_E_SDMADISABLED, "SDmaDisabled" },
893 };
894 int i;
895 int expected;
896 size_t bidx = 0;
897
898 for (i = 0; i < ARRAY_SIZE(errs); i++) {
899 expected = (errs[i].err != INFINIPATH_E_SDMADISABLED) ? 0 :
900 test_bit(IPATH_SDMA_ABORTING, &dd->ipath_sdma_status);
901 if ((err & errs[i].err) && !expected)
902 bidx += snprintf(buf + bidx, blen - bidx,
903 "%s ", errs[i].msg);
904 }
905 }
906
907 /*
908 * Decode the error status into strings, deciding whether to always
909 * print * it or not depending on "normal packet errors" vs everything
910 * else. Return 1 if "real" errors, otherwise 0 if only packet
911 * errors, so caller can decide what to print with the string.
912 */
ipath_decode_err(struct ipath_devdata * dd,char * buf,size_t blen,ipath_err_t err)913 int ipath_decode_err(struct ipath_devdata *dd, char *buf, size_t blen,
914 ipath_err_t err)
915 {
916 int iserr = 1;
917 *buf = '\0';
918 if (err & INFINIPATH_E_PKTERRS) {
919 if (!(err & ~INFINIPATH_E_PKTERRS))
920 iserr = 0; // if only packet errors.
921 if (ipath_debug & __IPATH_ERRPKTDBG) {
922 if (err & INFINIPATH_E_REBP)
923 strlcat(buf, "EBP ", blen);
924 if (err & INFINIPATH_E_RVCRC)
925 strlcat(buf, "VCRC ", blen);
926 if (err & INFINIPATH_E_RICRC) {
927 strlcat(buf, "CRC ", blen);
928 // clear for check below, so only once
929 err &= INFINIPATH_E_RICRC;
930 }
931 if (err & INFINIPATH_E_RSHORTPKTLEN)
932 strlcat(buf, "rshortpktlen ", blen);
933 if (err & INFINIPATH_E_SDROPPEDDATAPKT)
934 strlcat(buf, "sdroppeddatapkt ", blen);
935 if (err & INFINIPATH_E_SPKTLEN)
936 strlcat(buf, "spktlen ", blen);
937 }
938 if ((err & INFINIPATH_E_RICRC) &&
939 !(err&(INFINIPATH_E_RVCRC|INFINIPATH_E_REBP)))
940 strlcat(buf, "CRC ", blen);
941 if (!iserr)
942 goto done;
943 }
944 if (err & INFINIPATH_E_RHDRLEN)
945 strlcat(buf, "rhdrlen ", blen);
946 if (err & INFINIPATH_E_RBADTID)
947 strlcat(buf, "rbadtid ", blen);
948 if (err & INFINIPATH_E_RBADVERSION)
949 strlcat(buf, "rbadversion ", blen);
950 if (err & INFINIPATH_E_RHDR)
951 strlcat(buf, "rhdr ", blen);
952 if (err & INFINIPATH_E_SENDSPECIALTRIGGER)
953 strlcat(buf, "sendspecialtrigger ", blen);
954 if (err & INFINIPATH_E_RLONGPKTLEN)
955 strlcat(buf, "rlongpktlen ", blen);
956 if (err & INFINIPATH_E_RMAXPKTLEN)
957 strlcat(buf, "rmaxpktlen ", blen);
958 if (err & INFINIPATH_E_RMINPKTLEN)
959 strlcat(buf, "rminpktlen ", blen);
960 if (err & INFINIPATH_E_SMINPKTLEN)
961 strlcat(buf, "sminpktlen ", blen);
962 if (err & INFINIPATH_E_RFORMATERR)
963 strlcat(buf, "rformaterr ", blen);
964 if (err & INFINIPATH_E_RUNSUPVL)
965 strlcat(buf, "runsupvl ", blen);
966 if (err & INFINIPATH_E_RUNEXPCHAR)
967 strlcat(buf, "runexpchar ", blen);
968 if (err & INFINIPATH_E_RIBFLOW)
969 strlcat(buf, "ribflow ", blen);
970 if (err & INFINIPATH_E_SUNDERRUN)
971 strlcat(buf, "sunderrun ", blen);
972 if (err & INFINIPATH_E_SPIOARMLAUNCH)
973 strlcat(buf, "spioarmlaunch ", blen);
974 if (err & INFINIPATH_E_SUNEXPERRPKTNUM)
975 strlcat(buf, "sunexperrpktnum ", blen);
976 if (err & INFINIPATH_E_SDROPPEDSMPPKT)
977 strlcat(buf, "sdroppedsmppkt ", blen);
978 if (err & INFINIPATH_E_SMAXPKTLEN)
979 strlcat(buf, "smaxpktlen ", blen);
980 if (err & INFINIPATH_E_SUNSUPVL)
981 strlcat(buf, "sunsupVL ", blen);
982 if (err & INFINIPATH_E_INVALIDADDR)
983 strlcat(buf, "invalidaddr ", blen);
984 if (err & INFINIPATH_E_RRCVEGRFULL)
985 strlcat(buf, "rcvegrfull ", blen);
986 if (err & INFINIPATH_E_RRCVHDRFULL)
987 strlcat(buf, "rcvhdrfull ", blen);
988 if (err & INFINIPATH_E_IBSTATUSCHANGED)
989 strlcat(buf, "ibcstatuschg ", blen);
990 if (err & INFINIPATH_E_RIBLOSTLINK)
991 strlcat(buf, "riblostlink ", blen);
992 if (err & INFINIPATH_E_HARDWARE)
993 strlcat(buf, "hardware ", blen);
994 if (err & INFINIPATH_E_RESET)
995 strlcat(buf, "reset ", blen);
996 if (err & INFINIPATH_E_SDMAERRS)
997 decode_sdma_errs(dd, err, buf, blen);
998 if (err & INFINIPATH_E_INVALIDEEPCMD)
999 strlcat(buf, "invalideepromcmd ", blen);
1000 done:
1001 return iserr;
1002 }
1003
1004 /**
1005 * get_rhf_errstring - decode RHF errors
1006 * @err: the err number
1007 * @msg: the output buffer
1008 * @len: the length of the output buffer
1009 *
1010 * only used one place now, may want more later
1011 */
get_rhf_errstring(u32 err,char * msg,size_t len)1012 static void get_rhf_errstring(u32 err, char *msg, size_t len)
1013 {
1014 /* if no errors, and so don't need to check what's first */
1015 *msg = '\0';
1016
1017 if (err & INFINIPATH_RHF_H_ICRCERR)
1018 strlcat(msg, "icrcerr ", len);
1019 if (err & INFINIPATH_RHF_H_VCRCERR)
1020 strlcat(msg, "vcrcerr ", len);
1021 if (err & INFINIPATH_RHF_H_PARITYERR)
1022 strlcat(msg, "parityerr ", len);
1023 if (err & INFINIPATH_RHF_H_LENERR)
1024 strlcat(msg, "lenerr ", len);
1025 if (err & INFINIPATH_RHF_H_MTUERR)
1026 strlcat(msg, "mtuerr ", len);
1027 if (err & INFINIPATH_RHF_H_IHDRERR)
1028 /* infinipath hdr checksum error */
1029 strlcat(msg, "ipathhdrerr ", len);
1030 if (err & INFINIPATH_RHF_H_TIDERR)
1031 strlcat(msg, "tiderr ", len);
1032 if (err & INFINIPATH_RHF_H_MKERR)
1033 /* bad port, offset, etc. */
1034 strlcat(msg, "invalid ipathhdr ", len);
1035 if (err & INFINIPATH_RHF_H_IBERR)
1036 strlcat(msg, "iberr ", len);
1037 if (err & INFINIPATH_RHF_L_SWA)
1038 strlcat(msg, "swA ", len);
1039 if (err & INFINIPATH_RHF_L_SWB)
1040 strlcat(msg, "swB ", len);
1041 }
1042
1043 /**
1044 * ipath_get_egrbuf - get an eager buffer
1045 * @dd: the infinipath device
1046 * @bufnum: the eager buffer to get
1047 *
1048 * must only be called if ipath_pd[port] is known to be allocated
1049 */
ipath_get_egrbuf(struct ipath_devdata * dd,u32 bufnum)1050 static inline void *ipath_get_egrbuf(struct ipath_devdata *dd, u32 bufnum)
1051 {
1052 return dd->ipath_port0_skbinfo ?
1053 (void *) dd->ipath_port0_skbinfo[bufnum].skb->data : NULL;
1054 }
1055
1056 /**
1057 * ipath_alloc_skb - allocate an skb and buffer with possible constraints
1058 * @dd: the infinipath device
1059 * @gfp_mask: the sk_buff SFP mask
1060 */
ipath_alloc_skb(struct ipath_devdata * dd,gfp_t gfp_mask)1061 struct sk_buff *ipath_alloc_skb(struct ipath_devdata *dd,
1062 gfp_t gfp_mask)
1063 {
1064 struct sk_buff *skb;
1065 u32 len;
1066
1067 /*
1068 * Only fully supported way to handle this is to allocate lots
1069 * extra, align as needed, and then do skb_reserve(). That wastes
1070 * a lot of memory... I'll have to hack this into infinipath_copy
1071 * also.
1072 */
1073
1074 /*
1075 * We need 2 extra bytes for ipath_ether data sent in the
1076 * key header. In order to keep everything dword aligned,
1077 * we'll reserve 4 bytes.
1078 */
1079 len = dd->ipath_ibmaxlen + 4;
1080
1081 if (dd->ipath_flags & IPATH_4BYTE_TID) {
1082 /* We need a 2KB multiple alignment, and there is no way
1083 * to do it except to allocate extra and then skb_reserve
1084 * enough to bring it up to the right alignment.
