1 /*
2 * ipmi_msghandler.c
3 *
4 * Incoming and outgoing message routing for an IPMI interface.
5 *
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
8 * source@mvista.com
9 *
10 * Copyright 2002 MontaVista Software Inc.
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
16 *
17 *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49
50 #define PFX "IPMI message handler: "
51
52 #define IPMI_DRIVER_VERSION "39.2"
53
54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf);
58 static void need_waiter(ipmi_smi_t intf);
59
60 static int initialized;
61
62 #ifdef CONFIG_PROC_FS
63 static struct proc_dir_entry *proc_ipmi_root;
64 #endif /* CONFIG_PROC_FS */
65
66 /* Remain in auto-maintenance mode for this amount of time (in ms). */
67 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
68
69 #define MAX_EVENTS_IN_QUEUE 25
70
71 /*
72 * Don't let a message sit in a queue forever, always time it with at lest
73 * the max message timer. This is in milliseconds.
74 */
75 #define MAX_MSG_TIMEOUT 60000
76
77 /* Call every ~1000 ms. */
78 #define IPMI_TIMEOUT_TIME 1000
79
80 /* How many jiffies does it take to get to the timeout time. */
81 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
82
83 /*
84 * Request events from the queue every second (this is the number of
85 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
86 * future, IPMI will add a way to know immediately if an event is in
87 * the queue and this silliness can go away.
88 */
89 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
90
91 /*
92 * The main "user" data structure.
93 */
94 struct ipmi_user {
95 struct list_head link;
96
97 /* Set to false when the user is destroyed. */
98 bool valid;
99
100 struct kref refcount;
101
102 /* The upper layer that handles receive messages. */
103 struct ipmi_user_hndl *handler;
104 void *handler_data;
105
106 /* The interface this user is bound to. */
107 ipmi_smi_t intf;
108
109 /* Does this interface receive IPMI events? */
110 bool gets_events;
111 };
112
113 struct cmd_rcvr {
114 struct list_head link;
115
116 ipmi_user_t user;
117 unsigned char netfn;
118 unsigned char cmd;
119 unsigned int chans;
120
121 /*
122 * This is used to form a linked lised during mass deletion.
123 * Since this is in an RCU list, we cannot use the link above
124 * or change any data until the RCU period completes. So we
125 * use this next variable during mass deletion so we can have
126 * a list and don't have to wait and restart the search on
127 * every individual deletion of a command.
128 */
129 struct cmd_rcvr *next;
130 };
131
132 struct seq_table {
133 unsigned int inuse : 1;
134 unsigned int broadcast : 1;
135
136 unsigned long timeout;
137 unsigned long orig_timeout;
138 unsigned int retries_left;
139
140 /*
141 * To verify on an incoming send message response that this is
142 * the message that the response is for, we keep a sequence id
143 * and increment it every time we send a message.
144 */
145 long seqid;
146
147 /*
148 * This is held so we can properly respond to the message on a
149 * timeout, and it is used to hold the temporary data for
150 * retransmission, too.
151 */
152 struct ipmi_recv_msg *recv_msg;
153 };
154
155 /*
156 * Store the information in a msgid (long) to allow us to find a
157 * sequence table entry from the msgid.
158 */
159 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
160
161 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
162 do { \
163 seq = ((msgid >> 26) & 0x3f); \
164 seqid = (msgid & 0x3fffff); \
165 } while (0)
166
167 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
168
169 struct ipmi_channel {
170 unsigned char medium;
171 unsigned char protocol;
172
173 /*
174 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
175 * but may be changed by the user.
176 */
177 unsigned char address;
178
179 /*
180 * My LUN. This should generally stay the SMS LUN, but just in
181 * case...
182 */
183 unsigned char lun;
184 };
185
186 #ifdef CONFIG_PROC_FS
187 struct ipmi_proc_entry {
188 char *name;
189 struct ipmi_proc_entry *next;
190 };
191 #endif
192
193 struct bmc_device {
194 struct platform_device *dev;
195 struct ipmi_device_id id;
196 unsigned char guid[16];
197 int guid_set;
198
199 struct kref refcount;
200
201 /* bmc device attributes */
202 struct device_attribute device_id_attr;
203 struct device_attribute provides_dev_sdrs_attr;
204 struct device_attribute revision_attr;
205 struct device_attribute firmware_rev_attr;
206 struct device_attribute version_attr;
207 struct device_attribute add_dev_support_attr;
208 struct device_attribute manufacturer_id_attr;
209 struct device_attribute product_id_attr;
210 struct device_attribute guid_attr;
211 struct device_attribute aux_firmware_rev_attr;
212 };
213
214 /*
215 * Various statistics for IPMI, these index stats[] in the ipmi_smi
216 * structure.
217 */
218 enum ipmi_stat_indexes {
219 /* Commands we got from the user that were invalid. */
220 IPMI_STAT_sent_invalid_commands = 0,
221
222 /* Commands we sent to the MC. */
223 IPMI_STAT_sent_local_commands,
224
225 /* Responses from the MC that were delivered to a user. */
226 IPMI_STAT_handled_local_responses,
227
228 /* Responses from the MC that were not delivered to a user. */
229 IPMI_STAT_unhandled_local_responses,
230
231 /* Commands we sent out to the IPMB bus. */
232 IPMI_STAT_sent_ipmb_commands,
233
234 /* Commands sent on the IPMB that had errors on the SEND CMD */
235 IPMI_STAT_sent_ipmb_command_errs,
236
237 /* Each retransmit increments this count. */
238 IPMI_STAT_retransmitted_ipmb_commands,
239
240 /*
241 * When a message times out (runs out of retransmits) this is
242 * incremented.
243 */
244 IPMI_STAT_timed_out_ipmb_commands,
245
246 /*
247 * This is like above, but for broadcasts. Broadcasts are
248 * *not* included in the above count (they are expected to
249 * time out).
250 */
251 IPMI_STAT_timed_out_ipmb_broadcasts,
252
253 /* Responses I have sent to the IPMB bus. */
254 IPMI_STAT_sent_ipmb_responses,
255
256 /* The response was delivered to the user. */
257 IPMI_STAT_handled_ipmb_responses,
258
259 /* The response had invalid data in it. */
260 IPMI_STAT_invalid_ipmb_responses,
261
262 /* The response didn't have anyone waiting for it. */
263 IPMI_STAT_unhandled_ipmb_responses,
264
265 /* Commands we sent out to the IPMB bus. */
266 IPMI_STAT_sent_lan_commands,
267
268 /* Commands sent on the IPMB that had errors on the SEND CMD */
269 IPMI_STAT_sent_lan_command_errs,
270
271 /* Each retransmit increments this count. */
272 IPMI_STAT_retransmitted_lan_commands,
273
274 /*
275 * When a message times out (runs out of retransmits) this is
276 * incremented.
277 */
278 IPMI_STAT_timed_out_lan_commands,
279
280 /* Responses I have sent to the IPMB bus. */
281 IPMI_STAT_sent_lan_responses,
282
283 /* The response was delivered to the user. */
284 IPMI_STAT_handled_lan_responses,
285
286 /* The response had invalid data in it. */
287 IPMI_STAT_invalid_lan_responses,
288
289 /* The response didn't have anyone waiting for it. */
290 IPMI_STAT_unhandled_lan_responses,
291
292 /* The command was delivered to the user. */
293 IPMI_STAT_handled_commands,
294
295 /* The command had invalid data in it. */
296 IPMI_STAT_invalid_commands,
297
298 /* The command didn't have anyone waiting for it. */
299 IPMI_STAT_unhandled_commands,
300
301 /* Invalid data in an event. */
302 IPMI_STAT_invalid_events,
303
304 /* Events that were received with the proper format. */
305 IPMI_STAT_events,
306
307 /* Retransmissions on IPMB that failed. */
308 IPMI_STAT_dropped_rexmit_ipmb_commands,
309
310 /* Retransmissions on LAN that failed. */
311 IPMI_STAT_dropped_rexmit_lan_commands,
312
313 /* This *must* remain last, add new values above this. */
314 IPMI_NUM_STATS
315 };
316
317
318 #define IPMI_IPMB_NUM_SEQ 64
319 #define IPMI_MAX_CHANNELS 16
320 struct ipmi_smi {
321 /* What interface number are we? */
322 int intf_num;
323
324 struct kref refcount;
325
326 /* Used for a list of interfaces. */
327 struct list_head link;
328
329 /*
330 * The list of upper layers that are using me. seq_lock
331 * protects this.
332 */
333 struct list_head users;
334
335 /* Information to supply to users. */
336 unsigned char ipmi_version_major;
337 unsigned char ipmi_version_minor;
338
339 /* Used for wake ups at startup. */
340 wait_queue_head_t waitq;
341
342 struct bmc_device *bmc;
343 char *my_dev_name;
344 char *sysfs_name;
345
346 /*
347 * This is the lower-layer's sender routine. Note that you
348 * must either be holding the ipmi_interfaces_mutex or be in
349 * an umpreemptible region to use this. You must fetch the
350 * value into a local variable and make sure it is not NULL.
351 */
352 struct ipmi_smi_handlers *handlers;
353 void *send_info;
354
355 #ifdef CONFIG_PROC_FS
356 /* A list of proc entries for this interface. */
357 struct mutex proc_entry_lock;
358 struct ipmi_proc_entry *proc_entries;
359 #endif
360
361 /* Driver-model device for the system interface. */
362 struct device *si_dev;
363
364 /*
365 * A table of sequence numbers for this interface. We use the
366 * sequence numbers for IPMB messages that go out of the
367 * interface to match them up with their responses. A routine
368 * is called periodically to time the items in this list.
369 */
370 spinlock_t seq_lock;
371 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
372 int curr_seq;
373
374 /*
375 * Messages queued for delivery. If delivery fails (out of memory
376 * for instance), They will stay in here to be processed later in a
377 * periodic timer interrupt. The tasklet is for handling received
378 * messages directly from the handler.
379 */
380 spinlock_t waiting_msgs_lock;
381 struct list_head waiting_msgs;
382 atomic_t watchdog_pretimeouts_to_deliver;
383 struct tasklet_struct recv_tasklet;
384
385 /*
386 * The list of command receivers that are registered for commands
387 * on this interface.
388 */
389 struct mutex cmd_rcvrs_mutex;
390 struct list_head cmd_rcvrs;
391
392 /*
393 * Events that were queues because no one was there to receive
394 * them.
395 */
396 spinlock_t events_lock; /* For dealing with event stuff. */
397 struct list_head waiting_events;
398 unsigned int waiting_events_count; /* How many events in queue? */
399 char delivering_events;
400 char event_msg_printed;
401 atomic_t event_waiters;
402 unsigned int ticks_to_req_ev;
403 int last_needs_timer;
404
405 /*
406 * The event receiver for my BMC, only really used at panic
407 * shutdown as a place to store this.
408 */
409 unsigned char event_receiver;
410 unsigned char event_receiver_lun;
411 unsigned char local_sel_device;
412 unsigned char local_event_generator;
413
414 /* For handling of maintenance mode. */
415 int maintenance_mode;
416 bool maintenance_mode_enable;
417 int auto_maintenance_timeout;
418 spinlock_t maintenance_mode_lock; /* Used in a timer... */
419
420 /*
421 * A cheap hack, if this is non-null and a message to an
422 * interface comes in with a NULL user, call this routine with
423 * it. Note that the message will still be freed by the
424 * caller. This only works on the system interface.
425 */
426 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
427
428 /*
429 * When we are scanning the channels for an SMI, this will
430 * tell which channel we are scanning.
431 */
432 int curr_channel;
433
434 /* Channel information */
435 struct ipmi_channel channels[IPMI_MAX_CHANNELS];
436
437 /* Proc FS stuff. */
438 struct proc_dir_entry *proc_dir;
439 char proc_dir_name[10];
440
441 atomic_t stats[IPMI_NUM_STATS];
442
443 /*
444 * run_to_completion duplicate of smb_info, smi_info
445 * and ipmi_serial_info structures. Used to decrease numbers of
446 * parameters passed by "low" level IPMI code.
447 */
448 int run_to_completion;
449 };
450 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
451
452 /**
453 * The driver model view of the IPMI messaging driver.
454 */
455 static struct platform_driver ipmidriver = {
456 .driver = {
457 .name = "ipmi",
458 .bus = &platform_bus_type
459 }
460 };
461 static DEFINE_MUTEX(ipmidriver_mutex);
462
463 static LIST_HEAD(ipmi_interfaces);
464 static DEFINE_MUTEX(ipmi_interfaces_mutex);
465
466 /*
467 * List of watchers that want to know when smi's are added and deleted.
468 */
469 static LIST_HEAD(smi_watchers);
470 static DEFINE_MUTEX(smi_watchers_mutex);
471
472 #define ipmi_inc_stat(intf, stat) \
473 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
474 #define ipmi_get_stat(intf, stat) \
475 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
476
is_lan_addr(struct ipmi_addr * addr)477 static int is_lan_addr(struct ipmi_addr *addr)
478 {
479 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
480 }
481
is_ipmb_addr(struct ipmi_addr * addr)482 static int is_ipmb_addr(struct ipmi_addr *addr)
483 {
484 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
485 }
486
is_ipmb_bcast_addr(struct ipmi_addr * addr)487 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
488 {
489 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
490 }
491
free_recv_msg_list(struct list_head * q)492 static void free_recv_msg_list(struct list_head *q)
493 {
494 struct ipmi_recv_msg *msg, *msg2;
495
496 list_for_each_entry_safe(msg, msg2, q, link) {
497 list_del(&msg->link);
498 ipmi_free_recv_msg(msg);
499 }
500 }
501
free_smi_msg_list(struct list_head * q)502 static void free_smi_msg_list(struct list_head *q)
503 {
504 struct ipmi_smi_msg *msg, *msg2;
505
506 list_for_each_entry_safe(msg, msg2, q, link) {
507 list_del(&msg->link);
508 ipmi_free_smi_msg(msg);
509 }
510 }
511
clean_up_interface_data(ipmi_smi_t intf)512 static void clean_up_interface_data(ipmi_smi_t intf)
513 {
514 int i;
515 struct cmd_rcvr *rcvr, *rcvr2;
516 struct list_head list;
517
518 tasklet_kill(&intf->recv_tasklet);
519
520 free_smi_msg_list(&intf->waiting_msgs);
521 free_recv_msg_list(&intf->waiting_events);
522
523 /*
524 * Wholesale remove all the entries from the list in the
525 * interface and wait for RCU to know that none are in use.
526 */
527 mutex_lock(&intf->cmd_rcvrs_mutex);
528 INIT_LIST_HEAD(&list);
529 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
530 mutex_unlock(&intf->cmd_rcvrs_mutex);
531
532 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
533 kfree(rcvr);
534
535 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
536 if ((intf->seq_table[i].inuse)
537 && (intf->seq_table[i].recv_msg))
538 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
539 }
540 }
541
intf_free(struct kref * ref)542 static void intf_free(struct kref *ref)
543 {
544 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
545
546 clean_up_interface_data(intf);
547 kfree(intf);
548 }
549
550 struct watcher_entry {
551 int intf_num;
552 ipmi_smi_t intf;
553 struct list_head link;
554 };
555
ipmi_smi_watcher_register(struct ipmi_smi_watcher * watcher)556 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
557 {
558 ipmi_smi_t intf;
559 LIST_HEAD(to_deliver);
560 struct watcher_entry *e, *e2;
561
562 mutex_lock(&smi_watchers_mutex);
563
564 mutex_lock(&ipmi_interfaces_mutex);
565
566 /* Build a list of things to deliver. */
567 list_for_each_entry(intf, &ipmi_interfaces, link) {
568 if (intf->intf_num == -1)
569 continue;
570 e = kmalloc(sizeof(*e), GFP_KERNEL);
571 if (!e)
572 goto out_err;
573 kref_get(&intf->refcount);
574 e->intf = intf;
575 e->intf_num = intf->intf_num;
576 list_add_tail(&e->link, &to_deliver);
577 }
578
579 /* We will succeed, so add it to the list. */
580 list_add(&watcher->link, &smi_watchers);
581
582 mutex_unlock(&ipmi_interfaces_mutex);
583
584 list_for_each_entry_safe(e, e2, &to_deliver, link) {
585 list_del(&e->link);
586 watcher->new_smi(e->intf_num, e->intf->si_dev);
587 kref_put(&e->intf->refcount, intf_free);
588 kfree(e);
589 }
590
591 mutex_unlock(&smi_watchers_mutex);
592
593 return 0;
594
595 out_err:
596 mutex_unlock(&ipmi_interfaces_mutex);
597 mutex_unlock(&smi_watchers_mutex);
598 list_for_each_entry_safe(e, e2, &to_deliver, link) {
599 list_del(&e->link);
600 kref_put(&e->intf->refcount, intf_free);
601 kfree(e);
602 }
603 return -ENOMEM;
604 }
605 EXPORT_SYMBOL(ipmi_smi_watcher_register);
606
ipmi_smi_watcher_unregister(struct ipmi_smi_watcher * watcher)607 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
608 {
609 mutex_lock(&smi_watchers_mutex);
610 list_del(&(watcher->link));
611 mutex_unlock(&smi_watchers_mutex);
612 return 0;
613 }
614 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
615
616 /*
617 * Must be called with smi_watchers_mutex held.
