1 /*
2 * linux/fs/jbd2/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105
106 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)107 void __jbd2_debug(int level, const char *file, const char *func,
108 unsigned int line, const char *fmt, ...)
109 {
110 struct va_format vaf;
111 va_list args;
112
113 if (level > jbd2_journal_enable_debug)
114 return;
115 va_start(args, fmt);
116 vaf.fmt = fmt;
117 vaf.va = &args;
118 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119 va_end(args);
120 }
121 EXPORT_SYMBOL(__jbd2_debug);
122 #endif
123
124 /* Checksumming functions */
jbd2_verify_csum_type(journal_t * j,journal_superblock_t * sb)125 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
126 {
127 if (!jbd2_journal_has_csum_v2or3(j))
128 return 1;
129
130 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
131 }
132
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)133 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
134 {
135 __u32 csum;
136 __be32 old_csum;
137
138 old_csum = sb->s_checksum;
139 sb->s_checksum = 0;
140 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
141 sb->s_checksum = old_csum;
142
143 return cpu_to_be32(csum);
144 }
145
jbd2_superblock_csum_verify(journal_t * j,journal_superblock_t * sb)146 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
147 {
148 if (!jbd2_journal_has_csum_v2or3(j))
149 return 1;
150
151 return sb->s_checksum == jbd2_superblock_csum(j, sb);
152 }
153
jbd2_superblock_csum_set(journal_t * j,journal_superblock_t * sb)154 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
155 {
156 if (!jbd2_journal_has_csum_v2or3(j))
157 return;
158
159 sb->s_checksum = jbd2_superblock_csum(j, sb);
160 }
161
162 /*
163 * Helper function used to manage commit timeouts
164 */
165
commit_timeout(unsigned long __data)166 static void commit_timeout(unsigned long __data)
167 {
168 struct task_struct * p = (struct task_struct *) __data;
169
170 wake_up_process(p);
171 }
172
173 /*
174 * kjournald2: The main thread function used to manage a logging device
175 * journal.
176 *
177 * This kernel thread is responsible for two things:
178 *
179 * 1) COMMIT: Every so often we need to commit the current state of the
180 * filesystem to disk. The journal thread is responsible for writing
181 * all of the metadata buffers to disk.
182 *
183 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
184 * of the data in that part of the log has been rewritten elsewhere on
185 * the disk. Flushing these old buffers to reclaim space in the log is
186 * known as checkpointing, and this thread is responsible for that job.
187 */
188
kjournald2(void * arg)189 static int kjournald2(void *arg)
190 {
191 journal_t *journal = arg;
192 transaction_t *transaction;
193
194 /*
195 * Set up an interval timer which can be used to trigger a commit wakeup
196 * after the commit interval expires
197 */
198 setup_timer(&journal->j_commit_timer, commit_timeout,
199 (unsigned long)current);
200
201 set_freezable();
202
203 /* Record that the journal thread is running */
204 journal->j_task = current;
205 wake_up(&journal->j_wait_done_commit);
206
207 /*
208 * And now, wait forever for commit wakeup events.
209 */
210 write_lock(&journal->j_state_lock);
211
212 loop:
213 if (journal->j_flags & JBD2_UNMOUNT)
214 goto end_loop;
215
216 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
217 journal->j_commit_sequence, journal->j_commit_request);
218
219 if (journal->j_commit_sequence != journal->j_commit_request) {
220 jbd_debug(1, "OK, requests differ\n");
221 write_unlock(&journal->j_state_lock);
222 del_timer_sync(&journal->j_commit_timer);
223 jbd2_journal_commit_transaction(journal);
224 write_lock(&journal->j_state_lock);
225 goto loop;
226 }
227
228 wake_up(&journal->j_wait_done_commit);
229 if (freezing(current)) {
230 /*
231 * The simpler the better. Flushing journal isn't a
232 * good idea, because that depends on threads that may
233 * be already stopped.
234 */
235 jbd_debug(1, "Now suspending kjournald2\n");
236 write_unlock(&journal->j_state_lock);
237 try_to_freeze();
238 write_lock(&journal->j_state_lock);
239 } else {
240 /*
241 * We assume on resume that commits are already there,
242 * so we don't sleep
243 */
244 DEFINE_WAIT(wait);
245 int should_sleep = 1;
246
247 prepare_to_wait(&journal->j_wait_commit, &wait,
248 TASK_INTERRUPTIBLE);
249 if (journal->j_commit_sequence != journal->j_commit_request)
250 should_sleep = 0;
251 transaction = journal->j_running_transaction;
252 if (transaction && time_after_eq(jiffies,
253 transaction->t_expires))
254 should_sleep = 0;
255 if (journal->j_flags & JBD2_UNMOUNT)
256 should_sleep = 0;
257 if (should_sleep) {
258 write_unlock(&journal->j_state_lock);
259 schedule();
260 write_lock(&journal->j_state_lock);
261 }
262 finish_wait(&journal->j_wait_commit, &wait);
263 }
264
265 jbd_debug(1, "kjournald2 wakes\n");
266
267 /*
268 * Were we woken up by a commit wakeup event?
269 */
270 transaction = journal->j_running_transaction;
271 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
272 journal->j_commit_request = transaction->t_tid;
273 jbd_debug(1, "woke because of timeout\n");
274 }
275 goto loop;
276
277 end_loop:
278 write_unlock(&journal->j_state_lock);
279 del_timer_sync(&journal->j_commit_timer);
280 journal->j_task = NULL;
281 wake_up(&journal->j_wait_done_commit);
282 jbd_debug(1, "Journal thread exiting.\n");
283 return 0;
284 }
285
jbd2_journal_start_thread(journal_t * journal)286 static int jbd2_journal_start_thread(journal_t *journal)
287 {
288 struct task_struct *t;
289
290 t = kthread_run(kjournald2, journal, "jbd2/%s",
291 journal->j_devname);
292 if (IS_ERR(t))
293 return PTR_ERR(t);
294
295 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
296 return 0;
297 }
298
journal_kill_thread(journal_t * journal)299 static void journal_kill_thread(journal_t *journal)
300 {
301 write_lock(&journal->j_state_lock);
302 journal->j_flags |= JBD2_UNMOUNT;
303
304 while (journal->j_task) {
305 write_unlock(&journal->j_state_lock);
306 wake_up(&journal->j_wait_commit);
307 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
308 write_lock(&journal->j_state_lock);
309 }
310 write_unlock(&journal->j_state_lock);
311 }
312
313 /*
314 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
315 *
316 * Writes a metadata buffer to a given disk block. The actual IO is not
317 * performed but a new buffer_head is constructed which labels the data
318 * to be written with the correct destination disk block.
319 *
320 * Any magic-number escaping which needs to be done will cause a
321 * copy-out here. If the buffer happens to start with the
322 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
323 * magic number is only written to the log for descripter blocks. In
324 * this case, we copy the data and replace the first word with 0, and we
325 * return a result code which indicates that this buffer needs to be
326 * marked as an escaped buffer in the corresponding log descriptor
327 * block. The missing word can then be restored when the block is read
328 * during recovery.
329 *
330 * If the source buffer has already been modified by a new transaction
331 * since we took the last commit snapshot, we use the frozen copy of
332 * that data for IO. If we end up using the existing buffer_head's data
333 * for the write, then we have to make sure nobody modifies it while the
334 * IO is in progress. do_get_write_access() handles this.
335 *
336 * The function returns a pointer to the buffer_head to be used for IO.
337 *
338 *
339 * Return value:
340 * <0: Error
341 * >=0: Finished OK
342 *
343 * On success:
344 * Bit 0 set == escape performed on the data
345 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
346 */
347
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)348 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
349 struct journal_head *jh_in,
350 struct buffer_head **bh_out,
351 sector_t blocknr)
352 {
353 int need_copy_out = 0;
354 int done_copy_out = 0;
355 int do_escape = 0;
356 char *mapped_data;
357 struct buffer_head *new_bh;
358 struct page *new_page;
359 unsigned int new_offset;
360 struct buffer_head *bh_in = jh2bh(jh_in);
361 journal_t *journal = transaction->t_journal;
362
363 /*
364 * The buffer really shouldn't be locked: only the current committing
365 * transaction is allowed to write it, so nobody else is allowed
366 * to do any IO.
367 *
368 * akpm: except if we're journalling data, and write() output is
369 * also part of a shared mapping, and another thread has
370 * decided to launch a writepage() against this buffer.
371 */
372 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
373
374 retry_alloc:
375 new_bh = alloc_buffer_head(GFP_NOFS);
376 if (!new_bh) {
377 /*
378 * Failure is not an option, but __GFP_NOFAIL is going
379 * away; so we retry ourselves here.
380 */
381 congestion_wait(BLK_RW_ASYNC, HZ/50);
382 goto retry_alloc;
383 }
384
385 /* keep subsequent assertions sane */
386 atomic_set(&new_bh->b_count, 1);
387
388 jbd_lock_bh_state(bh_in);
389 repeat:
390 /*
391 * If a new transaction has already done a buffer copy-out, then
392 * we use that version of the data for the commit.
393 */
394 if (jh_in->b_frozen_data) {
395 done_copy_out = 1;
396 new_page = virt_to_page(jh_in->b_frozen_data);
397 new_offset = offset_in_page(jh_in->b_frozen_data);
398 } else {
399 new_page = jh2bh(jh_in)->b_page;
400 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
401 }
402
403 mapped_data = kmap_atomic(new_page);
404 /*
405 * Fire data frozen trigger if data already wasn't frozen. Do this
406 * before checking for escaping, as the trigger may modify the magic
407 * offset. If a copy-out happens afterwards, it will have the correct
408 * data in the buffer.
409 */
410 if (!done_copy_out)
411 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
412 jh_in->b_triggers);
413
414 /*
415 * Check for escaping
416 */
417 if (*((__be32 *)(mapped_data + new_offset)) ==
418 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
419 need_copy_out = 1;
420 do_escape = 1;
421 }
422 kunmap_atomic(mapped_data);
423
424 /*
425 * Do we need to do a data copy?
426 */
427 if (need_copy_out && !done_copy_out) {
428 char *tmp;
429
430 jbd_unlock_bh_state(bh_in);
431 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
432 if (!tmp) {
433 brelse(new_bh);
434 return -ENOMEM;
435 }
436 jbd_lock_bh_state(bh_in);
437 if (jh_in->b_frozen_data) {
438 jbd2_free(tmp, bh_in->b_size);
439 goto repeat;
440 }
441
442 jh_in->b_frozen_data = tmp;
443 mapped_data = kmap_atomic(new_page);
444 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
445 kunmap_atomic(mapped_data);
446
447 new_page = virt_to_page(tmp);
448 new_offset = offset_in_page(tmp);
449 done_copy_out = 1;
450
451 /*
452 * This isn't strictly necessary, as we're using frozen
453 * data for the escaping, but it keeps consistency with
454 * b_frozen_data usage.