1085 */
1086 len += 2047;
1087 }
1088
1089 skb = __dev_alloc_skb(len, gfp_mask);
1090 if (!skb) {
1091 ipath_dev_err(dd, "Failed to allocate skbuff, length %u\n",
1092 len);
1093 goto bail;
1094 }
1095
1096 skb_reserve(skb, 4);
1097
1098 if (dd->ipath_flags & IPATH_4BYTE_TID) {
1099 u32 una = (unsigned long)skb->data & 2047;
1100 if (una)
1101 skb_reserve(skb, 2048 - una);
1102 }
1103
1104 bail:
1105 return skb;
1106 }
1107
ipath_rcv_hdrerr(struct ipath_devdata * dd,u32 eflags,u32 l,u32 etail,__le32 * rhf_addr,struct ipath_message_header * hdr)1108 static void ipath_rcv_hdrerr(struct ipath_devdata *dd,
1109 u32 eflags,
1110 u32 l,
1111 u32 etail,
1112 __le32 *rhf_addr,
1113 struct ipath_message_header *hdr)
1114 {
1115 char emsg[128];
1116
1117 get_rhf_errstring(eflags, emsg, sizeof emsg);
1118 ipath_cdbg(PKT, "RHFerrs %x hdrqtail=%x typ=%u "
1119 "tlen=%x opcode=%x egridx=%x: %s\n",
1120 eflags, l,
1121 ipath_hdrget_rcv_type(rhf_addr),
1122 ipath_hdrget_length_in_bytes(rhf_addr),
1123 be32_to_cpu(hdr->bth[0]) >> 24,
1124 etail, emsg);
1125
1126 /* Count local link integrity errors. */
1127 if (eflags & (INFINIPATH_RHF_H_ICRCERR | INFINIPATH_RHF_H_VCRCERR)) {
1128 u8 n = (dd->ipath_ibcctrl >>
1129 INFINIPATH_IBCC_PHYERRTHRESHOLD_SHIFT) &
1130 INFINIPATH_IBCC_PHYERRTHRESHOLD_MASK;
1131
1132 if (++dd->ipath_lli_counter > n) {
1133 dd->ipath_lli_counter = 0;
1134 dd->ipath_lli_errors++;
1135 }
1136 }
1137 }
1138
1139 /*
1140 * ipath_kreceive - receive a packet
1141 * @pd: the infinipath port
1142 *
1143 * called from interrupt handler for errors or receive interrupt
1144 */
ipath_kreceive(struct ipath_portdata * pd)1145 void ipath_kreceive(struct ipath_portdata *pd)
1146 {
1147 struct ipath_devdata *dd = pd->port_dd;
1148 __le32 *rhf_addr;
1149 void *ebuf;
1150 const u32 rsize = dd->ipath_rcvhdrentsize; /* words */
1151 const u32 maxcnt = dd->ipath_rcvhdrcnt * rsize; /* words */
1152 u32 etail = -1, l, hdrqtail;
1153 struct ipath_message_header *hdr;
1154 u32 eflags, i, etype, tlen, pkttot = 0, updegr = 0, reloop = 0;
1155 static u64 totcalls; /* stats, may eventually remove */
1156 int last;
1157
1158 l = pd->port_head;
1159 rhf_addr = (__le32 *) pd->port_rcvhdrq + l + dd->ipath_rhf_offset;
1160 if (dd->ipath_flags & IPATH_NODMA_RTAIL) {
1161 u32 seq = ipath_hdrget_seq(rhf_addr);
1162
1163 if (seq != pd->port_seq_cnt)
1164 goto bail;
1165 hdrqtail = 0;
1166 } else {
1167 hdrqtail = ipath_get_rcvhdrtail(pd);
1168 if (l == hdrqtail)
1169 goto bail;
1170 smp_rmb();
1171 }
1172
1173 reloop:
1174 for (last = 0, i = 1; !last; i += !last) {
1175 hdr = dd->ipath_f_get_msgheader(dd, rhf_addr);
1176 eflags = ipath_hdrget_err_flags(rhf_addr);
1177 etype = ipath_hdrget_rcv_type(rhf_addr);
1178 /* total length */
1179 tlen = ipath_hdrget_length_in_bytes(rhf_addr);
1180 ebuf = NULL;
1181 if ((dd->ipath_flags & IPATH_NODMA_RTAIL) ?
1182 ipath_hdrget_use_egr_buf(rhf_addr) :
1183 (etype != RCVHQ_RCV_TYPE_EXPECTED)) {
1184 /*
1185 * It turns out that the chip uses an eager buffer
1186 * for all non-expected packets, whether it "needs"
1187 * one or not. So always get the index, but don't
1188 * set ebuf (so we try to copy data) unless the
1189 * length requires it.
1190 */
1191 etail = ipath_hdrget_index(rhf_addr);
1192 updegr = 1;
1193 if (tlen > sizeof(*hdr) ||
1194 etype == RCVHQ_RCV_TYPE_NON_KD)
1195 ebuf = ipath_get_egrbuf(dd, etail);
1196 }
1197
1198 /*
1199 * both tiderr and ipathhdrerr are set for all plain IB
1200 * packets; only ipathhdrerr should be set.
1201 */
1202
1203 if (etype != RCVHQ_RCV_TYPE_NON_KD &&
1204 etype != RCVHQ_RCV_TYPE_ERROR &&
1205 ipath_hdrget_ipath_ver(hdr->iph.ver_port_tid_offset) !=
1206 IPS_PROTO_VERSION)
1207 ipath_cdbg(PKT, "Bad InfiniPath protocol version "
1208 "%x\n", etype);
1209
1210 if (unlikely(eflags))
1211 ipath_rcv_hdrerr(dd, eflags, l, etail, rhf_addr, hdr);
1212 else if (etype == RCVHQ_RCV_TYPE_NON_KD) {
1213 ipath_ib_rcv(dd->verbs_dev, (u32 *)hdr, ebuf, tlen);
1214 if (dd->ipath_lli_counter)
1215 dd->ipath_lli_counter--;
1216 } else if (etype == RCVHQ_RCV_TYPE_EAGER) {
1217 u8 opcode = be32_to_cpu(hdr->bth[0]) >> 24;
1218 u32 qp = be32_to_cpu(hdr->bth[1]) & 0xffffff;
1219 ipath_cdbg(PKT, "typ %x, opcode %x (eager, "
1220 "qp=%x), len %x; ignored\n",
1221 etype, opcode, qp, tlen);
1222 }
1223 else if (etype == RCVHQ_RCV_TYPE_EXPECTED)
1224 ipath_dbg("Bug: Expected TID, opcode %x; ignored\n",
1225 be32_to_cpu(hdr->bth[0]) >> 24);
1226 else {
1227 /*
1228 * error packet, type of error unknown.
1229 * Probably type 3, but we don't know, so don't
1230 * even try to print the opcode, etc.
1231 * Usually caused by a "bad packet", that has no
1232 * BTH, when the LRH says it should.
1233 */
1234 ipath_cdbg(ERRPKT, "Error Pkt, but no eflags! egrbuf"
1235 " %x, len %x hdrq+%x rhf: %Lx\n",
1236 etail, tlen, l, (unsigned long long)
1237 le64_to_cpu(*(__le64 *) rhf_addr));
1238 if (ipath_debug & __IPATH_ERRPKTDBG) {
1239 u32 j, *d, dw = rsize-2;
1240 if (rsize > (tlen>>2))
1241 dw = tlen>>2;
1242 d = (u32 *)hdr;
1243 printk(KERN_DEBUG "EPkt rcvhdr(%x dw):\n",
1244 dw);
1245 for (j = 0; j < dw; j++)
1246 printk(KERN_DEBUG "%8x%s", d[j],
1247 (j%8) == 7 ? "\n" : " ");
1248 printk(KERN_DEBUG ".\n");
1249 }
1250 }
1251 l += rsize;
1252 if (l >= maxcnt)
1253 l = 0;
1254 rhf_addr = (__le32 *) pd->port_rcvhdrq +
1255 l + dd->ipath_rhf_offset;
1256 if (dd->ipath_flags & IPATH_NODMA_RTAIL) {
1257 u32 seq = ipath_hdrget_seq(rhf_addr);
1258
1259 if (++pd->port_seq_cnt > 13)
1260 pd->port_seq_cnt = 1;
1261 if (seq != pd->port_seq_cnt)
1262 last = 1;
1263 } else if (l == hdrqtail)
1264 last = 1;
1265 /*
1266 * update head regs on last packet, and every 16 packets.
1267 * Reduce bus traffic, while still trying to prevent
1268 * rcvhdrq overflows, for when the queue is nearly full
1269 */
1270 if (last || !(i & 0xf)) {
1271 u64 lval = l;
1272
1273 /* request IBA6120 and 7220 interrupt only on last */
1274 if (last)
1275 lval |= dd->ipath_rhdrhead_intr_off;
1276 ipath_write_ureg(dd, ur_rcvhdrhead, lval,
1277 pd->port_port);
1278 if (updegr) {
1279 ipath_write_ureg(dd, ur_rcvegrindexhead,
1280 etail, pd->port_port);
1281 updegr = 0;
1282 }
1283 }
1284 }
1285
1286 if (!dd->ipath_rhdrhead_intr_off && !reloop &&
1287 !(dd->ipath_flags & IPATH_NODMA_RTAIL)) {
1288 /* IBA6110 workaround; we can have a race clearing chip
1289 * interrupt with another interrupt about to be delivered,
1290 * and can clear it before it is delivered on the GPIO
1291 * workaround. By doing the extra check here for the
1292 * in-memory tail register updating while we were doing
1293 * earlier packets, we "almost" guarantee we have covered
1294 * that case.
1295 */
1296 u32 hqtail = ipath_get_rcvhdrtail(pd);
1297 if (hqtail != hdrqtail) {
1298 hdrqtail = hqtail;
1299 reloop = 1; /* loop 1 extra time at most */
1300 goto reloop;
1301 }
1302 }
1303
1304 pkttot += i;
1305
1306 pd->port_head = l;
1307
1308 if (pkttot > ipath_stats.sps_maxpkts_call)
1309 ipath_stats.sps_maxpkts_call = pkttot;
1310 ipath_stats.sps_port0pkts += pkttot;
1311 ipath_stats.sps_avgpkts_call =
1312 ipath_stats.sps_port0pkts / ++totcalls;
1313
1314 bail:;
1315 }
1316
1317 /**
1318 * ipath_update_pio_bufs - update shadow copy of the PIO availability map
1319 * @dd: the infinipath device
1320 *
1321 * called whenever our local copy indicates we have run out of send buffers
1322 * NOTE: This can be called from interrupt context by some code
1323 * and from non-interrupt context by ipath_getpiobuf().