618 */
619 static void
call_smi_watchers(int i,struct device * dev)620 call_smi_watchers(int i, struct device *dev)
621 {
622 struct ipmi_smi_watcher *w;
623
624 list_for_each_entry(w, &smi_watchers, link) {
625 if (try_module_get(w->owner)) {
626 w->new_smi(i, dev);
627 module_put(w->owner);
628 }
629 }
630 }
631
632 static int
ipmi_addr_equal(struct ipmi_addr * addr1,struct ipmi_addr * addr2)633 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
634 {
635 if (addr1->addr_type != addr2->addr_type)
636 return 0;
637
638 if (addr1->channel != addr2->channel)
639 return 0;
640
641 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
642 struct ipmi_system_interface_addr *smi_addr1
643 = (struct ipmi_system_interface_addr *) addr1;
644 struct ipmi_system_interface_addr *smi_addr2
645 = (struct ipmi_system_interface_addr *) addr2;
646 return (smi_addr1->lun == smi_addr2->lun);
647 }
648
649 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
650 struct ipmi_ipmb_addr *ipmb_addr1
651 = (struct ipmi_ipmb_addr *) addr1;
652 struct ipmi_ipmb_addr *ipmb_addr2
653 = (struct ipmi_ipmb_addr *) addr2;
654
655 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
656 && (ipmb_addr1->lun == ipmb_addr2->lun));
657 }
658
659 if (is_lan_addr(addr1)) {
660 struct ipmi_lan_addr *lan_addr1
661 = (struct ipmi_lan_addr *) addr1;
662 struct ipmi_lan_addr *lan_addr2
663 = (struct ipmi_lan_addr *) addr2;
664
665 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
666 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
667 && (lan_addr1->session_handle
668 == lan_addr2->session_handle)
669 && (lan_addr1->lun == lan_addr2->lun));
670 }
671
672 return 1;
673 }
674
ipmi_validate_addr(struct ipmi_addr * addr,int len)675 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
676 {
677 if (len < sizeof(struct ipmi_system_interface_addr))
678 return -EINVAL;
679
680 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
681 if (addr->channel != IPMI_BMC_CHANNEL)
682 return -EINVAL;
683 return 0;
684 }
685
686 if ((addr->channel == IPMI_BMC_CHANNEL)
687 || (addr->channel >= IPMI_MAX_CHANNELS)
688 || (addr->channel < 0))
689 return -EINVAL;
690
691 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
692 if (len < sizeof(struct ipmi_ipmb_addr))
693 return -EINVAL;
694 return 0;
695 }
696
697 if (is_lan_addr(addr)) {
698 if (len < sizeof(struct ipmi_lan_addr))
699 return -EINVAL;
700 return 0;
701 }
702
703 return -EINVAL;
704 }
705 EXPORT_SYMBOL(ipmi_validate_addr);
706
ipmi_addr_length(int addr_type)707 unsigned int ipmi_addr_length(int addr_type)
708 {
709 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
710 return sizeof(struct ipmi_system_interface_addr);
711
712 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
713 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
714 return sizeof(struct ipmi_ipmb_addr);
715
716 if (addr_type == IPMI_LAN_ADDR_TYPE)
717 return sizeof(struct ipmi_lan_addr);
718
719 return 0;
720 }
721 EXPORT_SYMBOL(ipmi_addr_length);
722
deliver_response(struct ipmi_recv_msg * msg)723 static void deliver_response(struct ipmi_recv_msg *msg)
724 {
725 if (!msg->user) {
726 ipmi_smi_t intf = msg->user_msg_data;
727
728 /* Special handling for NULL users. */
729 if (intf->null_user_handler) {
730 intf->null_user_handler(intf, msg);
731 ipmi_inc_stat(intf, handled_local_responses);
732 } else {
733 /* No handler, so give up. */
734 ipmi_inc_stat(intf, unhandled_local_responses);
735 }
736 ipmi_free_recv_msg(msg);
737 } else {
738 ipmi_user_t user = msg->user;
739 user->handler->ipmi_recv_hndl(msg, user->handler_data);
740 }
741 }
742
743 static void
deliver_err_response(struct ipmi_recv_msg * msg,int err)744 deliver_err_response(struct ipmi_recv_msg *msg, int err)
745 {
746 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
747 msg->msg_data[0] = err;
748 msg->msg.netfn |= 1; /* Convert to a response. */
749 msg->msg.data_len = 1;
750 msg->msg.data = msg->msg_data;
751 deliver_response(msg);
752 }
753
754 /*
755 * Find the next sequence number not being used and add the given
756 * message with the given timeout to the sequence table. This must be
757 * called with the interface's seq_lock held.
758 */
intf_next_seq(ipmi_smi_t intf,struct ipmi_recv_msg * recv_msg,unsigned long timeout,int retries,int broadcast,unsigned char * seq,long * seqid)759 static int intf_next_seq(ipmi_smi_t intf,
760 struct ipmi_recv_msg *recv_msg,
761 unsigned long timeout,
762 int retries,
763 int broadcast,
764 unsigned char *seq,
765 long *seqid)
766 {
767 int rv = 0;
768 unsigned int i;
769
770 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
771 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
772 if (!intf->seq_table[i].inuse)
773 break;
774 }
775
776 if (!intf->seq_table[i].inuse) {
777 intf->seq_table[i].recv_msg = recv_msg;
778
779 /*
780 * Start with the maximum timeout, when the send response
781 * comes in we will start the real timer.
782 */
783 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
784 intf->seq_table[i].orig_timeout = timeout;
785 intf->seq_table[i].retries_left = retries;
786 intf->seq_table[i].broadcast = broadcast;
787 intf->seq_table[i].inuse = 1;
788 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
789 *seq = i;
790 *seqid = intf->seq_table[i].seqid;
791 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
792 need_waiter(intf);
793 } else {
794 rv = -EAGAIN;
795 }
796
797 return rv;
798 }
799
800 /*
801 * Return the receive message for the given sequence number and
802 * release the sequence number so it can be reused. Some other data
803 * is passed in to be sure the message matches up correctly (to help
804 * guard against message coming in after their timeout and the
805 * sequence number being reused).
806 */
intf_find_seq(ipmi_smi_t intf,unsigned char seq,short channel,unsigned char cmd,unsigned char netfn,struct ipmi_addr * addr,struct ipmi_recv_msg ** recv_msg)807 static int intf_find_seq(ipmi_smi_t intf,
808 unsigned char seq,
809 short channel,
810 unsigned char cmd,
811 unsigned char netfn,
812 struct ipmi_addr *addr,
813 struct ipmi_recv_msg **recv_msg)
814 {
815 int rv = -ENODEV;
816 unsigned long flags;
817
818 if (seq >= IPMI_IPMB_NUM_SEQ)
819 return -EINVAL;
820
821 spin_lock_irqsave(&(intf->seq_lock), flags);
822 if (intf->seq_table[seq].inuse) {
823 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
824
825 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
826 && (msg->msg.netfn == netfn)
827 && (ipmi_addr_equal(addr, &(msg->addr)))) {
828 *recv_msg = msg;
829 intf->seq_table[seq].inuse = 0;
830 rv = 0;
831 }
832 }
833 spin_unlock_irqrestore(&(intf->seq_lock), flags);
834
835 return rv;
836 }
837
838
839 /* Start the timer for a specific sequence table entry. */
intf_start_seq_timer(ipmi_smi_t intf,long msgid)840 static int intf_start_seq_timer(ipmi_smi_t intf,
841 long msgid)
842 {
843 int rv = -ENODEV;
844 unsigned long flags;
845 unsigned char seq;
846 unsigned long seqid;
847
848
849 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
850
851 spin_lock_irqsave(&(intf->seq_lock), flags);
852 /*
853 * We do this verification because the user can be deleted
854 * while a message is outstanding.
855 */
856 if ((intf->seq_table[seq].inuse)
857 && (intf->seq_table[seq].seqid == seqid)) {
858 struct seq_table *ent = &(intf->seq_table[seq]);
859 ent->timeout = ent->orig_timeout;
860 rv = 0;
861 }
862 spin_unlock_irqrestore(&(intf->seq_lock), flags);
863
864 return rv;
865 }
866
867 /* Got an error for the send message for a specific sequence number. */
intf_err_seq(ipmi_smi_t intf,long msgid,unsigned int err)868 static int intf_err_seq(ipmi_smi_t intf,
869 long msgid,
870 unsigned int err)
871 {
872 int rv = -ENODEV;
873 unsigned long flags;
874 unsigned char seq;
875 unsigned long seqid;
876 struct ipmi_recv_msg *msg = NULL;
877
878
879 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
880
881 spin_lock_irqsave(&(intf->seq_lock), flags);
882 /*
883 * We do this verification because the user can be deleted
884 * while a message is outstanding.
885 */
886 if ((intf->seq_table[seq].inuse)
887 && (intf->seq_table[seq].seqid == seqid)) {
888 struct seq_table *ent = &(intf->seq_table[seq]);
889
890 ent->inuse = 0;
891 msg = ent->recv_msg;
892 rv = 0;
893 }
894 spin_unlock_irqrestore(&(intf->seq_lock), flags);
895
896 if (msg)
897 deliver_err_response(msg, err);
898
899 return rv;
900 }
901
902
ipmi_create_user(unsigned int if_num,struct ipmi_user_hndl * handler,void * handler_data,ipmi_user_t * user)903 int ipmi_create_user(unsigned int if_num,
904 struct ipmi_user_hndl *handler,
905 void *handler_data,
906 ipmi_user_t *user)
907 {
908 unsigned long flags;
909 ipmi_user_t new_user;
910 int rv = 0;
911 ipmi_smi_t intf;
912
913 /*
914 * There is no module usecount here, because it's not
915 * required. Since this can only be used by and called from
916 * other modules, they will implicitly use this module, and
917 * thus this can't be removed unless the other modules are
918 * removed.
919 */
920
921 if (handler == NULL)
922 return -EINVAL;
923
924 /*
925 * Make sure the driver is actually initialized, this handles
926 * problems with initialization order.
927 */
928 if (!initialized) {
929 rv = ipmi_init_msghandler();
930 if (rv)
931 return rv;
932
933 /*
934 * The init code doesn't return an error if it was turned
935 * off, but it won't initialize. Check that.
936 */
937 if (!initialized)
938 return -ENODEV;
939 }
940
941 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
942 if (!new_user)
943 return -ENOMEM;
944
945 mutex_lock(&ipmi_interfaces_mutex);
946 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
947 if (intf->intf_num == if_num)
948 goto found;
949 }
950 /* Not found, return an error */
951 rv = -EINVAL;
952 goto out_kfree;
953
954 found:
955 /* Note that each existing user holds a refcount to the interface. */
956 kref_get(&intf->refcount);
957
958 kref_init(&new_user->refcount);
959 new_user->handler = handler;
960 new_user->handler_data = handler_data;
961 new_user->intf = intf;
962 new_user->gets_events = false;
963
964 if (!try_module_get(intf->handlers->owner)) {
965 rv = -ENODEV;
966 goto out_kref;
967 }
968
969 if (intf->handlers->inc_usecount) {
970 rv = intf->handlers->inc_usecount(intf->send_info);
971 if (rv) {
972 module_put(intf->handlers->owner);
973 goto out_kref;
974 }
975 }
976
977 /*
978 * Hold the lock so intf->handlers is guaranteed to be good
979 * until now
980 */
981 mutex_unlock(&ipmi_interfaces_mutex);
982
983 new_user->valid = true;
984 spin_lock_irqsave(&intf->seq_lock, flags);
985 list_add_rcu(&new_user->link, &intf->users);
986 spin_unlock_irqrestore(&intf->seq_lock, flags);
987 if (handler->ipmi_watchdog_pretimeout) {
988 /* User wants pretimeouts, so make sure to watch for them. */
989 if (atomic_inc_return(&intf->event_waiters) == 1)
990 need_waiter(intf);
991 }
992 *user = new_user;
993 return 0;
994
995 out_kref:
996 kref_put(&intf->refcount, intf_free);
997 out_kfree:
998 mutex_unlock(&ipmi_interfaces_mutex);
999 kfree(new_user);
1000 return rv;
1001 }
1002 EXPORT_SYMBOL(ipmi_create_user);
1003
ipmi_get_smi_info(int if_num,struct ipmi_smi_info * data)1004 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1005 {
1006 int rv = 0;
1007 ipmi_smi_t intf;
1008 struct ipmi_smi_handlers *handlers;
1009
1010 mutex_lock(&ipmi_interfaces_mutex);
1011 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1012 if (intf->intf_num == if_num)
1013 goto found;
1014 }
1015 /* Not found, return an error */
1016 rv = -EINVAL;
1017 mutex_unlock(&ipmi_interfaces_mutex);
1018 return rv;
1019
1020 found:
1021 handlers = intf->handlers;
1022 rv = -ENOSYS;
1023 if (handlers->get_smi_info)
1024 rv = handlers->get_smi_info(intf->send_info, data);
1025 mutex_unlock(&ipmi_interfaces_mutex);
1026
1027 return rv;
1028 }
1029 EXPORT_SYMBOL(ipmi_get_smi_info);
1030
free_user(struct kref * ref)1031 static void free_user(struct kref *ref)
1032 {
1033 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1034 kfree(user);
1035 }
1036
ipmi_destroy_user(ipmi_user_t user)1037 int ipmi_destroy_user(ipmi_user_t user)
1038 {
1039 ipmi_smi_t intf = user->intf;
1040 int i;
1041 unsigned long flags;
1042 struct cmd_rcvr *rcvr;
1043 struct cmd_rcvr *rcvrs = NULL;
1044
1045 user->valid = false;
1046
1047 if (user->handler->ipmi_watchdog_pretimeout)
1048 atomic_dec(&intf->event_waiters);
1049
1050 if (user->gets_events)
1051 atomic_dec(&intf->event_waiters);
1052
1053 /* Remove the user from the interface's sequence table. */
1054 spin_lock_irqsave(&intf->seq_lock, flags);
1055 list_del_rcu(&user->link);
1056
1057 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1058 if (intf->seq_table[i].inuse
1059 && (intf->seq_table[i].recv_msg->user == user)) {
1060 intf->seq_table[i].inuse = 0;
1061 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1062 }
1063 }
1064 spin_unlock_irqrestore(&intf->seq_lock, flags);
1065
1066 /*
1067 * Remove the user from the command receiver's table. First
1068 * we build a list of everything (not using the standard link,
1069 * since other things may be using it till we do
1070 * synchronize_rcu()) then free everything in that list.
1071 */
1072 mutex_lock(&intf->cmd_rcvrs_mutex);
1073 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1074 if (rcvr->user == user) {
1075 list_del_rcu(&rcvr->link);
1076 rcvr->next = rcvrs;
1077 rcvrs = rcvr;
1078 }
1079 }
1080 mutex_unlock(&intf->cmd_rcvrs_mutex);
1081 synchronize_rcu();
1082 while (rcvrs) {
1083 rcvr = rcvrs;
1084 rcvrs = rcvr->next;
1085 kfree(rcvr);
1086 }
1087
1088 mutex_lock(&ipmi_interfaces_mutex);
1089 if (intf->handlers) {
1090 module_put(intf->handlers->owner);
1091 if (intf->handlers->dec_usecount)
1092 intf->handlers->dec_usecount(intf->send_info);
1093 }
1094 mutex_unlock(&ipmi_interfaces_mutex);
1095
1096 kref_put(&intf->refcount, intf_free);
1097
1098 kref_put(&user->refcount, free_user);
1099
1100 return 0;
1101 }
1102 EXPORT_SYMBOL(ipmi_destroy_user);
1103
ipmi_get_version(ipmi_user_t user,unsigned char * major,unsigned char * minor)1104 void ipmi_get_version(ipmi_user_t user,
1105 unsigned char *major,
1106 unsigned char *minor)
1107 {
1108 *major = user->intf->ipmi_version_major;
1109 *minor = user->intf->ipmi_version_minor;
1110 }
1111 EXPORT_SYMBOL(ipmi_get_version);
1112
ipmi_set_my_address(ipmi_user_t user,unsigned int channel,unsigned char address)1113 int ipmi_set_my_address(ipmi_user_t user,
1114 unsigned int channel,
1115 unsigned char address)
1116 {
1117 if (channel >= IPMI_MAX_CHANNELS)
1118 return -EINVAL;
1119 user->intf->channels[channel].address = address;
1120 return 0;
1121 }
1122 EXPORT_SYMBOL(ipmi_set_my_address);
1123
ipmi_get_my_address(ipmi_user_t user,unsigned int channel,unsigned char * address)1124 int ipmi_get_my_address(ipmi_user_t user,
1125 unsigned int channel,
1126 unsigned char *address)
1127 {
1128 if (channel >= IPMI_MAX_CHANNELS)
1129 return -EINVAL;
1130 *address = user->intf->channels[channel].address;
1131 return 0;
1132 }
1133 EXPORT_SYMBOL(ipmi_get_my_address);
1134
ipmi_set_my_LUN(ipmi_user_t user,unsigned int channel,unsigned char LUN)1135 int ipmi_set_my_LUN(ipmi_user_t user,
1136 unsigned int channel,
1137 unsigned char LUN)
1138 {
1139 if (channel >= IPMI_MAX_CHANNELS)
1140 return -EINVAL;
1141 user->intf->channels[channel].lun = LUN & 0x3;
1142 return 0;
1143 }
1144 EXPORT_SYMBOL(ipmi_set_my_LUN);
1145
ipmi_get_my_LUN(ipmi_user_t user,unsigned int channel,unsigned char * address)1146 int ipmi_get_my_LUN(ipmi_user_t user,
1147 unsigned int channel,
1148 unsigned char *address)
1149 {
1150 if (channel >= IPMI_MAX_CHANNELS)
1151 return -EINVAL;
1152 *address = user->intf->channels[channel].lun;
1153 return 0;
1154 }
1155 EXPORT_SYMBOL(ipmi_get_my_LUN);
1156
ipmi_get_maintenance_mode(ipmi_user_t user)1157 int ipmi_get_maintenance_mode(ipmi_user_t user)
1158 {
1159 int mode;
1160 unsigned long flags;
1161
1162 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1163 mode = user->intf->maintenance_mode;
1164 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1165
1166 return mode;
1167 }
1168 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1169
maintenance_mode_update(ipmi_smi_t intf)1170 static void maintenance_mode_update(ipmi_smi_t intf)
1171 {
1172 if (intf->handlers->set_maintenance_mode)
1173 intf->handlers->set_maintenance_mode(
1174 intf->send_info, intf->maintenance_mode_enable);
1175 }
1176
ipmi_set_maintenance_mode(ipmi_user_t user,int mode)1177 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1178 {
1179 int rv = 0;
1180 unsigned long flags;
1181 ipmi_smi_t intf = user->intf;
1182
1183 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1184 if (intf->maintenance_mode != mode) {
1185 switch (mode) {
1186 case IPMI_MAINTENANCE_MODE_AUTO:
1187 intf->maintenance_mode_enable
1188 = (intf->auto_maintenance_timeout > 0);
1189 break;
1190
1191 case IPMI_MAINTENANCE_MODE_OFF:
1192 intf->maintenance_mode_enable = false;
1193 break;
1194
1195 case IPMI_MAINTENANCE_MODE_ON:
1196 intf->maintenance_mode_enable = true;
1197 break;
1198
1199 default:
1200 rv = -EINVAL;
1201 goto out_unlock;
1202 }
1203 intf->maintenance_mode = mode;
1204
1205 maintenance_mode_update(intf);
1206 }
1207 out_unlock:
1208 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1209
1210 return rv;
1211 }
1212 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1213
ipmi_set_gets_events(ipmi_user_t user,bool val)1214 int ipmi_set_gets_events(ipmi_user_t user, bool val)
1215 {
1216 unsigned long flags;
1217 ipmi_smi_t intf = user->intf;
1218 struct ipmi_recv_msg *msg, *msg2;
1219 struct list_head msgs;
1220
1221 INIT_LIST_HEAD(&msgs);
1222
1223 spin_lock_irqsave(&intf->events_lock, flags);
1224 if (user->gets_events == val)
1225 goto out;
1226
1227 user->gets_events = val;
1228
1229 if (val) {
1230 if (atomic_inc_return(&intf->event_waiters) == 1)
1231 need_waiter(intf);
1232 } else {
1233 atomic_dec(&intf->event_waiters);
1234 }
1235
1236 if (intf->delivering_events)
1237 /*
1238 * Another thread is delivering events for this, so
1239 * let it handle any new events.