455 */
456 jh_in->b_frozen_triggers = jh_in->b_triggers;
457 }
458
459 /*
460 * Did we need to do an escaping? Now we've done all the
461 * copying, we can finally do so.
462 */
463 if (do_escape) {
464 mapped_data = kmap_atomic(new_page);
465 *((unsigned int *)(mapped_data + new_offset)) = 0;
466 kunmap_atomic(mapped_data);
467 }
468
469 set_bh_page(new_bh, new_page, new_offset);
470 new_bh->b_size = bh_in->b_size;
471 new_bh->b_bdev = journal->j_dev;
472 new_bh->b_blocknr = blocknr;
473 new_bh->b_private = bh_in;
474 set_buffer_mapped(new_bh);
475 set_buffer_dirty(new_bh);
476
477 *bh_out = new_bh;
478
479 /*
480 * The to-be-written buffer needs to get moved to the io queue,
481 * and the original buffer whose contents we are shadowing or
482 * copying is moved to the transaction's shadow queue.
483 */
484 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
485 spin_lock(&journal->j_list_lock);
486 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
487 spin_unlock(&journal->j_list_lock);
488 set_buffer_shadow(bh_in);
489 jbd_unlock_bh_state(bh_in);
490
491 return do_escape | (done_copy_out << 1);
492 }
493
494 /*
495 * Allocation code for the journal file. Manage the space left in the
496 * journal, so that we can begin checkpointing when appropriate.
497 */
498
499 /*
500 * Called with j_state_lock locked for writing.
501 * Returns true if a transaction commit was started.
502 */
__jbd2_log_start_commit(journal_t * journal,tid_t target)503 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
504 {
505 /* Return if the txn has already requested to be committed */
506 if (journal->j_commit_request == target)
507 return 0;
508
509 /*
510 * The only transaction we can possibly wait upon is the
511 * currently running transaction (if it exists). Otherwise,
512 * the target tid must be an old one.
513 */
514 if (journal->j_running_transaction &&
515 journal->j_running_transaction->t_tid == target) {
516 /*
517 * We want a new commit: OK, mark the request and wakeup the
518 * commit thread. We do _not_ do the commit ourselves.
519 */
520
521 journal->j_commit_request = target;
522 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
523 journal->j_commit_request,
524 journal->j_commit_sequence);
525 journal->j_running_transaction->t_requested = jiffies;
526 wake_up(&journal->j_wait_commit);
527 return 1;
528 } else if (!tid_geq(journal->j_commit_request, target))
529 /* This should never happen, but if it does, preserve
530 the evidence before kjournald goes into a loop and
531 increments j_commit_sequence beyond all recognition. */
532 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
533 journal->j_commit_request,
534 journal->j_commit_sequence,
535 target, journal->j_running_transaction ?
536 journal->j_running_transaction->t_tid : 0);
537 return 0;
538 }
539
jbd2_log_start_commit(journal_t * journal,tid_t tid)540 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
541 {
542 int ret;
543
544 write_lock(&journal->j_state_lock);
545 ret = __jbd2_log_start_commit(journal, tid);
546 write_unlock(&journal->j_state_lock);
547 return ret;
548 }
549
550 /*
551 * Force and wait any uncommitted transactions. We can only force the running
552 * transaction if we don't have an active handle, otherwise, we will deadlock.
553 * Returns: <0 in case of error,
554 * 0 if nothing to commit,
555 * 1 if transaction was successfully committed.
556 */
__jbd2_journal_force_commit(journal_t * journal)557 static int __jbd2_journal_force_commit(journal_t *journal)
558 {
559 transaction_t *transaction = NULL;
560 tid_t tid;
561 int need_to_start = 0, ret = 0;
562
563 read_lock(&journal->j_state_lock);
564 if (journal->j_running_transaction && !current->journal_info) {
565 transaction = journal->j_running_transaction;
566 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
567 need_to_start = 1;
568 } else if (journal->j_committing_transaction)
569 transaction = journal->j_committing_transaction;
570
571 if (!transaction) {
572 /* Nothing to commit */
573 read_unlock(&journal->j_state_lock);
574 return 0;
575 }
576 tid = transaction->t_tid;
577 read_unlock(&journal->j_state_lock);
578 if (need_to_start)
579 jbd2_log_start_commit(journal, tid);
580 ret = jbd2_log_wait_commit(journal, tid);
581 if (!ret)
582 ret = 1;
583
584 return ret;
585 }
586
587 /**
588 * Force and wait upon a commit if the calling process is not within
589 * transaction. This is used for forcing out undo-protected data which contains
590 * bitmaps, when the fs is running out of space.
591 *
592 * @journal: journal to force
593 * Returns true if progress was made.
594 */
jbd2_journal_force_commit_nested(journal_t * journal)595 int jbd2_journal_force_commit_nested(journal_t *journal)
596 {
597 int ret;
598
599 ret = __jbd2_journal_force_commit(journal);
600 return ret > 0;
601 }
602
603 /**
604 * int journal_force_commit() - force any uncommitted transactions
605 * @journal: journal to force
606 *
607 * Caller want unconditional commit. We can only force the running transaction
608 * if we don't have an active handle, otherwise, we will deadlock.
609 */
jbd2_journal_force_commit(journal_t * journal)610 int jbd2_journal_force_commit(journal_t *journal)
611 {
612 int ret;
613
614 J_ASSERT(!current->journal_info);
615 ret = __jbd2_journal_force_commit(journal);
616 if (ret > 0)
617 ret = 0;
618 return ret;
619 }
620
621 /*
622 * Start a commit of the current running transaction (if any). Returns true
623 * if a transaction is going to be committed (or is currently already
624 * committing), and fills its tid in at *ptid
625 */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)626 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
627 {
628 int ret = 0;
629
630 write_lock(&journal->j_state_lock);
631 if (journal->j_running_transaction) {
632 tid_t tid = journal->j_running_transaction->t_tid;
633
634 __jbd2_log_start_commit(journal, tid);
635 /* There's a running transaction and we've just made sure
636 * it's commit has been scheduled. */
637 if (ptid)
638 *ptid = tid;
639 ret = 1;
640 } else if (journal->j_committing_transaction) {
641 /*
642 * If commit has been started, then we have to wait for
643 * completion of that transaction.
644 */
645 if (ptid)
646 *ptid = journal->j_committing_transaction->t_tid;
647 ret = 1;
648 }
649 write_unlock(&journal->j_state_lock);
650 return ret;
651 }
652
653 /*
654 * Return 1 if a given transaction has not yet sent barrier request
655 * connected with a transaction commit. If 0 is returned, transaction
656 * may or may not have sent the barrier. Used to avoid sending barrier
657 * twice in common cases.
658 */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)659 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
660 {
661 int ret = 0;
662 transaction_t *commit_trans;
663
664 if (!(journal->j_flags & JBD2_BARRIER))
665 return 0;
666 read_lock(&journal->j_state_lock);
667 /* Transaction already committed? */
668 if (tid_geq(journal->j_commit_sequence, tid))
669 goto out;
670 commit_trans = journal->j_committing_transaction;
671 if (!commit_trans || commit_trans->t_tid != tid) {
672 ret = 1;
673 goto out;
674 }
675 /*
676 * Transaction is being committed and we already proceeded to
677 * submitting a flush to fs partition?
678 */
679 if (journal->j_fs_dev != journal->j_dev) {
680 if (!commit_trans->t_need_data_flush ||
681 commit_trans->t_state >= T_COMMIT_DFLUSH)
682 goto out;
683 } else {
684 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
685 goto out;
686 }
687 ret = 1;
688 out:
689 read_unlock(&journal->j_state_lock);
690 return ret;
691 }
692 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
693
694 /*
695 * Wait for a specified commit to complete.
696 * The caller may not hold the journal lock.
697 */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)698 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
699 {
700 int err = 0;
701
702 read_lock(&journal->j_state_lock);
703 #ifdef CONFIG_JBD2_DEBUG
704 if (!tid_geq(journal->j_commit_request, tid)) {
705 printk(KERN_ERR
706 "%s: error: j_commit_request=%d, tid=%d\n",
707 __func__, journal->j_commit_request, tid);
708 }
709 #endif
710 while (tid_gt(tid, journal->j_commit_sequence)) {
711 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
712 tid, journal->j_commit_sequence);
713 read_unlock(&journal->j_state_lock);
714 wake_up(&journal->j_wait_commit);
715 wait_event(journal->j_wait_done_commit,
716 !tid_gt(tid, journal->j_commit_sequence));
717 read_lock(&journal->j_state_lock);
718 }
719 read_unlock(&journal->j_state_lock);
720
721 if (unlikely(is_journal_aborted(journal)))
722 err = -EIO;
723 return err;
724 }
725
726 /*
727 * When this function returns the transaction corresponding to tid
728 * will be completed. If the transaction has currently running, start
729 * committing that transaction before waiting for it to complete. If
730 * the transaction id is stale, it is by definition already completed,
731 * so just return SUCCESS.
732 */
jbd2_complete_transaction(journal_t * journal,tid_t tid)733 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
734 {
735 int need_to_wait = 1;
736
737 read_lock(&journal->j_state_lock);
738 if (journal->j_running_transaction &&
739 journal->j_running_transaction->t_tid == tid) {
740 if (journal->j_commit_request != tid) {
741 /* transaction not yet started, so request it */
742 read_unlock(&journal->j_state_lock);
743 jbd2_log_start_commit(journal, tid);
744 goto wait_commit;
745 }
746 } else if (!(journal->j_committing_transaction &&
747 journal->j_committing_transaction->t_tid == tid))
748 need_to_wait = 0;
749 read_unlock(&journal->j_state_lock);
750 if (!need_to_wait)
751 return 0;
752 wait_commit:
753 return jbd2_log_wait_commit(journal, tid);
754 }
755 EXPORT_SYMBOL(jbd2_complete_transaction);
756
757 /*
758 * Log buffer allocation routines:
759 */
760
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)761 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
762 {
763 unsigned long blocknr;
764
765 write_lock(&journal->j_state_lock);
766 J_ASSERT(journal->j_free > 1);
767
768 blocknr = journal->j_head;
769 journal->j_head++;
770 journal->j_free--;
771 if (journal->j_head == journal->j_last)
772 journal->j_head = journal->j_first;
773 write_unlock(&journal->j_state_lock);
774 return jbd2_journal_bmap(journal, blocknr, retp);
775 }
776
777 /*
778 * Conversion of logical to physical block numbers for the journal
779 *
780 * On external journals the journal blocks are identity-mapped, so
781 * this is a no-op. If needed, we can use j_blk_offset - everything is
782 * ready.
