• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/fs/jbd/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 
30 static void __journal_temp_unlink_buffer(struct journal_head *jh);
31 
32 /*
33  * get_transaction: obtain a new transaction_t object.
34  *
35  * Simply allocate and initialise a new transaction.  Create it in
36  * RUNNING state and add it to the current journal (which should not
37  * have an existing running transaction: we only make a new transaction
38  * once we have started to commit the old one).
39  *
40  * Preconditions:
41  *	The journal MUST be locked.  We don't perform atomic mallocs on the
42  *	new transaction	and we can't block without protecting against other
43  *	processes trying to touch the journal while it is in transition.
44  *
45  * Called under j_state_lock
46  */
47 
48 static transaction_t *
get_transaction(journal_t * journal,transaction_t * transaction)49 get_transaction(journal_t *journal, transaction_t *transaction)
50 {
51 	transaction->t_journal = journal;
52 	transaction->t_state = T_RUNNING;
53 	transaction->t_start_time = ktime_get();
54 	transaction->t_tid = journal->j_transaction_sequence++;
55 	transaction->t_expires = jiffies + journal->j_commit_interval;
56 	spin_lock_init(&transaction->t_handle_lock);
57 
58 	/* Set up the commit timer for the new transaction. */
59 	journal->j_commit_timer.expires =
60 				round_jiffies_up(transaction->t_expires);
61 	add_timer(&journal->j_commit_timer);
62 
63 	J_ASSERT(journal->j_running_transaction == NULL);
64 	journal->j_running_transaction = transaction;
65 
66 	return transaction;
67 }
68 
69 /*
70  * Handle management.
71  *
72  * A handle_t is an object which represents a single atomic update to a
73  * filesystem, and which tracks all of the modifications which form part
74  * of that one update.
75  */
76 
77 /*
78  * start_this_handle: Given a handle, deal with any locking or stalling
79  * needed to make sure that there is enough journal space for the handle
80  * to begin.  Attach the handle to a transaction and set up the
81  * transaction's buffer credits.
82  */
83 
start_this_handle(journal_t * journal,handle_t * handle)84 static int start_this_handle(journal_t *journal, handle_t *handle)
85 {
86 	transaction_t *transaction;
87 	int needed;
88 	int nblocks = handle->h_buffer_credits;
89 	transaction_t *new_transaction = NULL;
90 	int ret = 0;
91 
92 	if (nblocks > journal->j_max_transaction_buffers) {
93 		printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
94 		       current->comm, nblocks,
95 		       journal->j_max_transaction_buffers);
96 		ret = -ENOSPC;
97 		goto out;
98 	}
99 
100 alloc_transaction:
101 	if (!journal->j_running_transaction) {
102 		new_transaction = kzalloc(sizeof(*new_transaction),
103 						GFP_NOFS|__GFP_NOFAIL);
104 		if (!new_transaction) {
105 			ret = -ENOMEM;
106 			goto out;
107 		}
108 	}
109 
110 	jbd_debug(3, "New handle %p going live.\n", handle);
111 
112 repeat:
113 
114 	/*
115 	 * We need to hold j_state_lock until t_updates has been incremented,
116 	 * for proper journal barrier handling
117 	 */
118 	spin_lock(&journal->j_state_lock);
119 repeat_locked:
120 	if (is_journal_aborted(journal) ||
121 	    (journal->j_errno != 0 && !(journal->j_flags & JFS_ACK_ERR))) {
122 		spin_unlock(&journal->j_state_lock);
123 		ret = -EROFS;
124 		goto out;
125 	}
126 
127 	/* Wait on the journal's transaction barrier if necessary */
128 	if (journal->j_barrier_count) {
129 		spin_unlock(&journal->j_state_lock);
130 		wait_event(journal->j_wait_transaction_locked,
131 				journal->j_barrier_count == 0);
132 		goto repeat;
133 	}
134 
135 	if (!journal->j_running_transaction) {
136 		if (!new_transaction) {
137 			spin_unlock(&journal->j_state_lock);
138 			goto alloc_transaction;
139 		}
140 		get_transaction(journal, new_transaction);
141 		new_transaction = NULL;
142 	}
143 
144 	transaction = journal->j_running_transaction;
145 
146 	/*
147 	 * If the current transaction is locked down for commit, wait for the
148 	 * lock to be released.