1240 */
1241 goto out;
1242
1243 /* Deliver any queued events. */
1244 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1245 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1246 list_move_tail(&msg->link, &msgs);
1247 intf->waiting_events_count = 0;
1248 if (intf->event_msg_printed) {
1249 printk(KERN_WARNING PFX "Event queue no longer"
1250 " full\n");
1251 intf->event_msg_printed = 0;
1252 }
1253
1254 intf->delivering_events = 1;
1255 spin_unlock_irqrestore(&intf->events_lock, flags);
1256
1257 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1258 msg->user = user;
1259 kref_get(&user->refcount);
1260 deliver_response(msg);
1261 }
1262
1263 spin_lock_irqsave(&intf->events_lock, flags);
1264 intf->delivering_events = 0;
1265 }
1266
1267 out:
1268 spin_unlock_irqrestore(&intf->events_lock, flags);
1269
1270 return 0;
1271 }
1272 EXPORT_SYMBOL(ipmi_set_gets_events);
1273
find_cmd_rcvr(ipmi_smi_t intf,unsigned char netfn,unsigned char cmd,unsigned char chan)1274 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf,
1275 unsigned char netfn,
1276 unsigned char cmd,
1277 unsigned char chan)
1278 {
1279 struct cmd_rcvr *rcvr;
1280
1281 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1282 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1283 && (rcvr->chans & (1 << chan)))
1284 return rcvr;
1285 }
1286 return NULL;
1287 }
1288
is_cmd_rcvr_exclusive(ipmi_smi_t intf,unsigned char netfn,unsigned char cmd,unsigned int chans)1289 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf,
1290 unsigned char netfn,
1291 unsigned char cmd,
1292 unsigned int chans)
1293 {
1294 struct cmd_rcvr *rcvr;
1295
1296 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1297 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1298 && (rcvr->chans & chans))
1299 return 0;
1300 }
1301 return 1;
1302 }
1303
ipmi_register_for_cmd(ipmi_user_t user,unsigned char netfn,unsigned char cmd,unsigned int chans)1304 int ipmi_register_for_cmd(ipmi_user_t user,
1305 unsigned char netfn,
1306 unsigned char cmd,
1307 unsigned int chans)
1308 {
1309 ipmi_smi_t intf = user->intf;
1310 struct cmd_rcvr *rcvr;
1311 int rv = 0;
1312
1313
1314 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1315 if (!rcvr)
1316 return -ENOMEM;
1317 rcvr->cmd = cmd;
1318 rcvr->netfn = netfn;
1319 rcvr->chans = chans;
1320 rcvr->user = user;
1321
1322 mutex_lock(&intf->cmd_rcvrs_mutex);
1323 /* Make sure the command/netfn is not already registered. */
1324 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1325 rv = -EBUSY;
1326 goto out_unlock;
1327 }
1328
1329 if (atomic_inc_return(&intf->event_waiters) == 1)
1330 need_waiter(intf);
1331
1332 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1333
1334 out_unlock:
1335 mutex_unlock(&intf->cmd_rcvrs_mutex);
1336 if (rv)
1337 kfree(rcvr);
1338
1339 return rv;
1340 }
1341 EXPORT_SYMBOL(ipmi_register_for_cmd);
1342
ipmi_unregister_for_cmd(ipmi_user_t user,unsigned char netfn,unsigned char cmd,unsigned int chans)1343 int ipmi_unregister_for_cmd(ipmi_user_t user,
1344 unsigned char netfn,
1345 unsigned char cmd,
1346 unsigned int chans)
1347 {
1348 ipmi_smi_t intf = user->intf;
1349 struct cmd_rcvr *rcvr;
1350 struct cmd_rcvr *rcvrs = NULL;
1351 int i, rv = -ENOENT;
1352
1353 mutex_lock(&intf->cmd_rcvrs_mutex);
1354 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1355 if (((1 << i) & chans) == 0)
1356 continue;
1357 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1358 if (rcvr == NULL)
1359 continue;
1360 if (rcvr->user == user) {
1361 rv = 0;
1362 rcvr->chans &= ~chans;
1363 if (rcvr->chans == 0) {
1364 list_del_rcu(&rcvr->link);
1365 rcvr->next = rcvrs;
1366 rcvrs = rcvr;
1367 }
1368 }
1369 }
1370 mutex_unlock(&intf->cmd_rcvrs_mutex);
1371 synchronize_rcu();
1372 while (rcvrs) {
1373 atomic_dec(&intf->event_waiters);
1374 rcvr = rcvrs;
1375 rcvrs = rcvr->next;
1376 kfree(rcvr);
1377 }
1378 return rv;
1379 }
1380 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1381
1382 static unsigned char
ipmb_checksum(unsigned char * data,int size)1383 ipmb_checksum(unsigned char *data, int size)
1384 {
1385 unsigned char csum = 0;
1386
1387 for (; size > 0; size--, data++)
1388 csum += *data;
1389
1390 return -csum;
1391 }
1392
format_ipmb_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_ipmb_addr * ipmb_addr,long msgid,unsigned char ipmb_seq,int broadcast,unsigned char source_address,unsigned char source_lun)1393 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1394 struct kernel_ipmi_msg *msg,
1395 struct ipmi_ipmb_addr *ipmb_addr,
1396 long msgid,
1397 unsigned char ipmb_seq,
1398 int broadcast,
1399 unsigned char source_address,
1400 unsigned char source_lun)
1401 {
1402 int i = broadcast;
1403
1404 /* Format the IPMB header data. */
1405 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1406 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1407 smi_msg->data[2] = ipmb_addr->channel;
1408 if (broadcast)
1409 smi_msg->data[3] = 0;
1410 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1411 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1412 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1413 smi_msg->data[i+6] = source_address;
1414 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1415 smi_msg->data[i+8] = msg->cmd;
1416
1417 /* Now tack on the data to the message. */
1418 if (msg->data_len > 0)
1419 memcpy(&(smi_msg->data[i+9]), msg->data,
1420 msg->data_len);
1421 smi_msg->data_size = msg->data_len + 9;
1422
1423 /* Now calculate the checksum and tack it on. */
1424 smi_msg->data[i+smi_msg->data_size]
1425 = ipmb_checksum(&(smi_msg->data[i+6]),
1426 smi_msg->data_size-6);
1427
1428 /*
1429 * Add on the checksum size and the offset from the
1430 * broadcast.
1431 */
1432 smi_msg->data_size += 1 + i;
1433
1434 smi_msg->msgid = msgid;
1435 }
1436
format_lan_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_lan_addr * lan_addr,long msgid,unsigned char ipmb_seq,unsigned char source_lun)1437 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1438 struct kernel_ipmi_msg *msg,
1439 struct ipmi_lan_addr *lan_addr,
1440 long msgid,
1441 unsigned char ipmb_seq,
1442 unsigned char source_lun)
1443 {
1444 /* Format the IPMB header data. */
1445 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1446 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1447 smi_msg->data[2] = lan_addr->channel;
1448 smi_msg->data[3] = lan_addr->session_handle;
1449 smi_msg->data[4] = lan_addr->remote_SWID;
1450 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1451 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1452 smi_msg->data[7] = lan_addr->local_SWID;
1453 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1454 smi_msg->data[9] = msg->cmd;
1455
1456 /* Now tack on the data to the message. */
1457 if (msg->data_len > 0)
1458 memcpy(&(smi_msg->data[10]), msg->data,
1459 msg->data_len);
1460 smi_msg->data_size = msg->data_len + 10;
1461
1462 /* Now calculate the checksum and tack it on. */
1463 smi_msg->data[smi_msg->data_size]
1464 = ipmb_checksum(&(smi_msg->data[7]),
1465 smi_msg->data_size-7);
1466
1467 /*
1468 * Add on the checksum size and the offset from the
1469 * broadcast.
1470 */
1471 smi_msg->data_size += 1;
1472
1473 smi_msg->msgid = msgid;
1474 }
1475
1476 /*
1477 * Separate from ipmi_request so that the user does not have to be
1478 * supplied in certain circumstances (mainly at panic time). If
1479 * messages are supplied, they will be freed, even if an error
1480 * occurs.
1481 */
i_ipmi_request(ipmi_user_t user,ipmi_smi_t intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)1482 static int i_ipmi_request(ipmi_user_t user,
1483 ipmi_smi_t intf,
1484 struct ipmi_addr *addr,
1485 long msgid,
1486 struct kernel_ipmi_msg *msg,
1487 void *user_msg_data,
1488 void *supplied_smi,
1489 struct ipmi_recv_msg *supplied_recv,
1490 int priority,
1491 unsigned char source_address,
1492 unsigned char source_lun,
1493 int retries,
1494 unsigned int retry_time_ms)
1495 {
1496 int rv = 0;
1497 struct ipmi_smi_msg *smi_msg;
1498 struct ipmi_recv_msg *recv_msg;
1499 unsigned long flags;
1500 struct ipmi_smi_handlers *handlers;
1501
1502
1503 if (supplied_recv)
1504 recv_msg = supplied_recv;
1505 else {
1506 recv_msg = ipmi_alloc_recv_msg();
1507 if (recv_msg == NULL)
1508 return -ENOMEM;
1509 }
1510 recv_msg->user_msg_data = user_msg_data;
1511
1512 if (supplied_smi)
1513 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1514 else {
1515 smi_msg = ipmi_alloc_smi_msg();
1516 if (smi_msg == NULL) {
1517 ipmi_free_recv_msg(recv_msg);
1518 return -ENOMEM;
1519 }
1520 }
1521
1522 rcu_read_lock();
1523 handlers = intf->handlers;
1524 if (!handlers) {
1525 rv = -ENODEV;
1526 goto out_err;
1527 }
1528
1529 recv_msg->user = user;
1530 if (user)
1531 kref_get(&user->refcount);
1532 recv_msg->msgid = msgid;
1533 /*
1534 * Store the message to send in the receive message so timeout
1535 * responses can get the proper response data.
1536 */
1537 recv_msg->msg = *msg;
1538
1539 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1540 struct ipmi_system_interface_addr *smi_addr;
1541
1542 if (msg->netfn & 1) {
1543 /* Responses are not allowed to the SMI. */
1544 rv = -EINVAL;
1545 goto out_err;
1546 }
1547
1548 smi_addr = (struct ipmi_system_interface_addr *) addr;
1549 if (smi_addr->lun > 3) {
1550 ipmi_inc_stat(intf, sent_invalid_commands);
1551 rv = -EINVAL;
1552 goto out_err;
1553 }
1554
1555 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1556
1557 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1558 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1559 || (msg->cmd == IPMI_GET_MSG_CMD)
1560 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1561 /*
1562 * We don't let the user do these, since we manage
1563 * the sequence numbers.
1564 */
1565 ipmi_inc_stat(intf, sent_invalid_commands);
1566 rv = -EINVAL;
1567 goto out_err;
1568 }
1569
1570 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1571 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1572 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1573 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1574 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1575 intf->auto_maintenance_timeout
1576 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1577 if (!intf->maintenance_mode
1578 && !intf->maintenance_mode_enable) {
1579 intf->maintenance_mode_enable = true;
1580 maintenance_mode_update(intf);
1581 }
1582 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1583 flags);
1584 }
1585
1586 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1587 ipmi_inc_stat(intf, sent_invalid_commands);
1588 rv = -EMSGSIZE;
1589 goto out_err;
1590 }
1591
1592 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1593 smi_msg->data[1] = msg->cmd;
1594 smi_msg->msgid = msgid;
1595 smi_msg->user_data = recv_msg;
1596 if (msg->data_len > 0)
1597 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1598 smi_msg->data_size = msg->data_len + 2;
1599 ipmi_inc_stat(intf, sent_local_commands);
1600 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1601 struct ipmi_ipmb_addr *ipmb_addr;
1602 unsigned char ipmb_seq;
1603 long seqid;
1604 int broadcast = 0;
1605
1606 if (addr->channel >= IPMI_MAX_CHANNELS) {
1607 ipmi_inc_stat(intf, sent_invalid_commands);
1608 rv = -EINVAL;
1609 goto out_err;
1610 }
1611
1612 if (intf->channels[addr->channel].medium
1613 != IPMI_CHANNEL_MEDIUM_IPMB) {
1614 ipmi_inc_stat(intf, sent_invalid_commands);
1615 rv = -EINVAL;
1616 goto out_err;
1617 }
1618
1619 if (retries < 0) {
1620 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1621 retries = 0; /* Don't retry broadcasts. */
1622 else
1623 retries = 4;
1624 }
1625 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1626 /*
1627 * Broadcasts add a zero at the beginning of the
1628 * message, but otherwise is the same as an IPMB
1629 * address.
1630 */
1631 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1632 broadcast = 1;
1633 }
1634
1635
1636 /* Default to 1 second retries. */
1637 if (retry_time_ms == 0)
1638 retry_time_ms = 1000;
1639
1640 /*
1641 * 9 for the header and 1 for the checksum, plus
1642 * possibly one for the broadcast.
1643 */
1644 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1645 ipmi_inc_stat(intf, sent_invalid_commands);
1646 rv = -EMSGSIZE;
1647 goto out_err;
1648 }
1649
1650 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1651 if (ipmb_addr->lun > 3) {
1652 ipmi_inc_stat(intf, sent_invalid_commands);
1653 rv = -EINVAL;
1654 goto out_err;
1655 }
1656
1657 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1658
1659 if (recv_msg->msg.netfn & 0x1) {
1660 /*
1661 * It's a response, so use the user's sequence
1662 * from msgid.
1663 */
1664 ipmi_inc_stat(intf, sent_ipmb_responses);
1665 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1666 msgid, broadcast,
1667 source_address, source_lun);
1668
1669 /*
1670 * Save the receive message so we can use it
1671 * to deliver the response.
1672 */
1673 smi_msg->user_data = recv_msg;
1674 } else {
1675 /* It's a command, so get a sequence for it. */
1676
1677 spin_lock_irqsave(&(intf->seq_lock), flags);
1678
1679 /*
1680 * Create a sequence number with a 1 second
1681 * timeout and 4 retries.
1682 */
1683 rv = intf_next_seq(intf,
1684 recv_msg,
1685 retry_time_ms,
1686 retries,
1687 broadcast,
1688 &ipmb_seq,
1689 &seqid);
1690 if (rv) {
1691 /*
1692 * We have used up all the sequence numbers,
1693 * probably, so abort.
1694 */
1695 spin_unlock_irqrestore(&(intf->seq_lock),
1696 flags);
1697 goto out_err;
1698 }
1699
1700 ipmi_inc_stat(intf, sent_ipmb_commands);
1701
1702 /*
1703 * Store the sequence number in the message,
1704 * so that when the send message response
1705 * comes back we can start the timer.
1706 */
1707 format_ipmb_msg(smi_msg, msg, ipmb_addr,
1708 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1709 ipmb_seq, broadcast,
1710 source_address, source_lun);
1711
1712 /*
1713 * Copy the message into the recv message data, so we
1714 * can retransmit it later if necessary.
1715 */
1716 memcpy(recv_msg->msg_data, smi_msg->data,
1717 smi_msg->data_size);
1718 recv_msg->msg.data = recv_msg->msg_data;
1719 recv_msg->msg.data_len = smi_msg->data_size;
1720
1721 /*
1722 * We don't unlock until here, because we need
1723 * to copy the completed message into the
1724 * recv_msg before we release the lock.
1725 * Otherwise, race conditions may bite us. I
1726 * know that's pretty paranoid, but I prefer
1727 * to be correct.
1728 */
1729 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1730 }
1731 } else if (is_lan_addr(addr)) {
1732 struct ipmi_lan_addr *lan_addr;
1733 unsigned char ipmb_seq;
1734 long seqid;
1735
1736 if (addr->channel >= IPMI_MAX_CHANNELS) {
1737 ipmi_inc_stat(intf, sent_invalid_commands);
1738 rv = -EINVAL;
1739 goto out_err;
1740 }
1741
1742 if ((intf->channels[addr->channel].medium
1743 != IPMI_CHANNEL_MEDIUM_8023LAN)
1744 && (intf->channels[addr->channel].medium
1745 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1746 ipmi_inc_stat(intf, sent_invalid_commands);
1747 rv = -EINVAL;
1748 goto out_err;
1749 }
1750
1751 retries = 4;
1752
1753 /* Default to 1 second retries. */
1754 if (retry_time_ms == 0)
1755 retry_time_ms = 1000;
1756
1757 /* 11 for the header and 1 for the checksum. */
1758 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1759 ipmi_inc_stat(intf, sent_invalid_commands);
1760 rv = -EMSGSIZE;
1761 goto out_err;
1762 }
1763
1764 lan_addr = (struct ipmi_lan_addr *) addr;
1765 if (lan_addr->lun > 3) {
1766 ipmi_inc_stat(intf, sent_invalid_commands);
1767 rv = -EINVAL;
1768 goto out_err;
1769 }
1770
1771 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1772
1773 if (recv_msg->msg.netfn & 0x1) {
1774 /*
1775 * It's a response, so use the user's sequence
1776 * from msgid.
1777 */
1778 ipmi_inc_stat(intf, sent_lan_responses);
1779 format_lan_msg(smi_msg, msg, lan_addr, msgid,
1780 msgid, source_lun);
1781
1782 /*
1783 * Save the receive message so we can use it
1784 * to deliver the response.
1785 */
1786 smi_msg->user_data = recv_msg;
1787 } else {
1788 /* It's a command, so get a sequence for it. */
1789
1790 spin_lock_irqsave(&(intf->seq_lock), flags);
1791
1792 /*
1793 * Create a sequence number with a 1 second
1794 * timeout and 4 retries.
1795 */
1796 rv = intf_next_seq(intf,
1797 recv_msg,
1798 retry_time_ms,
1799 retries,
1800 0,
1801 &ipmb_seq,
1802 &seqid);
1803 if (rv) {
1804 /*
1805 * We have used up all the sequence numbers,
1806 * probably, so abort.
1807 */
1808 spin_unlock_irqrestore(&(intf->seq_lock),
1809 flags);
1810 goto out_err;
1811 }
1812
1813 ipmi_inc_stat(intf, sent_lan_commands);
1814
1815 /*
1816 * Store the sequence number in the message,
1817 * so that when the send message response
1818 * comes back we can start the timer.
1819 */
1820 format_lan_msg(smi_msg, msg, lan_addr,
1821 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1822 ipmb_seq, source_lun);
1823
1824 /*
1825 * Copy the message into the recv message data, so we
1826 * can retransmit it later if necessary.
1827 */
1828 memcpy(recv_msg->msg_data, smi_msg->data,
1829 smi_msg->data_size);
1830 recv_msg->msg.data = recv_msg->msg_data;
1831 recv_msg->msg.data_len = smi_msg->data_size;
1832
1833 /*
1834 * We don't unlock until here, because we need
1835 * to copy the completed message into the
1836 * recv_msg before we release the lock.
