1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8 #include <linux/module.h>
9 #include <linux/regset.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12
13 #include <asm/sigcontext.h>
14 #include <asm/processor.h>
15 #include <asm/math_emu.h>
16 #include <asm/tlbflush.h>
17 #include <asm/uaccess.h>
18 #include <asm/ptrace.h>
19 #include <asm/i387.h>
20 #include <asm/fpu-internal.h>
21 #include <asm/user.h>
22
23 /*
24 * Were we in an interrupt that interrupted kernel mode?
25 *
26 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
27 * pair does nothing at all: the thread must not have fpu (so
28 * that we don't try to save the FPU state), and TS must
29 * be set (so that the clts/stts pair does nothing that is
30 * visible in the interrupted kernel thread).
31 *
32 * Except for the eagerfpu case when we return 1 unless we've already
33 * been eager and saved the state in kernel_fpu_begin().
34 */
interrupted_kernel_fpu_idle(void)35 static inline bool interrupted_kernel_fpu_idle(void)
36 {
37 if (use_eager_fpu())
38 return __thread_has_fpu(current);
39
40 return !__thread_has_fpu(current) &&
41 (read_cr0() & X86_CR0_TS);
42 }
43
44 /*
45 * Were we in user mode (or vm86 mode) when we were
46 * interrupted?
47 *
48 * Doing kernel_fpu_begin/end() is ok if we are running
49 * in an interrupt context from user mode - we'll just
50 * save the FPU state as required.
51 */
interrupted_user_mode(void)52 static inline bool interrupted_user_mode(void)
53 {
54 struct pt_regs *regs = get_irq_regs();
55 return regs && user_mode_vm(regs);
56 }
57
58 /*
59 * Can we use the FPU in kernel mode with the
60 * whole "kernel_fpu_begin/end()" sequence?
61 *
62 * It's always ok in process context (ie "not interrupt")
63 * but it is sometimes ok even from an irq.
64 */
irq_fpu_usable(void)65 bool irq_fpu_usable(void)
66 {
67 return !in_interrupt() ||
68 interrupted_user_mode() ||
69 interrupted_kernel_fpu_idle();
70 }
71 EXPORT_SYMBOL(irq_fpu_usable);
72
__kernel_fpu_begin(void)73 void __kernel_fpu_begin(void)
74 {
75 struct task_struct *me = current;
76
77 if (__thread_has_fpu(me)) {
78 __thread_clear_has_fpu(me);
79 __save_init_fpu(me);
80 /* We do 'stts()' in __kernel_fpu_end() */
81 } else if (!use_eager_fpu()) {
82 this_cpu_write(fpu_owner_task, NULL);
83 clts();
84 }
85 }
86 EXPORT_SYMBOL(__kernel_fpu_begin);
87
__kernel_fpu_end(void)88 void __kernel_fpu_end(void)
89 {
90 if (use_eager_fpu()) {
91 /*
92 * For eager fpu, most the time, tsk_used_math() is true.
93 * Restore the user math as we are done with the kernel usage.
94 * At few instances during thread exit, signal handling etc,
95 * tsk_used_math() is false. Those few places will take proper
96 * actions, so we don't need to restore the math here.
97 */
98 if (likely(tsk_used_math(current)))
99 math_state_restore();
100 } else {
101 stts();
102 }
103 }
104 EXPORT_SYMBOL(__kernel_fpu_end);
105
unlazy_fpu(struct task_struct * tsk)106 void unlazy_fpu(struct task_struct *tsk)
107 {
108 preempt_disable();
109 if (__thread_has_fpu(tsk)) {
110 __save_init_fpu(tsk);
111 __thread_fpu_end(tsk);
112 } else
113 tsk->thread.fpu_counter = 0;
114 preempt_enable();
115 }
116 EXPORT_SYMBOL(unlazy_fpu);
117
118 unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
119 unsigned int xstate_size;
120 EXPORT_SYMBOL_GPL(xstate_size);
121 static struct i387_fxsave_struct fx_scratch;
122
mxcsr_feature_mask_init(void)123 static void mxcsr_feature_mask_init(void)
124 {
125 unsigned long mask = 0;
126
127 if (cpu_has_fxsr) {
128 memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct));
129 asm volatile("fxsave %0" : "+m" (fx_scratch));
130 mask = fx_scratch.mxcsr_mask;
131 if (mask == 0)
132 mask = 0x0000ffbf;
133 }
134 mxcsr_feature_mask &= mask;
135 }
136
init_thread_xstate(void)137 static void init_thread_xstate(void)
138 {
139 /*
140 * Note that xstate_size might be overwriten later during
141 * xsave_init().
