• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 #include <trace/events/jbd2.h>
34 
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37 
38 static struct kmem_cache *transaction_cache;
jbd2_journal_init_transaction_cache(void)39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 	J_ASSERT(!transaction_cache);
42 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 					sizeof(transaction_t),
44 					0,
45 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 					NULL);
47 	if (transaction_cache)
48 		return 0;
49 	return -ENOMEM;
50 }
51 
jbd2_journal_destroy_transaction_cache(void)52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	if (transaction_cache) {
55 		kmem_cache_destroy(transaction_cache);
56 		transaction_cache = NULL;
57 	}
58 }
59 
jbd2_journal_free_transaction(transaction_t * transaction)60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 		return;
64 	kmem_cache_free(transaction_cache, transaction);
65 }
66 
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *	The journal MUST be locked.  We don't perform atomic mallocs on the
77  *	new transaction	and we can't block without protecting against other
78  *	processes trying to touch the journal while it is in transition.
79  *
80  */
81 
82 static transaction_t *
jbd2_get_transaction(journal_t * journal,transaction_t * transaction)83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 	transaction->t_journal = journal;
86 	transaction->t_state = T_RUNNING;
87 	transaction->t_start_time = ktime_get();
88 	transaction->t_tid = journal->j_transaction_sequence++;
89 	transaction->t_expires = jiffies + journal->j_commit_interval;
90 	spin_lock_init(&transaction->t_handle_lock);
91 	atomic_set(&transaction->t_updates, 0);
92 	atomic_set(&transaction->t_outstanding_credits,
93 		   atomic_read(&journal->j_reserved_credits));
94 	atomic_set(&transaction->t_handle_count, 0);
95 	INIT_LIST_HEAD(&transaction->t_inode_list);
96 	INIT_LIST_HEAD(&transaction->t_private_list);
97 
98 	/* Set up the commit timer for the new transaction. */
99 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100 	add_timer(&journal->j_commit_timer);
101 
102 	J_ASSERT(journal->j_running_transaction == NULL);
103 	journal->j_running_transaction = transaction;
104 	transaction->t_max_wait = 0;
105 	transaction->t_start = jiffies;
106 	transaction->t_requested = 0;
107 
108 	return transaction;
109 }
110 
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118 
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
update_t_max_wait(transaction_t * transaction,unsigned long ts)129 static inline void update_t_max_wait(transaction_t *transaction,
130 				     unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133 	if (jbd2_journal_enable_debug &&
134 	    time_after(transaction->t_start, ts)) {
135 		ts = jbd2_time_diff(ts, transaction->t_start);
136 		spin_lock(&transaction->t_handle_lock);
137 		if (ts > transaction->t_max_wait)
138 			transaction->t_max_wait = ts;
139 		spin_unlock(&transaction->t_handle_lock);
140 	}
141 #endif
142 }
143 
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
wait_transaction_locked(journal_t * journal)149 static void wait_transaction_locked(journal_t *journal)
150 	__releases(journal->j_state_lock)
151 {
152 	DEFINE_WAIT(wait);
153 	int need_to_start;
154 	tid_t tid = journal->j_running_transaction->t_tid;
155 
156 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157 			TASK_UNINTERRUPTIBLE);
158 	need_to_start = !tid_geq(journal->j_commit_request, tid);
159 	read_unlock(&journal->j_state_lock);
160 	if (need_to_start)
161 		jbd2_log_start_commit(journal, tid);
162 	schedule();
163 	finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165 
sub_reserved_credits(journal_t * journal,int blocks)166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168 	atomic_sub(blocks, &journal->j_reserved_credits);
169 	wake_up(&journal->j_wait_reserved);
170 }
171 
172 /*
173  * Wait until we can add credits for handle to the running transaction.  Called
174  * with j_state_lock held for reading. Returns 0 if handle joined the running
175  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176  * caller must retry.
177  */
add_transaction_credits(journal_t * journal,int blocks,int rsv_blocks)178 static int add_transaction_credits(journal_t *journal, int blocks,
179 				   int rsv_blocks)
180 {
181 	transaction_t *t = journal->j_running_transaction;
182 	int needed;
183 	int total = blocks + rsv_blocks;
184 
185 	/*
186 	 * If the current transaction is locked down for commit, wait
187 	 * for the lock to be released.
188 	 */
189 	if (t->t_state == T_LOCKED) {
190 		wait_transaction_locked(journal);
191 		return 1;
192 	}
193 
194 	/*
195 	 * If there is not enough space left in the log to write all
196 	 * potential buffers requested by this operation, we need to
197 	 * stall pending a log checkpoint to free some more log space.
198 	 */
199 	needed = atomic_add_return(total, &t->t_outstanding_credits);
200 	if (needed > journal->j_max_transaction_buffers) {
201 		/*
202 		 * If the current transaction is already too large,
203 		 * then start to commit it: we can then go back and
204 		 * attach this handle to a new transaction.
205 		 */
206 		atomic_sub(total, &t->t_outstanding_credits);
207 		wait_transaction_locked(journal);
208 		return 1;
209 	}
210 
211 	/*
212 	 * The commit code assumes that it can get enough log space
213 	 * without forcing a checkpoint.  This is *critical* for
214 	 * correctness: a checkpoint of a buffer which is also
215 	 * associated with a committing transaction creates a deadlock,
216 	 * so commit simply cannot force through checkpoints.
217 	 *
218 	 * We must therefore ensure the necessary space in the journal
219 	 * *before* starting to dirty potentially checkpointed buffers
220 	 * in the new transaction.
221 	 */
222 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
223 		atomic_sub(total, &t->t_outstanding_credits);
224 		read_unlock(&journal->j_state_lock);
225 		write_lock(&journal->j_state_lock);
226 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
227 			__jbd2_log_wait_for_space(journal);
228 		write_unlock(&journal->j_state_lock);
229 		return 1;
230 	}
231 
232 	/* No reservation? We are done... */
233 	if (!rsv_blocks)
234 		return 0;
235 
236 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
237 	/* We allow at most half of a transaction to be reserved */
238 	if (needed > journal->j_max_transaction_buffers / 2) {
239 		sub_reserved_credits(journal, rsv_blocks);
240 		atomic_sub(total, &t->t_outstanding_credits);
241 		read_unlock(&journal->j_state_lock);
242 		wait_event(journal->j_wait_reserved,
243 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
244 			 <= journal->j_max_transaction_buffers / 2);
245 		return 1;
246 	}
247 	return 0;
248 }
249 
250 /*
251  * start_this_handle: Given a handle, deal with any locking or stalling
252  * needed to make sure that there is enough journal space for the handle
253  * to begin.  Attach the handle to a transaction and set up the
254  * transaction's buffer credits.
255  */
256 
start_this_handle(journal_t * journal,handle_t * handle,gfp_t gfp_mask)257 static int start_this_handle(journal_t *journal, handle_t *handle,
258 			     gfp_t gfp_mask)
259 {
260 	transaction_t	*transaction, *new_transaction = NULL;
261 	int		blocks = handle->h_buffer_credits;
262 	int		rsv_blocks = 0;
263 	unsigned long ts = jiffies;
264 
265 	/*
266 	 * 1/2 of transaction can be reserved so we can practically handle
267 	 * only 1/2 of maximum transaction size per operation
268 	 */
269 	if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) {
270 		printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
271 		       current->comm, blocks,
272 		       journal->j_max_transaction_buffers / 2);
273 		return -ENOSPC;
274 	}
275 
276 	if (handle->h_rsv_handle)
277 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
278 
279 alloc_transaction:
280 	if (!journal->j_running_transaction) {
281 		new_transaction = kmem_cache_zalloc(transaction_cache,
282 						    gfp_mask);
283 		if (!new_transaction) {
284 			/*
285 			 * If __GFP_FS is not present, then we may be
286 			 * being called from inside the fs writeback
287 			 * layer, so we MUST NOT fail.  Since
288 			 * __GFP_NOFAIL is going away, we will arrange
289 			 * to retry the allocation ourselves.
290 			 */
291 			if ((gfp_mask & __GFP_FS) == 0) {
292 				congestion_wait(BLK_RW_ASYNC, HZ/50);
293 				goto alloc_transaction;
294 			}
295 			return -ENOMEM;
296 		}
297 	}
298 
299 	jbd_debug(3, "New handle %p going live.\n", handle);
300 
301 	/*
302 	 * We need to hold j_state_lock until t_updates has been incremented,
303 	 * for proper journal barrier handling
304 	 */
305 repeat:
306 	read_lock(&journal->j_state_lock);
307 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
308 	if (is_journal_aborted(journal) ||
309 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
310 		read_unlock(&journal->j_state_lock);
311 		jbd2_journal_free_transaction(new_transaction);
312 		return -EROFS;
313 	}
314 
315 	/*
316 	 * Wait on the journal's transaction barrier if necessary. Specifically
317 	 * we allow reserved handles to proceed because otherwise commit could
318 	 * deadlock on page writeback not being able to complete.
319 	 */
320 	if (!handle->h_reserved && journal->j_barrier_count) {
321 		read_unlock(&journal->j_state_lock);
322 		wait_event(journal->j_wait_transaction_locked,
323 				journal->j_barrier_count == 0);
324 		goto repeat;
325 	}
326 
327 	if (!journal->j_running_transaction) {
328 		read_unlock(&journal->j_state_lock);
329 		if (!new_transaction)
330 			goto alloc_transaction;
331 		write_lock(&journal->j_state_lock);
332 		if (!journal->j_running_transaction &&
333 		    (handle->h_reserved || !journal->j_barrier_count)) {
334 			jbd2_get_transaction(journal, new_transaction);
335 			new_transaction = NULL;
336 		}
337 		write_unlock(&journal->j_state_lock);
338 		goto repeat;
339 	}
340 
341 	transaction = journal->j_running_transaction;
342 
343 	if (!handle->h_reserved) {
344 		/* We may have dropped j_state_lock - restart in that case */
345 		if (add_transaction_credits(journal, blocks, rsv_blocks))
346 			goto repeat;
347 	} else {
348 		/*
349 		 * We have handle reserved so we are allowed to join T_LOCKED
350 		 * transaction and we don't have to check for transaction size
351 		 * and journal space.
352 		 */
353 		sub_reserved_credits(journal, blocks);
354 		handle->h_reserved = 0;
355 	}
356 
357 	/* OK, account for the buffers that this operation expects to
358 	 * use and add the handle to the running transaction.
359 	 */
360 	update_t_max_wait(transaction, ts);
361 	handle->h_transaction = transaction;
362 	handle->h_requested_credits = blocks;
363 	handle->h_start_jiffies = jiffies;
364 	atomic_inc(&transaction->t_updates);
365 	atomic_inc(&transaction->t_handle_count);
366 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
367 		  handle, blocks,
368 		  atomic_read(&transaction->t_outstanding_credits),
369 		  jbd2_log_space_left(journal));
370 	read_unlock(&journal->j_state_lock);
371 	current->journal_info = handle;
372 
373 	lock_map_acquire(&handle->h_lockdep_map);
374 	jbd2_journal_free_transaction(new_transaction);
375 	return 0;
376 }
377 
378 static struct lock_class_key jbd2_handle_key;
379 
380 /* Allocate a new handle.  This should probably be in a slab... */
new_handle(int nblocks)381 static handle_t *new_handle(int nblocks)
382 {
383 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
384 	if (!handle)
385 		return NULL;
386 	handle->h_buffer_credits = nblocks;
387 	handle->h_ref = 1;
388 
389 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
390 						&jbd2_handle_key, 0);
391 
392 	return handle;
393 }
394 
395 /**
396  * handle_t *jbd2_journal_start() - Obtain a new handle.
