• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49 
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52 
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56 
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60 
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76 
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102 
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105 
106 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)107 void __jbd2_debug(int level, const char *file, const char *func,
108 		  unsigned int line, const char *fmt, ...)
109 {
110 	struct va_format vaf;
111 	va_list args;
112 
113 	if (level > jbd2_journal_enable_debug)
114 		return;
115 	va_start(args, fmt);
116 	vaf.fmt = fmt;
117 	vaf.va = &args;
118 	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119 	va_end(args);
120 }
121 EXPORT_SYMBOL(__jbd2_debug);
122 #endif
123 
124 /* Checksumming functions */
jbd2_verify_csum_type(journal_t * j,journal_superblock_t * sb)125 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
126 {
127 	if (!jbd2_journal_has_csum_v2or3(j))
128 		return 1;
129 
130 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
131 }
132 
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)133 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
134 {
135 	__u32 csum;
136 	__be32 old_csum;
137 
138 	old_csum = sb->s_checksum;
139 	sb->s_checksum = 0;
140 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
141 	sb->s_checksum = old_csum;
142 
143 	return cpu_to_be32(csum);
144 }
145 
jbd2_superblock_csum_verify(journal_t * j,journal_superblock_t * sb)146 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
147 {
148 	if (!jbd2_journal_has_csum_v2or3(j))
149 		return 1;
150 
151 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
152 }
153 
jbd2_superblock_csum_set(journal_t * j,journal_superblock_t * sb)154 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
155 {
156 	if (!jbd2_journal_has_csum_v2or3(j))
157 		return;
158 
159 	sb->s_checksum = jbd2_superblock_csum(j, sb);
160 }
161 
162 /*
163  * Helper function used to manage commit timeouts
164  */
165 
commit_timeout(unsigned long __data)166 static void commit_timeout(unsigned long __data)
167 {
168 	struct task_struct * p = (struct task_struct *) __data;
169 
170 	wake_up_process(p);
171 }
172 
173 /*
174  * kjournald2: The main thread function used to manage a logging device
175  * journal.
176  *
177  * This kernel thread is responsible for two things:
178  *
179  * 1) COMMIT:  Every so often we need to commit the current state of the
180  *    filesystem to disk.  The journal thread is responsible for writing
181  *    all of the metadata buffers to disk.
182  *
183  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
184  *    of the data in that part of the log has been rewritten elsewhere on
185  *    the disk.  Flushing these old buffers to reclaim space in the log is
186  *    known as checkpointing, and this thread is responsible for that job.
187  */
188 
kjournald2(void * arg)189 static int kjournald2(void *arg)
190 {
191 	journal_t *journal = arg;
192 	transaction_t *transaction;
193 
194 	/*
195 	 * Set up an interval timer which can be used to trigger a commit wakeup
196 	 * after the commit interval expires
197 	 */
198 	setup_timer(&journal->j_commit_timer, commit_timeout,
199 			(unsigned long)current);
200 
201 	set_freezable();
202 
203 	/* Record that the journal thread is running */
204 	journal->j_task = current;
205 	wake_up(&journal->j_wait_done_commit);
206 
207 	/*
208 	 * And now, wait forever for commit wakeup events.
209 	 */
210 	write_lock(&journal->j_state_lock);
211 
212 loop:
213 	if (journal->j_flags & JBD2_UNMOUNT)
214 		goto end_loop;
215 
216 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
217 		journal->j_commit_sequence, journal->j_commit_request);
218 
219 	if (journal->j_commit_sequence != journal->j_commit_request) {
220 		jbd_debug(1, "OK, requests differ\n");
221 		write_unlock(&journal->j_state_lock);
222 		del_timer_sync(&journal->j_commit_timer);
223 		jbd2_journal_commit_transaction(journal);
224 		write_lock(&journal->j_state_lock);
225 		goto loop;
226 	}
227 
228 	wake_up(&journal->j_wait_done_commit);
229 	if (freezing(current)) {
230 		/*
231 		 * The simpler the better. Flushing journal isn't a
232 		 * good idea, because that depends on threads that may
233 		 * be already stopped.
234 		 */
235 		jbd_debug(1, "Now suspending kjournald2\n");
236 		write_unlock(&journal->j_state_lock);
237 		try_to_freeze();
238 		write_lock(&journal->j_state_lock);
239 	} else {
240 		/*
241 		 * We assume on resume that commits are already there,
242 		 * so we don't sleep
243 		 */
244 		DEFINE_WAIT(wait);
245 		int should_sleep = 1;
246 
247 		prepare_to_wait(&journal->j_wait_commit, &wait,
248 				TASK_INTERRUPTIBLE);
249 		if (journal->j_commit_sequence != journal->j_commit_request)
250 			should_sleep = 0;
251 		transaction = journal->j_running_transaction;
252 		if (transaction && time_after_eq(jiffies,
253 						transaction->t_expires))
254 			should_sleep = 0;
255 		if (journal->j_flags & JBD2_UNMOUNT)
256 			should_sleep = 0;
257 		if (should_sleep) {
258 			write_unlock(&journal->j_state_lock);
259 			schedule();
260 			write_lock(&journal->j_state_lock);
261 		}
262 		finish_wait(&journal->j_wait_commit, &wait);
263 	}
264 
265 	jbd_debug(1, "kjournald2 wakes\n");
266 
267 	/*
268 	 * Were we woken up by a commit wakeup event?
269 	 */
270 	transaction = journal->j_running_transaction;
271 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
272 		journal->j_commit_request = transaction->t_tid;
273 		jbd_debug(1, "woke because of timeout\n");
274 	}
275 	goto loop;
276 
277 end_loop:
278 	write_unlock(&journal->j_state_lock);
279 	del_timer_sync(&journal->j_commit_timer);
280 	journal->j_task = NULL;
281 	wake_up(&journal->j_wait_done_commit);
282 	jbd_debug(1, "Journal thread exiting.\n");
283 	return 0;
284 }
285 
jbd2_journal_start_thread(journal_t * journal)286 static int jbd2_journal_start_thread(journal_t *journal)
287 {
288 	struct task_struct *t;
289 
290 	t = kthread_run(kjournald2, journal, "jbd2/%s",
291 			journal->j_devname);
292 	if (IS_ERR(t))
293 		return PTR_ERR(t);
294 
295 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
296 	return 0;
297 }
298 
journal_kill_thread(journal_t * journal)299 static void journal_kill_thread(journal_t *journal)
300 {
301 	write_lock(&journal->j_state_lock);
302 	journal->j_flags |= JBD2_UNMOUNT;
303 
304 	while (journal->j_task) {
305 		write_unlock(&journal->j_state_lock);
306 		wake_up(&journal->j_wait_commit);
307 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
308 		write_lock(&journal->j_state_lock);
309 	}
310 	write_unlock(&journal->j_state_lock);
311 }
312 
313 /*
314  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
315  *
316  * Writes a metadata buffer to a given disk block.  The actual IO is not
317  * performed but a new buffer_head is constructed which labels the data
318  * to be written with the correct destination disk block.
319  *
320  * Any magic-number escaping which needs to be done will cause a
321  * copy-out here.  If the buffer happens to start with the
322  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
323  * magic number is only written to the log for descripter blocks.  In
324  * this case, we copy the data and replace the first word with 0, and we
325  * return a result code which indicates that this buffer needs to be
326  * marked as an escaped buffer in the corresponding log descriptor
327  * block.  The missing word can then be restored when the block is read
328  * during recovery.
329  *
330  * If the source buffer has already been modified by a new transaction
331  * since we took the last commit snapshot, we use the frozen copy of
332  * that data for IO. If we end up using the existing buffer_head's data
333  * for the write, then we have to make sure nobody modifies it while the
334  * IO is in progress. do_get_write_access() handles this.
335  *
336  * The function returns a pointer to the buffer_head to be used for IO.
337  *
338  *
339  * Return value:
340  *  <0: Error
341  * >=0: Finished OK
342  *
343  * On success:
344  * Bit 0 set == escape performed on the data
345  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
346  */
347 
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)348 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
349 				  struct journal_head  *jh_in,
350 				  struct buffer_head **bh_out,
351 				  sector_t blocknr)
352 {
353 	int need_copy_out = 0;
354 	int done_copy_out = 0;
355 	int do_escape = 0;
356 	char *mapped_data;
357 	struct buffer_head *new_bh;
358 	struct page *new_page;
359 	unsigned int new_offset;
360 	struct buffer_head *bh_in = jh2bh(jh_in);
361 	journal_t *journal = transaction->t_journal;
362 
363 	/*
364 	 * The buffer really shouldn't be locked: only the current committing
365 	 * transaction is allowed to write it, so nobody else is allowed
366 	 * to do any IO.
367 	 *
368 	 * akpm: except if we're journalling data, and write() output is
369 	 * also part of a shared mapping, and another thread has
370 	 * decided to launch a writepage() against this buffer.
371 	 */
372 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
373 
374 retry_alloc:
375 	new_bh = alloc_buffer_head(GFP_NOFS);
376 	if (!new_bh) {
377 		/*
378 		 * Failure is not an option, but __GFP_NOFAIL is going
379 		 * away; so we retry ourselves here.
380 		 */
381 		congestion_wait(BLK_RW_ASYNC, HZ/50);
382 		goto retry_alloc;
383 	}
384 
385 	/* keep subsequent assertions sane */
386 	atomic_set(&new_bh->b_count, 1);
387 
388 	jbd_lock_bh_state(bh_in);
389 repeat:
390 	/*
391 	 * If a new transaction has already done a buffer copy-out, then
392 	 * we use that version of the data for the commit.
393 	 */
394 	if (jh_in->b_frozen_data) {
395 		done_copy_out = 1;
396 		new_page = virt_to_page(jh_in->b_frozen_data);
397 		new_offset = offset_in_page(jh_in->b_frozen_data);
398 	} else {
399 		new_page = jh2bh(jh_in)->b_page;
400 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
401 	}
402 
403 	mapped_data = kmap_atomic(new_page);
404 	/*
405 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
406 	 * before checking for escaping, as the trigger may modify the magic
407 	 * offset.  If a copy-out happens afterwards, it will have the correct
408 	 * data in the buffer.
409 	 */
410 	if (!done_copy_out)
411 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
412 					   jh_in->b_triggers);
413 
414 	/*
415 	 * Check for escaping
416 	 */
417 	if (*((__be32 *)(mapped_data + new_offset)) ==
418 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
419 		need_copy_out = 1;
420 		do_escape = 1;
421 	}
422 	kunmap_atomic(mapped_data);
423 
424 	/*
425 	 * Do we need to do a data copy?