142 */
143
144 if (!cpu_has_fpu) {
145 /*
146 * Disable xsave as we do not support it if i387
147 * emulation is enabled.
148 */
149 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
150 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
151 xstate_size = sizeof(struct i387_soft_struct);
152 return;
153 }
154
155 if (cpu_has_fxsr)
156 xstate_size = sizeof(struct i387_fxsave_struct);
157 else
158 xstate_size = sizeof(struct i387_fsave_struct);
159
160 /*
161 * Quirk: we don't yet handle the XSAVES* instructions
162 * correctly, as we don't correctly convert between
163 * standard and compacted format when interfacing
164 * with user-space - so disable it for now.
165 *
166 * The difference is small: with recent CPUs the
167 * compacted format is only marginally smaller than
168 * the standard FPU state format.
169 *
170 * ( This is easy to backport while we are fixing
171 * XSAVES* support. )
172 */
173 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
174 }
175
176 /*
177 * Called at bootup to set up the initial FPU state that is later cloned
178 * into all processes.
179 */
180
fpu_init(void)181 void fpu_init(void)
182 {
183 unsigned long cr0;
184 unsigned long cr4_mask = 0;
185
186 #ifndef CONFIG_MATH_EMULATION
187 if (!cpu_has_fpu) {
188 pr_emerg("No FPU found and no math emulation present\n");
189 pr_emerg("Giving up\n");
190 for (;;)
191 asm volatile("hlt");
192 }
193 #endif
194 if (cpu_has_fxsr)
195 cr4_mask |= X86_CR4_OSFXSR;
196 if (cpu_has_xmm)
197 cr4_mask |= X86_CR4_OSXMMEXCPT;
198 if (cr4_mask)
199 cr4_set_bits(cr4_mask);
200
201 cr0 = read_cr0();
202 cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
203 if (!cpu_has_fpu)
204 cr0 |= X86_CR0_EM;
205 write_cr0(cr0);
206
207 /*
208 * init_thread_xstate is only called once to avoid overriding
209 * xstate_size during boot time or during CPU hotplug.
210 */
211 if (xstate_size == 0)
212 init_thread_xstate();
213
214 mxcsr_feature_mask_init();
215 xsave_init();
216 eager_fpu_init();
217 }
218
fpu_finit(struct fpu * fpu)219 void fpu_finit(struct fpu *fpu)
220 {
221 if (!cpu_has_fpu) {
222 finit_soft_fpu(&fpu->state->soft);
223 return;
224 }
225
226 if (cpu_has_fxsr) {
227 fx_finit(&fpu->state->fxsave);
228 } else {
229 struct i387_fsave_struct *fp = &fpu->state->fsave;
230 memset(fp, 0, xstate_size);
231 fp->cwd = 0xffff037fu;
232 fp->swd = 0xffff0000u;
233 fp->twd = 0xffffffffu;
234 fp->fos = 0xffff0000u;
235 }
236 }
237 EXPORT_SYMBOL_GPL(fpu_finit);
238
239 /*
240 * The _current_ task is using the FPU for the first time
241 * so initialize it and set the mxcsr to its default
242 * value at reset if we support XMM instructions and then
243 * remember the current task has used the FPU.
244 */
init_fpu(struct task_struct * tsk)245 int init_fpu(struct task_struct *tsk)
246 {
247 int ret;
248
249 if (tsk_used_math(tsk)) {
250 if (cpu_has_fpu && tsk == current)
251 unlazy_fpu(tsk);
252 tsk->thread.fpu.last_cpu = ~0;
253 return 0;
254 }
255
256 /*
257 * Memory allocation at the first usage of the FPU and other state.