397  * @journal: Journal to start transaction on.
398  * @nblocks: number of block buffer we might modify
399  *
400  * We make sure that the transaction can guarantee at least nblocks of
401  * modified buffers in the log.  We block until the log can guarantee
402  * that much space. Additionally, if rsv_blocks > 0, we also create another
403  * handle with rsv_blocks reserved blocks in the journal. This handle is
404  * is stored in h_rsv_handle. It is not attached to any particular transaction
405  * and thus doesn't block transaction commit. If the caller uses this reserved
406  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
407  * on the parent handle will dispose the reserved one. Reserved handle has to
408  * be converted to a normal handle using jbd2_journal_start_reserved() before
409  * it can be used.
410  *
411  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
412  * on failure.
413  */
jbd2__journal_start(journal_t * journal,int nblocks,int rsv_blocks,gfp_t gfp_mask,unsigned int type,unsigned int line_no)414 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
415 			      gfp_t gfp_mask, unsigned int type,
416 			      unsigned int line_no)
417 {
418 	handle_t *handle = journal_current_handle();
419 	int err;
420 
421 	if (!journal)
422 		return ERR_PTR(-EROFS);
423 
424 	if (handle) {
425 		J_ASSERT(handle->h_transaction->t_journal == journal);
426 		handle->h_ref++;
427 		return handle;
428 	}
429 
430 	handle = new_handle(nblocks);
431 	if (!handle)
432 		return ERR_PTR(-ENOMEM);
433 	if (rsv_blocks) {
434 		handle_t *rsv_handle;
435 
436 		rsv_handle = new_handle(rsv_blocks);
437 		if (!rsv_handle) {
438 			jbd2_free_handle(handle);
439 			return ERR_PTR(-ENOMEM);
440 		}
441 		rsv_handle->h_reserved = 1;
442 		rsv_handle->h_journal = journal;
443 		handle->h_rsv_handle = rsv_handle;
444 	}
445 
446 	err = start_this_handle(journal, handle, gfp_mask);
447 	if (err < 0) {
448 		if (handle->h_rsv_handle)
449 			jbd2_free_handle(handle->h_rsv_handle);
450 		jbd2_free_handle(handle);
451 		return ERR_PTR(err);
452 	}
453 	handle->h_type = type;
454 	handle->h_line_no = line_no;
455 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
456 				handle->h_transaction->t_tid, type,
457 				line_no, nblocks);
458 	return handle;
459 }
460 EXPORT_SYMBOL(jbd2__journal_start);
461 
462 
jbd2_journal_start(journal_t * journal,int nblocks)463 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
464 {
465 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
466 }
467 EXPORT_SYMBOL(jbd2_journal_start);
468 
jbd2_journal_free_reserved(handle_t * handle)469 void jbd2_journal_free_reserved(handle_t *handle)
470 {
471 	journal_t *journal = handle->h_journal;
472 
473 	WARN_ON(!handle->h_reserved);
474 	sub_reserved_credits(journal, handle->h_buffer_credits);
475 	jbd2_free_handle(handle);
476 }
477 EXPORT_SYMBOL(jbd2_journal_free_reserved);
478 
479 /**
480  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
481  * @handle: handle to start
482  *
483  * Start handle that has been previously reserved with jbd2_journal_reserve().
484  * This attaches @handle to the running transaction (or creates one if there's
485  * not transaction running). Unlike jbd2_journal_start() this function cannot
486  * block on journal commit, checkpointing, or similar stuff. It can block on
487  * memory allocation or frozen journal though.
488  *
489  * Return 0 on success, non-zero on error - handle is freed in that case.
490  */
jbd2_journal_start_reserved(handle_t * handle,unsigned int type,unsigned int line_no)491 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
492 				unsigned int line_no)
493 {
494 	journal_t *journal = handle->h_journal;
495 	int ret = -EIO;
496 
497 	if (WARN_ON(!handle->h_reserved)) {
498 		/* Someone passed in normal handle? Just stop it. */
499 		jbd2_journal_stop(handle);
500 		return ret;
501 	}
502 	/*
503 	 * Usefulness of mixing of reserved and unreserved handles is
504 	 * questionable. So far nobody seems to need it so just error out.
505 	 */
506 	if (WARN_ON(current->journal_info)) {
507 		jbd2_journal_free_reserved(handle);
508 		return ret;
509 	}
510 
511 	handle->h_journal = NULL;
512 	/*
513 	 * GFP_NOFS is here because callers are likely from writeback or
514 	 * similarly constrained call sites
515 	 */
516 	ret = start_this_handle(journal, handle, GFP_NOFS);
517 	if (ret < 0) {
518 		jbd2_journal_free_reserved(handle);
519 		return ret;
520 	}
521 	handle->h_type = type;
522 	handle->h_line_no = line_no;
523 	return 0;
524 }
525 EXPORT_SYMBOL(jbd2_journal_start_reserved);
526 
527 /**
528  * int jbd2_journal_extend() - extend buffer credits.
529  * @handle:  handle to 'extend'
530  * @nblocks: nr blocks to try to extend by.
531  *
532  * Some transactions, such as large extends and truncates, can be done
533  * atomically all at once or in several stages.  The operation requests
534  * a credit for a number of buffer modications in advance, but can
535  * extend its credit if it needs more.
536  *
537  * jbd2_journal_extend tries to give the running handle more buffer credits.
538  * It does not guarantee that allocation - this is a best-effort only.
539  * The calling process MUST be able to deal cleanly with a failure to
540  * extend here.
541  *
542  * Return 0 on success, non-zero on failure.
543  *
544  * return code < 0 implies an error
545  * return code > 0 implies normal transaction-full status.
546  */
jbd2_journal_extend(handle_t * handle,int nblocks)547 int jbd2_journal_extend(handle_t *handle, int nblocks)
548 {
549 	transaction_t *transaction = handle->h_transaction;
550 	journal_t *journal;
551 	int result;
552 	int wanted;
553 
554 	if (is_handle_aborted(handle))
555 		return -EROFS;
556 	journal = transaction->t_journal;
557 
558 	result = 1;
559 
560 	read_lock(&journal->j_state_lock);
561 
562 	/* Don't extend a locked-down transaction! */
563 	if (transaction->t_state != T_RUNNING) {
564 		jbd_debug(3, "denied handle %p %d blocks: "
565 			  "transaction not running\n", handle, nblocks);
566 		goto error_out;
567 	}
568 
569 	spin_lock(&transaction->t_handle_lock);
570 	wanted = atomic_add_return(nblocks,
571 				   &transaction->t_outstanding_credits);
572 
573 	if (wanted > journal->j_max_transaction_buffers) {
574 		jbd_debug(3, "denied handle %p %d blocks: "
575 			  "transaction too large\n", handle, nblocks);
576 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
577 		goto unlock;
578 	}
579 
580 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
581 	    jbd2_log_space_left(journal)) {
582 		jbd_debug(3, "denied handle %p %d blocks: "
583 			  "insufficient log space\n", handle, nblocks);
584 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
585 		goto unlock;
586 	}
587 
588 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
589 				 transaction->t_tid,
590 				 handle->h_type, handle->h_line_no,
591 				 handle->h_buffer_credits,
592 				 nblocks);
593 
594 	handle->h_buffer_credits += nblocks;
595 	handle->h_requested_credits += nblocks;
596 	result = 0;
597 
598 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
599 unlock:
600 	spin_unlock(&transaction->t_handle_lock);
601 error_out:
602 	read_unlock(&journal->j_state_lock);
603 	return result;
604 }
605 
606 
607 /**
608  * int jbd2_journal_restart() - restart a handle .
609  * @handle:  handle to restart
610  * @nblocks: nr credits requested
611  *
612  * Restart a handle for a multi-transaction filesystem
613  * operation.
614  *
615  * If the jbd2_journal_extend() call above fails to grant new buffer credits
616  * to a running handle, a call to jbd2_journal_restart will commit the
617  * handle's transaction so far and reattach the handle to a new
618  * transaction capabable of guaranteeing the requested number of
619  * credits. We preserve reserved handle if there's any attached to the
620  * passed in handle.
621  */
jbd2__journal_restart(handle_t * handle,int nblocks,gfp_t gfp_mask)622 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
623 {
624 	transaction_t *transaction = handle->h_transaction;
625 	journal_t *journal;
626 	tid_t		tid;
627 	int		need_to_start, ret;
628 
629 	/* If we've had an abort of any type, don't even think about
630 	 * actually doing the restart! */
631 	if (is_handle_aborted(handle))
632 		return 0;
633 	journal = transaction->t_journal;
634 
635 	/*
636 	 * First unlink the handle from its current transaction, and start the
637 	 * commit on that.
638 	 */
639 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
640 	J_ASSERT(journal_current_handle() == handle);
641 
642 	read_lock(&journal->j_state_lock);
643 	spin_lock(&transaction->t_handle_lock);
644 	atomic_sub(handle->h_buffer_credits,
645 		   &transaction->t_outstanding_credits);
646 	if (handle->h_rsv_handle) {
647 		sub_reserved_credits(journal,
648 				     handle->h_rsv_handle->h_buffer_credits);
649 	}
650 	if (atomic_dec_and_test(&transaction->t_updates))
651 		wake_up(&journal->j_wait_updates);
652 	tid = transaction->t_tid;
653 	spin_unlock(&transaction->t_handle_lock);
654 	handle->h_transaction = NULL;
655 	current->journal_info = NULL;
656 
657 	jbd_debug(2, "restarting handle %p\n", handle);
658 	need_to_start = !tid_geq(journal->j_commit_request, tid);
659 	read_unlock(&journal->j_state_lock);
660 	if (need_to_start)
661 		jbd2_log_start_commit(journal, tid);
662 
663 	lock_map_release(&handle->h_lockdep_map);
664 	handle->h_buffer_credits = nblocks;
665 	ret = start_this_handle(journal, handle, gfp_mask);
666 	return ret;
667 }
668 EXPORT_SYMBOL(jbd2__journal_restart);
669 
670 
jbd2_journal_restart(handle_t * handle,int nblocks)671 int jbd2_journal_restart(handle_t *handle, int nblocks)
672 {
673 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
674 }
675 EXPORT_SYMBOL(jbd2_journal_restart);
676 
677 /**
678  * void jbd2_journal_lock_updates () - establish a transaction barrier.
679  * @journal:  Journal to establish a barrier on.
680  *
681  * This locks out any further updates from being started, and blocks
682  * until all existing updates have completed, returning only once the
683  * journal is in a quiescent state with no updates running.
684  *
685  * The journal lock should not be held on entry.