1837 * Otherwise, race conditions may bite us. I
1838 * know that's pretty paranoid, but I prefer
1839 * to be correct.
1840 */
1841 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1842 }
1843 } else {
1844 /* Unknown address type. */
1845 ipmi_inc_stat(intf, sent_invalid_commands);
1846 rv = -EINVAL;
1847 goto out_err;
1848 }
1849
1850 #ifdef DEBUG_MSGING
1851 {
1852 int m;
1853 for (m = 0; m < smi_msg->data_size; m++)
1854 printk(" %2.2x", smi_msg->data[m]);
1855 printk("\n");
1856 }
1857 #endif
1858
1859 handlers->sender(intf->send_info, smi_msg, priority);
1860 rcu_read_unlock();
1861
1862 return 0;
1863
1864 out_err:
1865 rcu_read_unlock();
1866 ipmi_free_smi_msg(smi_msg);
1867 ipmi_free_recv_msg(recv_msg);
1868 return rv;
1869 }
1870
check_addr(ipmi_smi_t intf,struct ipmi_addr * addr,unsigned char * saddr,unsigned char * lun)1871 static int check_addr(ipmi_smi_t intf,
1872 struct ipmi_addr *addr,
1873 unsigned char *saddr,
1874 unsigned char *lun)
1875 {
1876 if (addr->channel >= IPMI_MAX_CHANNELS)
1877 return -EINVAL;
1878 *lun = intf->channels[addr->channel].lun;
1879 *saddr = intf->channels[addr->channel].address;
1880 return 0;
1881 }
1882
ipmi_request_settime(ipmi_user_t user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,int priority,int retries,unsigned int retry_time_ms)1883 int ipmi_request_settime(ipmi_user_t user,
1884 struct ipmi_addr *addr,
1885 long msgid,
1886 struct kernel_ipmi_msg *msg,
1887 void *user_msg_data,
1888 int priority,
1889 int retries,
1890 unsigned int retry_time_ms)
1891 {
1892 unsigned char saddr = 0, lun = 0;
1893 int rv;
1894
1895 if (!user)
1896 return -EINVAL;
1897 rv = check_addr(user->intf, addr, &saddr, &lun);
1898 if (rv)
1899 return rv;
1900 return i_ipmi_request(user,
1901 user->intf,
1902 addr,
1903 msgid,
1904 msg,
1905 user_msg_data,
1906 NULL, NULL,
1907 priority,
1908 saddr,
1909 lun,
1910 retries,
1911 retry_time_ms);
1912 }
1913 EXPORT_SYMBOL(ipmi_request_settime);
1914
ipmi_request_supply_msgs(ipmi_user_t user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority)1915 int ipmi_request_supply_msgs(ipmi_user_t user,
1916 struct ipmi_addr *addr,
1917 long msgid,
1918 struct kernel_ipmi_msg *msg,
1919 void *user_msg_data,
1920 void *supplied_smi,
1921 struct ipmi_recv_msg *supplied_recv,
1922 int priority)
1923 {
1924 unsigned char saddr = 0, lun = 0;
1925 int rv;
1926
1927 if (!user)
1928 return -EINVAL;
1929 rv = check_addr(user->intf, addr, &saddr, &lun);
1930 if (rv)
1931 return rv;
1932 return i_ipmi_request(user,
1933 user->intf,
1934 addr,
1935 msgid,
1936 msg,
1937 user_msg_data,
1938 supplied_smi,
1939 supplied_recv,
1940 priority,
1941 saddr,
1942 lun,
1943 -1, 0);
1944 }
1945 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1946
1947 #ifdef CONFIG_PROC_FS
smi_ipmb_proc_show(struct seq_file * m,void * v)1948 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
1949 {
1950 ipmi_smi_t intf = m->private;
1951 int i;
1952
1953 seq_printf(m, "%x", intf->channels[0].address);
1954 for (i = 1; i < IPMI_MAX_CHANNELS; i++)
1955 seq_printf(m, " %x", intf->channels[i].address);
1956 return seq_putc(m, '\n');
1957 }
1958
smi_ipmb_proc_open(struct inode * inode,struct file * file)1959 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
1960 {
1961 return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
1962 }
1963
1964 static const struct file_operations smi_ipmb_proc_ops = {
1965 .open = smi_ipmb_proc_open,
1966 .read = seq_read,
1967 .llseek = seq_lseek,
1968 .release = single_release,
1969 };
1970
smi_version_proc_show(struct seq_file * m,void * v)1971 static int smi_version_proc_show(struct seq_file *m, void *v)
1972 {
1973 ipmi_smi_t intf = m->private;
1974
1975 return seq_printf(m, "%u.%u\n",
1976 ipmi_version_major(&intf->bmc->id),
1977 ipmi_version_minor(&intf->bmc->id));
1978 }
1979
smi_version_proc_open(struct inode * inode,struct file * file)1980 static int smi_version_proc_open(struct inode *inode, struct file *file)
1981 {
1982 return single_open(file, smi_version_proc_show, PDE_DATA(inode));
1983 }
1984
1985 static const struct file_operations smi_version_proc_ops = {
1986 .open = smi_version_proc_open,
1987 .read = seq_read,
1988 .llseek = seq_lseek,
1989 .release = single_release,
1990 };
1991
smi_stats_proc_show(struct seq_file * m,void * v)1992 static int smi_stats_proc_show(struct seq_file *m, void *v)
1993 {
1994 ipmi_smi_t intf = m->private;
1995
1996 seq_printf(m, "sent_invalid_commands: %u\n",
1997 ipmi_get_stat(intf, sent_invalid_commands));
1998 seq_printf(m, "sent_local_commands: %u\n",
1999 ipmi_get_stat(intf, sent_local_commands));
2000 seq_printf(m, "handled_local_responses: %u\n",
2001 ipmi_get_stat(intf, handled_local_responses));
2002 seq_printf(m, "unhandled_local_responses: %u\n",
2003 ipmi_get_stat(intf, unhandled_local_responses));
2004 seq_printf(m, "sent_ipmb_commands: %u\n",
2005 ipmi_get_stat(intf, sent_ipmb_commands));
2006 seq_printf(m, "sent_ipmb_command_errs: %u\n",
2007 ipmi_get_stat(intf, sent_ipmb_command_errs));
2008 seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2009 ipmi_get_stat(intf, retransmitted_ipmb_commands));
2010 seq_printf(m, "timed_out_ipmb_commands: %u\n",
2011 ipmi_get_stat(intf, timed_out_ipmb_commands));
2012 seq_printf(m, "timed_out_ipmb_broadcasts: %u\n",
2013 ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2014 seq_printf(m, "sent_ipmb_responses: %u\n",
2015 ipmi_get_stat(intf, sent_ipmb_responses));
2016 seq_printf(m, "handled_ipmb_responses: %u\n",
2017 ipmi_get_stat(intf, handled_ipmb_responses));
2018 seq_printf(m, "invalid_ipmb_responses: %u\n",
2019 ipmi_get_stat(intf, invalid_ipmb_responses));
2020 seq_printf(m, "unhandled_ipmb_responses: %u\n",
2021 ipmi_get_stat(intf, unhandled_ipmb_responses));
2022 seq_printf(m, "sent_lan_commands: %u\n",
2023 ipmi_get_stat(intf, sent_lan_commands));
2024 seq_printf(m, "sent_lan_command_errs: %u\n",
2025 ipmi_get_stat(intf, sent_lan_command_errs));
2026 seq_printf(m, "retransmitted_lan_commands: %u\n",
2027 ipmi_get_stat(intf, retransmitted_lan_commands));
2028 seq_printf(m, "timed_out_lan_commands: %u\n",
2029 ipmi_get_stat(intf, timed_out_lan_commands));
2030 seq_printf(m, "sent_lan_responses: %u\n",
2031 ipmi_get_stat(intf, sent_lan_responses));
2032 seq_printf(m, "handled_lan_responses: %u\n",
2033 ipmi_get_stat(intf, handled_lan_responses));
2034 seq_printf(m, "invalid_lan_responses: %u\n",
2035 ipmi_get_stat(intf, invalid_lan_responses));
2036 seq_printf(m, "unhandled_lan_responses: %u\n",
2037 ipmi_get_stat(intf, unhandled_lan_responses));
2038 seq_printf(m, "handled_commands: %u\n",
2039 ipmi_get_stat(intf, handled_commands));
2040 seq_printf(m, "invalid_commands: %u\n",
2041 ipmi_get_stat(intf, invalid_commands));
2042 seq_printf(m, "unhandled_commands: %u\n",
2043 ipmi_get_stat(intf, unhandled_commands));
2044 seq_printf(m, "invalid_events: %u\n",
2045 ipmi_get_stat(intf, invalid_events));
2046 seq_printf(m, "events: %u\n",
2047 ipmi_get_stat(intf, events));
2048 seq_printf(m, "failed rexmit LAN msgs: %u\n",
2049 ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2050 seq_printf(m, "failed rexmit IPMB msgs: %u\n",
2051 ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2052 return 0;
2053 }
2054
smi_stats_proc_open(struct inode * inode,struct file * file)2055 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2056 {
2057 return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2058 }
2059
2060 static const struct file_operations smi_stats_proc_ops = {
2061 .open = smi_stats_proc_open,
2062 .read = seq_read,
2063 .llseek = seq_lseek,
2064 .release = single_release,
2065 };
2066 #endif /* CONFIG_PROC_FS */
2067
ipmi_smi_add_proc_entry(ipmi_smi_t smi,char * name,const struct file_operations * proc_ops,void * data)2068 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2069 const struct file_operations *proc_ops,
2070 void *data)
2071 {
2072 int rv = 0;
2073 #ifdef CONFIG_PROC_FS
2074 struct proc_dir_entry *file;
2075 struct ipmi_proc_entry *entry;
2076
2077 /* Create a list element. */
2078 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2079 if (!entry)
2080 return -ENOMEM;
2081 entry->name = kstrdup(name, GFP_KERNEL);
2082 if (!entry->name) {
2083 kfree(entry);
2084 return -ENOMEM;
2085 }
2086
2087 file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2088 if (!file) {
2089 kfree(entry->name);
2090 kfree(entry);
2091 rv = -ENOMEM;
2092 } else {
2093 mutex_lock(&smi->proc_entry_lock);
2094 /* Stick it on the list. */
2095 entry->next = smi->proc_entries;
2096 smi->proc_entries = entry;
2097 mutex_unlock(&smi->proc_entry_lock);
2098 }
2099 #endif /* CONFIG_PROC_FS */
2100
2101 return rv;
2102 }
2103 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2104
add_proc_entries(ipmi_smi_t smi,int num)2105 static int add_proc_entries(ipmi_smi_t smi, int num)
2106 {
2107 int rv = 0;
2108
2109 #ifdef CONFIG_PROC_FS
2110 sprintf(smi->proc_dir_name, "%d", num);
2111 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2112 if (!smi->proc_dir)
2113 rv = -ENOMEM;
2114
2115 if (rv == 0)
2116 rv = ipmi_smi_add_proc_entry(smi, "stats",
2117 &smi_stats_proc_ops,
2118 smi);
2119
2120 if (rv == 0)
2121 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2122 &smi_ipmb_proc_ops,
2123 smi);
2124
2125 if (rv == 0)
2126 rv = ipmi_smi_add_proc_entry(smi, "version",
2127 &smi_version_proc_ops,
2128 smi);
2129 #endif /* CONFIG_PROC_FS */
2130
2131 return rv;
2132 }
2133
remove_proc_entries(ipmi_smi_t smi)2134 static void remove_proc_entries(ipmi_smi_t smi)
2135 {
2136 #ifdef CONFIG_PROC_FS
2137 struct ipmi_proc_entry *entry;
2138
2139 mutex_lock(&smi->proc_entry_lock);
2140 while (smi->proc_entries) {
2141 entry = smi->proc_entries;
2142 smi->proc_entries = entry->next;
2143
2144 remove_proc_entry(entry->name, smi->proc_dir);
2145 kfree(entry->name);
2146 kfree(entry);
2147 }
2148 mutex_unlock(&smi->proc_entry_lock);
2149 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2150 #endif /* CONFIG_PROC_FS */
2151 }
2152
__find_bmc_guid(struct device * dev,void * data)2153 static int __find_bmc_guid(struct device *dev, void *data)
2154 {
2155 unsigned char *id = data;
2156 struct bmc_device *bmc = dev_get_drvdata(dev);
2157 return memcmp(bmc->guid, id, 16) == 0;
2158 }
2159
ipmi_find_bmc_guid(struct device_driver * drv,unsigned char * guid)2160 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2161 unsigned char *guid)
2162 {
2163 struct device *dev;
2164
2165 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2166 if (dev)
2167 return dev_get_drvdata(dev);
2168 else
2169 return NULL;
2170 }
2171
2172 struct prod_dev_id {
2173 unsigned int product_id;
2174 unsigned char device_id;
2175 };
2176
__find_bmc_prod_dev_id(struct device * dev,void * data)2177 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2178 {
2179 struct prod_dev_id *id = data;
2180 struct bmc_device *bmc = dev_get_drvdata(dev);
2181
2182 return (bmc->id.product_id == id->product_id
2183 && bmc->id.device_id == id->device_id);
2184 }
2185
ipmi_find_bmc_prod_dev_id(struct device_driver * drv,unsigned int product_id,unsigned char device_id)2186 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2187 struct device_driver *drv,
2188 unsigned int product_id, unsigned char device_id)
2189 {
2190 struct prod_dev_id id = {
2191 .product_id = product_id,
2192 .device_id = device_id,
2193 };
2194 struct device *dev;
2195
2196 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2197 if (dev)
2198 return dev_get_drvdata(dev);
2199 else
2200 return NULL;
2201 }
2202
device_id_show(struct device * dev,struct device_attribute * attr,char * buf)2203 static ssize_t device_id_show(struct device *dev,
2204 struct device_attribute *attr,
2205 char *buf)
2206 {
2207 struct bmc_device *bmc = dev_get_drvdata(dev);
2208
2209 return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2210 }
2211
provides_dev_sdrs_show(struct device * dev,struct device_attribute * attr,char * buf)2212 static ssize_t provides_dev_sdrs_show(struct device *dev,
2213 struct device_attribute *attr,
2214 char *buf)
2215 {
2216 struct bmc_device *bmc = dev_get_drvdata(dev);
2217
2218 return snprintf(buf, 10, "%u\n",
2219 (bmc->id.device_revision & 0x80) >> 7);
2220 }
2221
revision_show(struct device * dev,struct device_attribute * attr,char * buf)2222 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2223 char *buf)
2224 {
2225 struct bmc_device *bmc = dev_get_drvdata(dev);
2226
2227 return snprintf(buf, 20, "%u\n",
2228 bmc->id.device_revision & 0x0F);
2229 }
2230
firmware_rev_show(struct device * dev,struct device_attribute * attr,char * buf)2231 static ssize_t firmware_rev_show(struct device *dev,
2232 struct device_attribute *attr,
2233 char *buf)
2234 {
2235 struct bmc_device *bmc = dev_get_drvdata(dev);
2236
2237 return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2238 bmc->id.firmware_revision_2);
2239 }
2240
ipmi_version_show(struct device * dev,struct device_attribute * attr,char * buf)2241 static ssize_t ipmi_version_show(struct device *dev,
2242 struct device_attribute *attr,
2243 char *buf)
2244 {
2245 struct bmc_device *bmc = dev_get_drvdata(dev);
2246
2247 return snprintf(buf, 20, "%u.%u\n",
2248 ipmi_version_major(&bmc->id),
2249 ipmi_version_minor(&bmc->id));
2250 }
2251
add_dev_support_show(struct device * dev,struct device_attribute * attr,char * buf)2252 static ssize_t add_dev_support_show(struct device *dev,
2253 struct device_attribute *attr,
2254 char *buf)
2255 {
2256 struct bmc_device *bmc = dev_get_drvdata(dev);
2257
2258 return snprintf(buf, 10, "0x%02x\n",
2259 bmc->id.additional_device_support);
2260 }
2261
manufacturer_id_show(struct device * dev,struct device_attribute * attr,char * buf)2262 static ssize_t manufacturer_id_show(struct device *dev,
2263 struct device_attribute *attr,
2264 char *buf)
2265 {
2266 struct bmc_device *bmc = dev_get_drvdata(dev);
2267
2268 return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2269 }
2270
product_id_show(struct device * dev,struct device_attribute * attr,char * buf)2271 static ssize_t product_id_show(struct device *dev,
2272 struct device_attribute *attr,
2273 char *buf)
2274 {
2275 struct bmc_device *bmc = dev_get_drvdata(dev);
2276
2277 return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2278 }
2279
aux_firmware_rev_show(struct device * dev,struct device_attribute * attr,char * buf)2280 static ssize_t aux_firmware_rev_show(struct device *dev,
2281 struct device_attribute *attr,
2282 char *buf)
2283 {
2284 struct bmc_device *bmc = dev_get_drvdata(dev);
2285
2286 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2287 bmc->id.aux_firmware_revision[3],
2288 bmc->id.aux_firmware_revision[2],
2289 bmc->id.aux_firmware_revision[1],
2290 bmc->id.aux_firmware_revision[0]);
2291 }
2292
guid_show(struct device * dev,struct device_attribute * attr,char * buf)2293 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2294 char *buf)
2295 {
2296 struct bmc_device *bmc = dev_get_drvdata(dev);
2297
2298 return snprintf(buf, 100, "%Lx%Lx\n",
2299 (long long) bmc->guid[0],
2300 (long long) bmc->guid[8]);
2301 }
2302
remove_files(struct bmc_device * bmc)2303 static void remove_files(struct bmc_device *bmc)
2304 {
2305 if (!bmc->dev)
2306 return;
2307
2308 device_remove_file(&bmc->dev->dev,
2309 &bmc->device_id_attr);
2310 device_remove_file(&bmc->dev->dev,
2311 &bmc->provides_dev_sdrs_attr);
2312 device_remove_file(&bmc->dev->dev,
2313 &bmc->revision_attr);
2314 device_remove_file(&bmc->dev->dev,
2315 &bmc->firmware_rev_attr);
2316 device_remove_file(&bmc->dev->dev,
2317 &bmc->version_attr);
2318 device_remove_file(&bmc->dev->dev,
2319 &bmc->add_dev_support_attr);
2320 device_remove_file(&bmc->dev->dev,
2321 &bmc->manufacturer_id_attr);
2322 device_remove_file(&bmc->dev->dev,
2323 &bmc->product_id_attr);
2324