783 */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)784 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
785 unsigned long long *retp)
786 {
787 int err = 0;
788 unsigned long long ret;
789
790 if (journal->j_inode) {
791 ret = bmap(journal->j_inode, blocknr);
792 if (ret)
793 *retp = ret;
794 else {
795 printk(KERN_ALERT "%s: journal block not found "
796 "at offset %lu on %s\n",
797 __func__, blocknr, journal->j_devname);
798 err = -EIO;
799 __journal_abort_soft(journal, err);
800 }
801 } else {
802 *retp = blocknr; /* +journal->j_blk_offset */
803 }
804 return err;
805 }
806
807 /*
808 * We play buffer_head aliasing tricks to write data/metadata blocks to
809 * the journal without copying their contents, but for journal
810 * descriptor blocks we do need to generate bona fide buffers.
811 *
812 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
813 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
814 * But we don't bother doing that, so there will be coherency problems with
815 * mmaps of blockdevs which hold live JBD-controlled filesystems.
816 */
jbd2_journal_get_descriptor_buffer(journal_t * journal)817 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
818 {
819 struct buffer_head *bh;
820 unsigned long long blocknr;
821 int err;
822
823 err = jbd2_journal_next_log_block(journal, &blocknr);
824
825 if (err)
826 return NULL;
827
828 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
829 if (!bh)
830 return NULL;
831 lock_buffer(bh);
832 memset(bh->b_data, 0, journal->j_blocksize);
833 set_buffer_uptodate(bh);
834 unlock_buffer(bh);
835 BUFFER_TRACE(bh, "return this buffer");
836 return bh;
837 }
838
839 /*
840 * Return tid of the oldest transaction in the journal and block in the journal
841 * where the transaction starts.
842 *
843 * If the journal is now empty, return which will be the next transaction ID
844 * we will write and where will that transaction start.
845 *
846 * The return value is 0 if journal tail cannot be pushed any further, 1 if
847 * it can.
848 */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)849 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
850 unsigned long *block)
851 {
852 transaction_t *transaction;
853 int ret;
854
855 read_lock(&journal->j_state_lock);
856 spin_lock(&journal->j_list_lock);
857 transaction = journal->j_checkpoint_transactions;
858 if (transaction) {
859 *tid = transaction->t_tid;
860 *block = transaction->t_log_start;
861 } else if ((transaction = journal->j_committing_transaction) != NULL) {
862 *tid = transaction->t_tid;
863 *block = transaction->t_log_start;
864 } else if ((transaction = journal->j_running_transaction) != NULL) {
865 *tid = transaction->t_tid;
866 *block = journal->j_head;
867 } else {
868 *tid = journal->j_transaction_sequence;
869 *block = journal->j_head;
870 }
871 ret = tid_gt(*tid, journal->j_tail_sequence);
872 spin_unlock(&journal->j_list_lock);
873 read_unlock(&journal->j_state_lock);
874
875 return ret;
876 }
877
878 /*
879 * Update information in journal structure and in on disk journal superblock
880 * about log tail. This function does not check whether information passed in
881 * really pushes log tail further. It's responsibility of the caller to make
882 * sure provided log tail information is valid (e.g. by holding
883 * j_checkpoint_mutex all the time between computing log tail and calling this
884 * function as is the case with jbd2_cleanup_journal_tail()).
885 *
886 * Requires j_checkpoint_mutex
887 */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)888 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
889 {
890 unsigned long freed;
891 int ret;
892
893 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
894
895 /*
896 * We cannot afford for write to remain in drive's caches since as
897 * soon as we update j_tail, next transaction can start reusing journal
898 * space and if we lose sb update during power failure we'd replay
899 * old transaction with possibly newly overwritten data.
900 */
901 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
902 if (ret)
903 goto out;
904
905 write_lock(&journal->j_state_lock);
906 freed = block - journal->j_tail;
907 if (block < journal->j_tail)
908 freed += journal->j_last - journal->j_first;
909
910 trace_jbd2_update_log_tail(journal, tid, block, freed);
911 jbd_debug(1,
912 "Cleaning journal tail from %d to %d (offset %lu), "
913 "freeing %lu\n",
914 journal->j_tail_sequence, tid, block, freed);
915
916 journal->j_free += freed;
917 journal->j_tail_sequence = tid;
918 journal->j_tail = block;
919 write_unlock(&journal->j_state_lock);
920
921 out:
922 return ret;
923 }
924
925 /*
926 * This is a variaon of __jbd2_update_log_tail which checks for validity of
927 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
928 * with other threads updating log tail.
929 */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)930 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
931 {
932 mutex_lock(&journal->j_checkpoint_mutex);
933 if (tid_gt(tid, journal->j_tail_sequence))
934 __jbd2_update_log_tail(journal, tid, block);
935 mutex_unlock(&journal->j_checkpoint_mutex);
936 }
937
938 struct jbd2_stats_proc_session {
939 journal_t *journal;
940 struct transaction_stats_s *stats;
941 int start;
942 int max;
943 };
944
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)945 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
946 {
947 return *pos ? NULL : SEQ_START_TOKEN;
948 }
949
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)950 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
951 {
952 return NULL;
953 }
954
jbd2_seq_info_show(struct seq_file * seq,void * v)955 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
956 {
957 struct jbd2_stats_proc_session *s = seq->private;
958
959 if (v != SEQ_START_TOKEN)
960 return 0;
961 seq_printf(seq, "%lu transactions (%lu requested), "
962 "each up to %u blocks\n",
963 s->stats->ts_tid, s->stats->ts_requested,
964 s->journal->j_max_transaction_buffers);
965 if (s->stats->ts_tid == 0)
966 return 0;
967 seq_printf(seq, "average: \n %ums waiting for transaction\n",
968 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
969 seq_printf(seq, " %ums request delay\n",
970 (s->stats->ts_requested == 0) ? 0 :
971 jiffies_to_msecs(s->stats->run.rs_request_delay /
972 s->stats->ts_requested));
973 seq_printf(seq, " %ums running transaction\n",
974 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
975 seq_printf(seq, " %ums transaction was being locked\n",
976 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
977 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
978 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
979 seq_printf(seq, " %ums logging transaction\n",
980 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
981 seq_printf(seq, " %lluus average transaction commit time\n",
982 div_u64(s->journal->j_average_commit_time, 1000));
983 seq_printf(seq, " %lu handles per transaction\n",
984 s->stats->run.rs_handle_count / s->stats->ts_tid);
985 seq_printf(seq, " %lu blocks per transaction\n",
986 s->stats->run.rs_blocks / s->stats->ts_tid);
987 seq_printf(seq, " %lu logged blocks per transaction\n",
988 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
989 return 0;
990 }
991
jbd2_seq_info_stop(struct seq_file * seq,void * v)992 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
993 {
994 }
995
996 static const struct seq_operations jbd2_seq_info_ops = {
997 .start = jbd2_seq_info_start,
998 .next = jbd2_seq_info_next,
999 .stop = jbd2_seq_info_stop,
1000 .show = jbd2_seq_info_show,
1001 };
1002
jbd2_seq_info_open(struct inode * inode,struct file * file)1003 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1004 {
1005 journal_t *journal = PDE_DATA(inode);
1006 struct jbd2_stats_proc_session *s;
1007 int rc, size;
1008
1009 s = kmalloc(sizeof(*s), GFP_KERNEL);
1010 if (s == NULL)
1011 return -ENOMEM;
1012 size = sizeof(struct transaction_stats_s);
1013 s->stats = kmalloc(size, GFP_KERNEL);
1014 if (s->stats == NULL) {
1015 kfree(s);
1016 return -ENOMEM;
1017 }
1018 spin_lock(&journal->j_history_lock);
1019 memcpy(s->stats, &journal->j_stats, size);
1020 s->journal = journal;
1021 spin_unlock(&journal->j_history_lock);
1022
1023 rc = seq_open(file, &jbd2_seq_info_ops);
1024 if (rc == 0) {
1025 struct seq_file *m = file->private_data;
1026 m->private = s;
1027 } else {
1028 kfree(s->stats);
1029 kfree(s);
1030 }
1031 return rc;
1032
1033 }
1034
jbd2_seq_info_release(struct inode * inode,struct file * file)1035 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1036 {
1037 struct seq_file *seq = file->private_data;
1038 struct jbd2_stats_proc_session *s = seq->private;
1039 kfree(s->stats);
1040 kfree(s);
1041 return seq_release(inode, file);
1042 }
1043
1044 static const struct file_operations jbd2_seq_info_fops = {
1045 .owner = THIS_MODULE,
1046 .open = jbd2_seq_info_open,
1047 .read = seq_read,
1048 .llseek = seq_lseek,
1049 .release = jbd2_seq_info_release,
1050 };
1051
1052 static struct proc_dir_entry *proc_jbd2_stats;
1053
jbd2_stats_proc_init(journal_t * journal)1054 static void jbd2_stats_proc_init(journal_t *journal)
1055 {
1056 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1057 if (journal->j_proc_entry) {
1058 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1059 &jbd2_seq_info_fops, journal);
1060 }
1061 }
1062
jbd2_stats_proc_exit(journal_t * journal)1063 static void jbd2_stats_proc_exit(journal_t *journal)
1064 {
1065 remove_proc_entry("info", journal->j_proc_entry);
1066 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1067 }
1068
1069 /*
1070 * Management for journal control blocks: functions to create and
1071 * destroy journal_t structures, and to initialise and read existing
1072 * journal blocks from disk. */
1073
1074 /* First: create and setup a journal_t object in memory. We initialise
1075 * very few fields yet: that has to wait until we have created the
1076 * journal structures from from scratch, or loaded them from disk. */
1077
journal_init_common(void)1078 static journal_t * journal_init_common (void)
1079 {
1080 journal_t *journal;
1081 int err;
1082
1083 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1084 if (!journal)
1085 return NULL;
1086
1087 init_waitqueue_head(&journal->j_wait_transaction_locked);
1088 init_waitqueue_head(&journal->j_wait_done_commit);
1089 init_waitqueue_head(&journal->j_wait_commit);
1090 init_waitqueue_head(&journal->j_wait_updates);
1091 init_waitqueue_head(&journal->j_wait_reserved);
1092 mutex_init(&journal->j_barrier);
1093 mutex_init(&journal->j_checkpoint_mutex);
1094 spin_lock_init(&journal->j_revoke_lock);
1095 spin_lock_init(&journal->j_list_lock);
1096 rwlock_init(&journal->j_state_lock);
1097
1098 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1099 journal->j_min_batch_time = 0;
1100 journal->j_max_batch_time = 15000; /* 15ms */
1101 atomic_set(&journal->j_reserved_credits, 0);
1102
1103 /* The journal is marked for error until we succeed with recovery! */
1104 journal->j_flags = JBD2_ABORT;
1105
1106 /* Set up a default-sized revoke table for the new mount. */
1107 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1108 if (err) {
1109 kfree(journal);
1110 return NULL;
1111 }
1112
1113 spin_lock_init(&journal->j_history_lock);
1114
1115 return journal;
1116 }
1117
1118 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1119 *
1120 * Create a journal structure assigned some fixed set of disk blocks to
1121 * the journal. We don't actually touch those disk blocks yet, but we
1122 * need to set up all of the mapping information to tell the journaling
1123 * system where the journal blocks are.