426 	 */
427 	if (need_copy_out && !done_copy_out) {
428 		char *tmp;
429 
430 		jbd_unlock_bh_state(bh_in);
431 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
432 		if (!tmp) {
433 			brelse(new_bh);
434 			return -ENOMEM;
435 		}
436 		jbd_lock_bh_state(bh_in);
437 		if (jh_in->b_frozen_data) {
438 			jbd2_free(tmp, bh_in->b_size);
439 			goto repeat;
440 		}
441 
442 		jh_in->b_frozen_data = tmp;
443 		mapped_data = kmap_atomic(new_page);
444 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
445 		kunmap_atomic(mapped_data);
446 
447 		new_page = virt_to_page(tmp);
448 		new_offset = offset_in_page(tmp);
449 		done_copy_out = 1;
450 
451 		/*
452 		 * This isn't strictly necessary, as we're using frozen
453 		 * data for the escaping, but it keeps consistency with
454 		 * b_frozen_data usage.
455 		 */
456 		jh_in->b_frozen_triggers = jh_in->b_triggers;
457 	}
458 
459 	/*
460 	 * Did we need to do an escaping?  Now we've done all the
461 	 * copying, we can finally do so.
462 	 */
463 	if (do_escape) {
464 		mapped_data = kmap_atomic(new_page);
465 		*((unsigned int *)(mapped_data + new_offset)) = 0;
466 		kunmap_atomic(mapped_data);
467 	}
468 
469 	set_bh_page(new_bh, new_page, new_offset);
470 	new_bh->b_size = bh_in->b_size;
471 	new_bh->b_bdev = journal->j_dev;
472 	new_bh->b_blocknr = blocknr;
473 	new_bh->b_private = bh_in;
474 	set_buffer_mapped(new_bh);
475 	set_buffer_dirty(new_bh);
476 
477 	*bh_out = new_bh;
478 
479 	/*
480 	 * The to-be-written buffer needs to get moved to the io queue,
481 	 * and the original buffer whose contents we are shadowing or
482 	 * copying is moved to the transaction's shadow queue.
483 	 */
484 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
485 	spin_lock(&journal->j_list_lock);
486 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
487 	spin_unlock(&journal->j_list_lock);
488 	set_buffer_shadow(bh_in);
489 	jbd_unlock_bh_state(bh_in);
490 
491 	return do_escape | (done_copy_out << 1);
492 }
493 
494 /*
495  * Allocation code for the journal file.  Manage the space left in the
496  * journal, so that we can begin checkpointing when appropriate.
497  */
498 
499 /*
500  * Called with j_state_lock locked for writing.
501  * Returns true if a transaction commit was started.
502  */
__jbd2_log_start_commit(journal_t * journal,tid_t target)503 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
504 {
505 	/* Return if the txn has already requested to be committed */
506 	if (journal->j_commit_request == target)
507 		return 0;
508 
509 	/*
510 	 * The only transaction we can possibly wait upon is the
511 	 * currently running transaction (if it exists).  Otherwise,
512 	 * the target tid must be an old one.
513 	 */
514 	if (journal->j_running_transaction &&
515 	    journal->j_running_transaction->t_tid == target) {
516 		/*
517 		 * We want a new commit: OK, mark the request and wakeup the
518 		 * commit thread.  We do _not_ do the commit ourselves.
519 		 */
520 
521 		journal->j_commit_request = target;
522 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
523 			  journal->j_commit_request,
524 			  journal->j_commit_sequence);
525 		journal->j_running_transaction->t_requested = jiffies;
526 		wake_up(&journal->j_wait_commit);
527 		return 1;
528 	} else if (!tid_geq(journal->j_commit_request, target))
529 		/* This should never happen, but if it does, preserve
530 		   the evidence before kjournald goes into a loop and
531 		   increments j_commit_sequence beyond all recognition. */
532 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
533 			  journal->j_commit_request,
534 			  journal->j_commit_sequence,
535 			  target, journal->j_running_transaction ?
536 			  journal->j_running_transaction->t_tid : 0);
537 	return 0;
538 }
539 
jbd2_log_start_commit(journal_t * journal,tid_t tid)540 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
541 {
542 	int ret;
543 
544 	write_lock(&journal->j_state_lock);
545 	ret = __jbd2_log_start_commit(journal, tid);
546 	write_unlock(&journal->j_state_lock);
547 	return ret;
548 }
549 
550 /*
551  * Force and wait any uncommitted transactions.  We can only force the running
552  * transaction if we don't have an active handle, otherwise, we will deadlock.
553  * Returns: <0 in case of error,
554  *           0 if nothing to commit,
555  *           1 if transaction was successfully committed.
556  */
__jbd2_journal_force_commit(journal_t * journal)557 static int __jbd2_journal_force_commit(journal_t *journal)
558 {
559 	transaction_t *transaction = NULL;
560 	tid_t tid;
561 	int need_to_start = 0, ret = 0;
562 
563 	read_lock(&journal->j_state_lock);
564 	if (journal->j_running_transaction && !current->journal_info) {
565 		transaction = journal->j_running_transaction;
566 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
567 			need_to_start = 1;
568 	} else if (journal->j_committing_transaction)
569 		transaction = journal->j_committing_transaction;
570 
571 	if (!transaction) {
572 		/* Nothing to commit */
573 		read_unlock(&journal->j_state_lock);
574 		return 0;
575 	}
576 	tid = transaction->t_tid;
577 	read_unlock(&journal->j_state_lock);
578 	if (need_to_start)
579 		jbd2_log_start_commit(journal, tid);
580 	ret = jbd2_log_wait_commit(journal, tid);
581 	if (!ret)
582 		ret = 1;
583 
584 	return ret;
585 }
586 
587 /**
588  * Force and wait upon a commit if the calling process is not within
589  * transaction.  This is used for forcing out undo-protected data which contains
590  * bitmaps, when the fs is running out of space.
591  *
592  * @journal: journal to force
593  * Returns true if progress was made.
594  */
jbd2_journal_force_commit_nested(journal_t * journal)595 int jbd2_journal_force_commit_nested(journal_t *journal)
596 {
597 	int ret;
598 
599 	ret = __jbd2_journal_force_commit(journal);
600 	return ret > 0;
601 }
602 
603 /**
604  * int journal_force_commit() - force any uncommitted transactions
605  * @journal: journal to force
606  *
607  * Caller want unconditional commit. We can only force the running transaction
608  * if we don't have an active handle, otherwise, we will deadlock.
609  */
jbd2_journal_force_commit(journal_t * journal)610 int jbd2_journal_force_commit(journal_t *journal)
611 {
612 	int ret;
613 
614 	J_ASSERT(!current->journal_info);
615 	ret = __jbd2_journal_force_commit(journal);
616 	if (ret > 0)
617 		ret = 0;
618 	return ret;
619 }
620 
621 /*
622  * Start a commit of the current running transaction (if any).  Returns true
623  * if a transaction is going to be committed (or is currently already
624  * committing), and fills its tid in at *ptid
625  */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)626 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
627 {
628 	int ret = 0;
629 
630 	write_lock(&journal->j_state_lock);
631 	if (journal->j_running_transaction) {
632 		tid_t tid = journal->j_running_transaction->t_tid;
633 
634 		__jbd2_log_start_commit(journal, tid);
635 		/* There's a running transaction and we've just made sure
636 		 * it's commit has been scheduled. */
637 		if (ptid)
638 			*ptid = tid;
639 		ret = 1;
640 	} else if (journal->j_committing_transaction) {
641 		/*
642 		 * If commit has been started, then we have to wait for
643 		 * completion of that transaction.
644 		 */
645 		if (ptid)
646 			*ptid = journal->j_committing_transaction->t_tid;
647 		ret = 1;
648 	}
649 	write_unlock(&journal->j_state_lock);
650 	return ret;
651 }
652 
653 /*
654  * Return 1 if a given transaction has not yet sent barrier request
655  * connected with a transaction commit. If 0 is returned, transaction
656  * may or may not have sent the barrier. Used to avoid sending barrier
657  * twice in common cases.
658  */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)659 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
660 {
661 	int ret = 0;
662 	transaction_t *commit_trans;
663 
664 	if (!(journal->j_flags & JBD2_BARRIER))
665 		return 0;
666 	read_lock(&journal->j_state_lock);
667 	/* Transaction already committed? */
668 	if (tid_geq(journal->j_commit_sequence, tid))
669 		goto out;
670 	commit_trans = journal->j_committing_transaction;
671 	if (!commit_trans || commit_trans->t_tid != tid) {
672 		ret = 1;
673 		goto out;
674 	}
675 	/*
676 	 * Transaction is being committed and we already proceeded to
677 	 * submitting a flush to fs partition?
678 	 */
679 	if (journal->j_fs_dev != journal->j_dev) {
680 		if (!commit_trans->t_need_data_flush ||
681 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
682 			goto out;
683 	} else {
684 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
685 			goto out;
686 	}
687 	ret = 1;
688 out:
689 	read_unlock(&journal->j_state_lock);
690 	return ret;
691 }
692 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
693 
694 /*
695  * Wait for a specified commit to complete.
696  * The caller may not hold the journal lock.
697  */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)698 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
699 {
700 	int err = 0;
701 
702 	read_lock(&journal->j_state_lock);
703 #ifdef CONFIG_JBD2_DEBUG
704 	if (!tid_geq(journal->j_commit_request, tid)) {
705 		printk(KERN_ERR
706 		       "%s: error: j_commit_request=%d, tid=%d\n",
707 		       __func__, journal->j_commit_request, tid);
708 	}
709 #endif
710 	while (tid_gt(tid, journal->j_commit_sequence)) {
711 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
712 				  tid, journal->j_commit_sequence);
713 		read_unlock(&journal->j_state_lock);
714 		wake_up(&journal->j_wait_commit);
715 		wait_event(journal->j_wait_done_commit,
716 				!tid_gt(tid, journal->j_commit_sequence));
717 		read_lock(&journal->j_state_lock);
718 	}
719 	read_unlock(&journal->j_state_lock);
720 
721 	if (unlikely(is_journal_aborted(journal)))
722 		err = -EIO;
723 	return err;
724 }
725 
726 /*
727  * When this function returns the transaction corresponding to tid
728  * will be completed.  If the transaction has currently running, start
729  * committing that transaction before waiting for it to complete.  If
730  * the transaction id is stale, it is by definition already completed,
731  * so just return SUCCESS.