258 */
259 ret = fpu_alloc(&tsk->thread.fpu);
260 if (ret)
261 return ret;
262
263 fpu_finit(&tsk->thread.fpu);
264
265 set_stopped_child_used_math(tsk);
266 return 0;
267 }
268 EXPORT_SYMBOL_GPL(init_fpu);
269
270 /*
271 * The xstateregs_active() routine is the same as the fpregs_active() routine,
272 * as the "regset->n" for the xstate regset will be updated based on the feature
273 * capabilites supported by the xsave.
274 */
fpregs_active(struct task_struct * target,const struct user_regset * regset)275 int fpregs_active(struct task_struct *target, const struct user_regset *regset)
276 {
277 return tsk_used_math(target) ? regset->n : 0;
278 }
279
xfpregs_active(struct task_struct * target,const struct user_regset * regset)280 int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
281 {
282 return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
283 }
284
xfpregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)285 int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
286 unsigned int pos, unsigned int count,
287 void *kbuf, void __user *ubuf)
288 {
289 int ret;
290
291 if (!cpu_has_fxsr)
292 return -ENODEV;
293
294 ret = init_fpu(target);
295 if (ret)
296 return ret;
297
298 sanitize_i387_state(target);
299
300 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
301 &target->thread.fpu.state->fxsave, 0, -1);
302 }
303
xfpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)304 int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
305 unsigned int pos, unsigned int count,
306 const void *kbuf, const void __user *ubuf)
307 {
308 int ret;
309
310 if (!cpu_has_fxsr)
311 return -ENODEV;
312
313 ret = init_fpu(target);
314 if (ret)
315 return ret;
316
317 sanitize_i387_state(target);
318
319 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
320 &target->thread.fpu.state->fxsave, 0, -1);
321
322 /*
323 * mxcsr reserved bits must be masked to zero for security reasons.
324 */
325 target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
326
327 /*
328 * update the header bits in the xsave header, indicating the
329 * presence of FP and SSE state.
330 */
331 if (cpu_has_xsave)
332 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
333
334 return ret;
335 }
336
xstateregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)337 int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
338 unsigned int pos, unsigned int count,
339 void *kbuf, void __user *ubuf)
340 {
341 int ret;
342
343 if (!cpu_has_xsave)
344 return -ENODEV;
345
346 ret = init_fpu(target);
347 if (ret)
348 return ret;
349
350 /*
351 * Copy the 48bytes defined by the software first into the xstate
352 * memory layout in the thread struct, so that we can copy the entire
353 * xstateregs to the user using one user_regset_copyout().
354 */
355 memcpy(&target->thread.fpu.state->fxsave.sw_reserved,
356 xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
357
358 /*
359 * Copy the xstate memory layout.
360 */
361 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
362 &target->thread.fpu.state->xsave, 0, -1);
363 return ret;
364 }
365
xstateregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)366 int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
367 unsigned int pos, unsigned int count,
368 const void *kbuf, const void __user *ubuf)
369 {
370 int ret;
371 struct xsave_hdr_struct *xsave_hdr;
372
373 if (!cpu_has_xsave)
374 return -ENODEV;
375
376 ret = init_fpu(target);
377 if (ret)
378 return ret;
379
380 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
381 &target->thread.fpu.state->xsave, 0, -1);
382
383 /*
384 * mxcsr reserved bits must be masked to zero for security reasons.
385 */
386 target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
387
388 xsave_hdr = &target->thread.fpu.state->xsave.xsave_hdr;
389
390 xsave_hdr->xstate_bv &= pcntxt_mask;
391
392 /* xcomp_bv must be 0 when using uncompacted format */
393 if (!ret && xsave_hdr->xcomp_bv)
394 ret = -EINVAL;
395
396 /*
397 * These bits must be zero.