686  */
jbd2_journal_lock_updates(journal_t * journal)687 void jbd2_journal_lock_updates(journal_t *journal)
688 {
689 	DEFINE_WAIT(wait);
690 
691 	write_lock(&journal->j_state_lock);
692 	++journal->j_barrier_count;
693 
694 	/* Wait until there are no reserved handles */
695 	if (atomic_read(&journal->j_reserved_credits)) {
696 		write_unlock(&journal->j_state_lock);
697 		wait_event(journal->j_wait_reserved,
698 			   atomic_read(&journal->j_reserved_credits) == 0);
699 		write_lock(&journal->j_state_lock);
700 	}
701 
702 	/* Wait until there are no running updates */
703 	while (1) {
704 		transaction_t *transaction = journal->j_running_transaction;
705 
706 		if (!transaction)
707 			break;
708 
709 		spin_lock(&transaction->t_handle_lock);
710 		prepare_to_wait(&journal->j_wait_updates, &wait,
711 				TASK_UNINTERRUPTIBLE);
712 		if (!atomic_read(&transaction->t_updates)) {
713 			spin_unlock(&transaction->t_handle_lock);
714 			finish_wait(&journal->j_wait_updates, &wait);
715 			break;
716 		}
717 		spin_unlock(&transaction->t_handle_lock);
718 		write_unlock(&journal->j_state_lock);
719 		schedule();
720 		finish_wait(&journal->j_wait_updates, &wait);
721 		write_lock(&journal->j_state_lock);
722 	}
723 	write_unlock(&journal->j_state_lock);
724 
725 	/*
726 	 * We have now established a barrier against other normal updates, but
727 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
728 	 * to make sure that we serialise special journal-locked operations
729 	 * too.
730 	 */
731 	mutex_lock(&journal->j_barrier);
732 }
733 
734 /**
735  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
736  * @journal:  Journal to release the barrier on.
737  *
738  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
739  *
740  * Should be called without the journal lock held.
741  */
jbd2_journal_unlock_updates(journal_t * journal)742 void jbd2_journal_unlock_updates (journal_t *journal)
743 {
744 	J_ASSERT(journal->j_barrier_count != 0);
745 
746 	mutex_unlock(&journal->j_barrier);
747 	write_lock(&journal->j_state_lock);
748 	--journal->j_barrier_count;
749 	write_unlock(&journal->j_state_lock);
750 	wake_up(&journal->j_wait_transaction_locked);
751 }
752 
warn_dirty_buffer(struct buffer_head * bh)753 static void warn_dirty_buffer(struct buffer_head *bh)
754 {
755 	char b[BDEVNAME_SIZE];
756 
757 	printk(KERN_WARNING
758 	       "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
759 	       "There's a risk of filesystem corruption in case of system "
760 	       "crash.\n",
761 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
762 }
763 
764 /*
765  * If the buffer is already part of the current transaction, then there
766  * is nothing we need to do.  If it is already part of a prior
767  * transaction which we are still committing to disk, then we need to
768  * make sure that we do not overwrite the old copy: we do copy-out to
769  * preserve the copy going to disk.  We also account the buffer against
770  * the handle's metadata buffer credits (unless the buffer is already
771  * part of the transaction, that is).
772  *
773  */
774 static int
do_get_write_access(handle_t * handle,struct journal_head * jh,int force_copy)775 do_get_write_access(handle_t *handle, struct journal_head *jh,
776 			int force_copy)
777 {
778 	struct buffer_head *bh;
779 	transaction_t *transaction = handle->h_transaction;
780 	journal_t *journal;
781 	int error;
782 	char *frozen_buffer = NULL;
783 	int need_copy = 0;
784 	unsigned long start_lock, time_lock;
785 
786 	if (is_handle_aborted(handle))
787 		return -EROFS;
788 	journal = transaction->t_journal;
789 
790 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
791 
792 	JBUFFER_TRACE(jh, "entry");
793 repeat:
794 	bh = jh2bh(jh);
795 
796 	/* @@@ Need to check for errors here at some point. */
797 
798  	start_lock = jiffies;
799 	lock_buffer(bh);
800 	jbd_lock_bh_state(bh);
801 
802 	/* If it takes too long to lock the buffer, trace it */
803 	time_lock = jbd2_time_diff(start_lock, jiffies);
804 	if (time_lock > HZ/10)
805 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
806 			jiffies_to_msecs(time_lock));
807 
808 	/* We now hold the buffer lock so it is safe to query the buffer
809 	 * state.  Is the buffer dirty?
810 	 *
811 	 * If so, there are two possibilities.  The buffer may be
812 	 * non-journaled, and undergoing a quite legitimate writeback.
813 	 * Otherwise, it is journaled, and we don't expect dirty buffers
814 	 * in that state (the buffers should be marked JBD_Dirty
815 	 * instead.)  So either the IO is being done under our own
816 	 * control and this is a bug, or it's a third party IO such as
817 	 * dump(8) (which may leave the buffer scheduled for read ---
818 	 * ie. locked but not dirty) or tune2fs (which may actually have
819 	 * the buffer dirtied, ugh.)  */
820 
821 	if (buffer_dirty(bh)) {
822 		/*
823 		 * First question: is this buffer already part of the current
824 		 * transaction or the existing committing transaction?
825 		 */
826 		if (jh->b_transaction) {
827 			J_ASSERT_JH(jh,
828 				jh->b_transaction == transaction ||
829 				jh->b_transaction ==
830 					journal->j_committing_transaction);
831 			if (jh->b_next_transaction)
832 				J_ASSERT_JH(jh, jh->b_next_transaction ==
833 							transaction);
834 			warn_dirty_buffer(bh);
835 		}
836 		/*
837 		 * In any case we need to clean the dirty flag and we must
838 		 * do it under the buffer lock to be sure we don't race
839 		 * with running write-out.
840 		 */
841 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
842 		clear_buffer_dirty(bh);
843 		set_buffer_jbddirty(bh);
844 	}
845 
846 	unlock_buffer(bh);
847 
848 	error = -EROFS;
849 	if (is_handle_aborted(handle)) {
850 		jbd_unlock_bh_state(bh);
851 		goto out;
852 	}
853 	error = 0;
854 
855 	/*
856 	 * The buffer is already part of this transaction if b_transaction or
857 	 * b_next_transaction points to it
858 	 */
859 	if (jh->b_transaction == transaction ||
860 	    jh->b_next_transaction == transaction)
861 		goto done;
862 
863 	/*
864 	 * this is the first time this transaction is touching this buffer,
865 	 * reset the modified flag
866 	 */
867        jh->b_modified = 0;
868 
869 	/*
870 	 * If there is already a copy-out version of this buffer, then we don't
871 	 * need to make another one
872 	 */
873 	if (jh->b_frozen_data) {
874 		JBUFFER_TRACE(jh, "has frozen data");
875 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
876 		jh->b_next_transaction = transaction;
877 		goto done;
878 	}
879 
880 	/* Is there data here we need to preserve? */
881 
882 	if (jh->b_transaction && jh->b_transaction != transaction) {
883 		JBUFFER_TRACE(jh, "owned by older transaction");
884 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
885 		J_ASSERT_JH(jh, jh->b_transaction ==
886 					journal->j_committing_transaction);
887 
888 		/* There is one case we have to be very careful about.
889 		 * If the committing transaction is currently writing
890 		 * this buffer out to disk and has NOT made a copy-out,
891 		 * then we cannot modify the buffer contents at all
892 		 * right now.  The essence of copy-out is that it is the
893 		 * extra copy, not the primary copy, which gets
894 		 * journaled.  If the primary copy is already going to
895 		 * disk then we cannot do copy-out here. */
896 
897 		if (buffer_shadow(bh)) {
898 			JBUFFER_TRACE(jh, "on shadow: sleep");
899 			jbd_unlock_bh_state(bh);
900 			wait_on_bit_io(&bh->b_state, BH_Shadow,
901 				       TASK_UNINTERRUPTIBLE);
902 			goto repeat;
903 		}
904 
905 		/*
906 		 * Only do the copy if the currently-owning transaction still
907 		 * needs it. If buffer isn't on BJ_Metadata list, the
908 		 * committing transaction is past that stage (here we use the
909 		 * fact that BH_Shadow is set under bh_state lock together with
910 		 * refiling to BJ_Shadow list and at this point we know the
911 		 * buffer doesn't have BH_Shadow set).
912 		 *
913 		 * Subtle point, though: if this is a get_undo_access,
914 		 * then we will be relying on the frozen_data to contain
915 		 * the new value of the committed_data record after the
916 		 * transaction, so we HAVE to force the frozen_data copy
917 		 * in that case.
918 		 */
919 		if (jh->b_jlist == BJ_Metadata || force_copy) {
920 			JBUFFER_TRACE(jh, "generate frozen data");
921 			if (!frozen_buffer) {
922 				JBUFFER_TRACE(jh, "allocate memory for buffer");
923 				jbd_unlock_bh_state(bh);
924 				frozen_buffer =
925 					jbd2_alloc(jh2bh(jh)->b_size,
926 							 GFP_NOFS);
927 				if (!frozen_buffer) {
928 					printk(KERN_ERR
929 					       "%s: OOM for frozen_buffer\n",
930 					       __func__);
931 					JBUFFER_TRACE(jh, "oom!");
932 					error = -ENOMEM;
933 					jbd_lock_bh_state(bh);
934 					goto done;
935 				}
936 				goto repeat;
937 			}
938 			jh->b_frozen_data = frozen_buffer;
939 			frozen_buffer = NULL;
940 			need_copy = 1;
941 		}
942 		jh->b_next_transaction = transaction;
943 	}
944 
945 
946 	/*
947 	 * Finally, if the buffer is not journaled right now, we need to make
948 	 * sure it doesn't get written to disk before the caller actually
949 	 * commits the new data
950 	 */
951 	if (!jh->b_transaction) {
952 		JBUFFER_TRACE(jh, "no transaction");
953 		J_ASSERT_JH(jh, !jh->b_next_transaction);
954 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
955 		spin_lock(&journal->j_list_lock);
956 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
957 		spin_unlock(&journal->j_list_lock);
958 	}
959 
960 done:
961 	if (need_copy) {
962 		struct page *page;
963 		int offset;
964 		char *source;
965 
966 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
967 			    "Possible IO failure.\n");
968 		page = jh2bh(jh)->b_page;
969 		offset = offset_in_page(jh2bh(jh)->b_data);
970 		source = kmap_atomic(page);
971 		/* Fire data frozen trigger just before we copy the data */
972 		jbd2_buffer_frozen_trigger(jh, source + offset,
973 					   jh->b_triggers);
974 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
975 		kunmap_atomic(source);
976 
977 		/*
978 		 * Now that the frozen data is saved off, we need to store
979 		 * any matching triggers.