732  */
jbd2_complete_transaction(journal_t * journal,tid_t tid)733 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
734 {
735 	int	need_to_wait = 1;
736 
737 	read_lock(&journal->j_state_lock);
738 	if (journal->j_running_transaction &&
739 	    journal->j_running_transaction->t_tid == tid) {
740 		if (journal->j_commit_request != tid) {
741 			/* transaction not yet started, so request it */
742 			read_unlock(&journal->j_state_lock);
743 			jbd2_log_start_commit(journal, tid);
744 			goto wait_commit;
745 		}
746 	} else if (!(journal->j_committing_transaction &&
747 		     journal->j_committing_transaction->t_tid == tid))
748 		need_to_wait = 0;
749 	read_unlock(&journal->j_state_lock);
750 	if (!need_to_wait)
751 		return 0;
752 wait_commit:
753 	return jbd2_log_wait_commit(journal, tid);
754 }
755 EXPORT_SYMBOL(jbd2_complete_transaction);
756 
757 /*
758  * Log buffer allocation routines:
759  */
760 
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)761 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
762 {
763 	unsigned long blocknr;
764 
765 	write_lock(&journal->j_state_lock);
766 	J_ASSERT(journal->j_free > 1);
767 
768 	blocknr = journal->j_head;
769 	journal->j_head++;
770 	journal->j_free--;
771 	if (journal->j_head == journal->j_last)
772 		journal->j_head = journal->j_first;
773 	write_unlock(&journal->j_state_lock);
774 	return jbd2_journal_bmap(journal, blocknr, retp);
775 }
776 
777 /*
778  * Conversion of logical to physical block numbers for the journal
779  *
780  * On external journals the journal blocks are identity-mapped, so
781  * this is a no-op.  If needed, we can use j_blk_offset - everything is
782  * ready.
783  */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)784 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
785 		 unsigned long long *retp)
786 {
787 	int err = 0;
788 	unsigned long long ret;
789 
790 	if (journal->j_inode) {
791 		ret = bmap(journal->j_inode, blocknr);
792 		if (ret)
793 			*retp = ret;
794 		else {
795 			printk(KERN_ALERT "%s: journal block not found "
796 					"at offset %lu on %s\n",
797 			       __func__, blocknr, journal->j_devname);
798 			err = -EIO;
799 			__journal_abort_soft(journal, err);
800 		}
801 	} else {
802 		*retp = blocknr; /* +journal->j_blk_offset */
803 	}
804 	return err;
805 }
806 
807 /*
808  * We play buffer_head aliasing tricks to write data/metadata blocks to
809  * the journal without copying their contents, but for journal
810  * descriptor blocks we do need to generate bona fide buffers.
811  *
812  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
813  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
814  * But we don't bother doing that, so there will be coherency problems with
815  * mmaps of blockdevs which hold live JBD-controlled filesystems.
816  */
jbd2_journal_get_descriptor_buffer(journal_t * journal)817 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
818 {
819 	struct buffer_head *bh;
820 	unsigned long long blocknr;
821 	int err;
822 
823 	err = jbd2_journal_next_log_block(journal, &blocknr);
824 
825 	if (err)
826 		return NULL;
827 
828 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
829 	if (!bh)
830 		return NULL;
831 	lock_buffer(bh);
832 	memset(bh->b_data, 0, journal->j_blocksize);
833 	set_buffer_uptodate(bh);
834 	unlock_buffer(bh);
835 	BUFFER_TRACE(bh, "return this buffer");
836 	return bh;
837 }
838 
839 /*
840  * Return tid of the oldest transaction in the journal and block in the journal
841  * where the transaction starts.
842  *
843  * If the journal is now empty, return which will be the next transaction ID
844  * we will write and where will that transaction start.
845  *
846  * The return value is 0 if journal tail cannot be pushed any further, 1 if
847  * it can.
848  */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)849 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
850 			      unsigned long *block)
851 {
852 	transaction_t *transaction;
853 	int ret;
854 
855 	read_lock(&journal->j_state_lock);
856 	spin_lock(&journal->j_list_lock);
857 	transaction = journal->j_checkpoint_transactions;
858 	if (transaction) {
859 		*tid = transaction->t_tid;
860 		*block = transaction->t_log_start;
861 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
862 		*tid = transaction->t_tid;
863 		*block = transaction->t_log_start;
864 	} else if ((transaction = journal->j_running_transaction) != NULL) {
865 		*tid = transaction->t_tid;
866 		*block = journal->j_head;
867 	} else {
868 		*tid = journal->j_transaction_sequence;
869 		*block = journal->j_head;
870 	}
871 	ret = tid_gt(*tid, journal->j_tail_sequence);
872 	spin_unlock(&journal->j_list_lock);
873 	read_unlock(&journal->j_state_lock);
874 
875 	return ret;
876 }
877 
878 /*
879  * Update information in journal structure and in on disk journal superblock
880  * about log tail. This function does not check whether information passed in
881  * really pushes log tail further. It's responsibility of the caller to make
882  * sure provided log tail information is valid (e.g. by holding
883  * j_checkpoint_mutex all the time between computing log tail and calling this
884  * function as is the case with jbd2_cleanup_journal_tail()).
885  *
886  * Requires j_checkpoint_mutex
887  */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)888 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
889 {
890 	unsigned long freed;
891 	int ret;
892 
893 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
894 
895 	/*
896 	 * We cannot afford for write to remain in drive's caches since as
897 	 * soon as we update j_tail, next transaction can start reusing journal
898 	 * space and if we lose sb update during power failure we'd replay
899 	 * old transaction with possibly newly overwritten data.
900 	 */
901 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
902 	if (ret)
903 		goto out;
904 
905 	write_lock(&journal->j_state_lock);
906 	freed = block - journal->j_tail;
907 	if (block < journal->j_tail)
908 		freed += journal->j_last - journal->j_first;
909 
910 	trace_jbd2_update_log_tail(journal, tid, block, freed);
911 	jbd_debug(1,
912 		  "Cleaning journal tail from %d to %d (offset %lu), "
913 		  "freeing %lu\n",
914 		  journal->j_tail_sequence, tid, block, freed);
915 
916 	journal->j_free += freed;
917 	journal->j_tail_sequence = tid;
918 	journal->j_tail = block;
919 	write_unlock(&journal->j_state_lock);
920 
921 out:
922 	return ret;
923 }
924 
925 /*
926  * This is a variaon of __jbd2_update_log_tail which checks for validity of
927  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
928  * with other threads updating log tail.
929  */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)930 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
931 {
932 	mutex_lock(&journal->j_checkpoint_mutex);
933 	if (tid_gt(tid, journal->j_tail_sequence))
934 		__jbd2_update_log_tail(journal, tid, block);
935 	mutex_unlock(&journal->j_checkpoint_mutex);
936 }
937 
938 struct jbd2_stats_proc_session {
939 	journal_t *journal;
940 	struct transaction_stats_s *stats;
941 	int start;
942 	int max;
943 };
944 
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)945 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
946 {
947 	return *pos ? NULL : SEQ_START_TOKEN;
948 }
949 
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)950 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
951 {
952 	return NULL;
953 }
954 
jbd2_seq_info_show(struct seq_file * seq,void * v)955 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
956 {
957 	struct jbd2_stats_proc_session *s = seq->private;
958 
959 	if (v != SEQ_START_TOKEN)
960 		return 0;
961 	seq_printf(seq, "%lu transactions (%lu requested), "
962 		   "each up to %u blocks\n",
963 		   s->stats->ts_tid, s->stats->ts_requested,
964 		   s->journal->j_max_transaction_buffers);
965 	if (s->stats->ts_tid == 0)
966 		return 0;
967 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
968 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
969 	seq_printf(seq, "  %ums request delay\n",
970 	    (s->stats->ts_requested == 0) ? 0 :
971 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
972 			     s->stats->ts_requested));
973 	seq_printf(seq, "  %ums running transaction\n",
974 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
975 	seq_printf(seq, "  %ums transaction was being locked\n",
976 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
977 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
978 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
979 	seq_printf(seq, "  %ums logging transaction\n",
980 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
981 	seq_printf(seq, "  %lluus average transaction commit time\n",
982 		   div_u64(s->journal->j_average_commit_time, 1000));
983 	seq_printf(seq, "  %lu handles per transaction\n",
984 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
985 	seq_printf(seq, "  %lu blocks per transaction\n",
986 	    s->stats->run.rs_blocks / s->stats->ts_tid);
987 	seq_printf(seq, "  %lu logged blocks per transaction\n",
988 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
989 	return 0;
990 }
991 
jbd2_seq_info_stop(struct seq_file * seq,void * v)992 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
993 {
994 }
995 
996 static const struct seq_operations jbd2_seq_info_ops = {
997 	.start  = jbd2_seq_info_start,
998 	.next   = jbd2_seq_info_next,
999 	.stop   = jbd2_seq_info_stop,
1000 	.show   = jbd2_seq_info_show,
1001 };
1002 
jbd2_seq_info_open(struct inode * inode,struct file * file)1003 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1004 {
1005 	journal_t *journal = PDE_DATA(inode);
1006 	struct jbd2_stats_proc_session *s;
1007 	int rc, size;
1008 
1009 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1010 	if (s == NULL)
1011 		return -ENOMEM;
1012 	size = sizeof(struct transaction_stats_s);
1013 	s->stats = kmalloc(size, GFP_KERNEL);
1014 	if (s->stats == NULL) {
1015 		kfree(s);
1016 		return -ENOMEM;
1017 	}
1018 	spin_lock(&journal->j_history_lock);
1019 	memcpy(s->stats, &journal->j_stats, size);
1020 	s->journal = journal;
1021 	spin_unlock(&journal->j_history_lock);
1022 
1023 	rc = seq_open(file, &jbd2_seq_info_ops);
1024 	if (rc == 0) {
1025 		struct seq_file *m = file->private_data;
1026 		m->private = s;
1027 	} else {
1028 		kfree(s->stats);
1029 		kfree(s);
1030 	}
1031 	return rc;
1032 
1033 }
1034 
jbd2_seq_info_release(struct inode * inode,struct file * file)1035 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1036 {
1037 	struct seq_file *seq = file->private_data;
1038 	struct jbd2_stats_proc_session *s = seq->private;
1039 	kfree(s->stats);
1040 	kfree(s);
1041 	return seq_release(inode, file);
1042 }
1043 
1044 static const struct file_operations jbd2_seq_info_fops = {
1045 	.owner		= THIS_MODULE,
1046 	.open           = jbd2_seq_info_open,
1047 	.read           = seq_read,
1048 	.llseek         = seq_lseek,
1049 	.release        = jbd2_seq_info_release,
1050 };
1051 
1052 static struct proc_dir_entry *proc_jbd2_stats;
1053 
jbd2_stats_proc_init(journal_t * journal)1054 static void jbd2_stats_proc_init(journal_t *journal)
1055 {
1056 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1057 	if (journal->j_proc_entry) {
1058 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1059 				 &jbd2_seq_info_fops, journal);
1060 	}
1061 }
1062 
jbd2_stats_proc_exit(journal_t * journal)1063 static void jbd2_stats_proc_exit(journal_t *journal)
1064 {
1065 	remove_proc_entry("info", journal->j_proc_entry);
1066 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1067 }
1068 
1069 /*
1070  * Management for journal control blocks: functions to create and
1071  * destroy journal_t structures, and to initialise and read existing
1072  * journal blocks from disk.  */
1073 
1074 /* First: create and setup a journal_t object in memory.  We initialise
1075  * very few fields yet: that has to wait until we have created the
1076  * journal structures from from scratch, or loaded them from disk. */
1077 
journal_init_common(void)1078 static journal_t * journal_init_common (void)
1079 {
1080 	journal_t *journal;
1081 	int err;
1082 
1083 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1084 	if (!journal)
1085 		return NULL;
1086 
1087 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1088 	init_waitqueue_head(&journal->j_wait_done_commit);
1089 	init_waitqueue_head(&journal->j_wait_commit);
1090 	init_waitqueue_head(&journal->j_wait_updates);
1091 	init_waitqueue_head(&journal->j_wait_reserved);
1092 	mutex_init(&journal->j_barrier);
1093 	mutex_init(&journal->j_checkpoint_mutex);
1094 	spin_lock_init(&journal->j_revoke_lock);
1095 	spin_lock_init(&journal->j_list_lock);
1096 	rwlock_init(&journal->j_state_lock);
1097 
1098 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1099 	journal->j_min_batch_time = 0;
1100 	journal->j_max_batch_time = 15000; /* 15ms */
1101 	atomic_set(&journal->j_reserved_credits, 0);
1102 
1103 	/* The journal is marked for error until we succeed with recovery! */
1104 	journal->j_flags = JBD2_ABORT;
1105 
1106 	/* Set up a default-sized revoke table for the new mount. */
1107 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1108 	if (err) {
1109 		kfree(journal);
1110 		return NULL;
1111 	}
1112 
1113 	spin_lock_init(&journal->j_history_lock);
1114 
1115 	return journal;
1116 }
1117 
1118 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1119  *
1120  * Create a journal structure assigned some fixed set of disk blocks to
1121  * the journal.  We don't actually touch those disk blocks yet, but we
1122  * need to set up all of the mapping information to tell the journaling
1123  * system where the journal blocks are.