1324 */
1325
ipath_update_pio_bufs(struct ipath_devdata * dd)1326 static void ipath_update_pio_bufs(struct ipath_devdata *dd)
1327 {
1328 unsigned long flags;
1329 int i;
1330 const unsigned piobregs = (unsigned)dd->ipath_pioavregs;
1331
1332 /* If the generation (check) bits have changed, then we update the
1333 * busy bit for the corresponding PIO buffer. This algorithm will
1334 * modify positions to the value they already have in some cases
1335 * (i.e., no change), but it's faster than changing only the bits
1336 * that have changed.
1337 *
1338 * We would like to do this atomicly, to avoid spinlocks in the
1339 * critical send path, but that's not really possible, given the
1340 * type of changes, and that this routine could be called on
1341 * multiple cpu's simultaneously, so we lock in this routine only,
1342 * to avoid conflicting updates; all we change is the shadow, and
1343 * it's a single 64 bit memory location, so by definition the update
1344 * is atomic in terms of what other cpu's can see in testing the
1345 * bits. The spin_lock overhead isn't too bad, since it only
1346 * happens when all buffers are in use, so only cpu overhead, not
1347 * latency or bandwidth is affected.
1348 */
1349 if (!dd->ipath_pioavailregs_dma) {
1350 ipath_dbg("Update shadow pioavail, but regs_dma NULL!\n");
1351 return;
1352 }
1353 if (ipath_debug & __IPATH_VERBDBG) {
1354 /* only if packet debug and verbose */
1355 volatile __le64 *dma = dd->ipath_pioavailregs_dma;
1356 unsigned long *shadow = dd->ipath_pioavailshadow;
1357
1358 ipath_cdbg(PKT, "Refill avail, dma0=%llx shad0=%lx, "
1359 "d1=%llx s1=%lx, d2=%llx s2=%lx, d3=%llx "
1360 "s3=%lx\n",
1361 (unsigned long long) le64_to_cpu(dma[0]),
1362 shadow[0],
1363 (unsigned long long) le64_to_cpu(dma[1]),
1364 shadow[1],
1365 (unsigned long long) le64_to_cpu(dma[2]),
1366 shadow[2],
1367 (unsigned long long) le64_to_cpu(dma[3]),
1368 shadow[3]);
1369 if (piobregs > 4)
1370 ipath_cdbg(
1371 PKT, "2nd group, dma4=%llx shad4=%lx, "
1372 "d5=%llx s5=%lx, d6=%llx s6=%lx, "
1373 "d7=%llx s7=%lx\n",
1374 (unsigned long long) le64_to_cpu(dma[4]),
1375 shadow[4],
1376 (unsigned long long) le64_to_cpu(dma[5]),
1377 shadow[5],
1378 (unsigned long long) le64_to_cpu(dma[6]),
1379 shadow[6],
1380 (unsigned long long) le64_to_cpu(dma[7]),
1381 shadow[7]);
1382 }
1383 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1384 for (i = 0; i < piobregs; i++) {
1385 u64 pchbusy, pchg, piov, pnew;
1386 /*
1387 * Chip Errata: bug 6641; even and odd qwords>3 are swapped
1388 */
1389 if (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS))
1390 piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i ^ 1]);
1391 else
1392 piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i]);
1393 pchg = dd->ipath_pioavailkernel[i] &
1394 ~(dd->ipath_pioavailshadow[i] ^ piov);
1395 pchbusy = pchg << INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT;
1396 if (pchg && (pchbusy & dd->ipath_pioavailshadow[i])) {
1397 pnew = dd->ipath_pioavailshadow[i] & ~pchbusy;
1398 pnew |= piov & pchbusy;
1399 dd->ipath_pioavailshadow[i] = pnew;
1400 }
1401 }
1402 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1403 }
1404
1405 /*
1406 * used to force update of pioavailshadow if we can't get a pio buffer.
1407 * Needed primarily due to exitting freeze mode after recovering
1408 * from errors. Done lazily, because it's safer (known to not
1409 * be writing pio buffers).
1410 */
ipath_reset_availshadow(struct ipath_devdata * dd)1411 static void ipath_reset_availshadow(struct ipath_devdata *dd)
1412 {
1413 int i, im;
1414 unsigned long flags;
1415
1416 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1417 for (i = 0; i < dd->ipath_pioavregs; i++) {
1418 u64 val, oldval;
1419 /* deal with 6110 chip bug on high register #s */
1420 im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ?
1421 i ^ 1 : i;
1422 val = le64_to_cpu(dd->ipath_pioavailregs_dma[im]);
1423 /*
1424 * busy out the buffers not in the kernel avail list,
1425 * without changing the generation bits.
1426 */
1427 oldval = dd->ipath_pioavailshadow[i];
1428 dd->ipath_pioavailshadow[i] = val |
1429 ((~dd->ipath_pioavailkernel[i] <<
1430 INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT) &
1431 0xaaaaaaaaaaaaaaaaULL); /* All BUSY bits in qword */
1432 if (oldval != dd->ipath_pioavailshadow[i])
1433 ipath_dbg("shadow[%d] was %Lx, now %lx\n",
1434 i, (unsigned long long) oldval,
1435 dd->ipath_pioavailshadow[i]);
1436 }
1437 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1438 }
1439
1440 /**
1441 * ipath_setrcvhdrsize - set the receive header size
1442 * @dd: the infinipath device
1443 * @rhdrsize: the receive header size
1444 *
1445 * called from user init code, and also layered driver init
1446 */
ipath_setrcvhdrsize(struct ipath_devdata * dd,unsigned rhdrsize)1447 int ipath_setrcvhdrsize(struct ipath_devdata *dd, unsigned rhdrsize)
1448 {
1449 int ret = 0;
1450
1451 if (dd->ipath_flags & IPATH_RCVHDRSZ_SET) {
1452 if (dd->ipath_rcvhdrsize != rhdrsize) {
1453 dev_info(&dd->pcidev->dev,
1454 "Error: can't set protocol header "
1455 "size %u, already %u\n",
1456 rhdrsize, dd->ipath_rcvhdrsize);
1457 ret = -EAGAIN;
1458 } else
1459 ipath_cdbg(VERBOSE, "Reuse same protocol header "
1460 "size %u\n", dd->ipath_rcvhdrsize);
1461 } else if (rhdrsize > (dd->ipath_rcvhdrentsize -
1462 (sizeof(u64) / sizeof(u32)))) {
1463 ipath_dbg("Error: can't set protocol header size %u "
1464 "(> max %u)\n", rhdrsize,
1465 dd->ipath_rcvhdrentsize -
1466 (u32) (sizeof(u64) / sizeof(u32)));
1467 ret = -EOVERFLOW;
1468 } else {
1469 dd->ipath_flags |= IPATH_RCVHDRSZ_SET;
1470 dd->ipath_rcvhdrsize = rhdrsize;
1471 ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvhdrsize,
1472 dd->ipath_rcvhdrsize);
1473 ipath_cdbg(VERBOSE, "Set protocol header size to %u\n",
1474 dd->ipath_rcvhdrsize);
1475 }
1476 return ret;
1477 }
1478
1479 /*
1480 * debugging code and stats updates if no pio buffers available.
1481 */
no_pio_bufs(struct ipath_devdata * dd)1482 static noinline void no_pio_bufs(struct ipath_devdata *dd)
1483 {
1484 unsigned long *shadow = dd->ipath_pioavailshadow;
1485 __le64 *dma = (__le64 *)dd->ipath_pioavailregs_dma;
1486
1487 dd->ipath_upd_pio_shadow = 1;
1488
1489 /*
1490 * not atomic, but if we lose a stat count in a while, that's OK
1491 */
1492 ipath_stats.sps_nopiobufs++;
1493 if (!(++dd->ipath_consec_nopiobuf % 100000)) {
1494 ipath_force_pio_avail_update(dd); /* at start */
1495 ipath_dbg("%u tries no piobufavail ts%lx; dmacopy: "
1496 "%llx %llx %llx %llx\n"
1497 "ipath shadow: %lx %lx %lx %lx\n",
1498 dd->ipath_consec_nopiobuf,
1499 (unsigned long)get_cycles(),
1500 (unsigned long long) le64_to_cpu(dma[0]),
1501 (unsigned long long) le64_to_cpu(dma[1]),
1502 (unsigned long long) le64_to_cpu(dma[2]),
1503 (unsigned long long) le64_to_cpu(dma[3]),
1504 shadow[0], shadow[1], shadow[2], shadow[3]);
1505 /*
1506 * 4 buffers per byte, 4 registers above, cover rest
1507 * below
1508 */
1509 if ((dd->ipath_piobcnt2k + dd->ipath_piobcnt4k) >
1510 (sizeof(shadow[0]) * 4 * 4))
1511 ipath_dbg("2nd group: dmacopy: "
1512 "%llx %llx %llx %llx\n"
1513 "ipath shadow: %lx %lx %lx %lx\n",
1514 (unsigned long long)le64_to_cpu(dma[4]),
1515 (unsigned long long)le64_to_cpu(dma[5]),
1516 (unsigned long long)le64_to_cpu(dma[6]),
1517 (unsigned long long)le64_to_cpu(dma[7]),
1518 shadow[4], shadow[5], shadow[6], shadow[7]);
1519
1520 /* at end, so update likely happened */
1521 ipath_reset_availshadow(dd);
1522 }
1523 }
1524
1525 /*
1526 * common code for normal driver pio buffer allocation, and reserved
1527 * allocation.
1528 *
1529 * do appropriate marking as busy, etc.
1530 * returns buffer number if one found (>=0), negative number is error.
1531 */
ipath_getpiobuf_range(struct ipath_devdata * dd,u32 * pbufnum,u32 first,u32 last,u32 firsti)1532 static u32 __iomem *ipath_getpiobuf_range(struct ipath_devdata *dd,
1533 u32 *pbufnum, u32 first, u32 last, u32 firsti)
1534 {
1535 int i, j, updated = 0;
1536 unsigned piobcnt;
1537 unsigned long flags;
1538 unsigned long *shadow = dd->ipath_pioavailshadow;
1539 u32 __iomem *buf;
1540
1541 piobcnt = last - first;
1542 if (dd->ipath_upd_pio_shadow) {
1543 /*
1544 * Minor optimization. If we had no buffers on last call,
1545 * start out by doing the update; continue and do scan even
1546 * if no buffers were updated, to be paranoid
1547 */
1548 ipath_update_pio_bufs(dd);
1549 updated++;
1550 i = first;
1551 } else
1552 i = firsti;
1553 rescan:
1554 /*
1555 * while test_and_set_bit() is atomic, we do that and then the
1556 * change_bit(), and the pair is not. See if this is the cause
1557 * of the remaining armlaunch errors.