980 		 */
981 		jh->b_frozen_triggers = jh->b_triggers;
982 	}
983 	jbd_unlock_bh_state(bh);
984 
985 	/*
986 	 * If we are about to journal a buffer, then any revoke pending on it is
987 	 * no longer valid
988 	 */
989 	jbd2_journal_cancel_revoke(handle, jh);
990 
991 out:
992 	if (unlikely(frozen_buffer))	/* It's usually NULL */
993 		jbd2_free(frozen_buffer, bh->b_size);
994 
995 	JBUFFER_TRACE(jh, "exit");
996 	return error;
997 }
998 
999 /**
1000  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1001  * @handle: transaction to add buffer modifications to
1002  * @bh:     bh to be used for metadata writes
1003  *
1004  * Returns an error code or 0 on success.
1005  *
1006  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1007  * because we're write()ing a buffer which is also part of a shared mapping.
1008  */
1009 
jbd2_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1010 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1011 {
1012 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1013 	int rc;
1014 
1015 	/* We do not want to get caught playing with fields which the
1016 	 * log thread also manipulates.  Make sure that the buffer
1017 	 * completes any outstanding IO before proceeding. */
1018 	rc = do_get_write_access(handle, jh, 0);
1019 	jbd2_journal_put_journal_head(jh);
1020 	return rc;
1021 }
1022 
1023 
1024 /*
1025  * When the user wants to journal a newly created buffer_head
1026  * (ie. getblk() returned a new buffer and we are going to populate it
1027  * manually rather than reading off disk), then we need to keep the
1028  * buffer_head locked until it has been completely filled with new
1029  * data.  In this case, we should be able to make the assertion that
1030  * the bh is not already part of an existing transaction.
1031  *
1032  * The buffer should already be locked by the caller by this point.
1033  * There is no lock ranking violation: it was a newly created,
1034  * unlocked buffer beforehand. */
1035 
1036 /**
1037  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1038  * @handle: transaction to new buffer to
1039  * @bh: new buffer.
1040  *
1041  * Call this if you create a new bh.
1042  */
jbd2_journal_get_create_access(handle_t * handle,struct buffer_head * bh)1043 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1044 {
1045 	transaction_t *transaction = handle->h_transaction;
1046 	journal_t *journal;
1047 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1048 	int err;
1049 
1050 	jbd_debug(5, "journal_head %p\n", jh);
1051 	err = -EROFS;
1052 	if (is_handle_aborted(handle))
1053 		goto out;
1054 	journal = transaction->t_journal;
1055 	err = 0;
1056 
1057 	JBUFFER_TRACE(jh, "entry");
1058 	/*
1059 	 * The buffer may already belong to this transaction due to pre-zeroing
1060 	 * in the filesystem's new_block code.  It may also be on the previous,
1061 	 * committing transaction's lists, but it HAS to be in Forget state in
1062 	 * that case: the transaction must have deleted the buffer for it to be
1063 	 * reused here.
1064 	 */
1065 	jbd_lock_bh_state(bh);
1066 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1067 		jh->b_transaction == NULL ||
1068 		(jh->b_transaction == journal->j_committing_transaction &&
1069 			  jh->b_jlist == BJ_Forget)));
1070 
1071 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1072 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1073 
1074 	if (jh->b_transaction == NULL) {
1075 		/*
1076 		 * Previous jbd2_journal_forget() could have left the buffer
1077 		 * with jbddirty bit set because it was being committed. When
1078 		 * the commit finished, we've filed the buffer for
1079 		 * checkpointing and marked it dirty. Now we are reallocating
1080 		 * the buffer so the transaction freeing it must have
1081 		 * committed and so it's safe to clear the dirty bit.
1082 		 */
1083 		clear_buffer_dirty(jh2bh(jh));
1084 		/* first access by this transaction */
1085 		jh->b_modified = 0;
1086 
1087 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1088 		spin_lock(&journal->j_list_lock);
1089 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1090 		spin_unlock(&journal->j_list_lock);
1091 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1092 		/* first access by this transaction */
1093 		jh->b_modified = 0;
1094 
1095 		JBUFFER_TRACE(jh, "set next transaction");
1096 		spin_lock(&journal->j_list_lock);
1097 		jh->b_next_transaction = transaction;
1098 		spin_unlock(&journal->j_list_lock);
1099 	}
1100 	jbd_unlock_bh_state(bh);
1101 
1102 	/*
1103 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1104 	 * blocks which contain freed but then revoked metadata.  We need
1105 	 * to cancel the revoke in case we end up freeing it yet again
1106 	 * and the reallocating as data - this would cause a second revoke,
1107 	 * which hits an assertion error.
1108 	 */
1109 	JBUFFER_TRACE(jh, "cancelling revoke");
1110 	jbd2_journal_cancel_revoke(handle, jh);
1111 out:
1112 	jbd2_journal_put_journal_head(jh);
1113 	return err;
1114 }
1115 
1116 /**
1117  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1118  *     non-rewindable consequences
1119  * @handle: transaction
1120  * @bh: buffer to undo
1121  *
1122  * Sometimes there is a need to distinguish between metadata which has
1123  * been committed to disk and that which has not.  The ext3fs code uses
1124  * this for freeing and allocating space, we have to make sure that we
1125  * do not reuse freed space until the deallocation has been committed,
1126  * since if we overwrote that space we would make the delete
1127  * un-rewindable in case of a crash.
1128  *
1129  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1130  * buffer for parts of non-rewindable operations such as delete
1131  * operations on the bitmaps.  The journaling code must keep a copy of
1132  * the buffer's contents prior to the undo_access call until such time
1133  * as we know that the buffer has definitely been committed to disk.
1134  *
1135  * We never need to know which transaction the committed data is part
1136  * of, buffers touched here are guaranteed to be dirtied later and so
1137  * will be committed to a new transaction in due course, at which point
1138  * we can discard the old committed data pointer.
1139  *
1140  * Returns error number or 0 on success.
1141  */
jbd2_journal_get_undo_access(handle_t * handle,struct buffer_head * bh)1142 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1143 {
1144 	int err;
1145 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1146 	char *committed_data = NULL;
1147 
1148 	JBUFFER_TRACE(jh, "entry");
1149 
1150 	/*
1151 	 * Do this first --- it can drop the journal lock, so we want to
1152 	 * make sure that obtaining the committed_data is done
1153 	 * atomically wrt. completion of any outstanding commits.
1154 	 */
1155 	err = do_get_write_access(handle, jh, 1);
1156 	if (err)
1157 		goto out;
1158 
1159 repeat:
1160 	if (!jh->b_committed_data) {
1161 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1162 		if (!committed_data) {
1163 			printk(KERN_ERR "%s: No memory for committed data\n",
1164 				__func__);
1165 			err = -ENOMEM;
1166 			goto out;
1167 		}
1168 	}
1169 
1170 	jbd_lock_bh_state(bh);
1171 	if (!jh->b_committed_data) {
1172 		/* Copy out the current buffer contents into the
1173 		 * preserved, committed copy. */
1174 		JBUFFER_TRACE(jh, "generate b_committed data");
1175 		if (!committed_data) {
1176 			jbd_unlock_bh_state(bh);
1177 			goto repeat;
1178 		}
1179 
1180 		jh->b_committed_data = committed_data;
1181 		committed_data = NULL;
1182 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1183 	}
1184 	jbd_unlock_bh_state(bh);
1185 out:
1186 	jbd2_journal_put_journal_head(jh);
1187 	if (unlikely(committed_data))
1188 		jbd2_free(committed_data, bh->b_size);
1189 	return err;
1190 }
1191 
1192 /**
1193  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1194  * @bh: buffer to trigger on
1195  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1196  *
1197  * Set any triggers on this journal_head.  This is always safe, because
1198  * triggers for a committing buffer will be saved off, and triggers for
1199  * a running transaction will match the buffer in that transaction.
1200  *
1201  * Call with NULL to clear the triggers.
1202  */
jbd2_journal_set_triggers(struct buffer_head * bh,struct jbd2_buffer_trigger_type * type)1203 void jbd2_journal_set_triggers(struct buffer_head *bh,
1204 			       struct jbd2_buffer_trigger_type *type)
1205 {
1206 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1207 
1208 	if (WARN_ON(!jh))
1209 		return;
1210 	jh->b_triggers = type;
1211 	jbd2_journal_put_journal_head(jh);
1212 }
1213 
jbd2_buffer_frozen_trigger(struct journal_head * jh,void * mapped_data,struct jbd2_buffer_trigger_type * triggers)1214 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1215 				struct jbd2_buffer_trigger_type *triggers)
1216 {
1217 	struct buffer_head *bh = jh2bh(jh);
1218 
1219 	if (!triggers || !triggers->t_frozen)
1220 		return;
1221 
1222 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1223 }
1224 
jbd2_buffer_abort_trigger(struct journal_head * jh,struct jbd2_buffer_trigger_type * triggers)1225 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1226 			       struct jbd2_buffer_trigger_type *triggers)
1227 {
1228 	if (!triggers || !triggers->t_abort)
1229 		return;
1230 
1231 	triggers->t_abort(triggers, jh2bh(jh));
1232 }
1233 
1234 
1235 
1236 /**
1237  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1238  * @handle: transaction to add buffer to.
1239  * @bh: buffer to mark
1240  *
1241  * mark dirty metadata which needs to be journaled as part of the current
1242  * transaction.
1243  *
1244  * The buffer must have previously had jbd2_journal_get_write_access()
1245  * called so that it has a valid journal_head attached to the buffer
1246  * head.
1247  *
1248  * The buffer is placed on the transaction's metadata list and is marked
1249  * as belonging to the transaction.
1250  *
1251  * Returns error number or 0 on success.
1252  *
1253  * Special care needs to be taken if the buffer already belongs to the
1254  * current committing transaction (in which case we should have frozen
1255  * data present for that commit).  In that case, we don't relink the
1256  * buffer: that only gets done when the old transaction finally
1257  * completes its commit.
1258  */
jbd2_journal_dirty_metadata(handle_t * handle,struct buffer_head * bh)1259 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1260 {
1261 	transaction_t *transaction = handle->h_transaction;
1262 	journal_t *journal;
1263 	struct journal_head *jh;
1264 	int ret = 0;
1265 
1266 	if (is_handle_aborted(handle))
1267 		return -EROFS;
1268 	journal = transaction->t_journal;
1269 	jh = jbd2_journal_grab_journal_head(bh);
1270 	if (!jh) {
1271 		ret = -EUCLEAN;
1272 		goto out;
1273 	}
1274 	jbd_debug(5, "journal_head %p\n", jh);
1275 	JBUFFER_TRACE(jh, "entry");
1276 
1277 	jbd_lock_bh_state(bh);
1278 
1279 	if (jh->b_modified == 0) {
1280 		/*
1281 		 * This buffer's got modified and becoming part
1282 		 * of the transaction. This needs to be done
1283 		 * once a transaction -bzzz
1284 		 */
1285 		jh->b_modified = 1;
1286 		if (handle->h_buffer_credits <= 0) {
1287 			ret = -ENOSPC;
1288 			goto out_unlock_bh;
1289 		}
1290 		handle->h_buffer_credits--;
1291 	}
1292 
1293 	/*
1294 	 * fastpath, to avoid expensive locking.  If this buffer is already
1295 	 * on the running transaction's metadata list there is nothing to do.
1296 	 * Nobody can take it off again because there is a handle open.
1297 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1298 	 * result in this test being false, so we go in and take the locks.