1124 *
1125 */
1126
1127 /**
1128 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1129 * @bdev: Block device on which to create the journal
1130 * @fs_dev: Device which hold journalled filesystem for this journal.
1131 * @start: Block nr Start of journal.
1132 * @len: Length of the journal in blocks.
1133 * @blocksize: blocksize of journalling device
1134 *
1135 * Returns: a newly created journal_t *
1136 *
1137 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1138 * range of blocks on an arbitrary block device.
1139 *
1140 */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1141 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1142 struct block_device *fs_dev,
1143 unsigned long long start, int len, int blocksize)
1144 {
1145 journal_t *journal = journal_init_common();
1146 struct buffer_head *bh;
1147 char *p;
1148 int n;
1149
1150 if (!journal)
1151 return NULL;
1152
1153 /* journal descriptor can store up to n blocks -bzzz */
1154 journal->j_blocksize = blocksize;
1155 journal->j_dev = bdev;
1156 journal->j_fs_dev = fs_dev;
1157 journal->j_blk_offset = start;
1158 journal->j_maxlen = len;
1159 bdevname(journal->j_dev, journal->j_devname);
1160 p = journal->j_devname;
1161 while ((p = strchr(p, '/')))
1162 *p = '!';
1163 jbd2_stats_proc_init(journal);
1164 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1165 journal->j_wbufsize = n;
1166 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1167 if (!journal->j_wbuf) {
1168 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1169 __func__);
1170 goto out_err;
1171 }
1172
1173 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1174 if (!bh) {
1175 printk(KERN_ERR
1176 "%s: Cannot get buffer for journal superblock\n",
1177 __func__);
1178 goto out_err;
1179 }
1180 journal->j_sb_buffer = bh;
1181 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1182
1183 return journal;
1184 out_err:
1185 kfree(journal->j_wbuf);
1186 jbd2_stats_proc_exit(journal);
1187 kfree(journal);
1188 return NULL;
1189 }
1190
1191 /**
1192 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1193 * @inode: An inode to create the journal in
1194 *
1195 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1196 * the journal. The inode must exist already, must support bmap() and
1197 * must have all data blocks preallocated.
1198 */
jbd2_journal_init_inode(struct inode * inode)1199 journal_t * jbd2_journal_init_inode (struct inode *inode)
1200 {
1201 struct buffer_head *bh;
1202 journal_t *journal = journal_init_common();
1203 char *p;
1204 int err;
1205 int n;
1206 unsigned long long blocknr;
1207
1208 if (!journal)
1209 return NULL;
1210
1211 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1212 journal->j_inode = inode;
1213 bdevname(journal->j_dev, journal->j_devname);
1214 p = journal->j_devname;
1215 while ((p = strchr(p, '/')))
1216 *p = '!';
1217 p = journal->j_devname + strlen(journal->j_devname);
1218 sprintf(p, "-%lu", journal->j_inode->i_ino);
1219 jbd_debug(1,
1220 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1221 journal, inode->i_sb->s_id, inode->i_ino,
1222 (long long) inode->i_size,
1223 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1224
1225 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1226 journal->j_blocksize = inode->i_sb->s_blocksize;
1227 jbd2_stats_proc_init(journal);
1228
1229 /* journal descriptor can store up to n blocks -bzzz */
1230 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1231 journal->j_wbufsize = n;
1232 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1233 if (!journal->j_wbuf) {
1234 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1235 __func__);
1236 goto out_err;
1237 }
1238
1239 err = jbd2_journal_bmap(journal, 0, &blocknr);
1240 /* If that failed, give up */
1241 if (err) {
1242 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1243 __func__);
1244 goto out_err;
1245 }
1246
1247 bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1248 if (!bh) {
1249 printk(KERN_ERR
1250 "%s: Cannot get buffer for journal superblock\n",
1251 __func__);
1252 goto out_err;
1253 }
1254 journal->j_sb_buffer = bh;
1255 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1256
1257 return journal;
1258 out_err:
1259 kfree(journal->j_wbuf);
1260 jbd2_stats_proc_exit(journal);
1261 kfree(journal);
1262 return NULL;
1263 }
1264
1265 /*
1266 * If the journal init or create aborts, we need to mark the journal
1267 * superblock as being NULL to prevent the journal destroy from writing
1268 * back a bogus superblock.
1269 */
journal_fail_superblock(journal_t * journal)1270 static void journal_fail_superblock (journal_t *journal)
1271 {
1272 struct buffer_head *bh = journal->j_sb_buffer;
1273 brelse(bh);
1274 journal->j_sb_buffer = NULL;
1275 }
1276
1277 /*
1278 * Given a journal_t structure, initialise the various fields for
1279 * startup of a new journaling session. We use this both when creating
1280 * a journal, and after recovering an old journal to reset it for
1281 * subsequent use.
1282 */
1283
journal_reset(journal_t * journal)1284 static int journal_reset(journal_t *journal)
1285 {
1286 journal_superblock_t *sb = journal->j_superblock;
1287 unsigned long long first, last;
1288
1289 first = be32_to_cpu(sb->s_first);
1290 last = be32_to_cpu(sb->s_maxlen);
1291 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1292 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1293 first, last);
1294 journal_fail_superblock(journal);
1295 return -EINVAL;
1296 }
1297
1298 journal->j_first = first;
1299 journal->j_last = last;
1300
1301 journal->j_head = first;
1302 journal->j_tail = first;
1303 journal->j_free = last - first;
1304
1305 journal->j_tail_sequence = journal->j_transaction_sequence;
1306 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1307 journal->j_commit_request = journal->j_commit_sequence;
1308
1309 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1310
1311 /*
1312 * As a special case, if the on-disk copy is already marked as needing
1313 * no recovery (s_start == 0), then we can safely defer the superblock
1314 * update until the next commit by setting JBD2_FLUSHED. This avoids
1315 * attempting a write to a potential-readonly device.
1316 */
1317 if (sb->s_start == 0) {
1318 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1319 "(start %ld, seq %d, errno %d)\n",
1320 journal->j_tail, journal->j_tail_sequence,
1321 journal->j_errno);
1322 journal->j_flags |= JBD2_FLUSHED;
1323 } else {
1324 /* Lock here to make assertions happy... */
1325 mutex_lock(&journal->j_checkpoint_mutex);
1326 /*
1327 * Update log tail information. We use WRITE_FUA since new
1328 * transaction will start reusing journal space and so we
1329 * must make sure information about current log tail is on
1330 * disk before that.
1331 */
1332 jbd2_journal_update_sb_log_tail(journal,
1333 journal->j_tail_sequence,
1334 journal->j_tail,
1335 WRITE_FUA);
1336 mutex_unlock(&journal->j_checkpoint_mutex);
1337 }
1338 return jbd2_journal_start_thread(journal);
1339 }
1340
jbd2_write_superblock(journal_t * journal,int write_op)1341 static int jbd2_write_superblock(journal_t *journal, int write_op)
1342 {
1343 struct buffer_head *bh = journal->j_sb_buffer;
1344 journal_superblock_t *sb = journal->j_superblock;
1345 int ret;
1346
1347 trace_jbd2_write_superblock(journal, write_op);
1348 if (!(journal->j_flags & JBD2_BARRIER))
1349 write_op &= ~(REQ_FUA | REQ_FLUSH);
1350 lock_buffer(bh);
1351 if (buffer_write_io_error(bh)) {
1352 /*
1353 * Oh, dear. A previous attempt to write the journal
1354 * superblock failed. This could happen because the
1355 * USB device was yanked out. Or it could happen to
1356 * be a transient write error and maybe the block will
1357 * be remapped. Nothing we can do but to retry the
1358 * write and hope for the best.
1359 */
1360 printk(KERN_ERR "JBD2: previous I/O error detected "
1361 "for journal superblock update for %s.\n",
1362 journal->j_devname);
1363 clear_buffer_write_io_error(bh);
1364 set_buffer_uptodate(bh);
1365 }
1366 jbd2_superblock_csum_set(journal, sb);
1367 get_bh(bh);
1368 bh->b_end_io = end_buffer_write_sync;
1369 ret = submit_bh(write_op, bh);
1370 wait_on_buffer(bh);
1371 if (buffer_write_io_error(bh)) {
1372 clear_buffer_write_io_error(bh);
1373 set_buffer_uptodate(bh);
1374 ret = -EIO;
1375 }
1376 if (ret) {
1377 printk(KERN_ERR "JBD2: Error %d detected when updating "
1378 "journal superblock for %s.\n", ret,
1379 journal->j_devname);
1380 jbd2_journal_abort(journal, ret);
1381 }
1382
1383 return ret;
1384 }
1385
1386 /**
1387 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1388 * @journal: The journal to update.
1389 * @tail_tid: TID of the new transaction at the tail of the log
1390 * @tail_block: The first block of the transaction at the tail of the log
1391 * @write_op: With which operation should we write the journal sb
1392 *
1393 * Update a journal's superblock information about log tail and write it to
1394 * disk, waiting for the IO to complete.