149 	 */
150 	if (transaction->t_state == T_LOCKED) {
151 		DEFINE_WAIT(wait);
152 
153 		prepare_to_wait(&journal->j_wait_transaction_locked,
154 					&wait, TASK_UNINTERRUPTIBLE);
155 		spin_unlock(&journal->j_state_lock);
156 		schedule();
157 		finish_wait(&journal->j_wait_transaction_locked, &wait);
158 		goto repeat;
159 	}
160 
161 	/*
162 	 * If there is not enough space left in the log to write all potential
163 	 * buffers requested by this operation, we need to stall pending a log
164 	 * checkpoint to free some more log space.
165 	 */
166 	spin_lock(&transaction->t_handle_lock);
167 	needed = transaction->t_outstanding_credits + nblocks;
168 
169 	if (needed > journal->j_max_transaction_buffers) {
170 		/*
171 		 * If the current transaction is already too large, then start
172 		 * to commit it: we can then go back and attach this handle to
173 		 * a new transaction.
174 		 */
175 		DEFINE_WAIT(wait);
176 
177 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
178 		spin_unlock(&transaction->t_handle_lock);
179 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
180 				TASK_UNINTERRUPTIBLE);
181 		__log_start_commit(journal, transaction->t_tid);
182 		spin_unlock(&journal->j_state_lock);
183 		schedule();
184 		finish_wait(&journal->j_wait_transaction_locked, &wait);
185 		goto repeat;
186 	}
187 
188 	/*
189 	 * The commit code assumes that it can get enough log space
190 	 * without forcing a checkpoint.  This is *critical* for
191 	 * correctness: a checkpoint of a buffer which is also
192 	 * associated with a committing transaction creates a deadlock,
193 	 * so commit simply cannot force through checkpoints.
194 	 *
195 	 * We must therefore ensure the necessary space in the journal
196 	 * *before* starting to dirty potentially checkpointed buffers
197 	 * in the new transaction.
198 	 *
199 	 * The worst part is, any transaction currently committing can
200 	 * reduce the free space arbitrarily.  Be careful to account for
201 	 * those buffers when checkpointing.
202 	 */
203 
204 	/*
205 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
206 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
207 	 * the committing transaction.  Really, we only need to give it
208 	 * committing_transaction->t_outstanding_credits plus "enough" for
209 	 * the log control blocks.
210 	 * Also, this test is inconsistent with the matching one in
211 	 * journal_extend().
212 	 */
213 	if (__log_space_left(journal) < jbd_space_needed(journal)) {
214 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
215 		spin_unlock(&transaction->t_handle_lock);
216 		__log_wait_for_space(journal);
217 		goto repeat_locked;
218 	}
219 
220 	/* OK, account for the buffers that this operation expects to
221 	 * use and add the handle to the running transaction. */
222 
223 	handle->h_transaction = transaction;
224 	transaction->t_outstanding_credits += nblocks;
225 	transaction->t_updates++;
226 	transaction->t_handle_count++;
227 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
228 		  handle, nblocks, transaction->t_outstanding_credits,
229 		  __log_space_left(journal));
230 	spin_unlock(&transaction->t_handle_lock);
231 	spin_unlock(&journal->j_state_lock);
232 
233 	lock_map_acquire(&handle->h_lockdep_map);
234 out:
235 	if (unlikely(new_transaction))		/* It's usually NULL */
236 		kfree(new_transaction);
237 	return ret;
238 }
239 
240 static struct lock_class_key jbd_handle_key;
241 
242 /* Allocate a new handle.  This should probably be in a slab... */
new_handle(int nblocks)243 static handle_t *new_handle(int nblocks)
244 {
245 	handle_t *handle = jbd_alloc_handle(GFP_NOFS);
246 	if (!handle)
247 		return NULL;
248 	handle->h_buffer_credits = nblocks;
249 	handle->h_ref = 1;
250 
251 	lockdep_init_map(&handle->h_lockdep_map, "jbd_handle", &jbd_handle_key, 0);
252 
253 	return handle;
254 }
255 
256 /**
257  * handle_t *journal_start() - Obtain a new handle.