398 */
399 memset(xsave_hdr->reserved, 0, 48);
400
401 /*
402 * In case of failure, mark all states as init:
403 */
404 if (ret)
405 fpu_finit(&target->thread.fpu);
406
407 return ret;
408 }
409
410 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
411
412 /*
413 * FPU tag word conversions.
414 */
415
twd_i387_to_fxsr(unsigned short twd)416 static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
417 {
418 unsigned int tmp; /* to avoid 16 bit prefixes in the code */
419
420 /* Transform each pair of bits into 01 (valid) or 00 (empty) */
421 tmp = ~twd;
422 tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
423 /* and move the valid bits to the lower byte. */
424 tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
425 tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
426 tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
427
428 return tmp;
429 }
430
431 #define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
432 #define FP_EXP_TAG_VALID 0
433 #define FP_EXP_TAG_ZERO 1
434 #define FP_EXP_TAG_SPECIAL 2
435 #define FP_EXP_TAG_EMPTY 3
436
twd_fxsr_to_i387(struct i387_fxsave_struct * fxsave)437 static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
438 {
439 struct _fpxreg *st;
440 u32 tos = (fxsave->swd >> 11) & 7;
441 u32 twd = (unsigned long) fxsave->twd;
442 u32 tag;
443 u32 ret = 0xffff0000u;
444 int i;
445
446 for (i = 0; i < 8; i++, twd >>= 1) {
447 if (twd & 0x1) {
448 st = FPREG_ADDR(fxsave, (i - tos) & 7);
449
450 switch (st->exponent & 0x7fff) {
451 case 0x7fff:
452 tag = FP_EXP_TAG_SPECIAL;
453 break;
454 case 0x0000:
455 if (!st->significand[0] &&
456 !st->significand[1] &&
457 !st->significand[2] &&
458 !st->significand[3])
459 tag = FP_EXP_TAG_ZERO;
460 else
461 tag = FP_EXP_TAG_SPECIAL;
462 break;
463 default:
464 if (st->significand[3] & 0x8000)
465 tag = FP_EXP_TAG_VALID;
466 else
467 tag = FP_EXP_TAG_SPECIAL;
468 break;
469 }
470 } else {
471 tag = FP_EXP_TAG_EMPTY;
472 }
473 ret |= tag << (2 * i);
474 }
475 return ret;
476 }
477
478 /*
479 * FXSR floating point environment conversions.
480 */
481
482 void
convert_from_fxsr(struct user_i387_ia32_struct * env,struct task_struct * tsk)483 convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
484 {
485 struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
486 struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
487 struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
488 int i;
489
490 env->cwd = fxsave->cwd | 0xffff0000u;
491 env->swd = fxsave->swd | 0xffff0000u;
492 env->twd = twd_fxsr_to_i387(fxsave);
493
494 #ifdef CONFIG_X86_64
495 env->fip = fxsave->rip;
496 env->foo = fxsave->rdp;
497 /*
498 * should be actually ds/cs at fpu exception time, but
499 * that information is not available in 64bit mode.