1558 */
1559 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1560 for (j = 0; j < piobcnt; j++, i++) {
1561 if (i >= last)
1562 i = first;
1563 if (__test_and_set_bit((2 * i) + 1, shadow))
1564 continue;
1565 /* flip generation bit */
1566 __change_bit(2 * i, shadow);
1567 break;
1568 }
1569 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1570
1571 if (j == piobcnt) {
1572 if (!updated) {
1573 /*
1574 * first time through; shadow exhausted, but may be
1575 * buffers available, try an update and then rescan.
1576 */
1577 ipath_update_pio_bufs(dd);
1578 updated++;
1579 i = first;
1580 goto rescan;
1581 } else if (updated == 1 && piobcnt <=
1582 ((dd->ipath_sendctrl
1583 >> INFINIPATH_S_UPDTHRESH_SHIFT) &
1584 INFINIPATH_S_UPDTHRESH_MASK)) {
1585 /*
1586 * for chips supporting and using the update
1587 * threshold we need to force an update of the
1588 * in-memory copy if the count is less than the
1589 * thershold, then check one more time.
1590 */
1591 ipath_force_pio_avail_update(dd);
1592 ipath_update_pio_bufs(dd);
1593 updated++;
1594 i = first;
1595 goto rescan;
1596 }
1597
1598 no_pio_bufs(dd);
1599 buf = NULL;
1600 } else {
1601 if (i < dd->ipath_piobcnt2k)
1602 buf = (u32 __iomem *) (dd->ipath_pio2kbase +
1603 i * dd->ipath_palign);
1604 else
1605 buf = (u32 __iomem *)
1606 (dd->ipath_pio4kbase +
1607 (i - dd->ipath_piobcnt2k) * dd->ipath_4kalign);
1608 if (pbufnum)
1609 *pbufnum = i;
1610 }
1611
1612 return buf;
1613 }
1614
1615 /**
1616 * ipath_getpiobuf - find an available pio buffer
1617 * @dd: the infinipath device
1618 * @plen: the size of the PIO buffer needed in 32-bit words
1619 * @pbufnum: the buffer number is placed here
1620 */
ipath_getpiobuf(struct ipath_devdata * dd,u32 plen,u32 * pbufnum)1621 u32 __iomem *ipath_getpiobuf(struct ipath_devdata *dd, u32 plen, u32 *pbufnum)
1622 {
1623 u32 __iomem *buf;
1624 u32 pnum, nbufs;
1625 u32 first, lasti;
1626
1627 if (plen + 1 >= IPATH_SMALLBUF_DWORDS) {
1628 first = dd->ipath_piobcnt2k;
1629 lasti = dd->ipath_lastpioindexl;
1630 } else {
1631 first = 0;
1632 lasti = dd->ipath_lastpioindex;
1633 }
1634 nbufs = dd->ipath_piobcnt2k + dd->ipath_piobcnt4k;
1635 buf = ipath_getpiobuf_range(dd, &pnum, first, nbufs, lasti);
1636
1637 if (buf) {
1638 /*
1639 * Set next starting place. It's just an optimization,
1640 * it doesn't matter who wins on this, so no locking
1641 */
1642 if (plen + 1 >= IPATH_SMALLBUF_DWORDS)
1643 dd->ipath_lastpioindexl = pnum + 1;
1644 else
1645 dd->ipath_lastpioindex = pnum + 1;
1646 if (dd->ipath_upd_pio_shadow)
1647 dd->ipath_upd_pio_shadow = 0;
1648 if (dd->ipath_consec_nopiobuf)
1649 dd->ipath_consec_nopiobuf = 0;
1650 ipath_cdbg(VERBOSE, "Return piobuf%u %uk @ %p\n",
1651 pnum, (pnum < dd->ipath_piobcnt2k) ? 2 : 4, buf);
1652 if (pbufnum)
1653 *pbufnum = pnum;
1654
1655 }
1656 return buf;
1657 }
1658
1659 /**
1660 * ipath_chg_pioavailkernel - change which send buffers are available for kernel
1661 * @dd: the infinipath device
1662 * @start: the starting send buffer number
1663 * @len: the number of send buffers
1664 * @avail: true if the buffers are available for kernel use, false otherwise
1665 */
ipath_chg_pioavailkernel(struct ipath_devdata * dd,unsigned start,unsigned len,int avail)1666 void ipath_chg_pioavailkernel(struct ipath_devdata *dd, unsigned start,
1667 unsigned len, int avail)
1668 {
1669 unsigned long flags;
1670 unsigned end, cnt = 0;
1671
1672 /* There are two bits per send buffer (busy and generation) */
1673 start *= 2;
1674 end = start + len * 2;
1675
1676 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1677 /* Set or clear the busy bit in the shadow. */
1678 while (start < end) {
1679 if (avail) {
1680 unsigned long dma;
1681 int i, im;
1682 /*
1683 * the BUSY bit will never be set, because we disarm
1684 * the user buffers before we hand them back to the
1685 * kernel. We do have to make sure the generation
1686 * bit is set correctly in shadow, since it could
1687 * have changed many times while allocated to user.
1688 * We can't use the bitmap functions on the full
1689 * dma array because it is always little-endian, so
1690 * we have to flip to host-order first.
1691 * BITS_PER_LONG is slightly wrong, since it's
1692 * always 64 bits per register in chip...
1693 * We only work on 64 bit kernels, so that's OK.
1694 */
1695 /* deal with 6110 chip bug on high register #s */
1696 i = start / BITS_PER_LONG;
1697 im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ?
1698 i ^ 1 : i;
1699 __clear_bit(INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT
1700 + start, dd->ipath_pioavailshadow);
1701 dma = (unsigned long) le64_to_cpu(
1702 dd->ipath_pioavailregs_dma[im]);
1703 if (test_bit((INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
1704 + start) % BITS_PER_LONG, &dma))
1705 __set_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
1706 + start, dd->ipath_pioavailshadow);
1707 else
1708 __clear_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
1709 + start, dd->ipath_pioavailshadow);
1710 __set_bit(start, dd->ipath_pioavailkernel);
1711 } else {
1712 __set_bit(start + INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT,
1713 dd->ipath_pioavailshadow);
1714 __clear_bit(start, dd->ipath_pioavailkernel);
1715 }
1716 start += 2;
1717 }
1718
1719 if (dd->ipath_pioupd_thresh) {
1720 end = 2 * (dd->ipath_piobcnt2k + dd->ipath_piobcnt4k);
1721 cnt = bitmap_weight(dd->ipath_pioavailkernel, end);
1722 }
1723 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1724
1725 /*
1726 * When moving buffers from kernel to user, if number assigned to
1727 * the user is less than the pio update threshold, and threshold
1728 * is supported (cnt was computed > 0), drop the update threshold
1729 * so we update at least once per allocated number of buffers.
1730 * In any case, if the kernel buffers are less than the threshold,
1731 * drop the threshold. We don't bother increasing it, having once
1732 * decreased it, since it would typically just cycle back and forth.
1733 * If we don't decrease below buffers in use, we can wait a long
1734 * time for an update, until some other context uses PIO buffers.
1735 */
1736 if (!avail && len < cnt)
1737 cnt = len;
1738 if (cnt < dd->ipath_pioupd_thresh) {
1739 dd->ipath_pioupd_thresh = cnt;
1740 ipath_dbg("Decreased pio update threshold to %u\n",
1741 dd->ipath_pioupd_thresh);
1742 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1743 dd->ipath_sendctrl &= ~(INFINIPATH_S_UPDTHRESH_MASK
1744 << INFINIPATH_S_UPDTHRESH_SHIFT);
1745 dd->ipath_sendctrl |= dd->ipath_pioupd_thresh
1746 << INFINIPATH_S_UPDTHRESH_SHIFT;
1747 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1748 dd->ipath_sendctrl);
1749 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1750 }
1751 }
1752
1753 /**
1754 * ipath_create_rcvhdrq - create a receive header queue
1755 * @dd: the infinipath device
1756 * @pd: the port data
1757 *
1758 * this must be contiguous memory (from an i/o perspective), and must be
1759 * DMA'able (which means for some systems, it will go through an IOMMU,
1760 * or be forced into a low address range).
1761 */
ipath_create_rcvhdrq(struct ipath_devdata * dd,struct ipath_portdata * pd)1762 int ipath_create_rcvhdrq(struct ipath_devdata *dd,
1763 struct ipath_portdata *pd)
1764 {
1765 int ret = 0;
1766
1767 if (!pd->port_rcvhdrq) {
1768 dma_addr_t phys_hdrqtail;
1769 gfp_t gfp_flags = GFP_USER | __GFP_COMP;
1770 int amt = ALIGN(dd->ipath_rcvhdrcnt * dd->ipath_rcvhdrentsize *
1771 sizeof(u32), PAGE_SIZE);
1772
1773 pd->port_rcvhdrq = dma_alloc_coherent(
1774 &dd->pcidev->dev, amt, &pd->port_rcvhdrq_phys,
1775 gfp_flags);
1776
1777 if (!pd->port_rcvhdrq) {
1778 ipath_dev_err(dd, "attempt to allocate %d bytes "
1779 "for port %u rcvhdrq failed\n",
1780 amt, pd->port_port);
1781 ret = -ENOMEM;
1782 goto bail;
1783 }
1784
1785 if (!(dd->ipath_flags & IPATH_NODMA_RTAIL)) {
1786 pd->port_rcvhdrtail_kvaddr = dma_alloc_coherent(
1787 &dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
1788 GFP_KERNEL);
1789 if (!pd->port_rcvhdrtail_kvaddr) {
1790 ipath_dev_err(dd, "attempt to allocate 1 page "
1791 "for port %u rcvhdrqtailaddr "
1792 "failed\n", pd->port_port);
1793 ret = -ENOMEM;
1794 dma_free_coherent(&dd->pcidev->dev, amt,
1795 pd->port_rcvhdrq,
1796 pd->port_rcvhdrq_phys);
1797 pd->port_rcvhdrq = NULL;
1798 goto bail;
1799 }
1800 pd->port_rcvhdrqtailaddr_phys = phys_hdrqtail;
1801 ipath_cdbg(VERBOSE, "port %d hdrtailaddr, %llx "
1802 "physical\n", pd->port_port,
1803 (unsigned long long) phys_hdrqtail);
1804 }
1805
1806 pd->port_rcvhdrq_size = amt;
1807
1808 ipath_cdbg(VERBOSE, "%d pages at %p (phys %lx) size=%lu "
1809 "for port %u rcvhdr Q\n",
1810 amt >> PAGE_SHIFT, pd->port_rcvhdrq,
1811 (unsigned long) pd->port_rcvhdrq_phys,
1812 (unsigned long) pd->port_rcvhdrq_size,
1813 pd->port_port);
1814 }
1815 else
1816 ipath_cdbg(VERBOSE, "reuse port %d rcvhdrq @%p %llx phys; "
1817 "hdrtailaddr@%p %llx physical\n",
1818 pd->port_port, pd->port_rcvhdrq,
1819 (unsigned long long) pd->port_rcvhdrq_phys,
1820 pd->port_rcvhdrtail_kvaddr, (unsigned long long)
1821 pd->port_rcvhdrqtailaddr_phys);
1822
1823 /* clear for security and sanity on each use */
1824 memset(pd->port_rcvhdrq, 0, pd->port_rcvhdrq_size);
1825 if (pd->port_rcvhdrtail_kvaddr)
1826 memset(pd->port_rcvhdrtail_kvaddr, 0, PAGE_SIZE);
1827
1828 /*
1829 * tell chip each time we init it, even if we are re-using previous
1830 * memory (we zero the register at process close)
1831 */
1832 ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdrtailaddr,
1833 pd->port_port, pd->port_rcvhdrqtailaddr_phys);
1834 ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdraddr,
1835 pd->port_port, pd->port_rcvhdrq_phys);
1836
1837 bail:
1838 return ret;
1839 }
1840
1841
1842 /*
1843 * Flush all sends that might be in the ready to send state, as well as any
1844 * that are in the process of being sent. Used whenever we need to be
1845 * sure the send side is idle. Cleans up all buffer state by canceling
1846 * all pio buffers, and issuing an abort, which cleans up anything in the
1847 * launch fifo. The cancel is superfluous on some chip versions, but
1848 * it's safer to always do it.