258  * @journal: Journal to start transaction on.
259  * @nblocks: number of block buffer we might modify
260  *
261  * We make sure that the transaction can guarantee at least nblocks of
262  * modified buffers in the log.  We block until the log can guarantee
263  * that much space.
264  *
265  * This function is visible to journal users (like ext3fs), so is not
266  * called with the journal already locked.
267  *
268  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
269  * on failure.
270  */
journal_start(journal_t * journal,int nblocks)271 handle_t *journal_start(journal_t *journal, int nblocks)
272 {
273 	handle_t *handle = journal_current_handle();
274 	int err;
275 
276 	if (!journal)
277 		return ERR_PTR(-EROFS);
278 
279 	if (handle) {
280 		J_ASSERT(handle->h_transaction->t_journal == journal);
281 		handle->h_ref++;
282 		return handle;
283 	}
284 
285 	handle = new_handle(nblocks);
286 	if (!handle)
287 		return ERR_PTR(-ENOMEM);
288 
289 	current->journal_info = handle;
290 
291 	err = start_this_handle(journal, handle);
292 	if (err < 0) {
293 		jbd_free_handle(handle);
294 		current->journal_info = NULL;
295 		handle = ERR_PTR(err);
296 	}
297 	return handle;
298 }
299 
300 /**
301  * int journal_extend() - extend buffer credits.
302  * @handle:  handle to 'extend'
303  * @nblocks: nr blocks to try to extend by.
304  *
305  * Some transactions, such as large extends and truncates, can be done
306  * atomically all at once or in several stages.  The operation requests
307  * a credit for a number of buffer modications in advance, but can
308  * extend its credit if it needs more.
309  *
310  * journal_extend tries to give the running handle more buffer credits.
311  * It does not guarantee that allocation - this is a best-effort only.
312  * The calling process MUST be able to deal cleanly with a failure to
313  * extend here.
314  *
315  * Return 0 on success, non-zero on failure.
316  *
317  * return code < 0 implies an error
318  * return code > 0 implies normal transaction-full status.
319  */
journal_extend(handle_t * handle,int nblocks)320 int journal_extend(handle_t *handle, int nblocks)
321 {
322 	transaction_t *transaction = handle->h_transaction;
323 	journal_t *journal = transaction->t_journal;
324 	int result;
325 	int wanted;
326 
327 	result = -EIO;
328 	if (is_handle_aborted(handle))
329 		goto out;
330 
331 	result = 1;
332 
333 	spin_lock(&journal->j_state_lock);
334 
335 	/* Don't extend a locked-down transaction! */
336 	if (handle->h_transaction->t_state != T_RUNNING) {
337 		jbd_debug(3, "denied handle %p %d blocks: "
338 			  "transaction not running\n", handle, nblocks);
339 		goto error_out;
340 	}
341 
342 	spin_lock(&transaction->t_handle_lock);
343 	wanted = transaction->t_outstanding_credits + nblocks;
344 
345 	if (wanted > journal->j_max_transaction_buffers) {
346 		jbd_debug(3, "denied handle %p %d blocks: "
347 			  "transaction too large\n", handle, nblocks);
348 		goto unlock;
349 	}
350 
351 	if (wanted > __log_space_left(journal)) {
352 		jbd_debug(3, "denied handle %p %d blocks: "
353 			  "insufficient log space\n", handle, nblocks);
354 		goto unlock;
355 	}
356 
357 	handle->h_buffer_credits += nblocks;
358 	transaction->t_outstanding_credits += nblocks;
359 	result = 0;
360 
361 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
362 unlock:
363 	spin_unlock(&transaction->t_handle_lock);
364 error_out:
365 	spin_unlock(&journal->j_state_lock);
366 out:
367 	return result;
368 }
369 
370 
371 /**
372  * int journal_restart() - restart a handle.