1299 	 */
1300 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1301 		JBUFFER_TRACE(jh, "fastpath");
1302 		if (unlikely(jh->b_transaction !=
1303 			     journal->j_running_transaction)) {
1304 			printk(KERN_ERR "JBD2: %s: "
1305 			       "jh->b_transaction (%llu, %p, %u) != "
1306 			       "journal->j_running_transaction (%p, %u)\n",
1307 			       journal->j_devname,
1308 			       (unsigned long long) bh->b_blocknr,
1309 			       jh->b_transaction,
1310 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1311 			       journal->j_running_transaction,
1312 			       journal->j_running_transaction ?
1313 			       journal->j_running_transaction->t_tid : 0);
1314 			ret = -EINVAL;
1315 		}
1316 		goto out_unlock_bh;
1317 	}
1318 
1319 	set_buffer_jbddirty(bh);
1320 
1321 	/*
1322 	 * Metadata already on the current transaction list doesn't
1323 	 * need to be filed.  Metadata on another transaction's list must
1324 	 * be committing, and will be refiled once the commit completes:
1325 	 * leave it alone for now.
1326 	 */
1327 	if (jh->b_transaction != transaction) {
1328 		JBUFFER_TRACE(jh, "already on other transaction");
1329 		if (unlikely(((jh->b_transaction !=
1330 			       journal->j_committing_transaction)) ||
1331 			     (jh->b_next_transaction != transaction))) {
1332 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1333 			       "bad jh for block %llu: "
1334 			       "transaction (%p, %u), "
1335 			       "jh->b_transaction (%p, %u), "
1336 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1337 			       journal->j_devname,
1338 			       (unsigned long long) bh->b_blocknr,
1339 			       transaction, transaction->t_tid,
1340 			       jh->b_transaction,
1341 			       jh->b_transaction ?
1342 			       jh->b_transaction->t_tid : 0,
1343 			       jh->b_next_transaction,
1344 			       jh->b_next_transaction ?
1345 			       jh->b_next_transaction->t_tid : 0,
1346 			       jh->b_jlist);
1347 			WARN_ON(1);
1348 			ret = -EINVAL;
1349 		}
1350 		/* And this case is illegal: we can't reuse another
1351 		 * transaction's data buffer, ever. */
1352 		goto out_unlock_bh;
1353 	}
1354 
1355 	/* That test should have eliminated the following case: */
1356 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1357 
1358 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1359 	spin_lock(&journal->j_list_lock);
1360 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1361 	spin_unlock(&journal->j_list_lock);
1362 out_unlock_bh:
1363 	jbd_unlock_bh_state(bh);
1364 	jbd2_journal_put_journal_head(jh);
1365 out:
1366 	JBUFFER_TRACE(jh, "exit");
1367 	return ret;
1368 }
1369 
1370 /**
1371  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1372  * @handle: transaction handle
1373  * @bh:     bh to 'forget'
1374  *
1375  * We can only do the bforget if there are no commits pending against the
1376  * buffer.  If the buffer is dirty in the current running transaction we
1377  * can safely unlink it.
1378  *
1379  * bh may not be a journalled buffer at all - it may be a non-JBD
1380  * buffer which came off the hashtable.  Check for this.
1381  *
1382  * Decrements bh->b_count by one.
1383  *
1384  * Allow this call even if the handle has aborted --- it may be part of
1385  * the caller's cleanup after an abort.
1386  */
jbd2_journal_forget(handle_t * handle,struct buffer_head * bh)1387 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1388 {
1389 	transaction_t *transaction = handle->h_transaction;
1390 	journal_t *journal;
1391 	struct journal_head *jh;
1392 	int drop_reserve = 0;
1393 	int err = 0;
1394 	int was_modified = 0;
1395 
1396 	if (is_handle_aborted(handle))
1397 		return -EROFS;
1398 	journal = transaction->t_journal;
1399 
1400 	BUFFER_TRACE(bh, "entry");
1401 
1402 	jbd_lock_bh_state(bh);
1403 
1404 	if (!buffer_jbd(bh))
1405 		goto not_jbd;
1406 	jh = bh2jh(bh);
1407 
1408 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1409 	 * Don't do any jbd operations, and return an error. */
1410 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1411 			 "inconsistent data on disk")) {
1412 		err = -EIO;
1413 		goto not_jbd;
1414 	}
1415 
1416 	/* keep track of whether or not this transaction modified us */
1417 	was_modified = jh->b_modified;
1418 
1419 	/*
1420 	 * The buffer's going from the transaction, we must drop
1421 	 * all references -bzzz
1422 	 */
1423 	jh->b_modified = 0;
1424 
1425 	if (jh->b_transaction == transaction) {
1426 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1427 
1428 		/* If we are forgetting a buffer which is already part
1429 		 * of this transaction, then we can just drop it from
1430 		 * the transaction immediately. */
1431 		clear_buffer_dirty(bh);
1432 		clear_buffer_jbddirty(bh);
1433 
1434 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1435 
1436 		/*
1437 		 * we only want to drop a reference if this transaction
1438 		 * modified the buffer
1439 		 */
1440 		if (was_modified)
1441 			drop_reserve = 1;
1442 
1443 		/*
1444 		 * We are no longer going to journal this buffer.
1445 		 * However, the commit of this transaction is still
1446 		 * important to the buffer: the delete that we are now
1447 		 * processing might obsolete an old log entry, so by
1448 		 * committing, we can satisfy the buffer's checkpoint.
1449 		 *
1450 		 * So, if we have a checkpoint on the buffer, we should
1451 		 * now refile the buffer on our BJ_Forget list so that
1452 		 * we know to remove the checkpoint after we commit.
1453 		 */
1454 
1455 		spin_lock(&journal->j_list_lock);
1456 		if (jh->b_cp_transaction) {
1457 			__jbd2_journal_temp_unlink_buffer(jh);
1458 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1459 		} else {
1460 			__jbd2_journal_unfile_buffer(jh);
1461 			if (!buffer_jbd(bh)) {
1462 				spin_unlock(&journal->j_list_lock);
1463 				jbd_unlock_bh_state(bh);
1464 				__bforget(bh);
1465 				goto drop;
1466 			}
1467 		}
1468 		spin_unlock(&journal->j_list_lock);
1469 	} else if (jh->b_transaction) {
1470 		J_ASSERT_JH(jh, (jh->b_transaction ==
1471 				 journal->j_committing_transaction));
1472 		/* However, if the buffer is still owned by a prior
1473 		 * (committing) transaction, we can't drop it yet... */
1474 		JBUFFER_TRACE(jh, "belongs to older transaction");
1475 		/* ... but we CAN drop it from the new transaction if we
1476 		 * have also modified it since the original commit. */
1477 
1478 		if (jh->b_next_transaction) {
1479 			J_ASSERT(jh->b_next_transaction == transaction);
1480 			spin_lock(&journal->j_list_lock);
1481 			jh->b_next_transaction = NULL;
1482 			spin_unlock(&journal->j_list_lock);
1483 
1484 			/*
1485 			 * only drop a reference if this transaction modified
1486 			 * the buffer
1487 			 */
1488 			if (was_modified)
1489 				drop_reserve = 1;
1490 		}
1491 	}
1492 
1493 not_jbd:
1494 	jbd_unlock_bh_state(bh);
1495 	__brelse(bh);
1496 drop:
1497 	if (drop_reserve) {
1498 		/* no need to reserve log space for this block -bzzz */
1499 		handle->h_buffer_credits++;
1500 	}
1501 	return err;
1502 }
1503 
1504 /**
1505  * int jbd2_journal_stop() - complete a transaction
1506  * @handle: tranaction to complete.
1507  *
1508  * All done for a particular handle.
1509  *
1510  * There is not much action needed here.  We just return any remaining
1511  * buffer credits to the transaction and remove the handle.  The only
1512  * complication is that we need to start a commit operation if the
1513  * filesystem is marked for synchronous update.
1514  *
1515  * jbd2_journal_stop itself will not usually return an error, but it may
1516  * do so in unusual circumstances.  In particular, expect it to
1517  * return -EIO if a jbd2_journal_abort has been executed since the
1518  * transaction began.
1519  */
jbd2_journal_stop(handle_t * handle)1520 int jbd2_journal_stop(handle_t *handle)
1521 {
1522 	transaction_t *transaction = handle->h_transaction;
1523 	journal_t *journal;
1524 	int err = 0, wait_for_commit = 0;
1525 	tid_t tid;
1526 	pid_t pid;
1527 
1528 	if (!transaction) {
1529 		/*
1530 		 * Handle is already detached from the transaction so
1531 		 * there is nothing to do other than decrease a refcount,
1532 		 * or free the handle if refcount drops to zero
1533 		 */
1534 		if (--handle->h_ref > 0) {
1535 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1536 							 handle->h_ref);
1537 			return err;
1538 		} else {
1539 			if (handle->h_rsv_handle)
1540 				jbd2_free_handle(handle->h_rsv_handle);
1541 			goto free_and_exit;
1542 		}
1543 	}
1544 	journal = transaction->t_journal;
1545 
1546 	J_ASSERT(journal_current_handle() == handle);
1547 
1548 	if (is_handle_aborted(handle))
1549 		err = -EIO;
1550 	else
1551 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1552 
1553 	if (--handle->h_ref > 0) {
1554 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1555 			  handle->h_ref);
1556 		return err;
1557 	}
1558 
1559 	jbd_debug(4, "Handle %p going down\n", handle);
1560 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1561 				transaction->t_tid,
1562 				handle->h_type, handle->h_line_no,
1563 				jiffies - handle->h_start_jiffies,
1564 				handle->h_sync, handle->h_requested_credits,
1565 				(handle->h_requested_credits -
1566 				 handle->h_buffer_credits));
1567 
1568 	/*
1569 	 * Implement synchronous transaction batching.  If the handle
1570 	 * was synchronous, don't force a commit immediately.  Let's
1571 	 * yield and let another thread piggyback onto this
1572 	 * transaction.  Keep doing that while new threads continue to
1573 	 * arrive.  It doesn't cost much - we're about to run a commit
1574 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1575 	 * operations by 30x or more...
1576 	 *
1577 	 * We try and optimize the sleep time against what the
1578 	 * underlying disk can do, instead of having a static sleep
1579 	 * time.  This is useful for the case where our storage is so
1580 	 * fast that it is more optimal to go ahead and force a flush
1581 	 * and wait for the transaction to be committed than it is to
1582 	 * wait for an arbitrary amount of time for new writers to
1583 	 * join the transaction.  We achieve this by measuring how
1584 	 * long it takes to commit a transaction, and compare it with
1585 	 * how long this transaction has been running, and if run time
1586 	 * < commit time then we sleep for the delta and commit.  This
1587 	 * greatly helps super fast disks that would see slowdowns as
1588 	 * more threads started doing fsyncs.
1589 	 *
1590 	 * But don't do this if this process was the most recent one
1591 	 * to perform a synchronous write.  We do this to detect the
1592 	 * case where a single process is doing a stream of sync
1593 	 * writes.  No point in waiting for joiners in that case.
1594 	 *
1595 	 * Setting max_batch_time to 0 disables this completely.