1395 */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,int write_op)1396 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1397 unsigned long tail_block, int write_op)
1398 {
1399 journal_superblock_t *sb = journal->j_superblock;
1400 int ret;
1401
1402 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1403 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1404 tail_block, tail_tid);
1405
1406 sb->s_sequence = cpu_to_be32(tail_tid);
1407 sb->s_start = cpu_to_be32(tail_block);
1408
1409 ret = jbd2_write_superblock(journal, write_op);
1410 if (ret)
1411 goto out;
1412
1413 /* Log is no longer empty */
1414 write_lock(&journal->j_state_lock);
1415 WARN_ON(!sb->s_sequence);
1416 journal->j_flags &= ~JBD2_FLUSHED;
1417 write_unlock(&journal->j_state_lock);
1418
1419 out:
1420 return ret;
1421 }
1422
1423 /**
1424 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1425 * @journal: The journal to update.
1426 * @write_op: With which operation should we write the journal sb
1427 *
1428 * Update a journal's dynamic superblock fields to show that journal is empty.
1429 * Write updated superblock to disk waiting for IO to complete.
1430 */
jbd2_mark_journal_empty(journal_t * journal,int write_op)1431 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1432 {
1433 journal_superblock_t *sb = journal->j_superblock;
1434
1435 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1436 read_lock(&journal->j_state_lock);
1437 /* Is it already empty? */
1438 if (sb->s_start == 0) {
1439 read_unlock(&journal->j_state_lock);
1440 return;
1441 }
1442 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1443 journal->j_tail_sequence);
1444
1445 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1446 sb->s_start = cpu_to_be32(0);
1447 read_unlock(&journal->j_state_lock);
1448
1449 jbd2_write_superblock(journal, write_op);
1450
1451 /* Log is no longer empty */
1452 write_lock(&journal->j_state_lock);
1453 journal->j_flags |= JBD2_FLUSHED;
1454 write_unlock(&journal->j_state_lock);
1455 }
1456
1457
1458 /**
1459 * jbd2_journal_update_sb_errno() - Update error in the journal.
1460 * @journal: The journal to update.
1461 *
1462 * Update a journal's errno. Write updated superblock to disk waiting for IO
1463 * to complete.
1464 */
jbd2_journal_update_sb_errno(journal_t * journal)1465 void jbd2_journal_update_sb_errno(journal_t *journal)
1466 {
1467 journal_superblock_t *sb = journal->j_superblock;
1468
1469 read_lock(&journal->j_state_lock);
1470 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1471 journal->j_errno);
1472 sb->s_errno = cpu_to_be32(journal->j_errno);
1473 read_unlock(&journal->j_state_lock);
1474
1475 jbd2_write_superblock(journal, WRITE_SYNC);
1476 }
1477 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1478
1479 /*
1480 * Read the superblock for a given journal, performing initial
1481 * validation of the format.
1482 */
journal_get_superblock(journal_t * journal)1483 static int journal_get_superblock(journal_t *journal)
1484 {
1485 struct buffer_head *bh;
1486 journal_superblock_t *sb;
1487 int err = -EIO;
1488
1489 bh = journal->j_sb_buffer;
1490
1491 J_ASSERT(bh != NULL);
1492 if (!buffer_uptodate(bh)) {
1493 ll_rw_block(READ, 1, &bh);
1494 wait_on_buffer(bh);
1495 if (!buffer_uptodate(bh)) {
1496 printk(KERN_ERR
1497 "JBD2: IO error reading journal superblock\n");
1498 goto out;
1499 }
1500 }
1501
1502 if (buffer_verified(bh))
1503 return 0;
1504
1505 sb = journal->j_superblock;
1506
1507 err = -EINVAL;
1508
1509 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1510 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1511 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1512 goto out;
1513 }
1514
1515 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1516 case JBD2_SUPERBLOCK_V1:
1517 journal->j_format_version = 1;
1518 break;
1519 case JBD2_SUPERBLOCK_V2:
1520 journal->j_format_version = 2;
1521 break;
1522 default:
1523 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1524 goto out;
1525 }
1526
1527 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1528 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1529 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1530 printk(KERN_WARNING "JBD2: journal file too short\n");
1531 goto out;
1532 }
1533
1534 if (be32_to_cpu(sb->s_first) == 0 ||
1535 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1536 printk(KERN_WARNING
1537 "JBD2: Invalid start block of journal: %u\n",
1538 be32_to_cpu(sb->s_first));
1539 goto out;
1540 }
1541
1542 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2) &&
1543 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1544 /* Can't have checksum v2 and v3 at the same time! */
1545 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1546 "at the same time!\n");
1547 goto out;
1548 }
1549
1550 if (jbd2_journal_has_csum_v2or3(journal) &&
1551 JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM)) {
1552 /* Can't have checksum v1 and v2 on at the same time! */
1553 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1554 "at the same time!\n");
1555 goto out;
1556 }
1557
1558 if (!jbd2_verify_csum_type(journal, sb)) {
1559 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1560 goto out;
1561 }
1562
1563 /* Load the checksum driver */
1564 if (jbd2_journal_has_csum_v2or3(journal)) {
1565 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1566 if (IS_ERR(journal->j_chksum_driver)) {
1567 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1568 err = PTR_ERR(journal->j_chksum_driver);
1569 journal->j_chksum_driver = NULL;
1570 goto out;
1571 }
1572 }
1573
1574 /* Check superblock checksum */
1575 if (!jbd2_superblock_csum_verify(journal, sb)) {
1576 printk(KERN_ERR "JBD2: journal checksum error\n");
1577 goto out;
1578 }
1579
1580 /* Precompute checksum seed for all metadata */
1581 if (jbd2_journal_has_csum_v2or3(journal))
1582 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1583 sizeof(sb->s_uuid));
1584
1585 set_buffer_verified(bh);
1586
1587 return 0;
1588
1589 out:
1590 journal_fail_superblock(journal);
1591 return err;
1592 }
1593
1594 /*
1595 * Load the on-disk journal superblock and read the key fields into the
1596 * journal_t.
1597 */
1598
load_superblock(journal_t * journal)1599 static int load_superblock(journal_t *journal)
1600 {
1601 int err;
1602 journal_superblock_t *sb;
1603
1604 err = journal_get_superblock(journal);
1605 if (err)
1606 return err;
1607
1608 sb = journal->j_superblock;
1609
1610 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1611 journal->j_tail = be32_to_cpu(sb->s_start);
1612 journal->j_first = be32_to_cpu(sb->s_first);
1613 journal->j_last = be32_to_cpu(sb->s_maxlen);
1614 journal->j_errno = be32_to_cpu(sb->s_errno);
1615
1616 return 0;
1617 }
1618
1619
1620 /**
1621 * int jbd2_journal_load() - Read journal from disk.
1622 * @journal: Journal to act on.
1623 *
1624 * Given a journal_t structure which tells us which disk blocks contain
1625 * a journal, read the journal from disk to initialise the in-memory
1626 * structures.
1627 */
jbd2_journal_load(journal_t * journal)1628 int jbd2_journal_load(journal_t *journal)
1629 {
1630 int err;
1631 journal_superblock_t *sb;
1632
1633 err = load_superblock(journal);
1634 if (err)
1635 return err;
1636
1637 sb = journal->j_superblock;
1638 /* If this is a V2 superblock, then we have to check the
1639 * features flags on it. */
1640
1641 if (journal->j_format_version >= 2) {
1642 if ((sb->s_feature_ro_compat &
1643 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1644 (sb->s_feature_incompat &
1645 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1646 printk(KERN_WARNING
1647 "JBD2: Unrecognised features on journal\n");
1648 return -EINVAL;
1649 }
1650 }
1651
1652 /*
1653 * Create a slab for this blocksize
1654 */
1655 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1656 if (err)
1657 return err;
1658
1659 /* Let the recovery code check whether it needs to recover any
1660 * data from the journal. */
1661 if (jbd2_journal_recover(journal))
1662 goto recovery_error;
1663
1664 if (journal->j_failed_commit) {
1665 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1666 "is corrupt.\n", journal->j_failed_commit,
1667 journal->j_devname);
1668 return -EIO;
1669 }
1670
1671 /* OK, we've finished with the dynamic journal bits:
1672 * reinitialise the dynamic contents of the superblock in memory
1673 * and reset them on disk. */
1674 if (journal_reset(journal))
1675 goto recovery_error;
1676
1677 journal->j_flags &= ~JBD2_ABORT;
1678 journal->j_flags |= JBD2_LOADED;
1679 return 0;
1680
1681 recovery_error:
1682 printk(KERN_WARNING "JBD2: recovery failed\n");
1683 return -EIO;
1684 }
1685
1686 /**
1687 * void jbd2_journal_destroy() - Release a journal_t structure.
1688 * @journal: Journal to act on.
1689 *
1690 * Release a journal_t structure once it is no longer in use by the
1691 * journaled object.
1692 * Return <0 if we couldn't clean up the journal.
1693 */
jbd2_journal_destroy(journal_t * journal)1694 int jbd2_journal_destroy(journal_t *journal)
1695 {
1696 int err = 0;
1697
1698 /* Wait for the commit thread to wake up and die. */
1699 journal_kill_thread(journal);
1700
1701 /* Force a final log commit */
1702 if (journal->j_running_transaction)
1703 jbd2_journal_commit_transaction(journal);
1704
1705 /* Force any old transactions to disk */
1706
1707 /* Totally anal locking here... */
1708 spin_lock(&journal->j_list_lock);
1709 while (journal->j_checkpoint_transactions != NULL) {
1710 spin_unlock(&journal->j_list_lock);
1711 mutex_lock(&journal->j_checkpoint_mutex);
1712 err = jbd2_log_do_checkpoint(journal);
1713 mutex_unlock(&journal->j_checkpoint_mutex);
1714 /*
1715 * If checkpointing failed, just free the buffers to avoid
1716 * looping forever
1717 */
1718 if (err) {
1719 jbd2_journal_destroy_checkpoint(journal);
1720 spin_lock(&journal->j_list_lock);
1721 break;
1722 }
1723 spin_lock(&journal->j_list_lock);
1724 }
1725
1726 J_ASSERT(journal->j_running_transaction == NULL);
1727 J_ASSERT(journal->j_committing_transaction == NULL);
1728 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1729 spin_unlock(&journal->j_list_lock);
1730
1731 if (journal->j_sb_buffer) {
1732 if (!is_journal_aborted(journal)) {
1733 mutex_lock(&journal->j_checkpoint_mutex);
1734
1735 write_lock(&journal->j_state_lock);
1736 journal->j_tail_sequence =
1737 ++journal->j_transaction_sequence;
1738 write_unlock(&journal->j_state_lock);
1739
1740 jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA);
1741 mutex_unlock(&journal->j_checkpoint_mutex);
1742 } else
1743 err = -EIO;
1744 brelse(journal->j_sb_buffer);
1745 }
1746
1747 if (journal->j_proc_entry)
1748 jbd2_stats_proc_exit(journal);
1749 if (journal->j_inode)
1750 iput(journal->j_inode);
1751 if (journal->j_revoke)
1752 jbd2_journal_destroy_revoke(journal);
1753 if (journal->j_chksum_driver)
1754 crypto_free_shash(journal->j_chksum_driver);
1755 kfree(journal->j_wbuf);
1756 kfree(journal);
1757
1758 return err;
1759 }
1760
1761
1762 /**
1763 *int jbd2_journal_check_used_features () - Check if features specified are used.