2325 if (bmc->id.aux_firmware_revision_set)
2326 device_remove_file(&bmc->dev->dev,
2327 &bmc->aux_firmware_rev_attr);
2328 if (bmc->guid_set)
2329 device_remove_file(&bmc->dev->dev,
2330 &bmc->guid_attr);
2331 }
2332
2333 static void
cleanup_bmc_device(struct kref * ref)2334 cleanup_bmc_device(struct kref *ref)
2335 {
2336 struct bmc_device *bmc;
2337
2338 bmc = container_of(ref, struct bmc_device, refcount);
2339
2340 remove_files(bmc);
2341 platform_device_unregister(bmc->dev);
2342 kfree(bmc);
2343 }
2344
ipmi_bmc_unregister(ipmi_smi_t intf)2345 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2346 {
2347 struct bmc_device *bmc = intf->bmc;
2348
2349 if (intf->sysfs_name) {
2350 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2351 kfree(intf->sysfs_name);
2352 intf->sysfs_name = NULL;
2353 }
2354 if (intf->my_dev_name) {
2355 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2356 kfree(intf->my_dev_name);
2357 intf->my_dev_name = NULL;
2358 }
2359
2360 mutex_lock(&ipmidriver_mutex);
2361 kref_put(&bmc->refcount, cleanup_bmc_device);
2362 intf->bmc = NULL;
2363 mutex_unlock(&ipmidriver_mutex);
2364 }
2365
create_files(struct bmc_device * bmc)2366 static int create_files(struct bmc_device *bmc)
2367 {
2368 int err;
2369
2370 bmc->device_id_attr.attr.name = "device_id";
2371 bmc->device_id_attr.attr.mode = S_IRUGO;
2372 bmc->device_id_attr.show = device_id_show;
2373 sysfs_attr_init(&bmc->device_id_attr.attr);
2374
2375 bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2376 bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2377 bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2378 sysfs_attr_init(&bmc->provides_dev_sdrs_attr.attr);
2379
2380 bmc->revision_attr.attr.name = "revision";
2381 bmc->revision_attr.attr.mode = S_IRUGO;
2382 bmc->revision_attr.show = revision_show;
2383 sysfs_attr_init(&bmc->revision_attr.attr);
2384
2385 bmc->firmware_rev_attr.attr.name = "firmware_revision";
2386 bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2387 bmc->firmware_rev_attr.show = firmware_rev_show;
2388 sysfs_attr_init(&bmc->firmware_rev_attr.attr);
2389
2390 bmc->version_attr.attr.name = "ipmi_version";
2391 bmc->version_attr.attr.mode = S_IRUGO;
2392 bmc->version_attr.show = ipmi_version_show;
2393 sysfs_attr_init(&bmc->version_attr.attr);
2394
2395 bmc->add_dev_support_attr.attr.name = "additional_device_support";
2396 bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2397 bmc->add_dev_support_attr.show = add_dev_support_show;
2398 sysfs_attr_init(&bmc->add_dev_support_attr.attr);
2399
2400 bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2401 bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2402 bmc->manufacturer_id_attr.show = manufacturer_id_show;
2403 sysfs_attr_init(&bmc->manufacturer_id_attr.attr);
2404
2405 bmc->product_id_attr.attr.name = "product_id";
2406 bmc->product_id_attr.attr.mode = S_IRUGO;
2407 bmc->product_id_attr.show = product_id_show;
2408 sysfs_attr_init(&bmc->product_id_attr.attr);
2409
2410 bmc->guid_attr.attr.name = "guid";
2411 bmc->guid_attr.attr.mode = S_IRUGO;
2412 bmc->guid_attr.show = guid_show;
2413 sysfs_attr_init(&bmc->guid_attr.attr);
2414
2415 bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2416 bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2417 bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2418 sysfs_attr_init(&bmc->aux_firmware_rev_attr.attr);
2419
2420 err = device_create_file(&bmc->dev->dev,
2421 &bmc->device_id_attr);
2422 if (err)
2423 goto out;
2424 err = device_create_file(&bmc->dev->dev,
2425 &bmc->provides_dev_sdrs_attr);
2426 if (err)
2427 goto out_devid;
2428 err = device_create_file(&bmc->dev->dev,
2429 &bmc->revision_attr);
2430 if (err)
2431 goto out_sdrs;
2432 err = device_create_file(&bmc->dev->dev,
2433 &bmc->firmware_rev_attr);
2434 if (err)
2435 goto out_rev;
2436 err = device_create_file(&bmc->dev->dev,
2437 &bmc->version_attr);
2438 if (err)
2439 goto out_firm;
2440 err = device_create_file(&bmc->dev->dev,
2441 &bmc->add_dev_support_attr);
2442 if (err)
2443 goto out_version;
2444 err = device_create_file(&bmc->dev->dev,
2445 &bmc->manufacturer_id_attr);
2446 if (err)
2447 goto out_add_dev;
2448 err = device_create_file(&bmc->dev->dev,
2449 &bmc->product_id_attr);
2450 if (err)
2451 goto out_manu;
2452 if (bmc->id.aux_firmware_revision_set) {
2453 err = device_create_file(&bmc->dev->dev,
2454 &bmc->aux_firmware_rev_attr);
2455 if (err)
2456 goto out_prod_id;
2457 }
2458 if (bmc->guid_set) {
2459 err = device_create_file(&bmc->dev->dev,
2460 &bmc->guid_attr);
2461 if (err)
2462 goto out_aux_firm;
2463 }
2464
2465 return 0;
2466
2467 out_aux_firm:
2468 if (bmc->id.aux_firmware_revision_set)
2469 device_remove_file(&bmc->dev->dev,
2470 &bmc->aux_firmware_rev_attr);
2471 out_prod_id:
2472 device_remove_file(&bmc->dev->dev,
2473 &bmc->product_id_attr);
2474 out_manu:
2475 device_remove_file(&bmc->dev->dev,
2476 &bmc->manufacturer_id_attr);
2477 out_add_dev:
2478 device_remove_file(&bmc->dev->dev,
2479 &bmc->add_dev_support_attr);
2480 out_version:
2481 device_remove_file(&bmc->dev->dev,
2482 &bmc->version_attr);
2483 out_firm:
2484 device_remove_file(&bmc->dev->dev,
2485 &bmc->firmware_rev_attr);
2486 out_rev:
2487 device_remove_file(&bmc->dev->dev,
2488 &bmc->revision_attr);
2489 out_sdrs:
2490 device_remove_file(&bmc->dev->dev,
2491 &bmc->provides_dev_sdrs_attr);
2492 out_devid:
2493 device_remove_file(&bmc->dev->dev,
2494 &bmc->device_id_attr);
2495 out:
2496 return err;
2497 }
2498
ipmi_bmc_register(ipmi_smi_t intf,int ifnum,const char * sysfs_name)2499 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2500 const char *sysfs_name)
2501 {
2502 int rv;
2503 struct bmc_device *bmc = intf->bmc;
2504 struct bmc_device *old_bmc;
2505 int size;
2506 char dummy[1];
2507
2508 mutex_lock(&ipmidriver_mutex);
2509
2510 /*
2511 * Try to find if there is an bmc_device struct
2512 * representing the interfaced BMC already
2513 */
2514 if (bmc->guid_set)
2515 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2516 else
2517 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2518 bmc->id.product_id,
2519 bmc->id.device_id);
2520
2521 /*
2522 * If there is already an bmc_device, free the new one,
2523 * otherwise register the new BMC device
2524 */
2525 if (old_bmc) {
2526 kfree(bmc);
2527 intf->bmc = old_bmc;
2528 bmc = old_bmc;
2529
2530 kref_get(&bmc->refcount);
2531 mutex_unlock(&ipmidriver_mutex);
2532
2533 printk(KERN_INFO
2534 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2535 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2536 bmc->id.manufacturer_id,
2537 bmc->id.product_id,
2538 bmc->id.device_id);
2539 } else {
2540 char name[14];
2541 unsigned char orig_dev_id = bmc->id.device_id;
2542 int warn_printed = 0;
2543
2544 snprintf(name, sizeof(name),
2545 "ipmi_bmc.%4.4x", bmc->id.product_id);
2546
2547 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2548 bmc->id.product_id,
2549 bmc->id.device_id)) {
2550 if (!warn_printed) {
2551 printk(KERN_WARNING PFX
2552 "This machine has two different BMCs"
2553 " with the same product id and device"
2554 " id. This is an error in the"
2555 " firmware, but incrementing the"
2556 " device id to work around the problem."
2557 " Prod ID = 0x%x, Dev ID = 0x%x\n",
2558 bmc->id.product_id, bmc->id.device_id);
2559 warn_printed = 1;
2560 }
2561 bmc->id.device_id++; /* Wraps at 255 */
2562 if (bmc->id.device_id == orig_dev_id) {
2563 printk(KERN_ERR PFX
2564 "Out of device ids!\n");
2565 break;
2566 }
2567 }
2568
2569 bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2570 if (!bmc->dev) {
2571 mutex_unlock(&ipmidriver_mutex);
2572 printk(KERN_ERR
2573 "ipmi_msghandler:"
2574 " Unable to allocate platform device\n");
2575 return -ENOMEM;
2576 }
2577 bmc->dev->dev.driver = &ipmidriver.driver;
2578 dev_set_drvdata(&bmc->dev->dev, bmc);
2579 kref_init(&bmc->refcount);
2580
2581 rv = platform_device_add(bmc->dev);
2582 mutex_unlock(&ipmidriver_mutex);
2583 if (rv) {
2584 platform_device_put(bmc->dev);
2585 bmc->dev = NULL;
2586 printk(KERN_ERR
2587 "ipmi_msghandler:"
2588 " Unable to register bmc device: %d\n",
2589 rv);
2590 /*
2591 * Don't go to out_err, you can only do that if
2592 * the device is registered already.
2593 */
2594 return rv;
2595 }
2596
2597 rv = create_files(bmc);
2598 if (rv) {
2599 mutex_lock(&ipmidriver_mutex);
2600 platform_device_unregister(bmc->dev);
2601 mutex_unlock(&ipmidriver_mutex);
2602
2603 return rv;
2604 }
2605
2606 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2607 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2608 bmc->id.manufacturer_id,
2609 bmc->id.product_id,
2610 bmc->id.device_id);
2611 }
2612
2613 /*
2614 * create symlink from system interface device to bmc device
2615 * and back.
2616 */
2617 intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2618 if (!intf->sysfs_name) {
2619 rv = -ENOMEM;
2620 printk(KERN_ERR
2621 "ipmi_msghandler: allocate link to BMC: %d\n",
2622 rv);
2623 goto out_err;
2624 }
2625
2626 rv = sysfs_create_link(&intf->si_dev->kobj,
2627 &bmc->dev->dev.kobj, intf->sysfs_name);
2628 if (rv) {
2629 kfree(intf->sysfs_name);
2630 intf->sysfs_name = NULL;
2631 printk(KERN_ERR
2632 "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2633 rv);
2634 goto out_err;
2635 }
2636
2637 size = snprintf(dummy, 0, "ipmi%d", ifnum);
2638 intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2639 if (!intf->my_dev_name) {
2640 kfree(intf->sysfs_name);
2641 intf->sysfs_name = NULL;
2642 rv = -ENOMEM;
2643 printk(KERN_ERR
2644 "ipmi_msghandler: allocate link from BMC: %d\n",
2645 rv);
2646 goto out_err;
2647 }
2648 snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2649
2650 rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2651 intf->my_dev_name);
2652 if (rv) {
2653 kfree(intf->sysfs_name);
2654 intf->sysfs_name = NULL;
2655 kfree(intf->my_dev_name);
2656 intf->my_dev_name = NULL;
2657 printk(KERN_ERR
2658 "ipmi_msghandler:"
2659 " Unable to create symlink to bmc: %d\n",
2660 rv);
2661 goto out_err;
2662 }
2663
2664 return 0;
2665
2666 out_err:
2667 ipmi_bmc_unregister(intf);
2668 return rv;
2669 }
2670
2671 static int
send_guid_cmd(ipmi_smi_t intf,int chan)2672 send_guid_cmd(ipmi_smi_t intf, int chan)
2673 {
2674 struct kernel_ipmi_msg msg;
2675 struct ipmi_system_interface_addr si;
2676
2677 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2678 si.channel = IPMI_BMC_CHANNEL;
2679 si.lun = 0;
2680
2681 msg.netfn = IPMI_NETFN_APP_REQUEST;
2682 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2683 msg.data = NULL;
2684 msg.data_len = 0;
2685 return i_ipmi_request(NULL,
2686 intf,
2687 (struct ipmi_addr *) &si,
2688 0,
2689 &msg,
2690 intf,
2691 NULL,
2692 NULL,
2693 0,
2694 intf->channels[0].address,
2695 intf->channels[0].lun,
2696 -1, 0);
2697 }
2698
2699 static void
guid_handler(ipmi_smi_t intf,struct ipmi_recv_msg * msg)2700 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2701 {
2702 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2703 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2704 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2705 /* Not for me */
2706 return;
2707
2708 if (msg->msg.data[0] != 0) {
2709 /* Error from getting the GUID, the BMC doesn't have one. */
2710 intf->bmc->guid_set = 0;
2711 goto out;
2712 }
2713
2714 if (msg->msg.data_len < 17) {
2715 intf->bmc->guid_set = 0;
2716 printk(KERN_WARNING PFX
2717 "guid_handler: The GUID response from the BMC was too"
2718 " short, it was %d but should have been 17. Assuming"
2719 " GUID is not available.\n",
2720 msg->msg.data_len);
2721 goto out;
2722 }
2723
2724 memcpy(intf->bmc->guid, msg->msg.data, 16);
2725 intf->bmc->guid_set = 1;
2726 out:
2727 wake_up(&intf->waitq);
2728 }
2729
2730 static void
get_guid(ipmi_smi_t intf)2731 get_guid(ipmi_smi_t intf)
2732 {
2733 int rv;
2734
2735 intf->bmc->guid_set = 0x2;
2736 intf->null_user_handler = guid_handler;
2737 rv = send_guid_cmd(intf, 0);
2738 if (rv)
2739 /* Send failed, no GUID available. */
2740 intf->bmc->guid_set = 0;
2741 wait_event(intf->waitq, intf->bmc->guid_set != 2);
2742 intf->null_user_handler = NULL;
2743 }
2744
2745 static int
send_channel_info_cmd(ipmi_smi_t intf,int chan)2746 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2747 {
2748 struct kernel_ipmi_msg msg;
2749 unsigned char data[1];
2750 struct ipmi_system_interface_addr si;
2751
2752 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2753 si.channel = IPMI_BMC_CHANNEL;
2754 si.lun = 0;
2755
2756 msg.netfn = IPMI_NETFN_APP_REQUEST;
2757 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2758 msg.data = data;
2759 msg.data_len = 1;
2760 data[0] = chan;
2761 return i_ipmi_request(NULL,
2762 intf,
2763 (struct ipmi_addr *) &si,
2764 0,
2765 &msg,
2766 intf,
2767 NULL,
2768 NULL,
2769 0,
2770 intf->channels[0].address,
2771 intf->channels[0].lun,
2772 -1, 0);
2773 }
2774
2775 static void
channel_handler(ipmi_smi_t intf,struct ipmi_recv_msg * msg)2776 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2777 {
2778 int rv = 0;
2779 int chan;
2780
2781 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2782 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2783 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2784 /* It's the one we want */
2785 if (msg->msg.data[0] != 0) {
2786 /* Got an error from the channel, just go on. */
2787
2788 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2789 /*
2790 * If the MC does not support this
2791 * command, that is legal. We just
2792 * assume it has one IPMB at channel
2793 * zero.
2794 */
2795 intf->channels[0].medium
2796 = IPMI_CHANNEL_MEDIUM_IPMB;
2797 intf->channels[0].protocol
2798 = IPMI_CHANNEL_PROTOCOL_IPMB;
2799
2800 intf->curr_channel = IPMI_MAX_CHANNELS;
2801 wake_up(&intf->waitq);
2802 goto out;
2803 }
2804 goto next_channel;
2805 }
2806 if (msg->msg.data_len < 4) {
2807 /* Message not big enough, just go on. */
2808 goto next_channel;
2809 }
2810 chan = intf->curr_channel;
2811 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2812 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2813
2814 next_channel:
2815 intf->curr_channel++;
2816 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2817 wake_up(&intf->waitq);
2818 else
2819 rv = send_channel_info_cmd(intf, intf->curr_channel);
2820
2821 if (rv) {
2822 /* Got an error somehow, just give up. */
2823 printk(KERN_WARNING PFX
2824 "Error sending channel information for channel"
2825 " %d: %d\n", intf->curr_channel, rv);
2826
2827 intf->curr_channel = IPMI_MAX_CHANNELS;
2828 wake_up(&intf->waitq);
2829 }
2830 }
2831 out:
2832 return;
2833 }
2834
ipmi_poll(ipmi_smi_t intf)2835 static void ipmi_poll(ipmi_smi_t intf)
2836 {
2837 if (intf->handlers->poll)
2838 intf->handlers->poll(intf->send_info);
2839 /* In case something came in */
2840 handle_new_recv_msgs(intf);
2841 }
2842
ipmi_poll_interface(ipmi_user_t user)2843 void ipmi_poll_interface(ipmi_user_t user)
2844 {
2845 ipmi_poll(user->intf);
2846 }
2847 EXPORT_SYMBOL(ipmi_poll_interface);
2848
ipmi_register_smi(struct ipmi_smi_handlers * handlers,void * send_info,struct ipmi_device_id * device_id,struct device * si_dev,const char * sysfs_name,unsigned char slave_addr)2849 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2850 void *send_info,
2851 struct ipmi_device_id *device_id,
2852 struct device *si_dev,
2853 const char *sysfs_name,
2854 unsigned char slave_addr)
2855 {
2856 int i, j;
2857 int rv;
2858 ipmi_smi_t intf;
2859 ipmi_smi_t tintf;
2860 struct list_head *link;
2861
2862 /*
2863 * Make sure the driver is actually initialized, this handles
2864 * problems with initialization order.
2865 */
2866 if (!initialized) {
2867 rv = ipmi_init_msghandler();
2868 if (rv)
2869 return rv;
2870 /*
2871 * The init code doesn't return an error if it was turned
2872 * off, but it won't initialize. Check that.