1849 * PIOAvail bits are updated by the chip as if normal send had happened.
1850 */
ipath_cancel_sends(struct ipath_devdata * dd,int restore_sendctrl)1851 void ipath_cancel_sends(struct ipath_devdata *dd, int restore_sendctrl)
1852 {
1853 unsigned long flags;
1854
1855 if (dd->ipath_flags & IPATH_IB_AUTONEG_INPROG) {
1856 ipath_cdbg(VERBOSE, "Ignore while in autonegotiation\n");
1857 goto bail;
1858 }
1859 /*
1860 * If we have SDMA, and it's not disabled, we have to kick off the
1861 * abort state machine, provided we aren't already aborting.
1862 * If we are in the process of aborting SDMA (!DISABLED, but ABORTING),
1863 * we skip the rest of this routine. It is already "in progress"
1864 */
1865 if (dd->ipath_flags & IPATH_HAS_SEND_DMA) {
1866 int skip_cancel;
1867 unsigned long *statp = &dd->ipath_sdma_status;
1868
1869 spin_lock_irqsave(&dd->ipath_sdma_lock, flags);
1870 skip_cancel =
1871 test_and_set_bit(IPATH_SDMA_ABORTING, statp)
1872 && !test_bit(IPATH_SDMA_DISABLED, statp);
1873 spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags);
1874 if (skip_cancel)
1875 goto bail;
1876 }
1877
1878 ipath_dbg("Cancelling all in-progress send buffers\n");
1879
1880 /* skip armlaunch errs for a while */
1881 dd->ipath_lastcancel = jiffies + HZ / 2;
1882
1883 /*
1884 * The abort bit is auto-clearing. We also don't want pioavail
1885 * update happening during this, and we don't want any other
1886 * sends going out, so turn those off for the duration. We read
1887 * the scratch register to be sure that cancels and the abort
1888 * have taken effect in the chip. Otherwise two parts are same
1889 * as ipath_force_pio_avail_update()
1890 */
1891 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1892 dd->ipath_sendctrl &= ~(INFINIPATH_S_PIOBUFAVAILUPD
1893 | INFINIPATH_S_PIOENABLE);
1894 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1895 dd->ipath_sendctrl | INFINIPATH_S_ABORT);
1896 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1897 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1898
1899 /* disarm all send buffers */
1900 ipath_disarm_piobufs(dd, 0,
1901 dd->ipath_piobcnt2k + dd->ipath_piobcnt4k);
1902
1903 if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
1904 set_bit(IPATH_SDMA_DISARMED, &dd->ipath_sdma_status);
1905
1906 if (restore_sendctrl) {
1907 /* else done by caller later if needed */
1908 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1909 dd->ipath_sendctrl |= INFINIPATH_S_PIOBUFAVAILUPD |
1910 INFINIPATH_S_PIOENABLE;
1911 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1912 dd->ipath_sendctrl);
1913 /* and again, be sure all have hit the chip */
1914 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1915 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1916 }
1917
1918 if ((dd->ipath_flags & IPATH_HAS_SEND_DMA) &&
1919 !test_bit(IPATH_SDMA_DISABLED, &dd->ipath_sdma_status) &&
1920 test_bit(IPATH_SDMA_RUNNING, &dd->ipath_sdma_status)) {
1921 spin_lock_irqsave(&dd->ipath_sdma_lock, flags);
1922 /* only wait so long for intr */
1923 dd->ipath_sdma_abort_intr_timeout = jiffies + HZ;
1924 dd->ipath_sdma_reset_wait = 200;
1925 if (!test_bit(IPATH_SDMA_SHUTDOWN, &dd->ipath_sdma_status))
1926 tasklet_hi_schedule(&dd->ipath_sdma_abort_task);
1927 spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags);
1928 }
1929 bail:;
1930 }
1931
1932 /*
1933 * Force an update of in-memory copy of the pioavail registers, when
1934 * needed for any of a variety of reasons. We read the scratch register
1935 * to make it highly likely that the update will have happened by the
1936 * time we return. If already off (as in cancel_sends above), this
1937 * routine is a nop, on the assumption that the caller will "do the
1938 * right thing".
1939 */
ipath_force_pio_avail_update(struct ipath_devdata * dd)1940 void ipath_force_pio_avail_update(struct ipath_devdata *dd)
1941 {
1942 unsigned long flags;
1943
1944 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1945 if (dd->ipath_sendctrl & INFINIPATH_S_PIOBUFAVAILUPD) {
1946 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1947 dd->ipath_sendctrl & ~INFINIPATH_S_PIOBUFAVAILUPD);
1948 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1949 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1950 dd->ipath_sendctrl);
1951 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1952 }
1953 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1954 }
1955
ipath_set_ib_lstate(struct ipath_devdata * dd,int linkcmd,int linitcmd)1956 static void ipath_set_ib_lstate(struct ipath_devdata *dd, int linkcmd,
1957 int linitcmd)
1958 {
1959 u64 mod_wd;
1960 static const char *what[4] = {
1961 [0] = "NOP",
1962 [INFINIPATH_IBCC_LINKCMD_DOWN] = "DOWN",
1963 [INFINIPATH_IBCC_LINKCMD_ARMED] = "ARMED",
1964 [INFINIPATH_IBCC_LINKCMD_ACTIVE] = "ACTIVE"
1965 };
1966
1967 if (linitcmd == INFINIPATH_IBCC_LINKINITCMD_DISABLE) {
1968 /*
1969 * If we are told to disable, note that so link-recovery
1970 * code does not attempt to bring us back up.
1971 */
1972 preempt_disable();
1973 dd->ipath_flags |= IPATH_IB_LINK_DISABLED;
1974 preempt_enable();
1975 } else if (linitcmd) {
1976 /*
1977 * Any other linkinitcmd will lead to LINKDOWN and then
1978 * to INIT (if all is well), so clear flag to let
1979 * link-recovery code attempt to bring us back up.
1980 */
1981 preempt_disable();
1982 dd->ipath_flags &= ~IPATH_IB_LINK_DISABLED;
1983 preempt_enable();
1984 }
1985
1986 mod_wd = (linkcmd << dd->ibcc_lc_shift) |
1987 (linitcmd << INFINIPATH_IBCC_LINKINITCMD_SHIFT);
1988 ipath_cdbg(VERBOSE,
1989 "Moving unit %u to %s (initcmd=0x%x), current ltstate is %s\n",
1990 dd->ipath_unit, what[linkcmd], linitcmd,
1991 ipath_ibcstatus_str[ipath_ib_linktrstate(dd,
1992 ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus))]);
1993
1994 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
1995 dd->ipath_ibcctrl | mod_wd);
1996 /* read from chip so write is flushed */
1997 (void) ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
1998 }
1999
ipath_set_linkstate(struct ipath_devdata * dd,u8 newstate)2000 int ipath_set_linkstate(struct ipath_devdata *dd, u8 newstate)
2001 {
2002 u32 lstate;
2003 int ret;
2004
2005 switch (newstate) {
2006 case IPATH_IB_LINKDOWN_ONLY:
2007 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN, 0);
2008 /* don't wait */
2009 ret = 0;
2010 goto bail;
2011
2012 case IPATH_IB_LINKDOWN:
2013 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
2014 INFINIPATH_IBCC_LINKINITCMD_POLL);
2015 /* don't wait */
2016 ret = 0;
2017 goto bail;
2018
2019 case IPATH_IB_LINKDOWN_SLEEP:
2020 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
2021 INFINIPATH_IBCC_LINKINITCMD_SLEEP);
2022 /* don't wait */
2023 ret = 0;
2024 goto bail;
2025
2026 case IPATH_IB_LINKDOWN_DISABLE:
2027 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
2028 INFINIPATH_IBCC_LINKINITCMD_DISABLE);
2029 /* don't wait */
2030 ret = 0;
2031 goto bail;
2032
2033 case IPATH_IB_LINKARM:
2034 if (dd->ipath_flags & IPATH_LINKARMED) {
2035 ret = 0;
2036 goto bail;
2037 }
2038 if (!(dd->ipath_flags &
2039 (IPATH_LINKINIT | IPATH_LINKACTIVE))) {
2040 ret = -EINVAL;
2041 goto bail;
2042 }
2043 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ARMED, 0);
2044
2045 /*
2046 * Since the port can transition to ACTIVE by receiving
2047 * a non VL 15 packet, wait for either state.