1764 * @journal: Journal to check.
1765 * @compat: bitmask of compatible features
1766 * @ro: bitmask of features that force read-only mount
1767 * @incompat: bitmask of incompatible features
1768 *
1769 * Check whether the journal uses all of a given set of
1770 * features. Return true (non-zero) if it does.
1771 **/
1772
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1773 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1774 unsigned long ro, unsigned long incompat)
1775 {
1776 journal_superblock_t *sb;
1777
1778 if (!compat && !ro && !incompat)
1779 return 1;
1780 /* Load journal superblock if it is not loaded yet. */
1781 if (journal->j_format_version == 0 &&
1782 journal_get_superblock(journal) != 0)
1783 return 0;
1784 if (journal->j_format_version == 1)
1785 return 0;
1786
1787 sb = journal->j_superblock;
1788
1789 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1790 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1791 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1792 return 1;
1793
1794 return 0;
1795 }
1796
1797 /**
1798 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1799 * @journal: Journal to check.
1800 * @compat: bitmask of compatible features
1801 * @ro: bitmask of features that force read-only mount
1802 * @incompat: bitmask of incompatible features
1803 *
1804 * Check whether the journaling code supports the use of
1805 * all of a given set of features on this journal. Return true
1806 * (non-zero) if it can. */
1807
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1808 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1809 unsigned long ro, unsigned long incompat)
1810 {
1811 if (!compat && !ro && !incompat)
1812 return 1;
1813
1814 /* We can support any known requested features iff the
1815 * superblock is in version 2. Otherwise we fail to support any
1816 * extended sb features. */
1817
1818 if (journal->j_format_version != 2)
1819 return 0;
1820
1821 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1822 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1823 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1824 return 1;
1825
1826 return 0;
1827 }
1828
1829 /**
1830 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1831 * @journal: Journal to act on.
1832 * @compat: bitmask of compatible features
1833 * @ro: bitmask of features that force read-only mount
1834 * @incompat: bitmask of incompatible features
1835 *
1836 * Mark a given journal feature as present on the
1837 * superblock. Returns true if the requested features could be set.
1838 *
1839 */
1840
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1841 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1842 unsigned long ro, unsigned long incompat)
1843 {
1844 #define INCOMPAT_FEATURE_ON(f) \
1845 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1846 #define COMPAT_FEATURE_ON(f) \
1847 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1848 journal_superblock_t *sb;
1849
1850 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1851 return 1;
1852
1853 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1854 return 0;
1855
1856 /* If enabling v2 checksums, turn on v3 instead */
1857 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1858 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1859 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1860 }
1861
1862 /* Asking for checksumming v3 and v1? Only give them v3. */
1863 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1864 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1865 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1866
1867 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1868 compat, ro, incompat);
1869
1870 sb = journal->j_superblock;
1871
1872 /* If enabling v3 checksums, update superblock */
1873 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1874 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1875 sb->s_feature_compat &=
1876 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1877
1878 /* Load the checksum driver */
1879 if (journal->j_chksum_driver == NULL) {
1880 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1881 0, 0);
1882 if (IS_ERR(journal->j_chksum_driver)) {
1883 printk(KERN_ERR "JBD2: Cannot load crc32c "
1884 "driver.\n");
1885 journal->j_chksum_driver = NULL;
1886 return 0;
1887 }
1888
1889 /* Precompute checksum seed for all metadata */
1890 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1891 sb->s_uuid,
1892 sizeof(sb->s_uuid));
1893 }
1894 }
1895
1896 /* If enabling v1 checksums, downgrade superblock */
1897 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1898 sb->s_feature_incompat &=
1899 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1900 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1901
1902 sb->s_feature_compat |= cpu_to_be32(compat);
1903 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1904 sb->s_feature_incompat |= cpu_to_be32(incompat);
1905
1906 return 1;
1907 #undef COMPAT_FEATURE_ON
1908 #undef INCOMPAT_FEATURE_ON
1909 }
1910
1911 /*
1912 * jbd2_journal_clear_features () - Clear a given journal feature in the
1913 * superblock
1914 * @journal: Journal to act on.
1915 * @compat: bitmask of compatible features
1916 * @ro: bitmask of features that force read-only mount
1917 * @incompat: bitmask of incompatible features
1918 *
1919 * Clear a given journal feature as present on the
1920 * superblock.
1921 */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1922 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1923 unsigned long ro, unsigned long incompat)
1924 {
1925 journal_superblock_t *sb;
1926
1927 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1928 compat, ro, incompat);
1929
1930 sb = journal->j_superblock;
1931
1932 sb->s_feature_compat &= ~cpu_to_be32(compat);
1933 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1934 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1935 }
1936 EXPORT_SYMBOL(jbd2_journal_clear_features);
1937
1938 /**
1939 * int jbd2_journal_flush () - Flush journal
1940 * @journal: Journal to act on.
1941 *
1942 * Flush all data for a given journal to disk and empty the journal.
1943 * Filesystems can use this when remounting readonly to ensure that
1944 * recovery does not need to happen on remount.
1945 */
1946
jbd2_journal_flush(journal_t * journal)1947 int jbd2_journal_flush(journal_t *journal)
1948 {
1949 int err = 0;
1950 transaction_t *transaction = NULL;
1951
1952 write_lock(&journal->j_state_lock);
1953
1954 /* Force everything buffered to the log... */
1955 if (journal->j_running_transaction) {
1956 transaction = journal->j_running_transaction;
1957 __jbd2_log_start_commit(journal, transaction->t_tid);
1958 } else if (journal->j_committing_transaction)
1959 transaction = journal->j_committing_transaction;
1960
1961 /* Wait for the log commit to complete... */
1962 if (transaction) {
1963 tid_t tid = transaction->t_tid;
1964
1965 write_unlock(&journal->j_state_lock);
1966 jbd2_log_wait_commit(journal, tid);
1967 } else {
1968 write_unlock(&journal->j_state_lock);
1969 }
1970
1971 /* ...and flush everything in the log out to disk. */
1972 spin_lock(&journal->j_list_lock);
1973 while (!err && journal->j_checkpoint_transactions != NULL) {
1974 spin_unlock(&journal->j_list_lock);
1975 mutex_lock(&journal->j_checkpoint_mutex);
1976 err = jbd2_log_do_checkpoint(journal);
1977 mutex_unlock(&journal->j_checkpoint_mutex);
1978 spin_lock(&journal->j_list_lock);
1979 }
1980 spin_unlock(&journal->j_list_lock);
1981
1982 if (is_journal_aborted(journal))
1983 return -EIO;
1984
1985 mutex_lock(&journal->j_checkpoint_mutex);
1986 if (!err) {
1987 err = jbd2_cleanup_journal_tail(journal);
1988 if (err < 0) {
1989 mutex_unlock(&journal->j_checkpoint_mutex);
1990 goto out;
1991 }
1992 err = 0;
1993 }
1994
1995 /* Finally, mark the journal as really needing no recovery.
1996 * This sets s_start==0 in the underlying superblock, which is
1997 * the magic code for a fully-recovered superblock. Any future
1998 * commits of data to the journal will restore the current
1999 * s_start value. */
2000 jbd2_mark_journal_empty(journal, WRITE_FUA);
2001 mutex_unlock(&journal->j_checkpoint_mutex);
2002 write_lock(&journal->j_state_lock);
2003 J_ASSERT(!journal->j_running_transaction);
2004 J_ASSERT(!journal->j_committing_transaction);
2005 J_ASSERT(!journal->j_checkpoint_transactions);
2006 J_ASSERT(journal->j_head == journal->j_tail);
2007 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2008 write_unlock(&journal->j_state_lock);
2009 out:
2010 return err;
2011 }
2012
2013 /**
2014 * int jbd2_journal_wipe() - Wipe journal contents
2015 * @journal: Journal to act on.
2016 * @write: flag (see below)
2017 *
2018 * Wipe out all of the contents of a journal, safely. This will produce
2019 * a warning if the journal contains any valid recovery information.
2020 * Must be called between journal_init_*() and jbd2_journal_load().
2021 *
2022 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2023 * we merely suppress recovery.
2024 */
2025
jbd2_journal_wipe(journal_t * journal,int write)2026 int jbd2_journal_wipe(journal_t *journal, int write)
2027 {
2028 int err = 0;
2029
2030 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2031
2032 err = load_superblock(journal);
2033 if (err)
2034 return err;
2035
2036 if (!journal->j_tail)
2037 goto no_recovery;
2038
2039 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2040 write ? "Clearing" : "Ignoring");
2041
2042 err = jbd2_journal_skip_recovery(journal);
2043 if (write) {
2044 /* Lock to make assertions happy... */
2045 mutex_lock(&journal->j_checkpoint_mutex);
2046 jbd2_mark_journal_empty(journal, WRITE_FUA);
2047 mutex_unlock(&journal->j_checkpoint_mutex);
2048 }
2049
2050 no_recovery:
2051 return err;
2052 }
2053
2054 /*
2055 * Journal abort has very specific semantics, which we describe
2056 * for journal abort.
2057 *
2058 * Two internal functions, which provide abort to the jbd layer
2059 * itself are here.
2060 */
2061
2062 /*
2063 * Quick version for internal journal use (doesn't lock the journal).
2064 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2065 * and don't attempt to make any other journal updates.