2873 */
2874 if (!initialized)
2875 return -ENODEV;
2876 }
2877
2878 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2879 if (!intf)
2880 return -ENOMEM;
2881
2882 intf->ipmi_version_major = ipmi_version_major(device_id);
2883 intf->ipmi_version_minor = ipmi_version_minor(device_id);
2884
2885 intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2886 if (!intf->bmc) {
2887 kfree(intf);
2888 return -ENOMEM;
2889 }
2890 intf->intf_num = -1; /* Mark it invalid for now. */
2891 kref_init(&intf->refcount);
2892 intf->bmc->id = *device_id;
2893 intf->si_dev = si_dev;
2894 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2895 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2896 intf->channels[j].lun = 2;
2897 }
2898 if (slave_addr != 0)
2899 intf->channels[0].address = slave_addr;
2900 INIT_LIST_HEAD(&intf->users);
2901 intf->handlers = handlers;
2902 intf->send_info = send_info;
2903 spin_lock_init(&intf->seq_lock);
2904 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2905 intf->seq_table[j].inuse = 0;
2906 intf->seq_table[j].seqid = 0;
2907 }
2908 intf->curr_seq = 0;
2909 #ifdef CONFIG_PROC_FS
2910 mutex_init(&intf->proc_entry_lock);
2911 #endif
2912 spin_lock_init(&intf->waiting_msgs_lock);
2913 INIT_LIST_HEAD(&intf->waiting_msgs);
2914 tasklet_init(&intf->recv_tasklet,
2915 smi_recv_tasklet,
2916 (unsigned long) intf);
2917 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2918 spin_lock_init(&intf->events_lock);
2919 atomic_set(&intf->event_waiters, 0);
2920 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2921 INIT_LIST_HEAD(&intf->waiting_events);
2922 intf->waiting_events_count = 0;
2923 mutex_init(&intf->cmd_rcvrs_mutex);
2924 spin_lock_init(&intf->maintenance_mode_lock);
2925 INIT_LIST_HEAD(&intf->cmd_rcvrs);
2926 init_waitqueue_head(&intf->waitq);
2927 for (i = 0; i < IPMI_NUM_STATS; i++)
2928 atomic_set(&intf->stats[i], 0);
2929
2930 intf->proc_dir = NULL;
2931
2932 mutex_lock(&smi_watchers_mutex);
2933 mutex_lock(&ipmi_interfaces_mutex);
2934 /* Look for a hole in the numbers. */
2935 i = 0;
2936 link = &ipmi_interfaces;
2937 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2938 if (tintf->intf_num != i) {
2939 link = &tintf->link;
2940 break;
2941 }
2942 i++;
2943 }
2944 /* Add the new interface in numeric order. */
2945 if (i == 0)
2946 list_add_rcu(&intf->link, &ipmi_interfaces);
2947 else
2948 list_add_tail_rcu(&intf->link, link);
2949
2950 rv = handlers->start_processing(send_info, intf);
2951 if (rv)
2952 goto out;
2953
2954 get_guid(intf);
2955
2956 if ((intf->ipmi_version_major > 1)
2957 || ((intf->ipmi_version_major == 1)
2958 && (intf->ipmi_version_minor >= 5))) {
2959 /*
2960 * Start scanning the channels to see what is
2961 * available.
2962 */
2963 intf->null_user_handler = channel_handler;
2964 intf->curr_channel = 0;
2965 rv = send_channel_info_cmd(intf, 0);
2966 if (rv) {
2967 printk(KERN_WARNING PFX
2968 "Error sending channel information for channel"
2969 " 0, %d\n", rv);
2970 goto out;
2971 }
2972
2973 /* Wait for the channel info to be read. */
2974 wait_event(intf->waitq,
2975 intf->curr_channel >= IPMI_MAX_CHANNELS);
2976 intf->null_user_handler = NULL;
2977 } else {
2978 /* Assume a single IPMB channel at zero. */
2979 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2980 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2981 intf->curr_channel = IPMI_MAX_CHANNELS;
2982 }
2983
2984 if (rv == 0)
2985 rv = add_proc_entries(intf, i);
2986
2987 rv = ipmi_bmc_register(intf, i, sysfs_name);
2988
2989 out:
2990 if (rv) {
2991 if (intf->proc_dir)
2992 remove_proc_entries(intf);
2993 intf->handlers = NULL;
2994 list_del_rcu(&intf->link);
2995 mutex_unlock(&ipmi_interfaces_mutex);
2996 mutex_unlock(&smi_watchers_mutex);
2997 synchronize_rcu();
2998 kref_put(&intf->refcount, intf_free);
2999 } else {
3000 /*
3001 * Keep memory order straight for RCU readers. Make
3002 * sure everything else is committed to memory before
3003 * setting intf_num to mark the interface valid.
3004 */
3005 smp_wmb();
3006 intf->intf_num = i;
3007 mutex_unlock(&ipmi_interfaces_mutex);
3008 /* After this point the interface is legal to use. */
3009 call_smi_watchers(i, intf->si_dev);
3010 mutex_unlock(&smi_watchers_mutex);
3011 }
3012
3013 return rv;
3014 }
3015 EXPORT_SYMBOL(ipmi_register_smi);
3016
cleanup_smi_msgs(ipmi_smi_t intf)3017 static void cleanup_smi_msgs(ipmi_smi_t intf)
3018 {
3019 int i;
3020 struct seq_table *ent;
3021
3022 /* No need for locks, the interface is down. */
3023 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3024 ent = &(intf->seq_table[i]);
3025 if (!ent->inuse)
3026 continue;
3027 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3028 }
3029 }
3030
ipmi_unregister_smi(ipmi_smi_t intf)3031 int ipmi_unregister_smi(ipmi_smi_t intf)
3032 {
3033 struct ipmi_smi_watcher *w;
3034 int intf_num = intf->intf_num;
3035
3036 ipmi_bmc_unregister(intf);
3037
3038 mutex_lock(&smi_watchers_mutex);
3039 mutex_lock(&ipmi_interfaces_mutex);
3040 intf->intf_num = -1;
3041 intf->handlers = NULL;
3042 list_del_rcu(&intf->link);
3043 mutex_unlock(&ipmi_interfaces_mutex);
3044 synchronize_rcu();
3045
3046 cleanup_smi_msgs(intf);
3047
3048 remove_proc_entries(intf);
3049
3050 /*
3051 * Call all the watcher interfaces to tell them that
3052 * an interface is gone.
3053 */
3054 list_for_each_entry(w, &smi_watchers, link)
3055 w->smi_gone(intf_num);
3056 mutex_unlock(&smi_watchers_mutex);
3057
3058 kref_put(&intf->refcount, intf_free);
3059 return 0;
3060 }
3061 EXPORT_SYMBOL(ipmi_unregister_smi);
3062
handle_ipmb_get_msg_rsp(ipmi_smi_t intf,struct ipmi_smi_msg * msg)3063 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf,
3064 struct ipmi_smi_msg *msg)
3065 {
3066 struct ipmi_ipmb_addr ipmb_addr;
3067 struct ipmi_recv_msg *recv_msg;
3068
3069 /*
3070 * This is 11, not 10, because the response must contain a
3071 * completion code.
3072 */
3073 if (msg->rsp_size < 11) {
3074 /* Message not big enough, just ignore it. */
3075 ipmi_inc_stat(intf, invalid_ipmb_responses);
3076 return 0;
3077 }
3078
3079 if (msg->rsp[2] != 0) {
3080 /* An error getting the response, just ignore it. */
3081 return 0;
3082 }
3083
3084 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3085 ipmb_addr.slave_addr = msg->rsp[6];
3086 ipmb_addr.channel = msg->rsp[3] & 0x0f;
3087 ipmb_addr.lun = msg->rsp[7] & 3;
3088
3089 /*
3090 * It's a response from a remote entity. Look up the sequence
3091 * number and handle the response.
3092 */
3093 if (intf_find_seq(intf,
3094 msg->rsp[7] >> 2,
3095 msg->rsp[3] & 0x0f,
3096 msg->rsp[8],
3097 (msg->rsp[4] >> 2) & (~1),
3098 (struct ipmi_addr *) &(ipmb_addr),
3099 &recv_msg)) {
3100 /*
3101 * We were unable to find the sequence number,
3102 * so just nuke the message.
3103 */
3104 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3105 return 0;
3106 }
3107
3108 memcpy(recv_msg->msg_data,
3109 &(msg->rsp[9]),
3110 msg->rsp_size - 9);
3111 /*
3112 * The other fields matched, so no need to set them, except
3113 * for netfn, which needs to be the response that was
3114 * returned, not the request value.
3115 */
3116 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3117 recv_msg->msg.data = recv_msg->msg_data;
3118 recv_msg->msg.data_len = msg->rsp_size - 10;
3119 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3120 ipmi_inc_stat(intf, handled_ipmb_responses);
3121 deliver_response(recv_msg);
3122
3123 return 0;
3124 }
3125
handle_ipmb_get_msg_cmd(ipmi_smi_t intf,struct ipmi_smi_msg * msg)3126 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf,
3127 struct ipmi_smi_msg *msg)
3128 {
3129 struct cmd_rcvr *rcvr;
3130 int rv = 0;
3131 unsigned char netfn;
3132 unsigned char cmd;
3133 unsigned char chan;
3134 ipmi_user_t user = NULL;
3135 struct ipmi_ipmb_addr *ipmb_addr;
3136 struct ipmi_recv_msg *recv_msg;
3137 struct ipmi_smi_handlers *handlers;
3138
3139 if (msg->rsp_size < 10) {
3140 /* Message not big enough, just ignore it. */
3141 ipmi_inc_stat(intf, invalid_commands);
3142 return 0;
3143 }
3144
3145 if (msg->rsp[2] != 0) {
3146 /* An error getting the response, just ignore it. */
3147 return 0;
3148 }
3149
3150 netfn = msg->rsp[4] >> 2;
3151 cmd = msg->rsp[8];
3152 chan = msg->rsp[3] & 0xf;
3153
3154 rcu_read_lock();
3155 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3156 if (rcvr) {
3157 user = rcvr->user;
3158 kref_get(&user->refcount);
3159 } else
3160 user = NULL;
3161 rcu_read_unlock();
3162
3163 if (user == NULL) {
3164 /* We didn't find a user, deliver an error response. */
3165 ipmi_inc_stat(intf, unhandled_commands);
3166
3167 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3168 msg->data[1] = IPMI_SEND_MSG_CMD;
3169 msg->data[2] = msg->rsp[3];
3170 msg->data[3] = msg->rsp[6];
3171 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3172 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3173 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3174 /* rqseq/lun */
3175 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3176 msg->data[8] = msg->rsp[8]; /* cmd */
3177 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3178 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3179 msg->data_size = 11;
3180
3181 #ifdef DEBUG_MSGING
3182 {
3183 int m;
3184 printk("Invalid command:");
3185 for (m = 0; m < msg->data_size; m++)
3186 printk(" %2.2x", msg->data[m]);
3187 printk("\n");
3188 }
3189 #endif
3190 rcu_read_lock();
3191 handlers = intf->handlers;
3192 if (handlers) {
3193 handlers->sender(intf->send_info, msg, 0);
3194 /*
3195 * We used the message, so return the value
3196 * that causes it to not be freed or
3197 * queued.
3198 */
3199 rv = -1;
3200 }
3201 rcu_read_unlock();
3202 } else {
3203 /* Deliver the message to the user. */
3204 ipmi_inc_stat(intf, handled_commands);
3205
3206 recv_msg = ipmi_alloc_recv_msg();
3207 if (!recv_msg) {
3208 /*
3209 * We couldn't allocate memory for the
3210 * message, so requeue it for handling
3211 * later.
3212 */
3213 rv = 1;
3214 kref_put(&user->refcount, free_user);
3215 } else {
3216 /* Extract the source address from the data. */
3217 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3218 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3219 ipmb_addr->slave_addr = msg->rsp[6];
3220 ipmb_addr->lun = msg->rsp[7] & 3;
3221 ipmb_addr->channel = msg->rsp[3] & 0xf;
3222
3223 /*
3224 * Extract the rest of the message information
3225 * from the IPMB header.
3226 */
3227 recv_msg->user = user;
3228 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3229 recv_msg->msgid = msg->rsp[7] >> 2;
3230 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3231 recv_msg->msg.cmd = msg->rsp[8];
3232 recv_msg->msg.data = recv_msg->msg_data;
3233
3234 /*
3235 * We chop off 10, not 9 bytes because the checksum
3236 * at the end also needs to be removed.
3237 */
3238 recv_msg->msg.data_len = msg->rsp_size - 10;
3239 memcpy(recv_msg->msg_data,
3240 &(msg->rsp[9]),
3241 msg->rsp_size - 10);
3242 deliver_response(recv_msg);
3243 }
3244 }
3245
3246 return rv;
3247 }
3248
handle_lan_get_msg_rsp(ipmi_smi_t intf,struct ipmi_smi_msg * msg)3249 static int handle_lan_get_msg_rsp(ipmi_smi_t intf,
3250 struct ipmi_smi_msg *msg)
3251 {
3252 struct ipmi_lan_addr lan_addr;
3253 struct ipmi_recv_msg *recv_msg;
3254
3255
3256 /*
3257 * This is 13, not 12, because the response must contain a
3258 * completion code.
3259 */
3260 if (msg->rsp_size < 13) {
3261 /* Message not big enough, just ignore it. */
3262 ipmi_inc_stat(intf, invalid_lan_responses);
3263 return 0;
3264 }
3265
3266 if (msg->rsp[2] != 0) {
3267 /* An error getting the response, just ignore it. */
3268 return 0;
3269 }
3270
3271 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3272 lan_addr.session_handle = msg->rsp[4];
3273 lan_addr.remote_SWID = msg->rsp[8];
3274 lan_addr.local_SWID = msg->rsp[5];
3275 lan_addr.channel = msg->rsp[3] & 0x0f;
3276 lan_addr.privilege = msg->rsp[3] >> 4;
3277 lan_addr.lun = msg->rsp[9] & 3;
3278
3279 /*
3280 * It's a response from a remote entity. Look up the sequence
3281 * number and handle the response.
3282 */
3283 if (intf_find_seq(intf,
3284 msg->rsp[9] >> 2,
3285 msg->rsp[3] & 0x0f,
3286 msg->rsp[10],
3287 (msg->rsp[6] >> 2) & (~1),
3288 (struct ipmi_addr *) &(lan_addr),
3289 &recv_msg)) {
3290 /*
3291 * We were unable to find the sequence number,
3292 * so just nuke the message.
3293 */
3294 ipmi_inc_stat(intf, unhandled_lan_responses);
3295 return 0;
3296 }
3297
3298 memcpy(recv_msg->msg_data,
3299 &(msg->rsp[11]),
3300 msg->rsp_size - 11);
3301 /*
3302 * The other fields matched, so no need to set them, except
3303 * for netfn, which needs to be the response that was
3304 * returned, not the request value.
3305 */
3306 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3307 recv_msg->msg.data = recv_msg->msg_data;
3308 recv_msg->msg.data_len = msg->rsp_size - 12;
3309 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3310 ipmi_inc_stat(intf, handled_lan_responses);
3311 deliver_response(recv_msg);
3312
3313 return 0;
3314 }
3315
handle_lan_get_msg_cmd(ipmi_smi_t intf,struct ipmi_smi_msg * msg)3316 static int handle_lan_get_msg_cmd(ipmi_smi_t intf,
3317 struct ipmi_smi_msg *msg)
3318 {
3319 struct cmd_rcvr *rcvr;
3320 int rv = 0;
3321 unsigned char netfn;
3322 unsigned char cmd;
3323 unsigned char chan;
3324 ipmi_user_t user = NULL;
3325 struct ipmi_lan_addr *lan_addr;
3326 struct ipmi_recv_msg *recv_msg;
3327
3328 if (msg->rsp_size < 12) {
3329 /* Message not big enough, just ignore it. */
3330 ipmi_inc_stat(intf, invalid_commands);
3331 return 0;
3332 }
3333
3334 if (msg->rsp[2] != 0) {
3335 /* An error getting the response, just ignore it. */
3336 return 0;
3337 }
3338
3339 netfn = msg->rsp[6] >> 2;
3340 cmd = msg->rsp[10];
3341 chan = msg->rsp[3] & 0xf;
3342
3343 rcu_read_lock();
3344 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3345 if (rcvr) {
3346 user = rcvr->user;
3347 kref_get(&user->refcount);
3348 } else
3349 user = NULL;
3350 rcu_read_unlock();
3351
3352 if (user == NULL) {
3353 /* We didn't find a user, just give up. */
3354 ipmi_inc_stat(intf, unhandled_commands);
3355
3356 /*
3357 * Don't do anything with these messages, just allow
3358 * them to be freed.
3359 */
3360 rv = 0;
3361 } else {
3362 /* Deliver the message to the user. */
3363 ipmi_inc_stat(intf, handled_commands);
3364
3365 recv_msg = ipmi_alloc_recv_msg();
3366 if (!recv_msg) {
3367 /*
3368 * We couldn't allocate memory for the
3369 * message, so requeue it for handling later.
3370 */
3371 rv = 1;
3372 kref_put(&user->refcount, free_user);
3373 } else {
3374 /* Extract the source address from the data. */
3375 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3376 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3377 lan_addr->session_handle = msg->rsp[4];
3378 lan_addr->remote_SWID = msg->rsp[8];
3379 lan_addr->local_SWID = msg->rsp[5];
3380 lan_addr->lun = msg->rsp[9] & 3;
3381 lan_addr->channel = msg->rsp[3] & 0xf;
3382 lan_addr->privilege = msg->rsp[3] >> 4;
3383
3384 /*
3385 * Extract the rest of the message information
3386 * from the IPMB header.
3387 */
3388 recv_msg->user = user;
3389 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3390 recv_msg->msgid = msg->rsp[9] >> 2;
3391 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3392 recv_msg->msg.cmd = msg->rsp[10];
3393 recv_msg->msg.data = recv_msg->msg_data;
3394
3395 /*
3396 * We chop off 12, not 11 bytes because the checksum
3397 * at the end also needs to be removed.
3398 */
3399 recv_msg->msg.data_len = msg->rsp_size - 12;
3400 memcpy(recv_msg->msg_data,
3401 &(msg->rsp[11]),
3402 msg->rsp_size - 12);
3403 deliver_response(recv_msg);
3404 }
3405 }
3406
3407 return rv;
3408 }
3409
3410 /*
3411 * This routine will handle "Get Message" command responses with
3412 * channels that use an OEM Medium. The message format belongs to
3413 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3414 * Chapter 22, sections 22.6 and 22.24 for more details.
3415 */
handle_oem_get_msg_cmd(ipmi_smi_t intf,struct ipmi_smi_msg * msg)3416 static int handle_oem_get_msg_cmd(ipmi_smi_t intf,
3417 struct ipmi_smi_msg *msg)
3418 {
3419 struct cmd_rcvr *rcvr;
3420 int rv = 0;
3421 unsigned char netfn;
3422 unsigned char cmd;
3423 unsigned char chan;
3424 ipmi_user_t user = NULL;
3425 struct ipmi_system_interface_addr *smi_addr;
3426 struct ipmi_recv_msg *recv_msg;
3427
3428 /*
3429 * We expect the OEM SW to perform error checking
3430 * so we just do some basic sanity checks
3431 */
3432 if (msg->rsp_size < 4) {
3433 /* Message not big enough, just ignore it. */
3434 ipmi_inc_stat(intf, invalid_commands);
3435 return 0;
3436 }
3437
3438 if (msg->rsp[2] != 0) {
3439 /* An error getting the response, just ignore it. */
3440 return 0;
3441 }
3442
3443 /*
3444 * This is an OEM Message so the OEM needs to know how
3445 * handle the message. We do no interpretation.