373  * @handle:  handle to restart
374  * @nblocks: nr credits requested
375  *
376  * Restart a handle for a multi-transaction filesystem
377  * operation.
378  *
379  * If the journal_extend() call above fails to grant new buffer credits
380  * to a running handle, a call to journal_restart will commit the
381  * handle's transaction so far and reattach the handle to a new
382  * transaction capabable of guaranteeing the requested number of
383  * credits.
384  */
385 
journal_restart(handle_t * handle,int nblocks)386 int journal_restart(handle_t *handle, int nblocks)
387 {
388 	transaction_t *transaction = handle->h_transaction;
389 	journal_t *journal = transaction->t_journal;
390 	int ret;
391 
392 	/* If we've had an abort of any type, don't even think about
393 	 * actually doing the restart! */
394 	if (is_handle_aborted(handle))
395 		return 0;
396 
397 	/*
398 	 * First unlink the handle from its current transaction, and start the
399 	 * commit on that.
400 	 */
401 	J_ASSERT(transaction->t_updates > 0);
402 	J_ASSERT(journal_current_handle() == handle);
403 
404 	spin_lock(&journal->j_state_lock);
405 	spin_lock(&transaction->t_handle_lock);
406 	transaction->t_outstanding_credits -= handle->h_buffer_credits;
407 	transaction->t_updates--;
408 
409 	if (!transaction->t_updates)
410 		wake_up(&journal->j_wait_updates);
411 	spin_unlock(&transaction->t_handle_lock);
412 
413 	jbd_debug(2, "restarting handle %p\n", handle);
414 	__log_start_commit(journal, transaction->t_tid);
415 	spin_unlock(&journal->j_state_lock);
416 
417 	lock_map_release(&handle->h_lockdep_map);
418 	handle->h_buffer_credits = nblocks;
419 	ret = start_this_handle(journal, handle);
420 	return ret;
421 }
422 
423 
424 /**
425  * void journal_lock_updates () - establish a transaction barrier.
426  * @journal:  Journal to establish a barrier on.
427  *
428  * This locks out any further updates from being started, and blocks until all
429  * existing updates have completed, returning only once the journal is in a
430  * quiescent state with no updates running.
431  *
432  * We do not use simple mutex for synchronization as there are syscalls which
433  * want to return with filesystem locked and that trips up lockdep. Also
434  * hibernate needs to lock filesystem but locked mutex then blocks hibernation.
435  * Since locking filesystem is rare operation, we use simple counter and
436  * waitqueue for locking.