2066 */
__jbd2_journal_abort_hard(journal_t * journal)2067 void __jbd2_journal_abort_hard(journal_t *journal)
2068 {
2069 transaction_t *transaction;
2070
2071 if (journal->j_flags & JBD2_ABORT)
2072 return;
2073
2074 printk(KERN_ERR "Aborting journal on device %s.\n",
2075 journal->j_devname);
2076
2077 write_lock(&journal->j_state_lock);
2078 journal->j_flags |= JBD2_ABORT;
2079 transaction = journal->j_running_transaction;
2080 if (transaction)
2081 __jbd2_log_start_commit(journal, transaction->t_tid);
2082 write_unlock(&journal->j_state_lock);
2083 }
2084
2085 /* Soft abort: record the abort error status in the journal superblock,
2086 * but don't do any other IO. */
__journal_abort_soft(journal_t * journal,int errno)2087 static void __journal_abort_soft (journal_t *journal, int errno)
2088 {
2089 if (journal->j_flags & JBD2_ABORT)
2090 return;
2091
2092 if (!journal->j_errno)
2093 journal->j_errno = errno;
2094
2095 __jbd2_journal_abort_hard(journal);
2096
2097 if (errno) {
2098 jbd2_journal_update_sb_errno(journal);
2099 write_lock(&journal->j_state_lock);
2100 journal->j_flags |= JBD2_REC_ERR;
2101 write_unlock(&journal->j_state_lock);
2102 }
2103 }
2104
2105 /**
2106 * void jbd2_journal_abort () - Shutdown the journal immediately.
2107 * @journal: the journal to shutdown.
2108 * @errno: an error number to record in the journal indicating
2109 * the reason for the shutdown.
2110 *
2111 * Perform a complete, immediate shutdown of the ENTIRE
2112 * journal (not of a single transaction). This operation cannot be
2113 * undone without closing and reopening the journal.
2114 *
2115 * The jbd2_journal_abort function is intended to support higher level error
2116 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2117 * mode.
2118 *
2119 * Journal abort has very specific semantics. Any existing dirty,
2120 * unjournaled buffers in the main filesystem will still be written to
2121 * disk by bdflush, but the journaling mechanism will be suspended
2122 * immediately and no further transaction commits will be honoured.
2123 *
2124 * Any dirty, journaled buffers will be written back to disk without
2125 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2126 * filesystem, but we _do_ attempt to leave as much data as possible
2127 * behind for fsck to use for cleanup.
2128 *
2129 * Any attempt to get a new transaction handle on a journal which is in
2130 * ABORT state will just result in an -EROFS error return. A
2131 * jbd2_journal_stop on an existing handle will return -EIO if we have
2132 * entered abort state during the update.
2133 *
2134 * Recursive transactions are not disturbed by journal abort until the
2135 * final jbd2_journal_stop, which will receive the -EIO error.
2136 *
2137 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2138 * which will be recorded (if possible) in the journal superblock. This
2139 * allows a client to record failure conditions in the middle of a
2140 * transaction without having to complete the transaction to record the
2141 * failure to disk. ext3_error, for example, now uses this
2142 * functionality.
2143 *
2144 * Errors which originate from within the journaling layer will NOT
2145 * supply an errno; a null errno implies that absolutely no further
2146 * writes are done to the journal (unless there are any already in
2147 * progress).
2148 *
2149 */
2150
jbd2_journal_abort(journal_t * journal,int errno)2151 void jbd2_journal_abort(journal_t *journal, int errno)
2152 {
2153 __journal_abort_soft(journal, errno);
2154 }
2155
2156 /**
2157 * int jbd2_journal_errno () - returns the journal's error state.
2158 * @journal: journal to examine.
2159 *
2160 * This is the errno number set with jbd2_journal_abort(), the last
2161 * time the journal was mounted - if the journal was stopped
2162 * without calling abort this will be 0.
2163 *
2164 * If the journal has been aborted on this mount time -EROFS will
2165 * be returned.
2166 */
jbd2_journal_errno(journal_t * journal)2167 int jbd2_journal_errno(journal_t *journal)
2168 {
2169 int err;
2170
2171 read_lock(&journal->j_state_lock);
2172 if (journal->j_flags & JBD2_ABORT)
2173 err = -EROFS;
2174 else
2175 err = journal->j_errno;
2176 read_unlock(&journal->j_state_lock);
2177 return err;
2178 }
2179
2180 /**
2181 * int jbd2_journal_clear_err () - clears the journal's error state
2182 * @journal: journal to act on.
2183 *
2184 * An error must be cleared or acked to take a FS out of readonly
2185 * mode.
2186 */
jbd2_journal_clear_err(journal_t * journal)2187 int jbd2_journal_clear_err(journal_t *journal)
2188 {
2189 int err = 0;
2190
2191 write_lock(&journal->j_state_lock);
2192 if (journal->j_flags & JBD2_ABORT)
2193 err = -EROFS;
2194 else
2195 journal->j_errno = 0;
2196 write_unlock(&journal->j_state_lock);
2197 return err;
2198 }
2199
2200 /**
2201 * void jbd2_journal_ack_err() - Ack journal err.
2202 * @journal: journal to act on.
2203 *
2204 * An error must be cleared or acked to take a FS out of readonly
2205 * mode.
2206 */
jbd2_journal_ack_err(journal_t * journal)2207 void jbd2_journal_ack_err(journal_t *journal)
2208 {
2209 write_lock(&journal->j_state_lock);
2210 if (journal->j_errno)
2211 journal->j_flags |= JBD2_ACK_ERR;
2212 write_unlock(&journal->j_state_lock);
2213 }
2214
jbd2_journal_blocks_per_page(struct inode * inode)2215 int jbd2_journal_blocks_per_page(struct inode *inode)
2216 {
2217 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2218 }
2219
2220 /*
2221 * helper functions to deal with 32 or 64bit block numbers.
2222 */
journal_tag_bytes(journal_t * journal)2223 size_t journal_tag_bytes(journal_t *journal)
2224 {
2225 size_t sz;
2226
2227 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V3))
2228 return sizeof(journal_block_tag3_t);
2229
2230 sz = sizeof(journal_block_tag_t);
2231
2232 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2233 sz += sizeof(__u16);
2234
2235 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2236 return sz;
2237 else
2238 return sz - sizeof(__u32);
2239 }
2240
2241 /*
2242 * JBD memory management
2243 *
2244 * These functions are used to allocate block-sized chunks of memory
2245 * used for making copies of buffer_head data. Very often it will be
2246 * page-sized chunks of data, but sometimes it will be in
2247 * sub-page-size chunks. (For example, 16k pages on Power systems
2248 * with a 4k block file system.) For blocks smaller than a page, we
2249 * use a SLAB allocator. There are slab caches for each block size,
2250 * which are allocated at mount time, if necessary, and we only free
2251 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2252 * this reason we don't need to a mutex to protect access to
2253 * jbd2_slab[] allocating or releasing memory; only in
2254 * jbd2_journal_create_slab().
2255 */
2256 #define JBD2_MAX_SLABS 8
2257 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2258
2259 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2260 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2261 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2262 };
2263
2264
jbd2_journal_destroy_slabs(void)2265 static void jbd2_journal_destroy_slabs(void)
2266 {
2267 int i;
2268
2269 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2270 if (jbd2_slab[i])
2271 kmem_cache_destroy(jbd2_slab[i]);
2272 jbd2_slab[i] = NULL;
2273 }
2274 }
2275
jbd2_journal_create_slab(size_t size)2276 static int jbd2_journal_create_slab(size_t size)
2277 {
2278 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2279 int i = order_base_2(size) - 10;
2280 size_t slab_size;
2281
2282 if (size == PAGE_SIZE)
2283 return 0;
2284
2285 if (i >= JBD2_MAX_SLABS)
2286 return -EINVAL;
2287
2288 if (unlikely(i < 0))
2289 i = 0;
2290 mutex_lock(&jbd2_slab_create_mutex);
2291 if (jbd2_slab[i]) {
2292 mutex_unlock(&jbd2_slab_create_mutex);
2293 return 0; /* Already created */
2294 }
2295
2296 slab_size = 1 << (i+10);
2297 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2298 slab_size, 0, NULL);
2299 mutex_unlock(&jbd2_slab_create_mutex);
2300 if (!jbd2_slab[i]) {
2301 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2302 return -ENOMEM;
2303 }
2304 return 0;
2305 }
2306
get_slab(size_t size)2307 static struct kmem_cache *get_slab(size_t size)
2308 {
2309 int i = order_base_2(size) - 10;
2310
2311 BUG_ON(i >= JBD2_MAX_SLABS);
2312 if (unlikely(i < 0))
2313 i = 0;
2314 BUG_ON(jbd2_slab[i] == NULL);
2315 return jbd2_slab[i];
2316 }
2317
jbd2_alloc(size_t size,gfp_t flags)2318 void *jbd2_alloc(size_t size, gfp_t flags)
2319 {
2320 void *ptr;
2321
2322 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2323
2324 flags |= __GFP_REPEAT;
2325 if (size == PAGE_SIZE)
2326 ptr = (void *)__get_free_pages(flags, 0);
2327 else if (size > PAGE_SIZE) {
2328 int order = get_order(size);
2329
2330 if (order < 3)
2331 ptr = (void *)__get_free_pages(flags, order);
2332 else
2333 ptr = vmalloc(size);
2334 } else
2335 ptr = kmem_cache_alloc(get_slab(size), flags);
2336
2337 /* Check alignment; SLUB has gotten this wrong in the past,
2338 * and this can lead to user data corruption! */
2339 BUG_ON(((unsigned long) ptr) & (size-1));
2340
2341 return ptr;
2342 }
2343
jbd2_free(void * ptr,size_t size)2344 void jbd2_free(void *ptr, size_t size)
2345 {
2346 if (size == PAGE_SIZE) {
2347 free_pages((unsigned long)ptr, 0);
2348 return;
2349 }
2350 if (size > PAGE_SIZE) {
2351 int order = get_order(size);
2352
2353 if (order < 3)
2354 free_pages((unsigned long)ptr, order);
2355 else
2356 vfree(ptr);
2357 return;
2358 }
2359 kmem_cache_free(get_slab(size), ptr);
2360 };
2361
2362 /*
2363 * Journal_head storage management
2364 */
2365 static struct kmem_cache *jbd2_journal_head_cache;
2366 #ifdef CONFIG_JBD2_DEBUG
2367 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2368 #endif
2369
jbd2_journal_init_journal_head_cache(void)2370 static int jbd2_journal_init_journal_head_cache(void)
2371 {
2372 int retval;
2373
2374 J_ASSERT(jbd2_journal_head_cache == NULL);
2375 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2376 sizeof(struct journal_head),
2377 0, /* offset */
2378 SLAB_TEMPORARY, /* flags */
2379 NULL); /* ctor */
2380 retval = 0;
2381 if (!jbd2_journal_head_cache) {
2382 retval = -ENOMEM;
2383 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2384 }
2385 return retval;
2386 }
2387
jbd2_journal_destroy_journal_head_cache(void)2388 static void jbd2_journal_destroy_journal_head_cache(void)
2389 {
2390 if (jbd2_journal_head_cache) {
2391 kmem_cache_destroy(jbd2_journal_head_cache);
2392 jbd2_journal_head_cache = NULL;
2393 }
2394 }
2395
2396 /*
2397 * journal_head splicing and dicing
2398 */
journal_alloc_journal_head(void)2399 static struct journal_head *journal_alloc_journal_head(void)
2400 {
2401 struct journal_head *ret;
2402
2403 #ifdef CONFIG_JBD2_DEBUG
2404 atomic_inc(&nr_journal_heads);
2405 #endif
2406 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2407 if (!ret) {
2408 jbd_debug(1, "out of memory for journal_head\n");
2409 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2410 while (!ret) {
2411 yield();
2412 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2413 }
2414 }
2415 return ret;
2416 }
2417
journal_free_journal_head(struct journal_head * jh)2418 static void journal_free_journal_head(struct journal_head *jh)
2419 {
2420 #ifdef CONFIG_JBD2_DEBUG
2421 atomic_dec(&nr_journal_heads);
2422 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2423 #endif
2424 kmem_cache_free(jbd2_journal_head_cache, jh);
2425 }
2426
2427 /*
2428 * A journal_head is attached to a buffer_head whenever JBD has an
2429 * interest in the buffer.