1596 	 */
1597 	pid = current->pid;
1598 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1599 	    journal->j_max_batch_time) {
1600 		u64 commit_time, trans_time;
1601 
1602 		journal->j_last_sync_writer = pid;
1603 
1604 		read_lock(&journal->j_state_lock);
1605 		commit_time = journal->j_average_commit_time;
1606 		read_unlock(&journal->j_state_lock);
1607 
1608 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1609 						   transaction->t_start_time));
1610 
1611 		commit_time = max_t(u64, commit_time,
1612 				    1000*journal->j_min_batch_time);
1613 		commit_time = min_t(u64, commit_time,
1614 				    1000*journal->j_max_batch_time);
1615 
1616 		if (trans_time < commit_time) {
1617 			ktime_t expires = ktime_add_ns(ktime_get(),
1618 						       commit_time);
1619 			set_current_state(TASK_UNINTERRUPTIBLE);
1620 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1621 		}
1622 	}
1623 
1624 	if (handle->h_sync)
1625 		transaction->t_synchronous_commit = 1;
1626 	current->journal_info = NULL;
1627 	atomic_sub(handle->h_buffer_credits,
1628 		   &transaction->t_outstanding_credits);
1629 
1630 	/*
1631 	 * If the handle is marked SYNC, we need to set another commit
1632 	 * going!  We also want to force a commit if the current
1633 	 * transaction is occupying too much of the log, or if the
1634 	 * transaction is too old now.
1635 	 */
1636 	if (handle->h_sync ||
1637 	    (atomic_read(&transaction->t_outstanding_credits) >
1638 	     journal->j_max_transaction_buffers) ||
1639 	    time_after_eq(jiffies, transaction->t_expires)) {
1640 		/* Do this even for aborted journals: an abort still
1641 		 * completes the commit thread, it just doesn't write
1642 		 * anything to disk. */
1643 
1644 		jbd_debug(2, "transaction too old, requesting commit for "
1645 					"handle %p\n", handle);
1646 		/* This is non-blocking */
1647 		jbd2_log_start_commit(journal, transaction->t_tid);
1648 
1649 		/*
1650 		 * Special case: JBD2_SYNC synchronous updates require us
1651 		 * to wait for the commit to complete.
1652 		 */
1653 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1654 			wait_for_commit = 1;
1655 	}
1656 
1657 	/*
1658 	 * Once we drop t_updates, if it goes to zero the transaction
1659 	 * could start committing on us and eventually disappear.  So
1660 	 * once we do this, we must not dereference transaction
1661 	 * pointer again.
1662 	 */
1663 	tid = transaction->t_tid;
1664 	if (atomic_dec_and_test(&transaction->t_updates)) {
1665 		wake_up(&journal->j_wait_updates);
1666 		if (journal->j_barrier_count)
1667 			wake_up(&journal->j_wait_transaction_locked);
1668 	}
1669 
1670 	if (wait_for_commit)
1671 		err = jbd2_log_wait_commit(journal, tid);
1672 
1673 	lock_map_release(&handle->h_lockdep_map);
1674 
1675 	if (handle->h_rsv_handle)
1676 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1677 free_and_exit:
1678 	jbd2_free_handle(handle);
1679 	return err;
1680 }
1681 
1682 /*
1683  *
1684  * List management code snippets: various functions for manipulating the
1685  * transaction buffer lists.
1686  *
1687  */
1688 
1689 /*
1690  * Append a buffer to a transaction list, given the transaction's list head
1691  * pointer.
1692  *
1693  * j_list_lock is held.
1694  *
1695  * jbd_lock_bh_state(jh2bh(jh)) is held.
1696  */
1697 
1698 static inline void
__blist_add_buffer(struct journal_head ** list,struct journal_head * jh)1699 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1700 {
1701 	if (!*list) {
1702 		jh->b_tnext = jh->b_tprev = jh;
1703 		*list = jh;
1704 	} else {
1705 		/* Insert at the tail of the list to preserve order */
1706 		struct journal_head *first = *list, *last = first->b_tprev;
1707 		jh->b_tprev = last;
1708 		jh->b_tnext = first;
1709 		last->b_tnext = first->b_tprev = jh;
1710 	}
1711 }
1712 
1713 /*
1714  * Remove a buffer from a transaction list, given the transaction's list
1715  * head pointer.
1716  *
1717  * Called with j_list_lock held, and the journal may not be locked.
1718  *
1719  * jbd_lock_bh_state(jh2bh(jh)) is held.
1720  */
1721 
1722 static inline void
__blist_del_buffer(struct journal_head ** list,struct journal_head * jh)1723 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1724 {
1725 	if (*list == jh) {
1726 		*list = jh->b_tnext;
1727 		if (*list == jh)
1728 			*list = NULL;
1729 	}
1730 	jh->b_tprev->b_tnext = jh->b_tnext;
1731 	jh->b_tnext->b_tprev = jh->b_tprev;
1732 }
1733 
1734 /*
1735  * Remove a buffer from the appropriate transaction list.
1736  *
1737  * Note that this function can *change* the value of
1738  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1739  * t_reserved_list.  If the caller is holding onto a copy of one of these
1740  * pointers, it could go bad.  Generally the caller needs to re-read the
1741  * pointer from the transaction_t.
1742  *
1743  * Called under j_list_lock.
1744  */
__jbd2_journal_temp_unlink_buffer(struct journal_head * jh)1745 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1746 {
1747 	struct journal_head **list = NULL;
1748 	transaction_t *transaction;
1749 	struct buffer_head *bh = jh2bh(jh);
1750 
1751 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1752 	transaction = jh->b_transaction;
1753 	if (transaction)
1754 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1755 
1756 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1757 	if (jh->b_jlist != BJ_None)
1758 		J_ASSERT_JH(jh, transaction != NULL);
1759 
1760 	switch (jh->b_jlist) {
1761 	case BJ_None:
1762 		return;
1763 	case BJ_Metadata:
1764 		transaction->t_nr_buffers--;
1765 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1766 		list = &transaction->t_buffers;
1767 		break;
1768 	case BJ_Forget:
1769 		list = &transaction->t_forget;
1770 		break;
1771 	case BJ_Shadow:
1772 		list = &transaction->t_shadow_list;
1773 		break;
1774 	case BJ_Reserved:
1775 		list = &transaction->t_reserved_list;
1776 		break;
1777 	}
1778 
1779 	__blist_del_buffer(list, jh);
1780 	jh->b_jlist = BJ_None;
1781 	if (test_clear_buffer_jbddirty(bh))
1782 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1783 }
1784 
1785 /*
1786  * Remove buffer from all transactions.
1787  *
1788  * Called with bh_state lock and j_list_lock
1789  *
1790  * jh and bh may be already freed when this function returns.
1791  */
__jbd2_journal_unfile_buffer(struct journal_head * jh)1792 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1793 {
1794 	__jbd2_journal_temp_unlink_buffer(jh);
1795 	jh->b_transaction = NULL;
1796 	jbd2_journal_put_journal_head(jh);
1797 }
1798 
jbd2_journal_unfile_buffer(journal_t * journal,struct journal_head * jh)1799 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1800 {
1801 	struct buffer_head *bh = jh2bh(jh);
1802 
1803 	/* Get reference so that buffer cannot be freed before we unlock it */
1804 	get_bh(bh);
1805 	jbd_lock_bh_state(bh);
1806 	spin_lock(&journal->j_list_lock);
1807 	__jbd2_journal_unfile_buffer(jh);
1808 	spin_unlock(&journal->j_list_lock);
1809 	jbd_unlock_bh_state(bh);
1810 	__brelse(bh);
1811 }
1812 
1813 /*
1814  * Called from jbd2_journal_try_to_free_buffers().
1815  *
1816  * Called under jbd_lock_bh_state(bh)
1817  */
1818 static void
__journal_try_to_free_buffer(journal_t * journal,struct buffer_head * bh)1819 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1820 {
1821 	struct journal_head *jh;
1822 
1823 	jh = bh2jh(bh);
1824 
1825 	if (buffer_locked(bh) || buffer_dirty(bh))
1826 		goto out;
1827 
1828 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1829 		goto out;
1830 
1831 	spin_lock(&journal->j_list_lock);
1832 	if (jh->b_cp_transaction != NULL) {
1833 		/* written-back checkpointed metadata buffer */
1834 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1835 		__jbd2_journal_remove_checkpoint(jh);
1836 	}
1837 	spin_unlock(&journal->j_list_lock);
1838 out:
1839 	return;
1840 }
1841 
1842 /**
1843  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1844  * @journal: journal for operation
1845  * @page: to try and free
1846  * @gfp_mask: we use the mask to detect how hard should we try to release
1847  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1848  * release the buffers.
1849  *
1850  *
1851  * For all the buffers on this page,
1852  * if they are fully written out ordered data, move them onto BUF_CLEAN
1853  * so try_to_free_buffers() can reap them.
1854  *
1855  * This function returns non-zero if we wish try_to_free_buffers()
1856  * to be called. We do this if the page is releasable by try_to_free_buffers().
1857  * We also do it if the page has locked or dirty buffers and the caller wants
1858  * us to perform sync or async writeout.
1859  *
1860  * This complicates JBD locking somewhat.  We aren't protected by the
1861  * BKL here.  We wish to remove the buffer from its committing or
1862  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1863  *
1864  * This may *change* the value of transaction_t->t_datalist, so anyone
1865  * who looks at t_datalist needs to lock against this function.
1866  *
1867  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1868  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1869  * will come out of the lock with the buffer dirty, which makes it
1870  * ineligible for release here.
1871  *
1872  * Who else is affected by this?  hmm...  Really the only contender
1873  * is do_get_write_access() - it could be looking at the buffer while
1874  * journal_try_to_free_buffer() is changing its state.  But that
1875  * cannot happen because we never reallocate freed data as metadata
1876  * while the data is part of a transaction.  Yes?
1877  *
1878  * Return 0 on failure, 1 on success
1879  */
jbd2_journal_try_to_free_buffers(journal_t * journal,struct page * page,gfp_t gfp_mask)1880 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1881 				struct page *page, gfp_t gfp_mask)
1882 {
1883 	struct buffer_head *head;
1884 	struct buffer_head *bh;
1885 	int ret = 0;
1886 
1887 	J_ASSERT(PageLocked(page));
1888 
1889 	head = page_buffers(page);
1890 	bh = head;
1891 	do {
1892 		struct journal_head *jh;
1893 
1894 		/*
1895 		 * We take our own ref against the journal_head here to avoid
1896 		 * having to add tons of locking around each instance of
1897 		 * jbd2_journal_put_journal_head().
1898 		 */
1899 		jh = jbd2_journal_grab_journal_head(bh);
1900 		if (!jh)
1901 			continue;
1902 
1903 		jbd_lock_bh_state(bh);
1904 		__journal_try_to_free_buffer(journal, bh);
1905 		jbd2_journal_put_journal_head(jh);
1906 		jbd_unlock_bh_state(bh);
1907 		if (buffer_jbd(bh))
1908 			goto busy;
1909 	} while ((bh = bh->b_this_page) != head);
1910 
1911 	ret = try_to_free_buffers(page);
1912 
1913 busy:
1914 	return ret;
1915 }
1916 
1917 /*
1918  * This buffer is no longer needed.  If it is on an older transaction's
1919  * checkpoint list we need to record it on this transaction's forget list
1920  * to pin this buffer (and hence its checkpointing transaction) down until
1921  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1922  * release it.