1124  *
1125  */
1126 
1127 /**
1128  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1129  *  @bdev: Block device on which to create the journal
1130  *  @fs_dev: Device which hold journalled filesystem for this journal.
1131  *  @start: Block nr Start of journal.
1132  *  @len:  Length of the journal in blocks.
1133  *  @blocksize: blocksize of journalling device
1134  *
1135  *  Returns: a newly created journal_t *
1136  *
1137  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1138  *  range of blocks on an arbitrary block device.
1139  *
1140  */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1141 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1142 			struct block_device *fs_dev,
1143 			unsigned long long start, int len, int blocksize)
1144 {
1145 	journal_t *journal = journal_init_common();
1146 	struct buffer_head *bh;
1147 	char *p;
1148 	int n;
1149 
1150 	if (!journal)
1151 		return NULL;
1152 
1153 	/* journal descriptor can store up to n blocks -bzzz */
1154 	journal->j_blocksize = blocksize;
1155 	journal->j_dev = bdev;
1156 	journal->j_fs_dev = fs_dev;
1157 	journal->j_blk_offset = start;
1158 	journal->j_maxlen = len;
1159 	bdevname(journal->j_dev, journal->j_devname);
1160 	p = journal->j_devname;
1161 	while ((p = strchr(p, '/')))
1162 		*p = '!';
1163 	jbd2_stats_proc_init(journal);
1164 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1165 	journal->j_wbufsize = n;
1166 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1167 	if (!journal->j_wbuf) {
1168 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1169 			__func__);
1170 		goto out_err;
1171 	}
1172 
1173 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1174 	if (!bh) {
1175 		printk(KERN_ERR
1176 		       "%s: Cannot get buffer for journal superblock\n",
1177 		       __func__);
1178 		goto out_err;
1179 	}
1180 	journal->j_sb_buffer = bh;
1181 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1182 
1183 	return journal;
1184 out_err:
1185 	kfree(journal->j_wbuf);
1186 	jbd2_stats_proc_exit(journal);
1187 	kfree(journal);
1188 	return NULL;
1189 }
1190 
1191 /**
1192  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1193  *  @inode: An inode to create the journal in
1194  *
1195  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1196  * the journal.  The inode must exist already, must support bmap() and
1197  * must have all data blocks preallocated.
1198  */
jbd2_journal_init_inode(struct inode * inode)1199 journal_t * jbd2_journal_init_inode (struct inode *inode)
1200 {
1201 	struct buffer_head *bh;
1202 	journal_t *journal = journal_init_common();
1203 	char *p;
1204 	int err;
1205 	int n;
1206 	unsigned long long blocknr;
1207 
1208 	if (!journal)
1209 		return NULL;
1210 
1211 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1212 	journal->j_inode = inode;
1213 	bdevname(journal->j_dev, journal->j_devname);
1214 	p = journal->j_devname;
1215 	while ((p = strchr(p, '/')))
1216 		*p = '!';
1217 	p = journal->j_devname + strlen(journal->j_devname);
1218 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1219 	jbd_debug(1,
1220 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1221 		  journal, inode->i_sb->s_id, inode->i_ino,
1222 		  (long long) inode->i_size,
1223 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1224 
1225 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1226 	journal->j_blocksize = inode->i_sb->s_blocksize;
1227 	jbd2_stats_proc_init(journal);
1228 
1229 	/* journal descriptor can store up to n blocks -bzzz */
1230 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1231 	journal->j_wbufsize = n;
1232 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1233 	if (!journal->j_wbuf) {
1234 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1235 			__func__);
1236 		goto out_err;
1237 	}
1238 
1239 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1240 	/* If that failed, give up */
1241 	if (err) {
1242 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1243 		       __func__);
1244 		goto out_err;
1245 	}
1246 
1247 	bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1248 	if (!bh) {
1249 		printk(KERN_ERR
1250 		       "%s: Cannot get buffer for journal superblock\n",
1251 		       __func__);
1252 		goto out_err;
1253 	}
1254 	journal->j_sb_buffer = bh;
1255 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1256 
1257 	return journal;
1258 out_err:
1259 	kfree(journal->j_wbuf);
1260 	jbd2_stats_proc_exit(journal);
1261 	kfree(journal);
1262 	return NULL;
1263 }
1264 
1265 /*
1266  * If the journal init or create aborts, we need to mark the journal
1267  * superblock as being NULL to prevent the journal destroy from writing
1268  * back a bogus superblock.
1269  */
journal_fail_superblock(journal_t * journal)1270 static void journal_fail_superblock (journal_t *journal)
1271 {
1272 	struct buffer_head *bh = journal->j_sb_buffer;
1273 	brelse(bh);
1274 	journal->j_sb_buffer = NULL;
1275 }
1276 
1277 /*
1278  * Given a journal_t structure, initialise the various fields for
1279  * startup of a new journaling session.  We use this both when creating
1280  * a journal, and after recovering an old journal to reset it for
1281  * subsequent use.
1282  */
1283 
journal_reset(journal_t * journal)1284 static int journal_reset(journal_t *journal)
1285 {
1286 	journal_superblock_t *sb = journal->j_superblock;
1287 	unsigned long long first, last;
1288 
1289 	first = be32_to_cpu(sb->s_first);
1290 	last = be32_to_cpu(sb->s_maxlen);
1291 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1292 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1293 		       first, last);
1294 		journal_fail_superblock(journal);
1295 		return -EINVAL;
1296 	}
1297 
1298 	journal->j_first = first;
1299 	journal->j_last = last;
1300 
1301 	journal->j_head = first;
1302 	journal->j_tail = first;
1303 	journal->j_free = last - first;
1304 
1305 	journal->j_tail_sequence = journal->j_transaction_sequence;
1306 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1307 	journal->j_commit_request = journal->j_commit_sequence;
1308 
1309 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1310 
1311 	/*
1312 	 * As a special case, if the on-disk copy is already marked as needing
1313 	 * no recovery (s_start == 0), then we can safely defer the superblock
1314 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1315 	 * attempting a write to a potential-readonly device.
1316 	 */
1317 	if (sb->s_start == 0) {
1318 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1319 			"(start %ld, seq %d, errno %d)\n",
1320 			journal->j_tail, journal->j_tail_sequence,
1321 			journal->j_errno);
1322 		journal->j_flags |= JBD2_FLUSHED;
1323 	} else {
1324 		/* Lock here to make assertions happy... */
1325 		mutex_lock(&journal->j_checkpoint_mutex);
1326 		/*
1327 		 * Update log tail information. We use WRITE_FUA since new
1328 		 * transaction will start reusing journal space and so we
1329 		 * must make sure information about current log tail is on
1330 		 * disk before that.
1331 		 */
1332 		jbd2_journal_update_sb_log_tail(journal,
1333 						journal->j_tail_sequence,
1334 						journal->j_tail,
1335 						WRITE_FUA);
1336 		mutex_unlock(&journal->j_checkpoint_mutex);
1337 	}
1338 	return jbd2_journal_start_thread(journal);
1339 }
1340 
jbd2_write_superblock(journal_t * journal,int write_op)1341 static int jbd2_write_superblock(journal_t *journal, int write_op)
1342 {
1343 	struct buffer_head *bh = journal->j_sb_buffer;
1344 	journal_superblock_t *sb = journal->j_superblock;
1345 	int ret;
1346 
1347 	trace_jbd2_write_superblock(journal, write_op);
1348 	if (!(journal->j_flags & JBD2_BARRIER))
1349 		write_op &= ~(REQ_FUA | REQ_FLUSH);
1350 	lock_buffer(bh);
1351 	if (buffer_write_io_error(bh)) {
1352 		/*
1353 		 * Oh, dear.  A previous attempt to write the journal
1354 		 * superblock failed.  This could happen because the
1355 		 * USB device was yanked out.  Or it could happen to
1356 		 * be a transient write error and maybe the block will
1357 		 * be remapped.  Nothing we can do but to retry the
1358 		 * write and hope for the best.
1359 		 */
1360 		printk(KERN_ERR "JBD2: previous I/O error detected "
1361 		       "for journal superblock update for %s.\n",
1362 		       journal->j_devname);
1363 		clear_buffer_write_io_error(bh);
1364 		set_buffer_uptodate(bh);
1365 	}
1366 	jbd2_superblock_csum_set(journal, sb);
1367 	get_bh(bh);
1368 	bh->b_end_io = end_buffer_write_sync;
1369 	ret = submit_bh(write_op, bh);
1370 	wait_on_buffer(bh);
1371 	if (buffer_write_io_error(bh)) {
1372 		clear_buffer_write_io_error(bh);
1373 		set_buffer_uptodate(bh);
1374 		ret = -EIO;
1375 	}
1376 	if (ret) {
1377 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1378 		       "journal superblock for %s.\n", ret,
1379 		       journal->j_devname);
1380 		jbd2_journal_abort(journal, ret);
1381 	}
1382 
1383 	return ret;
1384 }
1385 
1386 /**
1387  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1388  * @journal: The journal to update.
1389  * @tail_tid: TID of the new transaction at the tail of the log
1390  * @tail_block: The first block of the transaction at the tail of the log
1391  * @write_op: With which operation should we write the journal sb
1392  *
1393  * Update a journal's superblock information about log tail and write it to
1394  * disk, waiting for the IO to complete.