3446 */
3447 netfn = msg->rsp[0] >> 2;
3448 cmd = msg->rsp[1];
3449 chan = msg->rsp[3] & 0xf;
3450
3451 rcu_read_lock();
3452 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3453 if (rcvr) {
3454 user = rcvr->user;
3455 kref_get(&user->refcount);
3456 } else
3457 user = NULL;
3458 rcu_read_unlock();
3459
3460 if (user == NULL) {
3461 /* We didn't find a user, just give up. */
3462 ipmi_inc_stat(intf, unhandled_commands);
3463
3464 /*
3465 * Don't do anything with these messages, just allow
3466 * them to be freed.
3467 */
3468
3469 rv = 0;
3470 } else {
3471 /* Deliver the message to the user. */
3472 ipmi_inc_stat(intf, handled_commands);
3473
3474 recv_msg = ipmi_alloc_recv_msg();
3475 if (!recv_msg) {
3476 /*
3477 * We couldn't allocate memory for the
3478 * message, so requeue it for handling
3479 * later.
3480 */
3481 rv = 1;
3482 kref_put(&user->refcount, free_user);
3483 } else {
3484 /*
3485 * OEM Messages are expected to be delivered via
3486 * the system interface to SMS software. We might
3487 * need to visit this again depending on OEM
3488 * requirements
3489 */
3490 smi_addr = ((struct ipmi_system_interface_addr *)
3491 &(recv_msg->addr));
3492 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3493 smi_addr->channel = IPMI_BMC_CHANNEL;
3494 smi_addr->lun = msg->rsp[0] & 3;
3495
3496 recv_msg->user = user;
3497 recv_msg->user_msg_data = NULL;
3498 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3499 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3500 recv_msg->msg.cmd = msg->rsp[1];
3501 recv_msg->msg.data = recv_msg->msg_data;
3502
3503 /*
3504 * The message starts at byte 4 which follows the
3505 * the Channel Byte in the "GET MESSAGE" command
3506 */
3507 recv_msg->msg.data_len = msg->rsp_size - 4;
3508 memcpy(recv_msg->msg_data,
3509 &(msg->rsp[4]),
3510 msg->rsp_size - 4);
3511 deliver_response(recv_msg);
3512 }
3513 }
3514
3515 return rv;
3516 }
3517
copy_event_into_recv_msg(struct ipmi_recv_msg * recv_msg,struct ipmi_smi_msg * msg)3518 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3519 struct ipmi_smi_msg *msg)
3520 {
3521 struct ipmi_system_interface_addr *smi_addr;
3522
3523 recv_msg->msgid = 0;
3524 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3525 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3526 smi_addr->channel = IPMI_BMC_CHANNEL;
3527 smi_addr->lun = msg->rsp[0] & 3;
3528 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3529 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3530 recv_msg->msg.cmd = msg->rsp[1];
3531 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3532 recv_msg->msg.data = recv_msg->msg_data;
3533 recv_msg->msg.data_len = msg->rsp_size - 3;
3534 }
3535
handle_read_event_rsp(ipmi_smi_t intf,struct ipmi_smi_msg * msg)3536 static int handle_read_event_rsp(ipmi_smi_t intf,
3537 struct ipmi_smi_msg *msg)
3538 {
3539 struct ipmi_recv_msg *recv_msg, *recv_msg2;
3540 struct list_head msgs;
3541 ipmi_user_t user;
3542 int rv = 0;
3543 int deliver_count = 0;
3544 unsigned long flags;
3545
3546 if (msg->rsp_size < 19) {
3547 /* Message is too small to be an IPMB event. */
3548 ipmi_inc_stat(intf, invalid_events);
3549 return 0;
3550 }
3551
3552 if (msg->rsp[2] != 0) {
3553 /* An error getting the event, just ignore it. */
3554 return 0;
3555 }
3556
3557 INIT_LIST_HEAD(&msgs);
3558
3559 spin_lock_irqsave(&intf->events_lock, flags);
3560
3561 ipmi_inc_stat(intf, events);
3562
3563 /*
3564 * Allocate and fill in one message for every user that is
3565 * getting events.
3566 */
3567 rcu_read_lock();
3568 list_for_each_entry_rcu(user, &intf->users, link) {
3569 if (!user->gets_events)
3570 continue;
3571
3572 recv_msg = ipmi_alloc_recv_msg();
3573 if (!recv_msg) {
3574 rcu_read_unlock();
3575 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3576 link) {
3577 list_del(&recv_msg->link);
3578 ipmi_free_recv_msg(recv_msg);
3579 }
3580 /*
3581 * We couldn't allocate memory for the
3582 * message, so requeue it for handling
3583 * later.
3584 */
3585 rv = 1;
3586 goto out;
3587 }
3588
3589 deliver_count++;
3590
3591 copy_event_into_recv_msg(recv_msg, msg);
3592 recv_msg->user = user;
3593 kref_get(&user->refcount);
3594 list_add_tail(&(recv_msg->link), &msgs);
3595 }
3596 rcu_read_unlock();
3597
3598 if (deliver_count) {
3599 /* Now deliver all the messages. */
3600 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3601 list_del(&recv_msg->link);
3602 deliver_response(recv_msg);
3603 }
3604 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3605 /*
3606 * No one to receive the message, put it in queue if there's
3607 * not already too many things in the queue.
3608 */
3609 recv_msg = ipmi_alloc_recv_msg();
3610 if (!recv_msg) {
3611 /*
3612 * We couldn't allocate memory for the
3613 * message, so requeue it for handling
3614 * later.
3615 */
3616 rv = 1;
3617 goto out;
3618 }
3619
3620 copy_event_into_recv_msg(recv_msg, msg);
3621 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3622 intf->waiting_events_count++;
3623 } else if (!intf->event_msg_printed) {
3624 /*
3625 * There's too many things in the queue, discard this
3626 * message.
3627 */
3628 printk(KERN_WARNING PFX "Event queue full, discarding"
3629 " incoming events\n");
3630 intf->event_msg_printed = 1;
3631 }
3632
3633 out:
3634 spin_unlock_irqrestore(&(intf->events_lock), flags);
3635
3636 return rv;
3637 }
3638
handle_bmc_rsp(ipmi_smi_t intf,struct ipmi_smi_msg * msg)3639 static int handle_bmc_rsp(ipmi_smi_t intf,
3640 struct ipmi_smi_msg *msg)
3641 {
3642 struct ipmi_recv_msg *recv_msg;
3643 struct ipmi_user *user;
3644
3645 recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3646 if (recv_msg == NULL) {
3647 printk(KERN_WARNING
3648 "IPMI message received with no owner. This\n"
3649 "could be because of a malformed message, or\n"
3650 "because of a hardware error. Contact your\n"
3651 "hardware vender for assistance\n");
3652 return 0;
3653 }
3654
3655 user = recv_msg->user;
3656 /* Make sure the user still exists. */
3657 if (user && !user->valid) {
3658 /* The user for the message went away, so give up. */
3659 ipmi_inc_stat(intf, unhandled_local_responses);
3660 ipmi_free_recv_msg(recv_msg);
3661 } else {
3662 struct ipmi_system_interface_addr *smi_addr;
3663
3664 ipmi_inc_stat(intf, handled_local_responses);
3665 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3666 recv_msg->msgid = msg->msgid;
3667 smi_addr = ((struct ipmi_system_interface_addr *)
3668 &(recv_msg->addr));
3669 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3670 smi_addr->channel = IPMI_BMC_CHANNEL;
3671 smi_addr->lun = msg->rsp[0] & 3;
3672 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3673 recv_msg->msg.cmd = msg->rsp[1];
3674 memcpy(recv_msg->msg_data,
3675 &(msg->rsp[2]),
3676 msg->rsp_size - 2);
3677 recv_msg->msg.data = recv_msg->msg_data;
3678 recv_msg->msg.data_len = msg->rsp_size - 2;
3679 deliver_response(recv_msg);
3680 }
3681
3682 return 0;
3683 }
3684
3685 /*
3686 * Handle a received message. Return 1 if the message should be requeued,
3687 * 0 if the message should be freed, or -1 if the message should not
3688 * be freed or requeued.
3689 */
handle_one_recv_msg(ipmi_smi_t intf,struct ipmi_smi_msg * msg)3690 static int handle_one_recv_msg(ipmi_smi_t intf,
3691 struct ipmi_smi_msg *msg)
3692 {
3693 int requeue;
3694 int chan;
3695
3696 #ifdef DEBUG_MSGING
3697 int m;
3698 printk("Recv:");
3699 for (m = 0; m < msg->rsp_size; m++)
3700 printk(" %2.2x", msg->rsp[m]);
3701 printk("\n");
3702 #endif
3703 if (msg->rsp_size < 2) {
3704 /* Message is too small to be correct. */
3705 printk(KERN_WARNING PFX "BMC returned to small a message"
3706 " for netfn %x cmd %x, got %d bytes\n",
3707 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3708
3709 /* Generate an error response for the message. */
3710 msg->rsp[0] = msg->data[0] | (1 << 2);
3711 msg->rsp[1] = msg->data[1];
3712 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3713 msg->rsp_size = 3;
3714 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3715 || (msg->rsp[1] != msg->data[1])) {
3716 /*
3717 * The NetFN and Command in the response is not even
3718 * marginally correct.
3719 */
3720 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3721 " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3722 (msg->data[0] >> 2) | 1, msg->data[1],
3723 msg->rsp[0] >> 2, msg->rsp[1]);
3724
3725 /* Generate an error response for the message. */
3726 msg->rsp[0] = msg->data[0] | (1 << 2);
3727 msg->rsp[1] = msg->data[1];
3728 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3729 msg->rsp_size = 3;
3730 }
3731
3732 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3733 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3734 && (msg->user_data != NULL)) {
3735 /*
3736 * It's a response to a response we sent. For this we
3737 * deliver a send message response to the user.
3738 */
3739 struct ipmi_recv_msg *recv_msg = msg->user_data;
3740
3741 requeue = 0;
3742 if (msg->rsp_size < 2)
3743 /* Message is too small to be correct. */
3744 goto out;
3745
3746 chan = msg->data[2] & 0x0f;
3747 if (chan >= IPMI_MAX_CHANNELS)
3748 /* Invalid channel number */
3749 goto out;
3750
3751 if (!recv_msg)
3752 goto out;
3753
3754 /* Make sure the user still exists. */
3755 if (!recv_msg->user || !recv_msg->user->valid)
3756 goto out;
3757
3758 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3759 recv_msg->msg.data = recv_msg->msg_data;
3760 recv_msg->msg.data_len = 1;
3761 recv_msg->msg_data[0] = msg->rsp[2];
3762 deliver_response(recv_msg);
3763 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3764 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3765 /* It's from the receive queue. */
3766 chan = msg->rsp[3] & 0xf;
3767 if (chan >= IPMI_MAX_CHANNELS) {
3768 /* Invalid channel number */
3769 requeue = 0;
3770 goto out;
3771 }
3772
3773 /*
3774 * We need to make sure the channels have been initialized.
3775 * The channel_handler routine will set the "curr_channel"
3776 * equal to or greater than IPMI_MAX_CHANNELS when all the
3777 * channels for this interface have been initialized.
3778 */
3779 if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3780 requeue = 0; /* Throw the message away */
3781 goto out;
3782 }
3783
3784 switch (intf->channels[chan].medium) {
3785 case IPMI_CHANNEL_MEDIUM_IPMB:
3786 if (msg->rsp[4] & 0x04) {
3787 /*
3788 * It's a response, so find the
3789 * requesting message and send it up.
3790 */
3791 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3792 } else {
3793 /*
3794 * It's a command to the SMS from some other
3795 * entity. Handle that.
3796 */
3797 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3798 }
3799 break;
3800
3801 case IPMI_CHANNEL_MEDIUM_8023LAN:
3802 case IPMI_CHANNEL_MEDIUM_ASYNC:
3803 if (msg->rsp[6] & 0x04) {
3804 /*
3805 * It's a response, so find the
3806 * requesting message and send it up.
3807 */
3808 requeue = handle_lan_get_msg_rsp(intf, msg);
3809 } else {
3810 /*
3811 * It's a command to the SMS from some other
3812 * entity. Handle that.
3813 */
3814 requeue = handle_lan_get_msg_cmd(intf, msg);
3815 }
3816 break;
3817
3818 default:
3819 /* Check for OEM Channels. Clients had better
3820 register for these commands. */
3821 if ((intf->channels[chan].medium
3822 >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3823 && (intf->channels[chan].medium
3824 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3825 requeue = handle_oem_get_msg_cmd(intf, msg);
3826 } else {
3827 /*
3828 * We don't handle the channel type, so just
3829 * free the message.
3830 */
3831 requeue = 0;
3832 }
3833 }
3834
3835 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3836 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3837 /* It's an asynchronous event. */
3838 requeue = handle_read_event_rsp(intf, msg);
3839 } else {
3840 /* It's a response from the local BMC. */
3841 requeue = handle_bmc_rsp(intf, msg);
3842 }
3843
3844 out:
3845 return requeue;
3846 }
3847
3848 /*
3849 * If there are messages in the queue or pretimeouts, handle them.
3850 */
handle_new_recv_msgs(ipmi_smi_t intf)3851 static void handle_new_recv_msgs(ipmi_smi_t intf)
3852 {
3853 struct ipmi_smi_msg *smi_msg;
3854 unsigned long flags = 0;
3855 int rv;
3856 int run_to_completion = intf->run_to_completion;
3857
3858 /* See if any waiting messages need to be processed. */
3859 if (!run_to_completion)
3860 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3861 while (!list_empty(&intf->waiting_msgs)) {
3862 smi_msg = list_entry(intf->waiting_msgs.next,
3863 struct ipmi_smi_msg, link);
3864 list_del(&smi_msg->link);
3865 if (!run_to_completion)
3866 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3867 rv = handle_one_recv_msg(intf, smi_msg);
3868 if (!run_to_completion)
3869 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3870 if (rv == 0) {
3871 /* Message handled */
3872 ipmi_free_smi_msg(smi_msg);
3873 } else if (rv < 0) {
3874 /* Fatal error on the message, del but don't free. */
3875 } else {
3876 /*
3877 * To preserve message order, quit if we
3878 * can't handle a message.
3879 */
3880 list_add(&smi_msg->link, &intf->waiting_msgs);
3881 break;
3882 }
3883 }
3884 if (!run_to_completion)
3885 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3886
3887 /*
3888 * If the pretimout count is non-zero, decrement one from it and
3889 * deliver pretimeouts to all the users.
3890 */
3891 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3892 ipmi_user_t user;
3893
3894 rcu_read_lock();
3895 list_for_each_entry_rcu(user, &intf->users, link) {
3896 if (user->handler->ipmi_watchdog_pretimeout)
3897 user->handler->ipmi_watchdog_pretimeout(
3898 user->handler_data);
3899 }
3900 rcu_read_unlock();
3901 }
3902 }
3903
smi_recv_tasklet(unsigned long val)3904 static void smi_recv_tasklet(unsigned long val)
3905 {
3906 handle_new_recv_msgs((ipmi_smi_t) val);
3907 }
3908
3909 /* Handle a new message from the lower layer. */
ipmi_smi_msg_received(ipmi_smi_t intf,struct ipmi_smi_msg * msg)3910 void ipmi_smi_msg_received(ipmi_smi_t intf,
3911 struct ipmi_smi_msg *msg)
3912 {
3913 unsigned long flags = 0; /* keep us warning-free. */
3914 int run_to_completion;
3915
3916
3917 if ((msg->data_size >= 2)
3918 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3919 && (msg->data[1] == IPMI_SEND_MSG_CMD)
3920 && (msg->user_data == NULL)) {
3921 /*
3922 * This is the local response to a command send, start
3923 * the timer for these. The user_data will not be
3924 * NULL if this is a response send, and we will let
3925 * response sends just go through.
3926 */
3927
3928 /*
3929 * Check for errors, if we get certain errors (ones
3930 * that mean basically we can try again later), we
3931 * ignore them and start the timer. Otherwise we
3932 * report the error immediately.
3933 */
3934 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3935 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3936 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3937 && (msg->rsp[2] != IPMI_BUS_ERR)
3938 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3939 int chan = msg->rsp[3] & 0xf;
3940
3941 /* Got an error sending the message, handle it. */
3942 if (chan >= IPMI_MAX_CHANNELS)
3943 ; /* This shouldn't happen */
3944 else if ((intf->channels[chan].medium
3945 == IPMI_CHANNEL_MEDIUM_8023LAN)
3946 || (intf->channels[chan].medium
3947 == IPMI_CHANNEL_MEDIUM_ASYNC))
3948 ipmi_inc_stat(intf, sent_lan_command_errs);
3949 else
3950 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3951 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3952 } else
3953 /* The message was sent, start the timer. */
3954 intf_start_seq_timer(intf, msg->msgid);
3955
3956 ipmi_free_smi_msg(msg);
3957 goto out;
3958 }
3959
3960 /*
3961 * To preserve message order, if the list is not empty, we
3962 * tack this message onto the end of the list.
3963 */
3964 run_to_completion = intf->run_to_completion;
3965 if (!run_to_completion)
3966 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3967 list_add_tail(&msg->link, &intf->waiting_msgs);
3968 if (!run_to_completion)
3969 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3970
3971 tasklet_schedule(&intf->recv_tasklet);
3972 out:
3973 return;
3974 }
3975 EXPORT_SYMBOL(ipmi_smi_msg_received);
3976
ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)3977 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3978 {
3979 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3980 tasklet_schedule(&intf->recv_tasklet);
3981 }
3982 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3983
3984 static struct ipmi_smi_msg *
smi_from_recv_msg(ipmi_smi_t intf,struct ipmi_recv_msg * recv_msg,unsigned char seq,long seqid)3985 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3986 unsigned char seq, long seqid)
3987 {
3988 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3989 if (!smi_msg)
3990 /*
3991 * If we can't allocate the message, then just return, we
3992 * get 4 retries, so this should be ok.