2048 */
2049 lstate = IPATH_LINKARMED | IPATH_LINKACTIVE;
2050 break;
2051
2052 case IPATH_IB_LINKACTIVE:
2053 if (dd->ipath_flags & IPATH_LINKACTIVE) {
2054 ret = 0;
2055 goto bail;
2056 }
2057 if (!(dd->ipath_flags & IPATH_LINKARMED)) {
2058 ret = -EINVAL;
2059 goto bail;
2060 }
2061 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ACTIVE, 0);
2062 lstate = IPATH_LINKACTIVE;
2063 break;
2064
2065 case IPATH_IB_LINK_LOOPBACK:
2066 dev_info(&dd->pcidev->dev, "Enabling IB local loopback\n");
2067 dd->ipath_ibcctrl |= INFINIPATH_IBCC_LOOPBACK;
2068 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2069 dd->ipath_ibcctrl);
2070
2071 /* turn heartbeat off, as it causes loopback to fail */
2072 dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2073 IPATH_IB_HRTBT_OFF);
2074 /* don't wait */
2075 ret = 0;
2076 goto bail;
2077
2078 case IPATH_IB_LINK_EXTERNAL:
2079 dev_info(&dd->pcidev->dev,
2080 "Disabling IB local loopback (normal)\n");
2081 dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2082 IPATH_IB_HRTBT_ON);
2083 dd->ipath_ibcctrl &= ~INFINIPATH_IBCC_LOOPBACK;
2084 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2085 dd->ipath_ibcctrl);
2086 /* don't wait */
2087 ret = 0;
2088 goto bail;
2089
2090 /*
2091 * Heartbeat can be explicitly enabled by the user via
2092 * "hrtbt_enable" "file", and if disabled, trying to enable here
2093 * will have no effect. Implicit changes (heartbeat off when
2094 * loopback on, and vice versa) are included to ease testing.
2095 */
2096 case IPATH_IB_LINK_HRTBT:
2097 ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2098 IPATH_IB_HRTBT_ON);
2099 goto bail;
2100
2101 case IPATH_IB_LINK_NO_HRTBT:
2102 ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2103 IPATH_IB_HRTBT_OFF);
2104 goto bail;
2105
2106 default:
2107 ipath_dbg("Invalid linkstate 0x%x requested\n", newstate);
2108 ret = -EINVAL;
2109 goto bail;
2110 }
2111 ret = ipath_wait_linkstate(dd, lstate, 2000);
2112
2113 bail:
2114 return ret;
2115 }
2116
2117 /**
2118 * ipath_set_mtu - set the MTU
2119 * @dd: the infinipath device
2120 * @arg: the new MTU
2121 *
2122 * we can handle "any" incoming size, the issue here is whether we
2123 * need to restrict our outgoing size. For now, we don't do any
2124 * sanity checking on this, and we don't deal with what happens to
2125 * programs that are already running when the size changes.
2126 * NOTE: changing the MTU will usually cause the IBC to go back to
2127 * link INIT state...
2128 */
ipath_set_mtu(struct ipath_devdata * dd,u16 arg)2129 int ipath_set_mtu(struct ipath_devdata *dd, u16 arg)
2130 {
2131 u32 piosize;
2132 int changed = 0;
2133 int ret;
2134
2135 /*
2136 * mtu is IB data payload max. It's the largest power of 2 less
2137 * than piosize (or even larger, since it only really controls the
2138 * largest we can receive; we can send the max of the mtu and
2139 * piosize). We check that it's one of the valid IB sizes.
2140 */
2141 if (arg != 256 && arg != 512 && arg != 1024 && arg != 2048 &&
2142 (arg != 4096 || !ipath_mtu4096)) {
2143 ipath_dbg("Trying to set invalid mtu %u, failing\n", arg);
2144 ret = -EINVAL;
2145 goto bail;
2146 }
2147 if (dd->ipath_ibmtu == arg) {
2148 ret = 0; /* same as current */
2149 goto bail;
2150 }
2151
2152 piosize = dd->ipath_ibmaxlen;
2153 dd->ipath_ibmtu = arg;
2154
2155 if (arg >= (piosize - IPATH_PIO_MAXIBHDR)) {
2156 /* Only if it's not the initial value (or reset to it) */
2157 if (piosize != dd->ipath_init_ibmaxlen) {
2158 if (arg > piosize && arg <= dd->ipath_init_ibmaxlen)
2159 piosize = dd->ipath_init_ibmaxlen;
2160 dd->ipath_ibmaxlen = piosize;
2161 changed = 1;
2162 }
2163 } else if ((arg + IPATH_PIO_MAXIBHDR) != dd->ipath_ibmaxlen) {
2164 piosize = arg + IPATH_PIO_MAXIBHDR;
2165 ipath_cdbg(VERBOSE, "ibmaxlen was 0x%x, setting to 0x%x "
2166 "(mtu 0x%x)\n", dd->ipath_ibmaxlen, piosize,
2167 arg);
2168 dd->ipath_ibmaxlen = piosize;
2169 changed = 1;
2170 }
2171
2172 if (changed) {
2173 u64 ibc = dd->ipath_ibcctrl, ibdw;
2174 /*
2175 * update our housekeeping variables, and set IBC max
2176 * size, same as init code; max IBC is max we allow in
2177 * buffer, less the qword pbc, plus 1 for ICRC, in dwords
2178 */
2179 dd->ipath_ibmaxlen = piosize - 2 * sizeof(u32);
2180 ibdw = (dd->ipath_ibmaxlen >> 2) + 1;
2181 ibc &= ~(INFINIPATH_IBCC_MAXPKTLEN_MASK <<
2182 dd->ibcc_mpl_shift);
2183 ibc |= ibdw << dd->ibcc_mpl_shift;
2184 dd->ipath_ibcctrl = ibc;
2185 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2186 dd->ipath_ibcctrl);
2187 dd->ipath_f_tidtemplate(dd);
2188 }
2189
2190 ret = 0;
2191
2192 bail:
2193 return ret;
2194 }
2195
ipath_set_lid(struct ipath_devdata * dd,u32 lid,u8 lmc)2196 int ipath_set_lid(struct ipath_devdata *dd, u32 lid, u8 lmc)
2197 {
2198 dd->ipath_lid = lid;
2199 dd->ipath_lmc = lmc;
2200
2201 dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_LIDLMC, lid |
2202 (~((1U << lmc) - 1)) << 16);
2203
2204 dev_info(&dd->pcidev->dev, "We got a lid: 0x%x\n", lid);
2205
2206 return 0;
2207 }
2208
2209
2210 /**
2211 * ipath_write_kreg_port - write a device's per-port 64-bit kernel register
2212 * @dd: the infinipath device
2213 * @regno: the register number to write
2214 * @port: the port containing the register
2215 * @value: the value to write
2216 *
2217 * Registers that vary with the chip implementation constants (port)
2218 * use this routine.
2219 */
ipath_write_kreg_port(const struct ipath_devdata * dd,ipath_kreg regno,unsigned port,u64 value)2220 void ipath_write_kreg_port(const struct ipath_devdata *dd, ipath_kreg regno,
2221 unsigned port, u64 value)
2222 {
2223 u16 where;
2224
2225 if (port < dd->ipath_portcnt &&
2226 (regno == dd->ipath_kregs->kr_rcvhdraddr ||
2227 regno == dd->ipath_kregs->kr_rcvhdrtailaddr))
2228 where = regno + port;
2229 else
2230 where = -1;
2231
2232 ipath_write_kreg(dd, where, value);
2233 }
2234
2235 /*
2236 * Following deal with the "obviously simple" task of overriding the state
2237 * of the LEDS, which normally indicate link physical and logical status.
2238 * The complications arise in dealing with different hardware mappings
2239 * and the board-dependent routine being called from interrupts.
2240 * and then there's the requirement to _flash_ them.
2241 */
2242 #define LED_OVER_FREQ_SHIFT 8
2243 #define LED_OVER_FREQ_MASK (0xFF<<LED_OVER_FREQ_SHIFT)
2244 /* Below is "non-zero" to force override, but both actual LEDs are off */
2245 #define LED_OVER_BOTH_OFF (8)
2246
ipath_run_led_override(unsigned long opaque)2247 static void ipath_run_led_override(unsigned long opaque)
2248 {
2249 struct ipath_devdata *dd = (struct ipath_devdata *)opaque;
2250 int timeoff;
2251 int pidx;
2252 u64 lstate, ltstate, val;
2253
2254 if (!(dd->ipath_flags & IPATH_INITTED))
2255 return;
2256
2257 pidx = dd->ipath_led_override_phase++ & 1;
2258 dd->ipath_led_override = dd->ipath_led_override_vals[pidx];
2259 timeoff = dd->ipath_led_override_timeoff;
2260
2261 /*
2262 * below potentially restores the LED values per current status,
2263 * should also possibly setup the traffic-blink register,
2264 * but leave that to per-chip functions.
2265 */
2266 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
2267 ltstate = ipath_ib_linktrstate(dd, val);
2268 lstate = ipath_ib_linkstate(dd, val);
2269
2270 dd->ipath_f_setextled(dd, lstate, ltstate);
2271 mod_timer(&dd->ipath_led_override_timer, jiffies + timeoff);
2272 }
2273
ipath_set_led_override(struct ipath_devdata * dd,unsigned int val)2274 void ipath_set_led_override(struct ipath_devdata *dd, unsigned int val)
2275 {
2276 int timeoff, freq;
2277
2278 if (!(dd->ipath_flags & IPATH_INITTED))
2279 return;
2280
2281 /* First check if we are blinking. If not, use 1HZ polling */
2282 timeoff = HZ;
2283 freq = (val & LED_OVER_FREQ_MASK) >> LED_OVER_FREQ_SHIFT;
2284
2285 if (freq) {
2286 /* For blink, set each phase from one nybble of val */
2287 dd->ipath_led_override_vals[0] = val & 0xF;
2288 dd->ipath_led_override_vals[1] = (val >> 4) & 0xF;
2289 timeoff = (HZ << 4)/freq;
2290 } else {
2291 /* Non-blink set both phases the same. */
2292 dd->ipath_led_override_vals[0] = val & 0xF;
2293 dd->ipath_led_override_vals[1] = val & 0xF;
2294 }
2295 dd->ipath_led_override_timeoff = timeoff;
2296
2297 /*
2298 * If the timer has not already been started, do so. Use a "quick"
2299 * timeout so the function will be called soon, to look at our request.