1395  */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,int write_op)1396 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1397 				     unsigned long tail_block, int write_op)
1398 {
1399 	journal_superblock_t *sb = journal->j_superblock;
1400 	int ret;
1401 
1402 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1403 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1404 		  tail_block, tail_tid);
1405 
1406 	sb->s_sequence = cpu_to_be32(tail_tid);
1407 	sb->s_start    = cpu_to_be32(tail_block);
1408 
1409 	ret = jbd2_write_superblock(journal, write_op);
1410 	if (ret)
1411 		goto out;
1412 
1413 	/* Log is no longer empty */
1414 	write_lock(&journal->j_state_lock);
1415 	WARN_ON(!sb->s_sequence);
1416 	journal->j_flags &= ~JBD2_FLUSHED;
1417 	write_unlock(&journal->j_state_lock);
1418 
1419 out:
1420 	return ret;
1421 }
1422 
1423 /**
1424  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1425  * @journal: The journal to update.
1426  * @write_op: With which operation should we write the journal sb
1427  *
1428  * Update a journal's dynamic superblock fields to show that journal is empty.
1429  * Write updated superblock to disk waiting for IO to complete.
1430  */
jbd2_mark_journal_empty(journal_t * journal,int write_op)1431 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1432 {
1433 	journal_superblock_t *sb = journal->j_superblock;
1434 
1435 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1436 	read_lock(&journal->j_state_lock);
1437 	/* Is it already empty? */
1438 	if (sb->s_start == 0) {
1439 		read_unlock(&journal->j_state_lock);
1440 		return;
1441 	}
1442 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1443 		  journal->j_tail_sequence);
1444 
1445 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1446 	sb->s_start    = cpu_to_be32(0);
1447 	read_unlock(&journal->j_state_lock);
1448 
1449 	jbd2_write_superblock(journal, write_op);
1450 
1451 	/* Log is no longer empty */
1452 	write_lock(&journal->j_state_lock);
1453 	journal->j_flags |= JBD2_FLUSHED;
1454 	write_unlock(&journal->j_state_lock);
1455 }
1456 
1457 
1458 /**
1459  * jbd2_journal_update_sb_errno() - Update error in the journal.
1460  * @journal: The journal to update.
1461  *
1462  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1463  * to complete.
1464  */
jbd2_journal_update_sb_errno(journal_t * journal)1465 void jbd2_journal_update_sb_errno(journal_t *journal)
1466 {
1467 	journal_superblock_t *sb = journal->j_superblock;
1468 
1469 	read_lock(&journal->j_state_lock);
1470 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1471 		  journal->j_errno);
1472 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1473 	read_unlock(&journal->j_state_lock);
1474 
1475 	jbd2_write_superblock(journal, WRITE_SYNC);
1476 }
1477 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1478 
1479 /*
1480  * Read the superblock for a given journal, performing initial
1481  * validation of the format.
1482  */
journal_get_superblock(journal_t * journal)1483 static int journal_get_superblock(journal_t *journal)
1484 {
1485 	struct buffer_head *bh;
1486 	journal_superblock_t *sb;
1487 	int err = -EIO;
1488 
1489 	bh = journal->j_sb_buffer;
1490 
1491 	J_ASSERT(bh != NULL);
1492 	if (!buffer_uptodate(bh)) {
1493 		ll_rw_block(READ, 1, &bh);
1494 		wait_on_buffer(bh);
1495 		if (!buffer_uptodate(bh)) {
1496 			printk(KERN_ERR
1497 				"JBD2: IO error reading journal superblock\n");
1498 			goto out;
1499 		}
1500 	}
1501 
1502 	if (buffer_verified(bh))
1503 		return 0;
1504 
1505 	sb = journal->j_superblock;
1506 
1507 	err = -EINVAL;
1508 
1509 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1510 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1511 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1512 		goto out;
1513 	}
1514 
1515 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1516 	case JBD2_SUPERBLOCK_V1:
1517 		journal->j_format_version = 1;
1518 		break;
1519 	case JBD2_SUPERBLOCK_V2:
1520 		journal->j_format_version = 2;
1521 		break;
1522 	default:
1523 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1524 		goto out;
1525 	}
1526 
1527 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1528 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1529 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1530 		printk(KERN_WARNING "JBD2: journal file too short\n");
1531 		goto out;
1532 	}
1533 
1534 	if (be32_to_cpu(sb->s_first) == 0 ||
1535 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1536 		printk(KERN_WARNING
1537 			"JBD2: Invalid start block of journal: %u\n",
1538 			be32_to_cpu(sb->s_first));
1539 		goto out;
1540 	}
1541 
1542 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2) &&
1543 	    JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1544 		/* Can't have checksum v2 and v3 at the same time! */
1545 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1546 		       "at the same time!\n");
1547 		goto out;
1548 	}
1549 
1550 	if (jbd2_journal_has_csum_v2or3(journal) &&
1551 	    JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM)) {
1552 		/* Can't have checksum v1 and v2 on at the same time! */
1553 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1554 		       "at the same time!\n");
1555 		goto out;
1556 	}
1557 
1558 	if (!jbd2_verify_csum_type(journal, sb)) {
1559 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1560 		goto out;
1561 	}
1562 
1563 	/* Load the checksum driver */
1564 	if (jbd2_journal_has_csum_v2or3(journal)) {
1565 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1566 		if (IS_ERR(journal->j_chksum_driver)) {
1567 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1568 			err = PTR_ERR(journal->j_chksum_driver);
1569 			journal->j_chksum_driver = NULL;
1570 			goto out;
1571 		}
1572 	}
1573 
1574 	/* Check superblock checksum */
1575 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1576 		printk(KERN_ERR "JBD2: journal checksum error\n");
1577 		goto out;
1578 	}
1579 
1580 	/* Precompute checksum seed for all metadata */
1581 	if (jbd2_journal_has_csum_v2or3(journal))
1582 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1583 						   sizeof(sb->s_uuid));
1584 
1585 	set_buffer_verified(bh);
1586 
1587 	return 0;
1588 
1589 out:
1590 	journal_fail_superblock(journal);
1591 	return err;
1592 }
1593 
1594 /*
1595  * Load the on-disk journal superblock and read the key fields into the
1596  * journal_t.
1597  */
1598 
load_superblock(journal_t * journal)1599 static int load_superblock(journal_t *journal)
1600 {
1601 	int err;
1602 	journal_superblock_t *sb;
1603 
1604 	err = journal_get_superblock(journal);
1605 	if (err)
1606 		return err;
1607 
1608 	sb = journal->j_superblock;
1609 
1610 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1611 	journal->j_tail = be32_to_cpu(sb->s_start);
1612 	journal->j_first = be32_to_cpu(sb->s_first);
1613 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1614 	journal->j_errno = be32_to_cpu(sb->s_errno);
1615 
1616 	return 0;
1617 }
1618 
1619 
1620 /**
1621  * int jbd2_journal_load() - Read journal from disk.
1622  * @journal: Journal to act on.
1623  *
1624  * Given a journal_t structure which tells us which disk blocks contain
1625  * a journal, read the journal from disk to initialise the in-memory
1626  * structures.
1627  */
jbd2_journal_load(journal_t * journal)1628 int jbd2_journal_load(journal_t *journal)
1629 {
1630 	int err;
1631 	journal_superblock_t *sb;
1632 
1633 	err = load_superblock(journal);
1634 	if (err)
1635 		return err;
1636 
1637 	sb = journal->j_superblock;
1638 	/* If this is a V2 superblock, then we have to check the
1639 	 * features flags on it. */
1640 
1641 	if (journal->j_format_version >= 2) {
1642 		if ((sb->s_feature_ro_compat &
1643 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1644 		    (sb->s_feature_incompat &
1645 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1646 			printk(KERN_WARNING
1647 				"JBD2: Unrecognised features on journal\n");
1648 			return -EINVAL;
1649 		}
1650 	}
1651 
1652 	/*
1653 	 * Create a slab for this blocksize
1654 	 */
1655 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1656 	if (err)
1657 		return err;
1658 
1659 	/* Let the recovery code check whether it needs to recover any
1660 	 * data from the journal. */
1661 	if (jbd2_journal_recover(journal))
1662 		goto recovery_error;
1663 
1664 	if (journal->j_failed_commit) {
1665 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1666 		       "is corrupt.\n", journal->j_failed_commit,
1667 		       journal->j_devname);
1668 		return -EIO;
1669 	}
1670 
1671 	/* OK, we've finished with the dynamic journal bits:
1672 	 * reinitialise the dynamic contents of the superblock in memory
1673 	 * and reset them on disk. */
1674 	if (journal_reset(journal))
1675 		goto recovery_error;
1676 
1677 	journal->j_flags &= ~JBD2_ABORT;
1678 	journal->j_flags |= JBD2_LOADED;
1679 	return 0;
1680 
1681 recovery_error:
1682 	printk(KERN_WARNING "JBD2: recovery failed\n");
1683 	return -EIO;
1684 }
1685 
1686 /**
1687  * void jbd2_journal_destroy() - Release a journal_t structure.
1688  * @journal: Journal to act on.
1689  *
1690  * Release a journal_t structure once it is no longer in use by the
1691  * journaled object.
1692  * Return <0 if we couldn't clean up the journal.
1693  */
jbd2_journal_destroy(journal_t * journal)1694 int jbd2_journal_destroy(journal_t *journal)
1695 {
1696 	int err = 0;
1697 
1698 	/* Wait for the commit thread to wake up and die. */
1699 	journal_kill_thread(journal);
1700 
1701 	/* Force a final log commit */
1702 	if (journal->j_running_transaction)
1703 		jbd2_journal_commit_transaction(journal);
1704 
1705 	/* Force any old transactions to disk */
1706 
1707 	/* Totally anal locking here... */
1708 	spin_lock(&journal->j_list_lock);
1709 	while (journal->j_checkpoint_transactions != NULL) {
1710 		spin_unlock(&journal->j_list_lock);
1711 		mutex_lock(&journal->j_checkpoint_mutex);
1712 		err = jbd2_log_do_checkpoint(journal);
1713 		mutex_unlock(&journal->j_checkpoint_mutex);
1714 		/*
1715 		 * If checkpointing failed, just free the buffers to avoid
1716 		 * looping forever
1717 		 */
1718 		if (err) {
1719 			jbd2_journal_destroy_checkpoint(journal);
1720 			spin_lock(&journal->j_list_lock);
1721 			break;
1722 		}
1723 		spin_lock(&journal->j_list_lock);
1724 	}
1725 
1726 	J_ASSERT(journal->j_running_transaction == NULL);
1727 	J_ASSERT(journal->j_committing_transaction == NULL);
1728 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1729 	spin_unlock(&journal->j_list_lock);
1730 
1731 	if (journal->j_sb_buffer) {
1732 		if (!is_journal_aborted(journal)) {
1733 			mutex_lock(&journal->j_checkpoint_mutex);
1734 
1735 			write_lock(&journal->j_state_lock);
1736 			journal->j_tail_sequence =
1737 				++journal->j_transaction_sequence;
1738 			write_unlock(&journal->j_state_lock);
1739 
1740 			jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA);
1741 			mutex_unlock(&journal->j_checkpoint_mutex);
1742 		} else
1743 			err = -EIO;
1744 		brelse(journal->j_sb_buffer);
1745 	}
1746 
1747 	if (journal->j_proc_entry)
1748 		jbd2_stats_proc_exit(journal);
1749 	if (journal->j_inode)
1750 		iput(journal->j_inode);
1751 	if (journal->j_revoke)
1752 		jbd2_journal_destroy_revoke(journal);
1753 	if (journal->j_chksum_driver)
1754 		crypto_free_shash(journal->j_chksum_driver);
1755 	kfree(journal->j_wbuf);
1756 	kfree(journal);
1757 
1758 	return err;
1759 }
1760 
1761 
1762 /**
1763  *int jbd2_journal_check_used_features () - Check if features specified are used.