1923  * Returns non-zero if JBD no longer has an interest in the buffer.
1924  *
1925  * Called under j_list_lock.
1926  *
1927  * Called under jbd_lock_bh_state(bh).
1928  */
__dispose_buffer(struct journal_head * jh,transaction_t * transaction)1929 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1930 {
1931 	int may_free = 1;
1932 	struct buffer_head *bh = jh2bh(jh);
1933 
1934 	if (jh->b_cp_transaction) {
1935 		JBUFFER_TRACE(jh, "on running+cp transaction");
1936 		__jbd2_journal_temp_unlink_buffer(jh);
1937 		/*
1938 		 * We don't want to write the buffer anymore, clear the
1939 		 * bit so that we don't confuse checks in
1940 		 * __journal_file_buffer
1941 		 */
1942 		clear_buffer_dirty(bh);
1943 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1944 		may_free = 0;
1945 	} else {
1946 		JBUFFER_TRACE(jh, "on running transaction");
1947 		__jbd2_journal_unfile_buffer(jh);
1948 	}
1949 	return may_free;
1950 }
1951 
1952 /*
1953  * jbd2_journal_invalidatepage
1954  *
1955  * This code is tricky.  It has a number of cases to deal with.
1956  *
1957  * There are two invariants which this code relies on:
1958  *
1959  * i_size must be updated on disk before we start calling invalidatepage on the
1960  * data.
1961  *
1962  *  This is done in ext3 by defining an ext3_setattr method which
1963  *  updates i_size before truncate gets going.  By maintaining this
1964  *  invariant, we can be sure that it is safe to throw away any buffers
1965  *  attached to the current transaction: once the transaction commits,
1966  *  we know that the data will not be needed.
1967  *
1968  *  Note however that we can *not* throw away data belonging to the
1969  *  previous, committing transaction!
1970  *
1971  * Any disk blocks which *are* part of the previous, committing
1972  * transaction (and which therefore cannot be discarded immediately) are
1973  * not going to be reused in the new running transaction
1974  *
1975  *  The bitmap committed_data images guarantee this: any block which is
1976  *  allocated in one transaction and removed in the next will be marked
1977  *  as in-use in the committed_data bitmap, so cannot be reused until
1978  *  the next transaction to delete the block commits.  This means that
1979  *  leaving committing buffers dirty is quite safe: the disk blocks
1980  *  cannot be reallocated to a different file and so buffer aliasing is
1981  *  not possible.
1982  *
1983  *
1984  * The above applies mainly to ordered data mode.  In writeback mode we
1985  * don't make guarantees about the order in which data hits disk --- in
1986  * particular we don't guarantee that new dirty data is flushed before
1987  * transaction commit --- so it is always safe just to discard data
1988  * immediately in that mode.  --sct
1989  */
1990 
1991 /*
1992  * The journal_unmap_buffer helper function returns zero if the buffer
1993  * concerned remains pinned as an anonymous buffer belonging to an older
1994  * transaction.
1995  *
1996  * We're outside-transaction here.  Either or both of j_running_transaction
1997  * and j_committing_transaction may be NULL.
1998  */
journal_unmap_buffer(journal_t * journal,struct buffer_head * bh,int partial_page)1999 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2000 				int partial_page)
2001 {
2002 	transaction_t *transaction;
2003 	struct journal_head *jh;
2004 	int may_free = 1;
2005 
2006 	BUFFER_TRACE(bh, "entry");
2007 
2008 	/*
2009 	 * It is safe to proceed here without the j_list_lock because the
2010 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2011 	 * holding the page lock. --sct
2012 	 */
2013 
2014 	if (!buffer_jbd(bh))
2015 		goto zap_buffer_unlocked;
2016 
2017 	/* OK, we have data buffer in journaled mode */
2018 	write_lock(&journal->j_state_lock);
2019 	jbd_lock_bh_state(bh);
2020 	spin_lock(&journal->j_list_lock);
2021 
2022 	jh = jbd2_journal_grab_journal_head(bh);
2023 	if (!jh)
2024 		goto zap_buffer_no_jh;
2025 
2026 	/*
2027 	 * We cannot remove the buffer from checkpoint lists until the
2028 	 * transaction adding inode to orphan list (let's call it T)
2029 	 * is committed.  Otherwise if the transaction changing the
2030 	 * buffer would be cleaned from the journal before T is
2031 	 * committed, a crash will cause that the correct contents of
2032 	 * the buffer will be lost.  On the other hand we have to
2033 	 * clear the buffer dirty bit at latest at the moment when the
2034 	 * transaction marking the buffer as freed in the filesystem
2035 	 * structures is committed because from that moment on the
2036 	 * block can be reallocated and used by a different page.
2037 	 * Since the block hasn't been freed yet but the inode has
2038 	 * already been added to orphan list, it is safe for us to add
2039 	 * the buffer to BJ_Forget list of the newest transaction.
2040 	 *
2041 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2042 	 * because the buffer_head may be attached to the page straddling
2043 	 * i_size (can happen only when blocksize < pagesize) and thus the
2044 	 * buffer_head can be reused when the file is extended again. So we end
2045 	 * up keeping around invalidated buffers attached to transactions'
2046 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2047 	 * the transaction this buffer was modified in.
2048 	 */
2049 	transaction = jh->b_transaction;
2050 	if (transaction == NULL) {
2051 		/* First case: not on any transaction.  If it
2052 		 * has no checkpoint link, then we can zap it:
2053 		 * it's a writeback-mode buffer so we don't care
2054 		 * if it hits disk safely. */
2055 		if (!jh->b_cp_transaction) {
2056 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2057 			goto zap_buffer;
2058 		}
2059 
2060 		if (!buffer_dirty(bh)) {
2061 			/* bdflush has written it.  We can drop it now */
2062 			goto zap_buffer;
2063 		}
2064 
2065 		/* OK, it must be in the journal but still not
2066 		 * written fully to disk: it's metadata or
2067 		 * journaled data... */
2068 
2069 		if (journal->j_running_transaction) {
2070 			/* ... and once the current transaction has
2071 			 * committed, the buffer won't be needed any
2072 			 * longer. */
2073 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2074 			may_free = __dispose_buffer(jh,
2075 					journal->j_running_transaction);
2076 			goto zap_buffer;
2077 		} else {
2078 			/* There is no currently-running transaction. So the
2079 			 * orphan record which we wrote for this file must have
2080 			 * passed into commit.  We must attach this buffer to
2081 			 * the committing transaction, if it exists. */
2082 			if (journal->j_committing_transaction) {
2083 				JBUFFER_TRACE(jh, "give to committing trans");
2084 				may_free = __dispose_buffer(jh,
2085 					journal->j_committing_transaction);
2086 				goto zap_buffer;
2087 			} else {
2088 				/* The orphan record's transaction has
2089 				 * committed.  We can cleanse this buffer */
2090 				clear_buffer_jbddirty(bh);
2091 				goto zap_buffer;
2092 			}
2093 		}
2094 	} else if (transaction == journal->j_committing_transaction) {
2095 		JBUFFER_TRACE(jh, "on committing transaction");
2096 		/*
2097 		 * The buffer is committing, we simply cannot touch
2098 		 * it. If the page is straddling i_size we have to wait
2099 		 * for commit and try again.
2100 		 */
2101 		if (partial_page) {
2102 			jbd2_journal_put_journal_head(jh);
2103 			spin_unlock(&journal->j_list_lock);
2104 			jbd_unlock_bh_state(bh);
2105 			write_unlock(&journal->j_state_lock);
2106 			return -EBUSY;
2107 		}
2108 		/*
2109 		 * OK, buffer won't be reachable after truncate. We just set
2110 		 * j_next_transaction to the running transaction (if there is
2111 		 * one) and mark buffer as freed so that commit code knows it
2112 		 * should clear dirty bits when it is done with the buffer.
2113 		 */
2114 		set_buffer_freed(bh);
2115 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2116 			jh->b_next_transaction = journal->j_running_transaction;
2117 		jbd2_journal_put_journal_head(jh);
2118 		spin_unlock(&journal->j_list_lock);
2119 		jbd_unlock_bh_state(bh);
2120 		write_unlock(&journal->j_state_lock);
2121 		return 0;
2122 	} else {
2123 		/* Good, the buffer belongs to the running transaction.
2124 		 * We are writing our own transaction's data, not any
2125 		 * previous one's, so it is safe to throw it away
2126 		 * (remember that we expect the filesystem to have set
2127 		 * i_size already for this truncate so recovery will not
2128 		 * expose the disk blocks we are discarding here.) */
2129 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2130 		JBUFFER_TRACE(jh, "on running transaction");
2131 		may_free = __dispose_buffer(jh, transaction);
2132 	}
2133 
2134 zap_buffer:
2135 	/*
2136 	 * This is tricky. Although the buffer is truncated, it may be reused
2137 	 * if blocksize < pagesize and it is attached to the page straddling
2138 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2139 	 * running transaction, journal_get_write_access() won't clear
2140 	 * b_modified and credit accounting gets confused. So clear b_modified
2141 	 * here.
2142 	 */
2143 	jh->b_modified = 0;
2144 	jbd2_journal_put_journal_head(jh);
2145 zap_buffer_no_jh:
2146 	spin_unlock(&journal->j_list_lock);
2147 	jbd_unlock_bh_state(bh);
2148 	write_unlock(&journal->j_state_lock);
2149 zap_buffer_unlocked:
2150 	clear_buffer_dirty(bh);
2151 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2152 	clear_buffer_mapped(bh);
2153 	clear_buffer_req(bh);
2154 	clear_buffer_new(bh);
2155 	clear_buffer_delay(bh);
2156 	clear_buffer_unwritten(bh);
2157 	bh->b_bdev = NULL;
2158 	return may_free;
2159 }
2160 
2161 /**
2162  * void jbd2_journal_invalidatepage()
2163  * @journal: journal to use for flush...
2164  * @page:    page to flush
2165  * @offset:  start of the range to invalidate
2166  * @length:  length of the range to invalidate
2167  *
2168  * Reap page buffers containing data after in the specified range in page.
2169  * Can return -EBUSY if buffers are part of the committing transaction and
2170  * the page is straddling i_size. Caller then has to wait for current commit
2171  * and try again.