3993 */
3994 return NULL;
3995
3996 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3997 smi_msg->data_size = recv_msg->msg.data_len;
3998 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3999
4000 #ifdef DEBUG_MSGING
4001 {
4002 int m;
4003 printk("Resend: ");
4004 for (m = 0; m < smi_msg->data_size; m++)
4005 printk(" %2.2x", smi_msg->data[m]);
4006 printk("\n");
4007 }
4008 #endif
4009 return smi_msg;
4010 }
4011
check_msg_timeout(ipmi_smi_t intf,struct seq_table * ent,struct list_head * timeouts,unsigned long timeout_period,int slot,unsigned long * flags,unsigned int * waiting_msgs)4012 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4013 struct list_head *timeouts,
4014 unsigned long timeout_period,
4015 int slot, unsigned long *flags,
4016 unsigned int *waiting_msgs)
4017 {
4018 struct ipmi_recv_msg *msg;
4019 struct ipmi_smi_handlers *handlers;
4020
4021 if (intf->intf_num == -1)
4022 return;
4023
4024 if (!ent->inuse)
4025 return;
4026
4027 if (timeout_period < ent->timeout) {
4028 ent->timeout -= timeout_period;
4029 (*waiting_msgs)++;
4030 return;
4031 }
4032
4033 if (ent->retries_left == 0) {
4034 /* The message has used all its retries. */
4035 ent->inuse = 0;
4036 msg = ent->recv_msg;
4037 list_add_tail(&msg->link, timeouts);
4038 if (ent->broadcast)
4039 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4040 else if (is_lan_addr(&ent->recv_msg->addr))
4041 ipmi_inc_stat(intf, timed_out_lan_commands);
4042 else
4043 ipmi_inc_stat(intf, timed_out_ipmb_commands);
4044 } else {
4045 struct ipmi_smi_msg *smi_msg;
4046 /* More retries, send again. */
4047
4048 (*waiting_msgs)++;
4049
4050 /*
4051 * Start with the max timer, set to normal timer after
4052 * the message is sent.
4053 */
4054 ent->timeout = MAX_MSG_TIMEOUT;
4055 ent->retries_left--;
4056 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4057 ent->seqid);
4058 if (!smi_msg) {
4059 if (is_lan_addr(&ent->recv_msg->addr))
4060 ipmi_inc_stat(intf,
4061 dropped_rexmit_lan_commands);
4062 else
4063 ipmi_inc_stat(intf,
4064 dropped_rexmit_ipmb_commands);
4065 return;
4066 }
4067
4068 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4069
4070 /*
4071 * Send the new message. We send with a zero
4072 * priority. It timed out, I doubt time is that
4073 * critical now, and high priority messages are really
4074 * only for messages to the local MC, which don't get
4075 * resent.
4076 */
4077 handlers = intf->handlers;
4078 if (handlers) {
4079 if (is_lan_addr(&ent->recv_msg->addr))
4080 ipmi_inc_stat(intf,
4081 retransmitted_lan_commands);
4082 else
4083 ipmi_inc_stat(intf,
4084 retransmitted_ipmb_commands);
4085
4086 intf->handlers->sender(intf->send_info,
4087 smi_msg, 0);
4088 } else
4089 ipmi_free_smi_msg(smi_msg);
4090
4091 spin_lock_irqsave(&intf->seq_lock, *flags);
4092 }
4093 }
4094
ipmi_timeout_handler(ipmi_smi_t intf,unsigned long timeout_period)4095 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf,
4096 unsigned long timeout_period)
4097 {
4098 struct list_head timeouts;
4099 struct ipmi_recv_msg *msg, *msg2;
4100 unsigned long flags;
4101 int i;
4102 unsigned int waiting_msgs = 0;
4103
4104 /*
4105 * Go through the seq table and find any messages that
4106 * have timed out, putting them in the timeouts
4107 * list.
4108 */
4109 INIT_LIST_HEAD(&timeouts);
4110 spin_lock_irqsave(&intf->seq_lock, flags);
4111 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4112 check_msg_timeout(intf, &(intf->seq_table[i]),
4113 &timeouts, timeout_period, i,
4114 &flags, &waiting_msgs);
4115 spin_unlock_irqrestore(&intf->seq_lock, flags);
4116
4117 list_for_each_entry_safe(msg, msg2, &timeouts, link)
4118 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4119
4120 /*
4121 * Maintenance mode handling. Check the timeout
4122 * optimistically before we claim the lock. It may
4123 * mean a timeout gets missed occasionally, but that
4124 * only means the timeout gets extended by one period
4125 * in that case. No big deal, and it avoids the lock
4126 * most of the time.
4127 */
4128 if (intf->auto_maintenance_timeout > 0) {
4129 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4130 if (intf->auto_maintenance_timeout > 0) {
4131 intf->auto_maintenance_timeout
4132 -= timeout_period;
4133 if (!intf->maintenance_mode
4134 && (intf->auto_maintenance_timeout <= 0)) {
4135 intf->maintenance_mode_enable = false;
4136 maintenance_mode_update(intf);
4137 }
4138 }
4139 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4140 flags);
4141 }
4142
4143 tasklet_schedule(&intf->recv_tasklet);
4144
4145 return waiting_msgs;
4146 }
4147
ipmi_request_event(ipmi_smi_t intf)4148 static void ipmi_request_event(ipmi_smi_t intf)
4149 {
4150 struct ipmi_smi_handlers *handlers;
4151
4152 /* No event requests when in maintenance mode. */
4153 if (intf->maintenance_mode_enable)
4154 return;
4155
4156 handlers = intf->handlers;
4157 if (handlers)
4158 handlers->request_events(intf->send_info);
4159 }
4160
4161 static struct timer_list ipmi_timer;
4162
4163 static atomic_t stop_operation;
4164
ipmi_timeout(unsigned long data)4165 static void ipmi_timeout(unsigned long data)
4166 {
4167 ipmi_smi_t intf;
4168 int nt = 0;
4169
4170 if (atomic_read(&stop_operation))
4171 return;
4172
4173 rcu_read_lock();
4174 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4175 int lnt = 0;
4176
4177 if (atomic_read(&intf->event_waiters)) {
4178 intf->ticks_to_req_ev--;
4179 if (intf->ticks_to_req_ev == 0) {
4180 ipmi_request_event(intf);
4181 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4182 }
4183 lnt++;
4184 }
4185
4186 lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4187
4188 lnt = !!lnt;
4189 if (lnt != intf->last_needs_timer &&
4190 intf->handlers->set_need_watch)
4191 intf->handlers->set_need_watch(intf->send_info, lnt);
4192 intf->last_needs_timer = lnt;
4193
4194 nt += lnt;
4195 }
4196 rcu_read_unlock();
4197
4198 if (nt)
4199 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4200 }
4201
need_waiter(ipmi_smi_t intf)4202 static void need_waiter(ipmi_smi_t intf)
4203 {
4204 /* Racy, but worst case we start the timer twice. */
4205 if (!timer_pending(&ipmi_timer))
4206 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4207 }
4208
4209 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4210 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4211
4212 /* FIXME - convert these to slabs. */
free_smi_msg(struct ipmi_smi_msg * msg)4213 static void free_smi_msg(struct ipmi_smi_msg *msg)
4214 {
4215 atomic_dec(&smi_msg_inuse_count);
4216 kfree(msg);
4217 }
4218
ipmi_alloc_smi_msg(void)4219 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4220 {
4221 struct ipmi_smi_msg *rv;
4222 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4223 if (rv) {
4224 rv->done = free_smi_msg;
4225 rv->user_data = NULL;
4226 atomic_inc(&smi_msg_inuse_count);
4227 }
4228 return rv;
4229 }
4230 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4231
free_recv_msg(struct ipmi_recv_msg * msg)4232 static void free_recv_msg(struct ipmi_recv_msg *msg)
4233 {
4234 atomic_dec(&recv_msg_inuse_count);
4235 kfree(msg);
4236 }
4237
ipmi_alloc_recv_msg(void)4238 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4239 {
4240 struct ipmi_recv_msg *rv;
4241
4242 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4243 if (rv) {
4244 rv->user = NULL;
4245 rv->done = free_recv_msg;
4246 atomic_inc(&recv_msg_inuse_count);
4247 }
4248 return rv;
4249 }
4250
ipmi_free_recv_msg(struct ipmi_recv_msg * msg)4251 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4252 {
4253 if (msg->user)
4254 kref_put(&msg->user->refcount, free_user);
4255 msg->done(msg);
4256 }
4257 EXPORT_SYMBOL(ipmi_free_recv_msg);
4258
4259 #ifdef CONFIG_IPMI_PANIC_EVENT
4260
4261 static atomic_t panic_done_count = ATOMIC_INIT(0);
4262
dummy_smi_done_handler(struct ipmi_smi_msg * msg)4263 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4264 {
4265 atomic_dec(&panic_done_count);
4266 }
4267
dummy_recv_done_handler(struct ipmi_recv_msg * msg)4268 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4269 {
4270 atomic_dec(&panic_done_count);
4271 }
4272
4273 /*
4274 * Inside a panic, send a message and wait for a response.
4275 */
ipmi_panic_request_and_wait(ipmi_smi_t intf,struct ipmi_addr * addr,struct kernel_ipmi_msg * msg)4276 static void ipmi_panic_request_and_wait(ipmi_smi_t intf,
4277 struct ipmi_addr *addr,
4278 struct kernel_ipmi_msg *msg)
4279 {
4280 struct ipmi_smi_msg smi_msg;
4281 struct ipmi_recv_msg recv_msg;
4282 int rv;
4283
4284 smi_msg.done = dummy_smi_done_handler;
4285 recv_msg.done = dummy_recv_done_handler;
4286 atomic_add(2, &panic_done_count);
4287 rv = i_ipmi_request(NULL,
4288 intf,
4289 addr,
4290 0,
4291 msg,
4292 intf,
4293 &smi_msg,
4294 &recv_msg,
4295 0,
4296 intf->channels[0].address,
4297 intf->channels[0].lun,
4298 0, 1); /* Don't retry, and don't wait. */
4299 if (rv)
4300 atomic_sub(2, &panic_done_count);
4301 while (atomic_read(&panic_done_count) != 0)
4302 ipmi_poll(intf);
4303 }
4304
4305 #ifdef CONFIG_IPMI_PANIC_STRING
event_receiver_fetcher(ipmi_smi_t intf,struct ipmi_recv_msg * msg)4306 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4307 {
4308 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4309 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4310 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4311 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4312 /* A get event receiver command, save it. */
4313 intf->event_receiver = msg->msg.data[1];
4314 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4315 }
4316 }
4317
device_id_fetcher(ipmi_smi_t intf,struct ipmi_recv_msg * msg)4318 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4319 {
4320 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4321 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4322 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4323 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4324 /*
4325 * A get device id command, save if we are an event
4326 * receiver or generator.
4327 */
4328 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4329 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4330 }
4331 }
4332 #endif
4333
send_panic_events(char * str)4334 static void send_panic_events(char *str)
4335 {
4336 struct kernel_ipmi_msg msg;
4337 ipmi_smi_t intf;
4338 unsigned char data[16];
4339 struct ipmi_system_interface_addr *si;
4340 struct ipmi_addr addr;
4341
4342 si = (struct ipmi_system_interface_addr *) &addr;
4343 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4344 si->channel = IPMI_BMC_CHANNEL;
4345 si->lun = 0;
4346
4347 /* Fill in an event telling that we have failed. */
4348 msg.netfn = 0x04; /* Sensor or Event. */
4349 msg.cmd = 2; /* Platform event command. */
4350 msg.data = data;
4351 msg.data_len = 8;
4352 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4353 data[1] = 0x03; /* This is for IPMI 1.0. */
4354 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4355 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4356 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4357
4358 /*
4359 * Put a few breadcrumbs in. Hopefully later we can add more things
4360 * to make the panic events more useful.
4361 */
4362 if (str) {
4363 data[3] = str[0];
4364 data[6] = str[1];
4365 data[7] = str[2];
4366 }
4367
4368 /* For every registered interface, send the event. */
4369 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4370 if (!intf->handlers)
4371 /* Interface is not ready. */
4372 continue;
4373
4374 intf->run_to_completion = 1;
4375 /* Send the event announcing the panic. */
4376 intf->handlers->set_run_to_completion(intf->send_info, 1);
4377 ipmi_panic_request_and_wait(intf, &addr, &msg);
4378 }
4379
4380 #ifdef CONFIG_IPMI_PANIC_STRING
4381 /*
4382 * On every interface, dump a bunch of OEM event holding the
4383 * string.
4384 */
4385 if (!str)
4386 return;
4387
4388 /* For every registered interface, send the event. */
4389 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4390 char *p = str;
4391 struct ipmi_ipmb_addr *ipmb;
4392 int j;
4393
4394 if (intf->intf_num == -1)
4395 /* Interface was not ready yet. */
4396 continue;
4397
4398 /*
4399 * intf_num is used as an marker to tell if the
4400 * interface is valid. Thus we need a read barrier to
4401 * make sure data fetched before checking intf_num
4402 * won't be used.
4403 */
4404 smp_rmb();
4405
4406 /*
4407 * First job here is to figure out where to send the
4408 * OEM events. There's no way in IPMI to send OEM
4409 * events using an event send command, so we have to
4410 * find the SEL to put them in and stick them in
4411 * there.
4412 */
4413
4414 /* Get capabilities from the get device id. */
4415 intf->local_sel_device = 0;
4416 intf->local_event_generator = 0;
4417 intf->event_receiver = 0;
4418
4419 /* Request the device info from the local MC. */
4420 msg.netfn = IPMI_NETFN_APP_REQUEST;
4421 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4422 msg.data = NULL;
4423 msg.data_len = 0;
4424 intf->null_user_handler = device_id_fetcher;
4425 ipmi_panic_request_and_wait(intf, &addr, &msg);
4426
4427 if (intf->local_event_generator) {
4428 /* Request the event receiver from the local MC. */
4429 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4430 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4431 msg.data = NULL;
4432 msg.data_len = 0;
4433 intf->null_user_handler = event_receiver_fetcher;
4434 ipmi_panic_request_and_wait(intf, &addr, &msg);
4435 }
4436 intf->null_user_handler = NULL;
4437
4438 /*
4439 * Validate the event receiver. The low bit must not
4440 * be 1 (it must be a valid IPMB address), it cannot
4441 * be zero, and it must not be my address.
4442 */
4443 if (((intf->event_receiver & 1) == 0)
4444 && (intf->event_receiver != 0)
4445 && (intf->event_receiver != intf->channels[0].address)) {
4446 /*
4447 * The event receiver is valid, send an IPMB
4448 * message.
4449 */
4450 ipmb = (struct ipmi_ipmb_addr *) &addr;
4451 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4452 ipmb->channel = 0; /* FIXME - is this right? */
4453 ipmb->lun = intf->event_receiver_lun;
4454 ipmb->slave_addr = intf->event_receiver;
4455 } else if (intf->local_sel_device) {
4456 /*
4457 * The event receiver was not valid (or was
4458 * me), but I am an SEL device, just dump it
4459 * in my SEL.
4460 */
4461 si = (struct ipmi_system_interface_addr *) &addr;
4462 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4463 si->channel = IPMI_BMC_CHANNEL;
4464 si->lun = 0;
4465 } else
4466 continue; /* No where to send the event. */
4467
4468 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4469 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4470 msg.data = data;
4471 msg.data_len = 16;
4472
4473 j = 0;
4474 while (*p) {
4475 int size = strlen(p);
4476
4477 if (size > 11)
4478 size = 11;
4479 data[0] = 0;
4480 data[1] = 0;
4481 data[2] = 0xf0; /* OEM event without timestamp. */
4482 data[3] = intf->channels[0].address;
4483 data[4] = j++; /* sequence # */
4484 /*
4485 * Always give 11 bytes, so strncpy will fill
4486 * it with zeroes for me.
4487 */
4488 strncpy(data+5, p, 11);
4489 p += size;
4490
4491 ipmi_panic_request_and_wait(intf, &addr, &msg);
4492 }
4493 }
4494 #endif /* CONFIG_IPMI_PANIC_STRING */
4495 }
4496 #endif /* CONFIG_IPMI_PANIC_EVENT */
4497
4498 static int has_panicked;
4499
panic_event(struct notifier_block * this,unsigned long event,void * ptr)4500 static int panic_event(struct notifier_block *this,
4501 unsigned long event,
4502 void *ptr)
4503 {
4504 ipmi_smi_t intf;
4505
4506 if (has_panicked)
4507 return NOTIFY_DONE;
4508 has_panicked = 1;
4509
4510 /* For every registered interface, set it to run to completion. */
4511 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4512 if (!intf->handlers)
4513 /* Interface is not ready. */
4514 continue;
4515
4516 intf->run_to_completion = 1;
4517 intf->handlers->set_run_to_completion(intf->send_info, 1);
4518 }
4519
4520 #ifdef CONFIG_IPMI_PANIC_EVENT
4521 send_panic_events(ptr);
4522 #endif
4523
4524 return NOTIFY_DONE;
4525 }
4526
4527 static struct notifier_block panic_block = {
4528 .notifier_call = panic_event,
4529 .next = NULL,
4530 .priority = 200 /* priority: INT_MAX >= x >= 0 */
4531 };
4532
ipmi_init_msghandler(void)4533 static int ipmi_init_msghandler(void)
4534 {
4535 int rv;
4536
4537 if (initialized)
4538 return 0;
4539
4540 rv = driver_register(&ipmidriver.driver);
4541 if (rv) {
4542 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4543 return rv;
4544 }
4545
4546 printk(KERN_INFO "ipmi message handler version "
4547 IPMI_DRIVER_VERSION "\n");
4548
4549 #ifdef CONFIG_PROC_FS
4550 proc_ipmi_root = proc_mkdir("ipmi", NULL);
4551 if (!proc_ipmi_root) {
4552 printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4553 return -ENOMEM;
4554 }
4555
4556 #endif /* CONFIG_PROC_FS */
4557
4558 setup_timer(&ipmi_timer, ipmi_timeout, 0);
4559 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4560
4561 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4562
4563 initialized = 1;
4564
4565 return 0;
4566 }
4567
ipmi_init_msghandler_mod(void)4568 static int __init ipmi_init_msghandler_mod(void)
4569 {
4570 ipmi_init_msghandler();
4571 return 0;
4572 }
4573
cleanup_ipmi(void)4574 static void __exit cleanup_ipmi(void)
4575 {
4576 int count;
4577
4578 if (!initialized)
4579 return;
4580
4581 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4582
4583 /*
4584 * This can't be called if any interfaces exist, so no worry
4585 * about shutting down the interfaces.
4586 */
4587
4588 /*
4589 * Tell the timer to stop, then wait for it to stop. This
4590 * avoids problems with race conditions removing the timer
4591 * here.
4592 */
4593 atomic_inc(&stop_operation);
4594 del_timer_sync(&ipmi_timer);
4595
4596 #ifdef CONFIG_PROC_FS
4597 proc_remove(proc_ipmi_root);
4598 #endif /* CONFIG_PROC_FS */
4599
4600 driver_unregister(&ipmidriver.driver);
4601
4602 initialized = 0;
4603
4604 /* Check for buffer leaks. */
4605 count = atomic_read(&smi_msg_inuse_count);
4606 if (count != 0)
4607 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4608 count);
4609 count = atomic_read(&recv_msg_inuse_count);
4610 if (count != 0)
4611 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4612 count);
4613 }
4614 module_exit(cleanup_ipmi);
4615
4616 module_init(ipmi_init_msghandler_mod);
4617 MODULE_LICENSE("GPL");
4618 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4619 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4620 " interface.");
4621 MODULE_VERSION(IPMI_DRIVER_VERSION);
4622