1764  * @journal: Journal to check.
1765  * @compat: bitmask of compatible features
1766  * @ro: bitmask of features that force read-only mount
1767  * @incompat: bitmask of incompatible features
1768  *
1769  * Check whether the journal uses all of a given set of
1770  * features.  Return true (non-zero) if it does.
1771  **/
1772 
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1773 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1774 				 unsigned long ro, unsigned long incompat)
1775 {
1776 	journal_superblock_t *sb;
1777 
1778 	if (!compat && !ro && !incompat)
1779 		return 1;
1780 	/* Load journal superblock if it is not loaded yet. */
1781 	if (journal->j_format_version == 0 &&
1782 	    journal_get_superblock(journal) != 0)
1783 		return 0;
1784 	if (journal->j_format_version == 1)
1785 		return 0;
1786 
1787 	sb = journal->j_superblock;
1788 
1789 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1790 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1791 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1792 		return 1;
1793 
1794 	return 0;
1795 }
1796 
1797 /**
1798  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1799  * @journal: Journal to check.
1800  * @compat: bitmask of compatible features
1801  * @ro: bitmask of features that force read-only mount
1802  * @incompat: bitmask of incompatible features
1803  *
1804  * Check whether the journaling code supports the use of
1805  * all of a given set of features on this journal.  Return true
1806  * (non-zero) if it can. */
1807 
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1808 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1809 				      unsigned long ro, unsigned long incompat)
1810 {
1811 	if (!compat && !ro && !incompat)
1812 		return 1;
1813 
1814 	/* We can support any known requested features iff the
1815 	 * superblock is in version 2.  Otherwise we fail to support any
1816 	 * extended sb features. */
1817 
1818 	if (journal->j_format_version != 2)
1819 		return 0;
1820 
1821 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1822 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1823 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1824 		return 1;
1825 
1826 	return 0;
1827 }
1828 
1829 /**
1830  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1831  * @journal: Journal to act on.
1832  * @compat: bitmask of compatible features
1833  * @ro: bitmask of features that force read-only mount
1834  * @incompat: bitmask of incompatible features
1835  *
1836  * Mark a given journal feature as present on the
1837  * superblock.  Returns true if the requested features could be set.
1838  *
1839  */
1840 
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1841 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1842 			  unsigned long ro, unsigned long incompat)
1843 {
1844 #define INCOMPAT_FEATURE_ON(f) \
1845 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1846 #define COMPAT_FEATURE_ON(f) \
1847 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1848 	journal_superblock_t *sb;
1849 
1850 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1851 		return 1;
1852 
1853 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1854 		return 0;
1855 
1856 	/* If enabling v2 checksums, turn on v3 instead */
1857 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1858 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1859 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1860 	}
1861 
1862 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1863 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1864 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1865 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1866 
1867 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1868 		  compat, ro, incompat);
1869 
1870 	sb = journal->j_superblock;
1871 
1872 	/* If enabling v3 checksums, update superblock */
1873 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1874 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1875 		sb->s_feature_compat &=
1876 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1877 
1878 		/* Load the checksum driver */
1879 		if (journal->j_chksum_driver == NULL) {
1880 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1881 								      0, 0);
1882 			if (IS_ERR(journal->j_chksum_driver)) {
1883 				printk(KERN_ERR "JBD2: Cannot load crc32c "
1884 				       "driver.\n");
1885 				journal->j_chksum_driver = NULL;
1886 				return 0;
1887 			}
1888 
1889 			/* Precompute checksum seed for all metadata */
1890 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1891 							   sb->s_uuid,
1892 							   sizeof(sb->s_uuid));
1893 		}
1894 	}
1895 
1896 	/* If enabling v1 checksums, downgrade superblock */
1897 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1898 		sb->s_feature_incompat &=
1899 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1900 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1901 
1902 	sb->s_feature_compat    |= cpu_to_be32(compat);
1903 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1904 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1905 
1906 	return 1;
1907 #undef COMPAT_FEATURE_ON
1908 #undef INCOMPAT_FEATURE_ON
1909 }
1910 
1911 /*
1912  * jbd2_journal_clear_features () - Clear a given journal feature in the
1913  * 				    superblock
1914  * @journal: Journal to act on.
1915  * @compat: bitmask of compatible features
1916  * @ro: bitmask of features that force read-only mount
1917  * @incompat: bitmask of incompatible features
1918  *
1919  * Clear a given journal feature as present on the
1920  * superblock.
1921  */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1922 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1923 				unsigned long ro, unsigned long incompat)
1924 {
1925 	journal_superblock_t *sb;
1926 
1927 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1928 		  compat, ro, incompat);
1929 
1930 	sb = journal->j_superblock;
1931 
1932 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1933 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1934 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1935 }
1936 EXPORT_SYMBOL(jbd2_journal_clear_features);
1937 
1938 /**
1939  * int jbd2_journal_flush () - Flush journal
1940  * @journal: Journal to act on.
1941  *
1942  * Flush all data for a given journal to disk and empty the journal.
1943  * Filesystems can use this when remounting readonly to ensure that
1944  * recovery does not need to happen on remount.
1945  */
1946 
jbd2_journal_flush(journal_t * journal)1947 int jbd2_journal_flush(journal_t *journal)
1948 {
1949 	int err = 0;
1950 	transaction_t *transaction = NULL;
1951 
1952 	write_lock(&journal->j_state_lock);
1953 
1954 	/* Force everything buffered to the log... */
1955 	if (journal->j_running_transaction) {
1956 		transaction = journal->j_running_transaction;
1957 		__jbd2_log_start_commit(journal, transaction->t_tid);
1958 	} else if (journal->j_committing_transaction)
1959 		transaction = journal->j_committing_transaction;
1960 
1961 	/* Wait for the log commit to complete... */
1962 	if (transaction) {
1963 		tid_t tid = transaction->t_tid;
1964 
1965 		write_unlock(&journal->j_state_lock);
1966 		jbd2_log_wait_commit(journal, tid);
1967 	} else {
1968 		write_unlock(&journal->j_state_lock);
1969 	}
1970 
1971 	/* ...and flush everything in the log out to disk. */
1972 	spin_lock(&journal->j_list_lock);
1973 	while (!err && journal->j_checkpoint_transactions != NULL) {
1974 		spin_unlock(&journal->j_list_lock);
1975 		mutex_lock(&journal->j_checkpoint_mutex);
1976 		err = jbd2_log_do_checkpoint(journal);
1977 		mutex_unlock(&journal->j_checkpoint_mutex);
1978 		spin_lock(&journal->j_list_lock);
1979 	}
1980 	spin_unlock(&journal->j_list_lock);
1981 
1982 	if (is_journal_aborted(journal))
1983 		return -EIO;
1984 
1985 	mutex_lock(&journal->j_checkpoint_mutex);
1986 	if (!err) {
1987 		err = jbd2_cleanup_journal_tail(journal);
1988 		if (err < 0) {
1989 			mutex_unlock(&journal->j_checkpoint_mutex);
1990 			goto out;
1991 		}
1992 		err = 0;
1993 	}
1994 
1995 	/* Finally, mark the journal as really needing no recovery.
1996 	 * This sets s_start==0 in the underlying superblock, which is
1997 	 * the magic code for a fully-recovered superblock.  Any future
1998 	 * commits of data to the journal will restore the current
1999 	 * s_start value. */
2000 	jbd2_mark_journal_empty(journal, WRITE_FUA);
2001 	mutex_unlock(&journal->j_checkpoint_mutex);
2002 	write_lock(&journal->j_state_lock);
2003 	J_ASSERT(!journal->j_running_transaction);
2004 	J_ASSERT(!journal->j_committing_transaction);
2005 	J_ASSERT(!journal->j_checkpoint_transactions);
2006 	J_ASSERT(journal->j_head == journal->j_tail);
2007 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2008 	write_unlock(&journal->j_state_lock);
2009 out:
2010 	return err;
2011 }
2012 
2013 /**
2014  * int jbd2_journal_wipe() - Wipe journal contents
2015  * @journal: Journal to act on.
2016  * @write: flag (see below)
2017  *
2018  * Wipe out all of the contents of a journal, safely.  This will produce
2019  * a warning if the journal contains any valid recovery information.
2020  * Must be called between journal_init_*() and jbd2_journal_load().
2021  *
2022  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2023  * we merely suppress recovery.
2024  */
2025 
jbd2_journal_wipe(journal_t * journal,int write)2026 int jbd2_journal_wipe(journal_t *journal, int write)
2027 {
2028 	int err = 0;
2029 
2030 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2031 
2032 	err = load_superblock(journal);
2033 	if (err)
2034 		return err;
2035 
2036 	if (!journal->j_tail)
2037 		goto no_recovery;
2038 
2039 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2040 		write ? "Clearing" : "Ignoring");
2041 
2042 	err = jbd2_journal_skip_recovery(journal);
2043 	if (write) {
2044 		/* Lock to make assertions happy... */
2045 		mutex_lock(&journal->j_checkpoint_mutex);
2046 		jbd2_mark_journal_empty(journal, WRITE_FUA);
2047 		mutex_unlock(&journal->j_checkpoint_mutex);
2048 	}
2049 
2050  no_recovery:
2051 	return err;
2052 }
2053 
2054 /*
2055  * Journal abort has very specific semantics, which we describe
2056  * for journal abort.
2057  *
2058  * Two internal functions, which provide abort to the jbd layer
2059  * itself are here.
2060  */
2061 
2062 /*
2063  * Quick version for internal journal use (doesn't lock the journal).
2064  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2065  * and don't attempt to make any other journal updates.