2172  */
jbd2_journal_invalidatepage(journal_t * journal,struct page * page,unsigned int offset,unsigned int length)2173 int jbd2_journal_invalidatepage(journal_t *journal,
2174 				struct page *page,
2175 				unsigned int offset,
2176 				unsigned int length)
2177 {
2178 	struct buffer_head *head, *bh, *next;
2179 	unsigned int stop = offset + length;
2180 	unsigned int curr_off = 0;
2181 	int partial_page = (offset || length < PAGE_CACHE_SIZE);
2182 	int may_free = 1;
2183 	int ret = 0;
2184 
2185 	if (!PageLocked(page))
2186 		BUG();
2187 	if (!page_has_buffers(page))
2188 		return 0;
2189 
2190 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2191 
2192 	/* We will potentially be playing with lists other than just the
2193 	 * data lists (especially for journaled data mode), so be
2194 	 * cautious in our locking. */
2195 
2196 	head = bh = page_buffers(page);
2197 	do {
2198 		unsigned int next_off = curr_off + bh->b_size;
2199 		next = bh->b_this_page;
2200 
2201 		if (next_off > stop)
2202 			return 0;
2203 
2204 		if (offset <= curr_off) {
2205 			/* This block is wholly outside the truncation point */
2206 			lock_buffer(bh);
2207 			ret = journal_unmap_buffer(journal, bh, partial_page);
2208 			unlock_buffer(bh);
2209 			if (ret < 0)
2210 				return ret;
2211 			may_free &= ret;
2212 		}
2213 		curr_off = next_off;
2214 		bh = next;
2215 
2216 	} while (bh != head);
2217 
2218 	if (!partial_page) {
2219 		if (may_free && try_to_free_buffers(page))
2220 			J_ASSERT(!page_has_buffers(page));
2221 	}
2222 	return 0;
2223 }
2224 
2225 /*
2226  * File a buffer on the given transaction list.
2227  */
__jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2228 void __jbd2_journal_file_buffer(struct journal_head *jh,
2229 			transaction_t *transaction, int jlist)
2230 {
2231 	struct journal_head **list = NULL;
2232 	int was_dirty = 0;
2233 	struct buffer_head *bh = jh2bh(jh);
2234 
2235 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2236 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2237 
2238 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2239 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2240 				jh->b_transaction == NULL);
2241 
2242 	if (jh->b_transaction && jh->b_jlist == jlist)
2243 		return;
2244 
2245 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2246 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2247 		/*
2248 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2249 		 * instead of buffer_dirty. We should not see a dirty bit set
2250 		 * here because we clear it in do_get_write_access but e.g.
2251 		 * tune2fs can modify the sb and set the dirty bit at any time
2252 		 * so we try to gracefully handle that.
2253 		 */
2254 		if (buffer_dirty(bh))
2255 			warn_dirty_buffer(bh);
2256 		if (test_clear_buffer_dirty(bh) ||
2257 		    test_clear_buffer_jbddirty(bh))
2258 			was_dirty = 1;
2259 	}
2260 
2261 	if (jh->b_transaction)
2262 		__jbd2_journal_temp_unlink_buffer(jh);
2263 	else
2264 		jbd2_journal_grab_journal_head(bh);
2265 	jh->b_transaction = transaction;
2266 
2267 	switch (jlist) {
2268 	case BJ_None:
2269 		J_ASSERT_JH(jh, !jh->b_committed_data);
2270 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2271 		return;
2272 	case BJ_Metadata:
2273 		transaction->t_nr_buffers++;
2274 		list = &transaction->t_buffers;
2275 		break;
2276 	case BJ_Forget:
2277 		list = &transaction->t_forget;
2278 		break;
2279 	case BJ_Shadow:
2280 		list = &transaction->t_shadow_list;
2281 		break;
2282 	case BJ_Reserved:
2283 		list = &transaction->t_reserved_list;
2284 		break;
2285 	}
2286 
2287 	__blist_add_buffer(list, jh);
2288 	jh->b_jlist = jlist;
2289 
2290 	if (was_dirty)
2291 		set_buffer_jbddirty(bh);
2292 }
2293 
jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2294 void jbd2_journal_file_buffer(struct journal_head *jh,
2295 				transaction_t *transaction, int jlist)
2296 {
2297 	jbd_lock_bh_state(jh2bh(jh));
2298 	spin_lock(&transaction->t_journal->j_list_lock);
2299 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2300 	spin_unlock(&transaction->t_journal->j_list_lock);
2301 	jbd_unlock_bh_state(jh2bh(jh));
2302 }
2303 
2304 /*
2305  * Remove a buffer from its current buffer list in preparation for
2306  * dropping it from its current transaction entirely.  If the buffer has
2307  * already started to be used by a subsequent transaction, refile the
2308  * buffer on that transaction's metadata list.
2309  *
2310  * Called under j_list_lock
2311  * Called under jbd_lock_bh_state(jh2bh(jh))
2312  *
2313  * jh and bh may be already free when this function returns
2314  */
__jbd2_journal_refile_buffer(struct journal_head * jh)2315 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2316 {
2317 	int was_dirty, jlist;
2318 	struct buffer_head *bh = jh2bh(jh);
2319 
2320 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2321 	if (jh->b_transaction)
2322 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2323 
2324 	/* If the buffer is now unused, just drop it. */
2325 	if (jh->b_next_transaction == NULL) {
2326 		__jbd2_journal_unfile_buffer(jh);
2327 		return;
2328 	}
2329 
2330 	/*
2331 	 * It has been modified by a later transaction: add it to the new
2332 	 * transaction's metadata list.
2333 	 */
2334 
2335 	was_dirty = test_clear_buffer_jbddirty(bh);
2336 	__jbd2_journal_temp_unlink_buffer(jh);
2337 	/*
2338 	 * We set b_transaction here because b_next_transaction will inherit
2339 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2340 	 * take a new one.
2341 	 */
2342 	jh->b_transaction = jh->b_next_transaction;
2343 	jh->b_next_transaction = NULL;
2344 	if (buffer_freed(bh))
2345 		jlist = BJ_Forget;
2346 	else if (jh->b_modified)
2347 		jlist = BJ_Metadata;
2348 	else
2349 		jlist = BJ_Reserved;
2350 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2351 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2352 
2353 	if (was_dirty)
2354 		set_buffer_jbddirty(bh);
2355 }
2356 
2357 /*
2358  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2359  * bh reference so that we can safely unlock bh.
2360  *
2361  * The jh and bh may be freed by this call.
2362  */
jbd2_journal_refile_buffer(journal_t * journal,struct journal_head * jh)2363 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2364 {
2365 	struct buffer_head *bh = jh2bh(jh);
2366 
2367 	/* Get reference so that buffer cannot be freed before we unlock it */
2368 	get_bh(bh);
2369 	jbd_lock_bh_state(bh);
2370 	spin_lock(&journal->j_list_lock);
2371 	__jbd2_journal_refile_buffer(jh);
2372 	jbd_unlock_bh_state(bh);
2373 	spin_unlock(&journal->j_list_lock);
2374 	__brelse(bh);
2375 }
2376 
2377 /*
2378  * File inode in the inode list of the handle's transaction
2379  */
jbd2_journal_file_inode(handle_t * handle,struct jbd2_inode * jinode)2380 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2381 {
2382 	transaction_t *transaction = handle->h_transaction;
2383 	journal_t *journal;
2384 
2385 	if (is_handle_aborted(handle))
2386 		return -EROFS;
2387 	journal = transaction->t_journal;
2388 
2389 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2390 			transaction->t_tid);
2391 
2392 	/*
2393 	 * First check whether inode isn't already on the transaction's
2394 	 * lists without taking the lock. Note that this check is safe
2395 	 * without the lock as we cannot race with somebody removing inode
2396 	 * from the transaction. The reason is that we remove inode from the
2397 	 * transaction only in journal_release_jbd_inode() and when we commit
2398 	 * the transaction. We are guarded from the first case by holding
2399 	 * a reference to the inode. We are safe against the second case
2400 	 * because if jinode->i_transaction == transaction, commit code
2401 	 * cannot touch the transaction because we hold reference to it,
2402 	 * and if jinode->i_next_transaction == transaction, commit code
2403 	 * will only file the inode where we want it.
2404 	 */
2405 	if (jinode->i_transaction == transaction ||
2406 	    jinode->i_next_transaction == transaction)
2407 		return 0;
2408 
2409 	spin_lock(&journal->j_list_lock);
2410 
2411 	if (jinode->i_transaction == transaction ||
2412 	    jinode->i_next_transaction == transaction)
2413 		goto done;
2414 
2415 	/*
2416 	 * We only ever set this variable to 1 so the test is safe. Since
2417 	 * t_need_data_flush is likely to be set, we do the test to save some
2418 	 * cacheline bouncing
2419 	 */
2420 	if (!transaction->t_need_data_flush)
2421 		transaction->t_need_data_flush = 1;
2422 	/* On some different transaction's list - should be
2423 	 * the committing one */
2424 	if (jinode->i_transaction) {
2425 		J_ASSERT(jinode->i_next_transaction == NULL);
2426 		J_ASSERT(jinode->i_transaction ==
2427 					journal->j_committing_transaction);
2428 		jinode->i_next_transaction = transaction;
2429 		goto done;
2430 	}
2431 	/* Not on any transaction list... */
2432 	J_ASSERT(!jinode->i_next_transaction);
2433 	jinode->i_transaction = transaction;
2434 	list_add(&jinode->i_list, &transaction->t_inode_list);
2435 done:
2436 	spin_unlock(&journal->j_list_lock);
2437 
2438 	return 0;
2439 }
2440 
2441 /*
2442  * File truncate and transaction commit interact with each other in a
2443  * non-trivial way.  If a transaction writing data block A is
2444  * committing, we cannot discard the data by truncate until we have
2445  * written them.  Otherwise if we crashed after the transaction with
2446  * write has committed but before the transaction with truncate has
2447  * committed, we could see stale data in block A.  This function is a
2448  * helper to solve this problem.  It starts writeout of the truncated
2449  * part in case it is in the committing transaction.
2450  *
2451  * Filesystem code must call this function when inode is journaled in
2452  * ordered mode before truncation happens and after the inode has been
2453  * placed on orphan list with the new inode size. The second condition
2454  * avoids the race that someone writes new data and we start
2455  * committing the transaction after this function has been called but
2456  * before a transaction for truncate is started (and furthermore it
2457  * allows us to optimize the case where the addition to orphan list
2458  * happens in the same transaction as write --- we don't have to write
2459  * any data in such case).
2460  */
jbd2_journal_begin_ordered_truncate(journal_t * journal,struct jbd2_inode * jinode,loff_t new_size)2461 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2462 					struct jbd2_inode *jinode,
2463 					loff_t new_size)
2464 {
2465 	transaction_t *inode_trans, *commit_trans;
2466 	int ret = 0;
2467 
2468 	/* This is a quick check to avoid locking if not necessary */
2469 	if (!jinode->i_transaction)
2470 		goto out;
2471 	/* Locks are here just to force reading of recent values, it is
2472 	 * enough that the transaction was not committing before we started
2473 	 * a transaction adding the inode to orphan list */
2474 	read_lock(&journal->j_state_lock);
2475 	commit_trans = journal->j_committing_transaction;
2476 	read_unlock(&journal->j_state_lock);
2477 	spin_lock(&journal->j_list_lock);
2478 	inode_trans = jinode->i_transaction;
2479 	spin_unlock(&journal->j_list_lock);
2480 	if (inode_trans == commit_trans) {
2481 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2482 			new_size, LLONG_MAX);
2483 		if (ret)
2484 			jbd2_journal_abort(journal, ret);
2485 	}
2486 out:
2487 	return ret;
2488 }
2489