2430 *
2431 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2432 * is set. This bit is tested in core kernel code where we need to take
2433 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2434 * there.
2435 *
2436 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2437 *
2438 * When a buffer has its BH_JBD bit set it is immune from being released by
2439 * core kernel code, mainly via ->b_count.
2440 *
2441 * A journal_head is detached from its buffer_head when the journal_head's
2442 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2443 * transaction (b_cp_transaction) hold their references to b_jcount.
2444 *
2445 * Various places in the kernel want to attach a journal_head to a buffer_head
2446 * _before_ attaching the journal_head to a transaction. To protect the
2447 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2448 * journal_head's b_jcount refcount by one. The caller must call
2449 * jbd2_journal_put_journal_head() to undo this.
2450 *
2451 * So the typical usage would be:
2452 *
2453 * (Attach a journal_head if needed. Increments b_jcount)
2454 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2455 * ...
2456 * (Get another reference for transaction)
2457 * jbd2_journal_grab_journal_head(bh);
2458 * jh->b_transaction = xxx;
2459 * (Put original reference)
2460 * jbd2_journal_put_journal_head(jh);
2461 */
2462
2463 /*
2464 * Give a buffer_head a journal_head.
2465 *
2466 * May sleep.
2467 */
jbd2_journal_add_journal_head(struct buffer_head * bh)2468 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2469 {
2470 struct journal_head *jh;
2471 struct journal_head *new_jh = NULL;
2472
2473 repeat:
2474 if (!buffer_jbd(bh))
2475 new_jh = journal_alloc_journal_head();
2476
2477 jbd_lock_bh_journal_head(bh);
2478 if (buffer_jbd(bh)) {
2479 jh = bh2jh(bh);
2480 } else {
2481 J_ASSERT_BH(bh,
2482 (atomic_read(&bh->b_count) > 0) ||
2483 (bh->b_page && bh->b_page->mapping));
2484
2485 if (!new_jh) {
2486 jbd_unlock_bh_journal_head(bh);
2487 goto repeat;
2488 }
2489
2490 jh = new_jh;
2491 new_jh = NULL; /* We consumed it */
2492 set_buffer_jbd(bh);
2493 bh->b_private = jh;
2494 jh->b_bh = bh;
2495 get_bh(bh);
2496 BUFFER_TRACE(bh, "added journal_head");
2497 }
2498 jh->b_jcount++;
2499 jbd_unlock_bh_journal_head(bh);
2500 if (new_jh)
2501 journal_free_journal_head(new_jh);
2502 return bh->b_private;
2503 }
2504
2505 /*
2506 * Grab a ref against this buffer_head's journal_head. If it ended up not
2507 * having a journal_head, return NULL
2508 */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2509 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2510 {
2511 struct journal_head *jh = NULL;
2512
2513 jbd_lock_bh_journal_head(bh);
2514 if (buffer_jbd(bh)) {
2515 jh = bh2jh(bh);
2516 jh->b_jcount++;
2517 }
2518 jbd_unlock_bh_journal_head(bh);
2519 return jh;
2520 }
2521
__journal_remove_journal_head(struct buffer_head * bh)2522 static void __journal_remove_journal_head(struct buffer_head *bh)
2523 {
2524 struct journal_head *jh = bh2jh(bh);
2525
2526 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2527 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2528 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2529 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2530 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2531 J_ASSERT_BH(bh, buffer_jbd(bh));
2532 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2533 BUFFER_TRACE(bh, "remove journal_head");
2534 if (jh->b_frozen_data) {
2535 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2536 jbd2_free(jh->b_frozen_data, bh->b_size);
2537 }
2538 if (jh->b_committed_data) {
2539 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2540 jbd2_free(jh->b_committed_data, bh->b_size);
2541 }
2542 bh->b_private = NULL;
2543 jh->b_bh = NULL; /* debug, really */
2544 clear_buffer_jbd(bh);
2545 journal_free_journal_head(jh);
2546 }
2547
2548 /*
2549 * Drop a reference on the passed journal_head. If it fell to zero then
2550 * release the journal_head from the buffer_head.
2551 */
jbd2_journal_put_journal_head(struct journal_head * jh)2552 void jbd2_journal_put_journal_head(struct journal_head *jh)
2553 {
2554 struct buffer_head *bh = jh2bh(jh);
2555
2556 jbd_lock_bh_journal_head(bh);
2557 J_ASSERT_JH(jh, jh->b_jcount > 0);
2558 --jh->b_jcount;
2559 if (!jh->b_jcount) {
2560 __journal_remove_journal_head(bh);
2561 jbd_unlock_bh_journal_head(bh);
2562 __brelse(bh);
2563 } else
2564 jbd_unlock_bh_journal_head(bh);
2565 }
2566
2567 /*
2568 * Initialize jbd inode head
2569 */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)2570 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2571 {
2572 jinode->i_transaction = NULL;
2573 jinode->i_next_transaction = NULL;
2574 jinode->i_vfs_inode = inode;
2575 jinode->i_flags = 0;
2576 INIT_LIST_HEAD(&jinode->i_list);
2577 }
2578
2579 /*
2580 * Function to be called before we start removing inode from memory (i.e.,
2581 * clear_inode() is a fine place to be called from). It removes inode from
2582 * transaction's lists.
2583 */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)2584 void jbd2_journal_release_jbd_inode(journal_t *journal,
2585 struct jbd2_inode *jinode)
2586 {
2587 if (!journal)
2588 return;
2589 restart:
2590 spin_lock(&journal->j_list_lock);
2591 /* Is commit writing out inode - we have to wait */
2592 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2593 wait_queue_head_t *wq;
2594 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2595 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2596 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2597 spin_unlock(&journal->j_list_lock);
2598 schedule();
2599 finish_wait(wq, &wait.wait);
2600 goto restart;
2601 }
2602
2603 if (jinode->i_transaction) {
2604 list_del(&jinode->i_list);
2605 jinode->i_transaction = NULL;
2606 }
2607 spin_unlock(&journal->j_list_lock);
2608 }
2609
2610
2611 #ifdef CONFIG_PROC_FS
2612
2613 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2614
jbd2_create_jbd_stats_proc_entry(void)2615 static void __init jbd2_create_jbd_stats_proc_entry(void)
2616 {
2617 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2618 }
2619
jbd2_remove_jbd_stats_proc_entry(void)2620 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2621 {
2622 if (proc_jbd2_stats)
2623 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2624 }
2625
2626 #else
2627
2628 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2629 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2630
2631 #endif
2632
2633 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2634
jbd2_journal_init_handle_cache(void)2635 static int __init jbd2_journal_init_handle_cache(void)
2636 {
2637 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2638 if (jbd2_handle_cache == NULL) {
2639 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2640 return -ENOMEM;
2641 }
2642 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2643 if (jbd2_inode_cache == NULL) {
2644 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2645 kmem_cache_destroy(jbd2_handle_cache);
2646 return -ENOMEM;
2647 }
2648 return 0;
2649 }
2650
jbd2_journal_destroy_handle_cache(void)2651 static void jbd2_journal_destroy_handle_cache(void)
2652 {
2653 if (jbd2_handle_cache)
2654 kmem_cache_destroy(jbd2_handle_cache);
2655 if (jbd2_inode_cache)
2656 kmem_cache_destroy(jbd2_inode_cache);
2657
2658 }
2659
2660 /*
2661 * Module startup and shutdown
2662 */
2663
journal_init_caches(void)2664 static int __init journal_init_caches(void)
2665 {
2666 int ret;
2667
2668 ret = jbd2_journal_init_revoke_caches();
2669 if (ret == 0)
2670 ret = jbd2_journal_init_journal_head_cache();
2671 if (ret == 0)
2672 ret = jbd2_journal_init_handle_cache();
2673 if (ret == 0)
2674 ret = jbd2_journal_init_transaction_cache();
2675 return ret;
2676 }
2677
jbd2_journal_destroy_caches(void)2678 static void jbd2_journal_destroy_caches(void)
2679 {
2680 jbd2_journal_destroy_revoke_caches();
2681 jbd2_journal_destroy_journal_head_cache();
2682 jbd2_journal_destroy_handle_cache();
2683 jbd2_journal_destroy_transaction_cache();
2684 jbd2_journal_destroy_slabs();
2685 }
2686
journal_init(void)2687 static int __init journal_init(void)
2688 {
2689 int ret;
2690
2691 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2692
2693 ret = journal_init_caches();
2694 if (ret == 0) {
2695 jbd2_create_jbd_stats_proc_entry();
2696 } else {
2697 jbd2_journal_destroy_caches();
2698 }
2699 return ret;
2700 }
2701
journal_exit(void)2702 static void __exit journal_exit(void)
2703 {
2704 #ifdef CONFIG_JBD2_DEBUG
2705 int n = atomic_read(&nr_journal_heads);
2706 if (n)
2707 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2708 #endif
2709 jbd2_remove_jbd_stats_proc_entry();
2710 jbd2_journal_destroy_caches();
2711 }
2712
2713 MODULE_LICENSE("GPL");
2714 module_init(journal_init);
2715 module_exit(journal_exit);
2716
2717