2066  */
__jbd2_journal_abort_hard(journal_t * journal)2067 void __jbd2_journal_abort_hard(journal_t *journal)
2068 {
2069 	transaction_t *transaction;
2070 
2071 	if (journal->j_flags & JBD2_ABORT)
2072 		return;
2073 
2074 	printk(KERN_ERR "Aborting journal on device %s.\n",
2075 	       journal->j_devname);
2076 
2077 	write_lock(&journal->j_state_lock);
2078 	journal->j_flags |= JBD2_ABORT;
2079 	transaction = journal->j_running_transaction;
2080 	if (transaction)
2081 		__jbd2_log_start_commit(journal, transaction->t_tid);
2082 	write_unlock(&journal->j_state_lock);
2083 }
2084 
2085 /* Soft abort: record the abort error status in the journal superblock,
2086  * but don't do any other IO. */
__journal_abort_soft(journal_t * journal,int errno)2087 static void __journal_abort_soft (journal_t *journal, int errno)
2088 {
2089 	if (journal->j_flags & JBD2_ABORT)
2090 		return;
2091 
2092 	if (!journal->j_errno)
2093 		journal->j_errno = errno;
2094 
2095 	__jbd2_journal_abort_hard(journal);
2096 
2097 	if (errno) {
2098 		jbd2_journal_update_sb_errno(journal);
2099 		write_lock(&journal->j_state_lock);
2100 		journal->j_flags |= JBD2_REC_ERR;
2101 		write_unlock(&journal->j_state_lock);
2102 	}
2103 }
2104 
2105 /**
2106  * void jbd2_journal_abort () - Shutdown the journal immediately.
2107  * @journal: the journal to shutdown.
2108  * @errno:   an error number to record in the journal indicating
2109  *           the reason for the shutdown.
2110  *
2111  * Perform a complete, immediate shutdown of the ENTIRE
2112  * journal (not of a single transaction).  This operation cannot be
2113  * undone without closing and reopening the journal.
2114  *
2115  * The jbd2_journal_abort function is intended to support higher level error
2116  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2117  * mode.
2118  *
2119  * Journal abort has very specific semantics.  Any existing dirty,
2120  * unjournaled buffers in the main filesystem will still be written to
2121  * disk by bdflush, but the journaling mechanism will be suspended
2122  * immediately and no further transaction commits will be honoured.
2123  *
2124  * Any dirty, journaled buffers will be written back to disk without
2125  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2126  * filesystem, but we _do_ attempt to leave as much data as possible
2127  * behind for fsck to use for cleanup.
2128  *
2129  * Any attempt to get a new transaction handle on a journal which is in
2130  * ABORT state will just result in an -EROFS error return.  A
2131  * jbd2_journal_stop on an existing handle will return -EIO if we have
2132  * entered abort state during the update.
2133  *
2134  * Recursive transactions are not disturbed by journal abort until the
2135  * final jbd2_journal_stop, which will receive the -EIO error.
2136  *
2137  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2138  * which will be recorded (if possible) in the journal superblock.  This
2139  * allows a client to record failure conditions in the middle of a
2140  * transaction without having to complete the transaction to record the
2141  * failure to disk.  ext3_error, for example, now uses this
2142  * functionality.
2143  *
2144  * Errors which originate from within the journaling layer will NOT
2145  * supply an errno; a null errno implies that absolutely no further
2146  * writes are done to the journal (unless there are any already in
2147  * progress).
2148  *
2149  */
2150 
jbd2_journal_abort(journal_t * journal,int errno)2151 void jbd2_journal_abort(journal_t *journal, int errno)
2152 {
2153 	__journal_abort_soft(journal, errno);
2154 }
2155 
2156 /**
2157  * int jbd2_journal_errno () - returns the journal's error state.
2158  * @journal: journal to examine.
2159  *
2160  * This is the errno number set with jbd2_journal_abort(), the last
2161  * time the journal was mounted - if the journal was stopped
2162  * without calling abort this will be 0.
2163  *
2164  * If the journal has been aborted on this mount time -EROFS will
2165  * be returned.
2166  */
jbd2_journal_errno(journal_t * journal)2167 int jbd2_journal_errno(journal_t *journal)
2168 {
2169 	int err;
2170 
2171 	read_lock(&journal->j_state_lock);
2172 	if (journal->j_flags & JBD2_ABORT)
2173 		err = -EROFS;
2174 	else
2175 		err = journal->j_errno;
2176 	read_unlock(&journal->j_state_lock);
2177 	return err;
2178 }
2179 
2180 /**
2181  * int jbd2_journal_clear_err () - clears the journal's error state
2182  * @journal: journal to act on.
2183  *
2184  * An error must be cleared or acked to take a FS out of readonly
2185  * mode.
2186  */
jbd2_journal_clear_err(journal_t * journal)2187 int jbd2_journal_clear_err(journal_t *journal)
2188 {
2189 	int err = 0;
2190 
2191 	write_lock(&journal->j_state_lock);
2192 	if (journal->j_flags & JBD2_ABORT)
2193 		err = -EROFS;
2194 	else
2195 		journal->j_errno = 0;
2196 	write_unlock(&journal->j_state_lock);
2197 	return err;
2198 }
2199 
2200 /**
2201  * void jbd2_journal_ack_err() - Ack journal err.
2202  * @journal: journal to act on.
2203  *
2204  * An error must be cleared or acked to take a FS out of readonly
2205  * mode.
2206  */
jbd2_journal_ack_err(journal_t * journal)2207 void jbd2_journal_ack_err(journal_t *journal)
2208 {
2209 	write_lock(&journal->j_state_lock);
2210 	if (journal->j_errno)
2211 		journal->j_flags |= JBD2_ACK_ERR;
2212 	write_unlock(&journal->j_state_lock);
2213 }
2214 
jbd2_journal_blocks_per_page(struct inode * inode)2215 int jbd2_journal_blocks_per_page(struct inode *inode)
2216 {
2217 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2218 }
2219 
2220 /*
2221  * helper functions to deal with 32 or 64bit block numbers.
2222  */
journal_tag_bytes(journal_t * journal)2223 size_t journal_tag_bytes(journal_t *journal)
2224 {
2225 	size_t sz;
2226 
2227 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V3))
2228 		return sizeof(journal_block_tag3_t);
2229 
2230 	sz = sizeof(journal_block_tag_t);
2231 
2232 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2233 		sz += sizeof(__u16);
2234 
2235 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2236 		return sz;
2237 	else
2238 		return sz - sizeof(__u32);
2239 }
2240 
2241 /*
2242  * JBD memory management
2243  *
2244  * These functions are used to allocate block-sized chunks of memory
2245  * used for making copies of buffer_head data.  Very often it will be
2246  * page-sized chunks of data, but sometimes it will be in
2247  * sub-page-size chunks.  (For example, 16k pages on Power systems
2248  * with a 4k block file system.)  For blocks smaller than a page, we
2249  * use a SLAB allocator.  There are slab caches for each block size,
2250  * which are allocated at mount time, if necessary, and we only free
2251  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2252  * this reason we don't need to a mutex to protect access to
2253  * jbd2_slab[] allocating or releasing memory; only in
2254  * jbd2_journal_create_slab().
2255  */
2256 #define JBD2_MAX_SLABS 8
2257 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2258 
2259 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2260 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2261 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2262 };
2263 
2264 
jbd2_journal_destroy_slabs(void)2265 static void jbd2_journal_destroy_slabs(void)
2266 {
2267 	int i;
2268 
2269 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2270 		if (jbd2_slab[i])
2271 			kmem_cache_destroy(jbd2_slab[i]);
2272 		jbd2_slab[i] = NULL;
2273 	}
2274 }
2275 
jbd2_journal_create_slab(size_t size)2276 static int jbd2_journal_create_slab(size_t size)
2277 {
2278 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2279 	int i = order_base_2(size) - 10;
2280 	size_t slab_size;
2281 
2282 	if (size == PAGE_SIZE)
2283 		return 0;
2284 
2285 	if (i >= JBD2_MAX_SLABS)
2286 		return -EINVAL;
2287 
2288 	if (unlikely(i < 0))
2289 		i = 0;
2290 	mutex_lock(&jbd2_slab_create_mutex);
2291 	if (jbd2_slab[i]) {
2292 		mutex_unlock(&jbd2_slab_create_mutex);
2293 		return 0;	/* Already created */
2294 	}
2295 
2296 	slab_size = 1 << (i+10);
2297 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2298 					 slab_size, 0, NULL);
2299 	mutex_unlock(&jbd2_slab_create_mutex);
2300 	if (!jbd2_slab[i]) {
2301 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2302 		return -ENOMEM;
2303 	}
2304 	return 0;
2305 }
2306 
get_slab(size_t size)2307 static struct kmem_cache *get_slab(size_t size)
2308 {
2309 	int i = order_base_2(size) - 10;
2310 
2311 	BUG_ON(i >= JBD2_MAX_SLABS);
2312 	if (unlikely(i < 0))
2313 		i = 0;
2314 	BUG_ON(jbd2_slab[i] == NULL);
2315 	return jbd2_slab[i];
2316 }
2317 
jbd2_alloc(size_t size,gfp_t flags)2318 void *jbd2_alloc(size_t size, gfp_t flags)
2319 {
2320 	void *ptr;
2321 
2322 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2323 
2324 	flags |= __GFP_REPEAT;
2325 	if (size == PAGE_SIZE)
2326 		ptr = (void *)__get_free_pages(flags, 0);
2327 	else if (size > PAGE_SIZE) {
2328 		int order = get_order(size);
2329 
2330 		if (order < 3)
2331 			ptr = (void *)__get_free_pages(flags, order);
2332 		else
2333 			ptr = vmalloc(size);
2334 	} else
2335 		ptr = kmem_cache_alloc(get_slab(size), flags);
2336 
2337 	/* Check alignment; SLUB has gotten this wrong in the past,
2338 	 * and this can lead to user data corruption! */
2339 	BUG_ON(((unsigned long) ptr) & (size-1));
2340 
2341 	return ptr;
2342 }
2343 
jbd2_free(void * ptr,size_t size)2344 void jbd2_free(void *ptr, size_t size)
2345 {
2346 	if (size == PAGE_SIZE) {
2347 		free_pages((unsigned long)ptr, 0);
2348 		return;
2349 	}
2350 	if (size > PAGE_SIZE) {
2351 		int order = get_order(size);
2352 
2353 		if (order < 3)
2354 			free_pages((unsigned long)ptr, order);
2355 		else
2356 			vfree(ptr);
2357 		return;
2358 	}
2359 	kmem_cache_free(get_slab(size), ptr);
2360 };
2361 
2362 /*
2363  * Journal_head storage management
2364  */
2365 static struct kmem_cache *jbd2_journal_head_cache;
2366 #ifdef CONFIG_JBD2_DEBUG
2367 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2368 #endif
2369 
jbd2_journal_init_journal_head_cache(void)2370 static int jbd2_journal_init_journal_head_cache(void)
2371 {
2372 	int retval;
2373 
2374 	J_ASSERT(jbd2_journal_head_cache == NULL);
2375 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2376 				sizeof(struct journal_head),
2377 				0,		/* offset */
2378 				SLAB_TEMPORARY,	/* flags */
2379 				NULL);		/* ctor */
2380 	retval = 0;
2381 	if (!jbd2_journal_head_cache) {
2382 		retval = -ENOMEM;
2383 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2384 	}
2385 	return retval;
2386 }
2387 
jbd2_journal_destroy_journal_head_cache(void)2388 static void jbd2_journal_destroy_journal_head_cache(void)
2389 {
2390 	if (jbd2_journal_head_cache) {
2391 		kmem_cache_destroy(jbd2_journal_head_cache);
2392 		jbd2_journal_head_cache = NULL;
2393 	}
2394 }
2395 
2396 /*
2397  * journal_head splicing and dicing
2398  */
journal_alloc_journal_head(void)2399 static struct journal_head *journal_alloc_journal_head(void)
2400 {
2401 	struct journal_head *ret;
2402 
2403 #ifdef CONFIG_JBD2_DEBUG
2404 	atomic_inc(&nr_journal_heads);
2405 #endif
2406 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2407 	if (!ret) {
2408 		jbd_debug(1, "out of memory for journal_head\n");
2409 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2410 		while (!ret) {
2411 			yield();
2412 			ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2413 		}
2414 	}
2415 	return ret;
2416 }
2417 
journal_free_journal_head(struct journal_head * jh)2418 static void journal_free_journal_head(struct journal_head *jh)
2419 {
2420 #ifdef CONFIG_JBD2_DEBUG
2421 	atomic_dec(&nr_journal_heads);
2422 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2423 #endif
2424 	kmem_cache_free(jbd2_journal_head_cache, jh);
2425 }
2426 
2427 /*
2428  * A journal_head is attached to a buffer_head whenever JBD has an
2429  * interest in the buffer.