500 */
501 env->fcs = task_pt_regs(tsk)->cs;
502 if (tsk == current) {
503 savesegment(ds, env->fos);
504 } else {
505 env->fos = tsk->thread.ds;
506 }
507 env->fos |= 0xffff0000;
508 #else
509 env->fip = fxsave->fip;
510 env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
511 env->foo = fxsave->foo;
512 env->fos = fxsave->fos;
513 #endif
514
515 for (i = 0; i < 8; ++i)
516 memcpy(&to[i], &from[i], sizeof(to[0]));
517 }
518
convert_to_fxsr(struct task_struct * tsk,const struct user_i387_ia32_struct * env)519 void convert_to_fxsr(struct task_struct *tsk,
520 const struct user_i387_ia32_struct *env)
521
522 {
523 struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
524 struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
525 struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
526 int i;
527
528 fxsave->cwd = env->cwd;
529 fxsave->swd = env->swd;
530 fxsave->twd = twd_i387_to_fxsr(env->twd);
531 fxsave->fop = (u16) ((u32) env->fcs >> 16);
532 #ifdef CONFIG_X86_64
533 fxsave->rip = env->fip;
534 fxsave->rdp = env->foo;
535 /* cs and ds ignored */
536 #else
537 fxsave->fip = env->fip;
538 fxsave->fcs = (env->fcs & 0xffff);
539 fxsave->foo = env->foo;
540 fxsave->fos = env->fos;
541 #endif
542
543 for (i = 0; i < 8; ++i)
544 memcpy(&to[i], &from[i], sizeof(from[0]));
545 }
546
fpregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)547 int fpregs_get(struct task_struct *target, const struct user_regset *regset,
548 unsigned int pos, unsigned int count,
549 void *kbuf, void __user *ubuf)
550 {
551 struct user_i387_ia32_struct env;
552 int ret;
553
554 ret = init_fpu(target);
555 if (ret)
556 return ret;
557
558 if (!static_cpu_has(X86_FEATURE_FPU))
559 return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
560
561 if (!cpu_has_fxsr)
562 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
563 &target->thread.fpu.state->fsave, 0,
564 -1);
565
566 sanitize_i387_state(target);
567
568 if (kbuf && pos == 0 && count == sizeof(env)) {
569 convert_from_fxsr(kbuf, target);
570 return 0;
571 }
572
573 convert_from_fxsr(&env, target);
574
575 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
576 }
577
fpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)578 int fpregs_set(struct task_struct *target, const struct user_regset *regset,
579 unsigned int pos, unsigned int count,
580 const void *kbuf, const void __user *ubuf)
581 {
582 struct user_i387_ia32_struct env;
583 int ret;
584
585 ret = init_fpu(target);
586 if (ret)
587 return ret;
588
589 sanitize_i387_state(target);
590
591 if (!static_cpu_has(X86_FEATURE_FPU))
592 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
593
594 if (!cpu_has_fxsr)
595 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
596 &target->thread.fpu.state->fsave, 0,
597 -1);
598
599 if (pos > 0 || count < sizeof(env))
600 convert_from_fxsr(&env, target);
601
602 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
603 if (!ret)
604 convert_to_fxsr(target, &env);
605
606 /*
607 * update the header bit in the xsave header, indicating the
608 * presence of FP.
609 */
610 if (cpu_has_xsave)
611 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
612 return ret;
613 }
614
615 /*
616 * FPU state for core dumps.
617 * This is only used for a.out dumps now.
618 * It is declared generically using elf_fpregset_t (which is
619 * struct user_i387_struct) but is in fact only used for 32-bit
620 * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
621 */
dump_fpu(struct pt_regs * regs,struct user_i387_struct * fpu)622 int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
623 {
624 struct task_struct *tsk = current;
625 int fpvalid;
626
627 fpvalid = !!used_math();
628 if (fpvalid)
629 fpvalid = !fpregs_get(tsk, NULL,
630 0, sizeof(struct user_i387_ia32_struct),
631 fpu, NULL);
632
633 return fpvalid;
634 }
635 EXPORT_SYMBOL(dump_fpu);
636
637 #endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
638
no_387(char * s)639 static int __init no_387(char *s)
640 {
641 setup_clear_cpu_cap(X86_FEATURE_FPU);
642 return 1;
643 }
644
645 __setup("no387", no_387);
646
fpu_detect(struct cpuinfo_x86 * c)647 void fpu_detect(struct cpuinfo_x86 *c)
648 {
649 unsigned long cr0;
650 u16 fsw, fcw;
651
652 fsw = fcw = 0xffff;
653
654 cr0 = read_cr0();
655 cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
656 write_cr0(cr0);
657
658 asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
659 : "+m" (fsw), "+m" (fcw));
660
661 if (fsw == 0 && (fcw & 0x103f) == 0x003f)
662 set_cpu_cap(c, X86_FEATURE_FPU);
663 else
664 clear_cpu_cap(c, X86_FEATURE_FPU);
665
666 /* The final cr0 value is set in fpu_init() */
667 }
668