437  */
journal_lock_updates(journal_t * journal)438 void journal_lock_updates(journal_t *journal)
439 {
440 	DEFINE_WAIT(wait);
441 
442 wait:
443 	/* Wait for previous locked operation to finish */
444 	wait_event(journal->j_wait_transaction_locked,
445 		   journal->j_barrier_count == 0);
446 
447 	spin_lock(&journal->j_state_lock);
448 	/*
449 	 * Check reliably under the lock whether we are the ones winning the race
450 	 * and locking the journal
451 	 */
452 	if (journal->j_barrier_count > 0) {
453 		spin_unlock(&journal->j_state_lock);
454 		goto wait;
455 	}
456 	++journal->j_barrier_count;
457 
458 	/* Wait until there are no running updates */
459 	while (1) {
460 		transaction_t *transaction = journal->j_running_transaction;
461 
462 		if (!transaction)
463 			break;
464 
465 		spin_lock(&transaction->t_handle_lock);
466 		if (!transaction->t_updates) {
467 			spin_unlock(&transaction->t_handle_lock);
468 			break;
469 		}
470 		prepare_to_wait(&journal->j_wait_updates, &wait,
471 				TASK_UNINTERRUPTIBLE);
472 		spin_unlock(&transaction->t_handle_lock);
473 		spin_unlock(&journal->j_state_lock);
474 		schedule();
475 		finish_wait(&journal->j_wait_updates, &wait);
476 		spin_lock(&journal->j_state_lock);
477 	}
478 	spin_unlock(&journal->j_state_lock);
479 }
480 
481 /**
482  * void journal_unlock_updates (journal_t* journal) - release barrier
483  * @journal:  Journal to release the barrier on.
484  *
485  * Release a transaction barrier obtained with journal_lock_updates().
486  */
journal_unlock_updates(journal_t * journal)487 void journal_unlock_updates (journal_t *journal)
488 {
489 	J_ASSERT(journal->j_barrier_count != 0);
490 
491 	spin_lock(&journal->j_state_lock);
492 	--journal->j_barrier_count;
493 	spin_unlock(&journal->j_state_lock);
494 	wake_up(&journal->j_wait_transaction_locked);
495 }
496 
warn_dirty_buffer(struct buffer_head * bh)497 static void warn_dirty_buffer(struct buffer_head *bh)
498 {
499 	char b[BDEVNAME_SIZE];
500 
501 	printk(KERN_WARNING
502 	       "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
503 	       "There's a risk of filesystem corruption in case of system "
504 	       "crash.\n",
505 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
506 }
507 
508 /*
509  * If the buffer is already part of the current transaction, then there
510  * is nothing we need to do.  If it is already part of a prior
511  * transaction which we are still committing to disk, then we need to
512  * make sure that we do not overwrite the old copy: we do copy-out to
513  * preserve the copy going to disk.  We also account the buffer against
514  * the handle's metadata buffer credits (unless the buffer is already
515  * part of the transaction, that is).
516  *
517  */
518 static int
do_get_write_access(handle_t * handle,struct journal_head * jh,int force_copy)519 do_get_write_access(handle_t *handle, struct journal_head *jh,
520 			int force_copy)
521 {
522 	struct buffer_head *bh;
523 	transaction_t *transaction;
524 	journal_t *journal;
525 	int error;
526 	char *frozen_buffer = NULL;
527 	int need_copy = 0;
528 
529 	if (is_handle_aborted(handle))
530 		return -EROFS;
531 
532 	transaction = handle->h_transaction;
533 	journal = transaction->t_journal;
534 
535 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
536 
537 	JBUFFER_TRACE(jh, "entry");
538 repeat:
539 	bh = jh2bh(jh);
540 
541 	/* @@@ Need to check for errors here at some point. */
542 
543 	lock_buffer(bh);
544 	jbd_lock_bh_state(bh);
545 
546 	/* We now hold the buffer lock so it is safe to query the buffer
547 	 * state.  Is the buffer dirty?
548 	 *
549 	 * If so, there are two possibilities.  The buffer may be
550 	 * non-journaled, and undergoing a quite legitimate writeback.
551 	 * Otherwise, it is journaled, and we don't expect dirty buffers
552 	 * in that state (the buffers should be marked JBD_Dirty
553 	 * instead.)  So either the IO is being done under our own
554 	 * control and this is a bug, or it's a third party IO such as
555 	 * dump(8) (which may leave the buffer scheduled for read ---
556 	 * ie. locked but not dirty) or tune2fs (which may actually have
557 	 * the buffer dirtied, ugh.)  */
558 
559 	if (buffer_dirty(bh)) {
560 		/*
561 		 * First question: is this buffer already part of the current
562 		 * transaction or the existing committing transaction?