2430  *
2431  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2432  * is set.  This bit is tested in core kernel code where we need to take
2433  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2434  * there.
2435  *
2436  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2437  *
2438  * When a buffer has its BH_JBD bit set it is immune from being released by
2439  * core kernel code, mainly via ->b_count.
2440  *
2441  * A journal_head is detached from its buffer_head when the journal_head's
2442  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2443  * transaction (b_cp_transaction) hold their references to b_jcount.
2444  *
2445  * Various places in the kernel want to attach a journal_head to a buffer_head
2446  * _before_ attaching the journal_head to a transaction.  To protect the
2447  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2448  * journal_head's b_jcount refcount by one.  The caller must call
2449  * jbd2_journal_put_journal_head() to undo this.
2450  *
2451  * So the typical usage would be:
2452  *
2453  *	(Attach a journal_head if needed.  Increments b_jcount)
2454  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2455  *	...
2456  *      (Get another reference for transaction)
2457  *	jbd2_journal_grab_journal_head(bh);
2458  *	jh->b_transaction = xxx;
2459  *	(Put original reference)
2460  *	jbd2_journal_put_journal_head(jh);
2461  */
2462 
2463 /*
2464  * Give a buffer_head a journal_head.
2465  *
2466  * May sleep.
2467  */
jbd2_journal_add_journal_head(struct buffer_head * bh)2468 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2469 {
2470 	struct journal_head *jh;
2471 	struct journal_head *new_jh = NULL;
2472 
2473 repeat:
2474 	if (!buffer_jbd(bh))
2475 		new_jh = journal_alloc_journal_head();
2476 
2477 	jbd_lock_bh_journal_head(bh);
2478 	if (buffer_jbd(bh)) {
2479 		jh = bh2jh(bh);
2480 	} else {
2481 		J_ASSERT_BH(bh,
2482 			(atomic_read(&bh->b_count) > 0) ||
2483 			(bh->b_page && bh->b_page->mapping));
2484 
2485 		if (!new_jh) {
2486 			jbd_unlock_bh_journal_head(bh);
2487 			goto repeat;
2488 		}
2489 
2490 		jh = new_jh;
2491 		new_jh = NULL;		/* We consumed it */
2492 		set_buffer_jbd(bh);
2493 		bh->b_private = jh;
2494 		jh->b_bh = bh;
2495 		get_bh(bh);
2496 		BUFFER_TRACE(bh, "added journal_head");
2497 	}
2498 	jh->b_jcount++;
2499 	jbd_unlock_bh_journal_head(bh);
2500 	if (new_jh)
2501 		journal_free_journal_head(new_jh);
2502 	return bh->b_private;
2503 }
2504 
2505 /*
2506  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2507  * having a journal_head, return NULL
2508  */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2509 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2510 {
2511 	struct journal_head *jh = NULL;
2512 
2513 	jbd_lock_bh_journal_head(bh);
2514 	if (buffer_jbd(bh)) {
2515 		jh = bh2jh(bh);
2516 		jh->b_jcount++;
2517 	}
2518 	jbd_unlock_bh_journal_head(bh);
2519 	return jh;
2520 }
2521 
__journal_remove_journal_head(struct buffer_head * bh)2522 static void __journal_remove_journal_head(struct buffer_head *bh)
2523 {
2524 	struct journal_head *jh = bh2jh(bh);
2525 
2526 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2527 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2528 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2529 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2530 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2531 	J_ASSERT_BH(bh, buffer_jbd(bh));
2532 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2533 	BUFFER_TRACE(bh, "remove journal_head");
2534 	if (jh->b_frozen_data) {
2535 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2536 		jbd2_free(jh->b_frozen_data, bh->b_size);
2537 	}
2538 	if (jh->b_committed_data) {
2539 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2540 		jbd2_free(jh->b_committed_data, bh->b_size);
2541 	}
2542 	bh->b_private = NULL;
2543 	jh->b_bh = NULL;	/* debug, really */
2544 	clear_buffer_jbd(bh);
2545 	journal_free_journal_head(jh);
2546 }
2547 
2548 /*
2549  * Drop a reference on the passed journal_head.  If it fell to zero then
2550  * release the journal_head from the buffer_head.
2551  */
jbd2_journal_put_journal_head(struct journal_head * jh)2552 void jbd2_journal_put_journal_head(struct journal_head *jh)
2553 {
2554 	struct buffer_head *bh = jh2bh(jh);
2555 
2556 	jbd_lock_bh_journal_head(bh);
2557 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2558 	--jh->b_jcount;
2559 	if (!jh->b_jcount) {
2560 		__journal_remove_journal_head(bh);
2561 		jbd_unlock_bh_journal_head(bh);
2562 		__brelse(bh);
2563 	} else
2564 		jbd_unlock_bh_journal_head(bh);
2565 }
2566 
2567 /*
2568  * Initialize jbd inode head
2569  */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)2570 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2571 {
2572 	jinode->i_transaction = NULL;
2573 	jinode->i_next_transaction = NULL;
2574 	jinode->i_vfs_inode = inode;
2575 	jinode->i_flags = 0;
2576 	INIT_LIST_HEAD(&jinode->i_list);
2577 }
2578 
2579 /*
2580  * Function to be called before we start removing inode from memory (i.e.,
2581  * clear_inode() is a fine place to be called from). It removes inode from
2582  * transaction's lists.
2583  */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)2584 void jbd2_journal_release_jbd_inode(journal_t *journal,
2585 				    struct jbd2_inode *jinode)
2586 {
2587 	if (!journal)
2588 		return;
2589 restart:
2590 	spin_lock(&journal->j_list_lock);
2591 	/* Is commit writing out inode - we have to wait */
2592 	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2593 		wait_queue_head_t *wq;
2594 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2595 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2596 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2597 		spin_unlock(&journal->j_list_lock);
2598 		schedule();
2599 		finish_wait(wq, &wait.wait);
2600 		goto restart;
2601 	}
2602 
2603 	if (jinode->i_transaction) {
2604 		list_del(&jinode->i_list);
2605 		jinode->i_transaction = NULL;
2606 	}
2607 	spin_unlock(&journal->j_list_lock);
2608 }
2609 
2610 
2611 #ifdef CONFIG_PROC_FS
2612 
2613 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2614 
jbd2_create_jbd_stats_proc_entry(void)2615 static void __init jbd2_create_jbd_stats_proc_entry(void)
2616 {
2617 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2618 }
2619 
jbd2_remove_jbd_stats_proc_entry(void)2620 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2621 {
2622 	if (proc_jbd2_stats)
2623 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2624 }
2625 
2626 #else
2627 
2628 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2629 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2630 
2631 #endif
2632 
2633 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2634 
jbd2_journal_init_handle_cache(void)2635 static int __init jbd2_journal_init_handle_cache(void)
2636 {
2637 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2638 	if (jbd2_handle_cache == NULL) {
2639 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2640 		return -ENOMEM;
2641 	}
2642 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2643 	if (jbd2_inode_cache == NULL) {
2644 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2645 		kmem_cache_destroy(jbd2_handle_cache);
2646 		return -ENOMEM;
2647 	}
2648 	return 0;
2649 }
2650 
jbd2_journal_destroy_handle_cache(void)2651 static void jbd2_journal_destroy_handle_cache(void)
2652 {
2653 	if (jbd2_handle_cache)
2654 		kmem_cache_destroy(jbd2_handle_cache);
2655 	if (jbd2_inode_cache)
2656 		kmem_cache_destroy(jbd2_inode_cache);
2657 
2658 }
2659 
2660 /*
2661  * Module startup and shutdown
2662  */
2663 
journal_init_caches(void)2664 static int __init journal_init_caches(void)
2665 {
2666 	int ret;
2667 
2668 	ret = jbd2_journal_init_revoke_caches();
2669 	if (ret == 0)
2670 		ret = jbd2_journal_init_journal_head_cache();
2671 	if (ret == 0)
2672 		ret = jbd2_journal_init_handle_cache();
2673 	if (ret == 0)
2674 		ret = jbd2_journal_init_transaction_cache();
2675 	return ret;
2676 }
2677 
jbd2_journal_destroy_caches(void)2678 static void jbd2_journal_destroy_caches(void)
2679 {
2680 	jbd2_journal_destroy_revoke_caches();
2681 	jbd2_journal_destroy_journal_head_cache();
2682 	jbd2_journal_destroy_handle_cache();
2683 	jbd2_journal_destroy_transaction_cache();
2684 	jbd2_journal_destroy_slabs();
2685 }
2686 
journal_init(void)2687 static int __init journal_init(void)
2688 {
2689 	int ret;
2690 
2691 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2692 
2693 	ret = journal_init_caches();
2694 	if (ret == 0) {
2695 		jbd2_create_jbd_stats_proc_entry();
2696 	} else {
2697 		jbd2_journal_destroy_caches();
2698 	}
2699 	return ret;
2700 }
2701 
journal_exit(void)2702 static void __exit journal_exit(void)
2703 {
2704 #ifdef CONFIG_JBD2_DEBUG
2705 	int n = atomic_read(&nr_journal_heads);
2706 	if (n)
2707 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2708 #endif
2709 	jbd2_remove_jbd_stats_proc_entry();
2710 	jbd2_journal_destroy_caches();
2711 }
2712 
2713 MODULE_LICENSE("GPL");
2714 module_init(journal_init);
2715 module_exit(journal_exit);
2716 
2717