2300 */
2301 if (atomic_inc_return(&dd->ipath_led_override_timer_active) == 1) {
2302 /* Need to start timer */
2303 init_timer(&dd->ipath_led_override_timer);
2304 dd->ipath_led_override_timer.function =
2305 ipath_run_led_override;
2306 dd->ipath_led_override_timer.data = (unsigned long) dd;
2307 dd->ipath_led_override_timer.expires = jiffies + 1;
2308 add_timer(&dd->ipath_led_override_timer);
2309 } else
2310 atomic_dec(&dd->ipath_led_override_timer_active);
2311 }
2312
2313 /**
2314 * ipath_shutdown_device - shut down a device
2315 * @dd: the infinipath device
2316 *
2317 * This is called to make the device quiet when we are about to
2318 * unload the driver, and also when the device is administratively
2319 * disabled. It does not free any data structures.
2320 * Everything it does has to be setup again by ipath_init_chip(dd,1)
2321 */
ipath_shutdown_device(struct ipath_devdata * dd)2322 void ipath_shutdown_device(struct ipath_devdata *dd)
2323 {
2324 unsigned long flags;
2325
2326 ipath_dbg("Shutting down the device\n");
2327
2328 ipath_hol_up(dd); /* make sure user processes aren't suspended */
2329
2330 dd->ipath_flags |= IPATH_LINKUNK;
2331 dd->ipath_flags &= ~(IPATH_INITTED | IPATH_LINKDOWN |
2332 IPATH_LINKINIT | IPATH_LINKARMED |
2333 IPATH_LINKACTIVE);
2334 *dd->ipath_statusp &= ~(IPATH_STATUS_IB_CONF |
2335 IPATH_STATUS_IB_READY);
2336
2337 /* mask interrupts, but not errors */
2338 ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL);
2339
2340 dd->ipath_rcvctrl = 0;
2341 ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl,
2342 dd->ipath_rcvctrl);
2343
2344 if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
2345 teardown_sdma(dd);
2346
2347 /*
2348 * gracefully stop all sends allowing any in progress to trickle out
2349 * first.
2350 */
2351 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
2352 dd->ipath_sendctrl = 0;
2353 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, dd->ipath_sendctrl);
2354 /* flush it */
2355 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
2356 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
2357
2358 /*
2359 * enough for anything that's going to trickle out to have actually
2360 * done so.
2361 */
2362 udelay(5);
2363
2364 dd->ipath_f_setextled(dd, 0, 0); /* make sure LEDs are off */
2365
2366 ipath_set_ib_lstate(dd, 0, INFINIPATH_IBCC_LINKINITCMD_DISABLE);
2367 ipath_cancel_sends(dd, 0);
2368
2369 /*
2370 * we are shutting down, so tell components that care. We don't do
2371 * this on just a link state change, much like ethernet, a cable
2372 * unplug, etc. doesn't change driver state
2373 */
2374 signal_ib_event(dd, IB_EVENT_PORT_ERR);
2375
2376 /* disable IBC */
2377 dd->ipath_control &= ~INFINIPATH_C_LINKENABLE;
2378 ipath_write_kreg(dd, dd->ipath_kregs->kr_control,
2379 dd->ipath_control | INFINIPATH_C_FREEZEMODE);
2380
2381 /*
2382 * clear SerdesEnable and turn the leds off; do this here because
2383 * we are unloading, so don't count on interrupts to move along
2384 * Turn the LEDs off explicitly for the same reason.
2385 */
2386 dd->ipath_f_quiet_serdes(dd);
2387
2388 /* stop all the timers that might still be running */
2389 del_timer_sync(&dd->ipath_hol_timer);
2390 if (dd->ipath_stats_timer_active) {
2391 del_timer_sync(&dd->ipath_stats_timer);
2392 dd->ipath_stats_timer_active = 0;
2393 }
2394 if (dd->ipath_intrchk_timer.data) {
2395 del_timer_sync(&dd->ipath_intrchk_timer);
2396 dd->ipath_intrchk_timer.data = 0;
2397 }
2398 if (atomic_read(&dd->ipath_led_override_timer_active)) {
2399 del_timer_sync(&dd->ipath_led_override_timer);
2400 atomic_set(&dd->ipath_led_override_timer_active, 0);
2401 }
2402
2403 /*
2404 * clear all interrupts and errors, so that the next time the driver
2405 * is loaded or device is enabled, we know that whatever is set
2406 * happened while we were unloaded
2407 */
2408 ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear,
2409 ~0ULL & ~INFINIPATH_HWE_MEMBISTFAILED);
2410 ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear, -1LL);
2411 ipath_write_kreg(dd, dd->ipath_kregs->kr_intclear, -1LL);
2412
2413 ipath_cdbg(VERBOSE, "Flush time and errors to EEPROM\n");
2414 ipath_update_eeprom_log(dd);
2415 }
2416
2417 /**
2418 * ipath_free_pddata - free a port's allocated data
2419 * @dd: the infinipath device
2420 * @pd: the portdata structure
2421 *
2422 * free up any allocated data for a port
2423 * This should not touch anything that would affect a simultaneous
2424 * re-allocation of port data, because it is called after ipath_mutex
2425 * is released (and can be called from reinit as well).
2426 * It should never change any chip state, or global driver state.
2427 * (The only exception to global state is freeing the port0 port0_skbs.)
2428 */
ipath_free_pddata(struct ipath_devdata * dd,struct ipath_portdata * pd)2429 void ipath_free_pddata(struct ipath_devdata *dd, struct ipath_portdata *pd)
2430 {
2431 if (!pd)
2432 return;
2433
2434 if (pd->port_rcvhdrq) {
2435 ipath_cdbg(VERBOSE, "free closed port %d rcvhdrq @ %p "
2436 "(size=%lu)\n", pd->port_port, pd->port_rcvhdrq,
2437 (unsigned long) pd->port_rcvhdrq_size);
2438 dma_free_coherent(&dd->pcidev->dev, pd->port_rcvhdrq_size,
2439 pd->port_rcvhdrq, pd->port_rcvhdrq_phys);
2440 pd->port_rcvhdrq = NULL;
2441 if (pd->port_rcvhdrtail_kvaddr) {
2442 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
2443 pd->port_rcvhdrtail_kvaddr,
2444 pd->port_rcvhdrqtailaddr_phys);
2445 pd->port_rcvhdrtail_kvaddr = NULL;
2446 }
2447 }
2448 if (pd->port_port && pd->port_rcvegrbuf) {
2449 unsigned e;
2450
2451 for (e = 0; e < pd->port_rcvegrbuf_chunks; e++) {
2452 void *base = pd->port_rcvegrbuf[e];
2453 size_t size = pd->port_rcvegrbuf_size;
2454
2455 ipath_cdbg(VERBOSE, "egrbuf free(%p, %lu), "
2456 "chunk %u/%u\n", base,
2457 (unsigned long) size,
2458 e, pd->port_rcvegrbuf_chunks);
2459 dma_free_coherent(&dd->pcidev->dev, size,
2460 base, pd->port_rcvegrbuf_phys[e]);
2461 }
2462 kfree(pd->port_rcvegrbuf);
2463 pd->port_rcvegrbuf = NULL;
2464 kfree(pd->port_rcvegrbuf_phys);
2465 pd->port_rcvegrbuf_phys = NULL;
2466 pd->port_rcvegrbuf_chunks = 0;
2467 } else if (pd->port_port == 0 && dd->ipath_port0_skbinfo) {
2468 unsigned e;
2469 struct ipath_skbinfo *skbinfo = dd->ipath_port0_skbinfo;
2470
2471 dd->ipath_port0_skbinfo = NULL;
2472 ipath_cdbg(VERBOSE, "free closed port %d "
2473 "ipath_port0_skbinfo @ %p\n", pd->port_port,
2474 skbinfo);
2475 for (e = 0; e < dd->ipath_p0_rcvegrcnt; e++)
2476 if (skbinfo[e].skb) {
2477 pci_unmap_single(dd->pcidev, skbinfo[e].phys,
2478 dd->ipath_ibmaxlen,
2479 PCI_DMA_FROMDEVICE);
2480 dev_kfree_skb(skbinfo[e].skb);
2481 }
2482 vfree(skbinfo);
2483 }
2484 kfree(pd->port_tid_pg_list);
2485 vfree(pd->subport_uregbase);
2486 vfree(pd->subport_rcvegrbuf);
2487 vfree(pd->subport_rcvhdr_base);
2488 kfree(pd);
2489 }
2490
infinipath_init(void)2491 static int __init infinipath_init(void)
2492 {
2493 int ret;
2494
2495 if (ipath_debug & __IPATH_DBG)
2496 printk(KERN_INFO DRIVER_LOAD_MSG "%s", ib_ipath_version);
2497
2498 /*
2499 * These must be called before the driver is registered with
2500 * the PCI subsystem.