563 		 */
564 		if (jh->b_transaction) {
565 			J_ASSERT_JH(jh,
566 				jh->b_transaction == transaction ||
567 				jh->b_transaction ==
568 					journal->j_committing_transaction);
569 			if (jh->b_next_transaction)
570 				J_ASSERT_JH(jh, jh->b_next_transaction ==
571 							transaction);
572 			warn_dirty_buffer(bh);
573 		}
574 		/*
575 		 * In any case we need to clean the dirty flag and we must
576 		 * do it under the buffer lock to be sure we don't race
577 		 * with running write-out.
578 		 */
579 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
580 		clear_buffer_dirty(bh);
581 		set_buffer_jbddirty(bh);
582 	}
583 
584 	unlock_buffer(bh);
585 
586 	error = -EROFS;
587 	if (is_handle_aborted(handle)) {
588 		jbd_unlock_bh_state(bh);
589 		goto out;
590 	}
591 	error = 0;
592 
593 	/*
594 	 * The buffer is already part of this transaction if b_transaction or
595 	 * b_next_transaction points to it
596 	 */
597 	if (jh->b_transaction == transaction ||
598 	    jh->b_next_transaction == transaction)
599 		goto done;
600 
601 	/*
602 	 * this is the first time this transaction is touching this buffer,
603 	 * reset the modified flag
604 	 */
605 	jh->b_modified = 0;
606 
607 	/*
608 	 * If there is already a copy-out version of this buffer, then we don't
609 	 * need to make another one
610 	 */
611 	if (jh->b_frozen_data) {
612 		JBUFFER_TRACE(jh, "has frozen data");
613 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
614 		jh->b_next_transaction = transaction;
615 		goto done;
616 	}
617 
618 	/* Is there data here we need to preserve? */
619 
620 	if (jh->b_transaction && jh->b_transaction != transaction) {
621 		JBUFFER_TRACE(jh, "owned by older transaction");
622 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
623 		J_ASSERT_JH(jh, jh->b_transaction ==
624 					journal->j_committing_transaction);
625 
626 		/* There is one case we have to be very careful about.
627 		 * If the committing transaction is currently writing
628 		 * this buffer out to disk and has NOT made a copy-out,
629 		 * then we cannot modify the buffer contents at all
630 		 * right now.  The essence of copy-out is that it is the
631 		 * extra copy, not the primary copy, which gets
632 		 * journaled.  If the primary copy is already going to
633 		 * disk then we cannot do copy-out here. */
634 
635 		if (jh->b_jlist == BJ_Shadow) {
636 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
637 			wait_queue_head_t *wqh;
638 
639 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
640 
641 			JBUFFER_TRACE(jh, "on shadow: sleep");
642 			jbd_unlock_bh_state(bh);
643 			/* commit wakes up all shadow buffers after IO */
644 			for ( ; ; ) {
645 				prepare_to_wait(wqh, &wait.wait,
646 						TASK_UNINTERRUPTIBLE);
647 				if (jh->b_jlist != BJ_Shadow)
648 					break;
649 				schedule();
650 			}
651 			finish_wait(wqh, &wait.wait);
652 			goto repeat;
653 		}
654 
655 		/* Only do the copy if the currently-owning transaction
656 		 * still needs it.  If it is on the Forget list, the
657 		 * committing transaction is past that stage.  The
658 		 * buffer had better remain locked during the kmalloc,
659 		 * but that should be true --- we hold the journal lock
660 		 * still and the buffer is already on the BUF_JOURNAL
661 		 * list so won't be flushed.