2501 */
2502 idr_init(&unit_table);
2503
2504 ret = pci_register_driver(&ipath_driver);
2505 if (ret < 0) {
2506 printk(KERN_ERR IPATH_DRV_NAME
2507 ": Unable to register driver: error %d\n", -ret);
2508 goto bail_unit;
2509 }
2510
2511 ret = ipath_init_ipathfs();
2512 if (ret < 0) {
2513 printk(KERN_ERR IPATH_DRV_NAME ": Unable to create "
2514 "ipathfs: error %d\n", -ret);
2515 goto bail_pci;
2516 }
2517
2518 goto bail;
2519
2520 bail_pci:
2521 pci_unregister_driver(&ipath_driver);
2522
2523 bail_unit:
2524 idr_destroy(&unit_table);
2525
2526 bail:
2527 return ret;
2528 }
2529
infinipath_cleanup(void)2530 static void __exit infinipath_cleanup(void)
2531 {
2532 ipath_exit_ipathfs();
2533
2534 ipath_cdbg(VERBOSE, "Unregistering pci driver\n");
2535 pci_unregister_driver(&ipath_driver);
2536
2537 idr_destroy(&unit_table);
2538 }
2539
2540 /**
2541 * ipath_reset_device - reset the chip if possible
2542 * @unit: the device to reset
2543 *
2544 * Whether or not reset is successful, we attempt to re-initialize the chip
2545 * (that is, much like a driver unload/reload). We clear the INITTED flag
2546 * so that the various entry points will fail until we reinitialize. For
2547 * now, we only allow this if no user ports are open that use chip resources
2548 */
ipath_reset_device(int unit)2549 int ipath_reset_device(int unit)
2550 {
2551 int ret, i;
2552 struct ipath_devdata *dd = ipath_lookup(unit);
2553 unsigned long flags;
2554
2555 if (!dd) {
2556 ret = -ENODEV;
2557 goto bail;
2558 }
2559
2560 if (atomic_read(&dd->ipath_led_override_timer_active)) {
2561 /* Need to stop LED timer, _then_ shut off LEDs */
2562 del_timer_sync(&dd->ipath_led_override_timer);
2563 atomic_set(&dd->ipath_led_override_timer_active, 0);
2564 }
2565
2566 /* Shut off LEDs after we are sure timer is not running */
2567 dd->ipath_led_override = LED_OVER_BOTH_OFF;
2568 dd->ipath_f_setextled(dd, 0, 0);
2569
2570 dev_info(&dd->pcidev->dev, "Reset on unit %u requested\n", unit);
2571
2572 if (!dd->ipath_kregbase || !(dd->ipath_flags & IPATH_PRESENT)) {
2573 dev_info(&dd->pcidev->dev, "Invalid unit number %u or "
2574 "not initialized or not present\n", unit);
2575 ret = -ENXIO;
2576 goto bail;
2577 }
2578
2579 spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
2580 if (dd->ipath_pd)
2581 for (i = 1; i < dd->ipath_cfgports; i++) {
2582 if (!dd->ipath_pd[i] || !dd->ipath_pd[i]->port_cnt)
2583 continue;
2584 spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
2585 ipath_dbg("unit %u port %d is in use "
2586 "(PID %u cmd %s), can't reset\n",
2587 unit, i,
2588 pid_nr(dd->ipath_pd[i]->port_pid),
2589 dd->ipath_pd[i]->port_comm);
2590 ret = -EBUSY;
2591 goto bail;
2592 }
2593 spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
2594
2595 if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
2596 teardown_sdma(dd);
2597
2598 dd->ipath_flags &= ~IPATH_INITTED;
2599 ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL);
2600 ret = dd->ipath_f_reset(dd);
2601 if (ret == 1) {
2602 ipath_dbg("Reinitializing unit %u after reset attempt\n",
2603 unit);
2604 ret = ipath_init_chip(dd, 1);
2605 } else
2606 ret = -EAGAIN;
2607 if (ret)
2608 ipath_dev_err(dd, "Reinitialize unit %u after "
2609 "reset failed with %d\n", unit, ret);
2610 else
2611 dev_info(&dd->pcidev->dev, "Reinitialized unit %u after "
2612 "resetting\n", unit);
2613
2614 bail:
2615 return ret;
2616 }
2617
2618 /*
2619 * send a signal to all the processes that have the driver open
2620 * through the normal interfaces (i.e., everything other than diags
2621 * interface). Returns number of signalled processes.
2622 */
ipath_signal_procs(struct ipath_devdata * dd,int sig)2623 static int ipath_signal_procs(struct ipath_devdata *dd, int sig)
2624 {
2625 int i, sub, any = 0;
2626 struct pid *pid;
2627 unsigned long flags;
2628
2629 if (!dd->ipath_pd)
2630 return 0;
2631
2632 spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
2633 for (i = 1; i < dd->ipath_cfgports; i++) {
2634 if (!dd->ipath_pd[i] || !dd->ipath_pd[i]->port_cnt)
2635 continue;
2636 pid = dd->ipath_pd[i]->port_pid;
2637 if (!pid)
2638 continue;
2639
2640 dev_info(&dd->pcidev->dev, "context %d in use "
2641 "(PID %u), sending signal %d\n",
2642 i, pid_nr(pid), sig);
2643 kill_pid(pid, sig, 1);
2644 any++;
2645 for (sub = 0; sub < INFINIPATH_MAX_SUBPORT; sub++) {
2646 pid = dd->ipath_pd[i]->port_subpid[sub];
2647 if (!pid)
2648 continue;
2649 dev_info(&dd->pcidev->dev, "sub-context "
2650 "%d:%d in use (PID %u), sending "
2651 "signal %d\n", i, sub, pid_nr(pid), sig);
2652 kill_pid(pid, sig, 1);
2653 any++;
2654 }
2655 }
2656 spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
2657 return any;
2658 }
2659
ipath_hol_signal_down(struct ipath_devdata * dd)2660 static void ipath_hol_signal_down(struct ipath_devdata *dd)
2661 {
2662 if (ipath_signal_procs(dd, SIGSTOP))
2663 ipath_dbg("Stopped some processes\n");
2664 ipath_cancel_sends(dd, 1);
2665 }
2666
2667
ipath_hol_signal_up(struct ipath_devdata * dd)2668 static void ipath_hol_signal_up(struct ipath_devdata *dd)
2669 {
2670 if (ipath_signal_procs(dd, SIGCONT))
2671 ipath_dbg("Continued some processes\n");
2672 }
2673
2674 /*
2675 * link is down, stop any users processes, and flush pending sends
2676 * to prevent HoL blocking, then start the HoL timer that
2677 * periodically continues, then stop procs, so they can detect
2678 * link down if they want, and do something about it.
2679 * Timer may already be running, so use mod_timer, not add_timer.
2680 */
ipath_hol_down(struct ipath_devdata * dd)2681 void ipath_hol_down(struct ipath_devdata *dd)
2682 {
2683 dd->ipath_hol_state = IPATH_HOL_DOWN;
2684 ipath_hol_signal_down(dd);
2685 dd->ipath_hol_next = IPATH_HOL_DOWNCONT;
2686 dd->ipath_hol_timer.expires = jiffies +
2687 msecs_to_jiffies(ipath_hol_timeout_ms);
2688 mod_timer(&dd->ipath_hol_timer, dd->ipath_hol_timer.expires);
2689 }
2690
2691 /*
2692 * link is up, continue any user processes, and ensure timer
2693 * is a nop, if running. Let timer keep running, if set; it
2694 * will nop when it sees the link is up
2695 */
ipath_hol_up(struct ipath_devdata * dd)2696 void ipath_hol_up(struct ipath_devdata *dd)
2697 {
2698 ipath_hol_signal_up(dd);
2699 dd->ipath_hol_state = IPATH_HOL_UP;
2700 }
2701
2702 /*
2703 * toggle the running/not running state of user proceses
2704 * to prevent HoL blocking on chip resources, but still allow
2705 * user processes to do link down special case handling.
2706 * Should only be called via the timer
2707 */
ipath_hol_event(unsigned long opaque)2708 void ipath_hol_event(unsigned long opaque)
2709 {
2710 struct ipath_devdata *dd = (struct ipath_devdata *)opaque;
2711
2712 if (dd->ipath_hol_next == IPATH_HOL_DOWNSTOP
2713 && dd->ipath_hol_state != IPATH_HOL_UP) {
2714 dd->ipath_hol_next = IPATH_HOL_DOWNCONT;
2715 ipath_dbg("Stopping processes\n");
2716 ipath_hol_signal_down(dd);
2717 } else { /* may do "extra" if also in ipath_hol_up() */
2718 dd->ipath_hol_next = IPATH_HOL_DOWNSTOP;
2719 ipath_dbg("Continuing processes\n");
2720 ipath_hol_signal_up(dd);
2721 }
2722 if (dd->ipath_hol_state == IPATH_HOL_UP)
2723 ipath_dbg("link's up, don't resched timer\n");
2724 else {
2725 dd->ipath_hol_timer.expires = jiffies +
2726 msecs_to_jiffies(ipath_hol_timeout_ms);
2727 mod_timer(&dd->ipath_hol_timer,
2728 dd->ipath_hol_timer.expires);
2729 }
2730 }
2731
ipath_set_rx_pol_inv(struct ipath_devdata * dd,u8 new_pol_inv)2732 int ipath_set_rx_pol_inv(struct ipath_devdata *dd, u8 new_pol_inv)
2733 {
2734 u64 val;
2735
2736 if (new_pol_inv > INFINIPATH_XGXS_RX_POL_MASK)
2737 return -1;
2738 if (dd->ipath_rx_pol_inv != new_pol_inv) {
2739 dd->ipath_rx_pol_inv = new_pol_inv;
2740 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_xgxsconfig);
2741 val &= ~(INFINIPATH_XGXS_RX_POL_MASK <<
2742 INFINIPATH_XGXS_RX_POL_SHIFT);
2743 val |= ((u64)dd->ipath_rx_pol_inv) <<
2744 INFINIPATH_XGXS_RX_POL_SHIFT;
2745 ipath_write_kreg(dd, dd->ipath_kregs->kr_xgxsconfig, val);
2746 }
2747 return 0;
2748 }
2749
2750 /*
2751 * Disable and enable the armlaunch error. Used for PIO bandwidth testing on
2752 * the 7220, which is count-based, rather than trigger-based. Safe for the
2753 * driver check, since it's at init. Not completely safe when used for
2754 * user-mode checking, since some error checking can be lost, but not
2755 * particularly risky, and only has problematic side-effects in the face of
2756 * very buggy user code. There is no reference counting, but that's also
2757 * fine, given the intended use.
2758 */
ipath_enable_armlaunch(struct ipath_devdata * dd)2759 void ipath_enable_armlaunch(struct ipath_devdata *dd)
2760 {
2761 dd->ipath_lasterror &= ~INFINIPATH_E_SPIOARMLAUNCH;
2762 ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear,
2763 INFINIPATH_E_SPIOARMLAUNCH);
2764 dd->ipath_errormask |= INFINIPATH_E_SPIOARMLAUNCH;
2765 ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask,
2766 dd->ipath_errormask);
2767 }
2768
ipath_disable_armlaunch(struct ipath_devdata * dd)2769 void ipath_disable_armlaunch(struct ipath_devdata *dd)
2770 {
2771 /* so don't re-enable if already set */
2772 dd->ipath_maskederrs &= ~INFINIPATH_E_SPIOARMLAUNCH;
2773 dd->ipath_errormask &= ~INFINIPATH_E_SPIOARMLAUNCH;
2774 ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask,
2775 dd->ipath_errormask);
2776 }
2777
2778 module_init(infinipath_init);
2779 module_exit(infinipath_cleanup);
2780