662 		 *
663 		 * Subtle point, though: if this is a get_undo_access,
664 		 * then we will be relying on the frozen_data to contain
665 		 * the new value of the committed_data record after the
666 		 * transaction, so we HAVE to force the frozen_data copy
667 		 * in that case. */
668 
669 		if (jh->b_jlist != BJ_Forget || force_copy) {
670 			JBUFFER_TRACE(jh, "generate frozen data");
671 			if (!frozen_buffer) {
672 				JBUFFER_TRACE(jh, "allocate memory for buffer");
673 				jbd_unlock_bh_state(bh);
674 				frozen_buffer =
675 					jbd_alloc(jh2bh(jh)->b_size,
676 							 GFP_NOFS);
677 				if (!frozen_buffer) {
678 					printk(KERN_ERR
679 					       "%s: OOM for frozen_buffer\n",
680 					       __func__);
681 					JBUFFER_TRACE(jh, "oom!");
682 					error = -ENOMEM;
683 					jbd_lock_bh_state(bh);
684 					goto done;
685 				}
686 				goto repeat;
687 			}
688 			jh->b_frozen_data = frozen_buffer;
689 			frozen_buffer = NULL;
690 			need_copy = 1;
691 		}
692 		jh->b_next_transaction = transaction;
693 	}
694 
695 
696 	/*
697 	 * Finally, if the buffer is not journaled right now, we need to make
698 	 * sure it doesn't get written to disk before the caller actually
699 	 * commits the new data
700 	 */
701 	if (!jh->b_transaction) {
702 		JBUFFER_TRACE(jh, "no transaction");
703 		J_ASSERT_JH(jh, !jh->b_next_transaction);
704 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
705 		spin_lock(&journal->j_list_lock);
706 		__journal_file_buffer(jh, transaction, BJ_Reserved);
707 		spin_unlock(&journal->j_list_lock);
708 	}
709 
710 done:
711 	if (need_copy) {
712 		struct page *page;
713 		int offset;
714 		char *source;
715 
716 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
717 			    "Possible IO failure.\n");
718 		page = jh2bh(jh)->b_page;
719 		offset = offset_in_page(jh2bh(jh)->b_data);
720 		source = kmap_atomic(page);
721 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
722 		kunmap_atomic(source);
723 	}
724 	jbd_unlock_bh_state(bh);
725 
726 	/*
727 	 * If we are about to journal a buffer, then any revoke pending on it is
728 	 * no longer valid
729 	 */
730 	journal_cancel_revoke(handle, jh);
731 
732 out:
733 	if (unlikely(frozen_buffer))	/* It's usually NULL */
734 		jbd_free(frozen_buffer, bh->b_size);
735 
736 	JBUFFER_TRACE(jh, "exit");
737 	return error;
738 }
739 
740 /**
741  * int journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
742  * @handle: transaction to add buffer modifications to
743  * @bh:     bh to be used for metadata writes
744  *
745  * Returns an error code or 0 on success.
746  *
747  * In full data journalling mode the buffer may be of type BJ_AsyncData,
748  * because we're write()ing a buffer which is also part of a shared mapping.
749  */
750 
journal_get_write_access(handle_t * handle,struct buffer_head * bh)751 int journal_get_write_access(handle_t *handle, struct buffer_head *bh)
752 {
753 	struct journal_head *jh = journal_add_journal_head(bh);
754 	int rc;
755 
756 	/* We do not want to get caught playing with fields which the
757 	 * log thread also manipulates.  Make sure that the buffer
758 	 * completes any outstanding IO before proceeding. */
759 	rc = do_get_write_access(handle, jh, 0);
760 	journal_put_journal_head(jh);
761 	return rc;
762 }
763 
764 
765 /*
766  * When the user wants to journal a newly created buffer_head
767  * (ie. getblk() returned a new buffer and we are going to populate it
768  * manually rather than reading off disk), then we need to keep the
769  * buffer_head locked until it has been completely filled with new
770  * data.  In this case, we should be able to make the assertion that
771  * the bh is not already part of an existing transaction.
772  *
773  * The buffer should already be locked by the caller by this point.
774  * There is no lock ranking violation: it was a newly created,
775  * unlocked buffer beforehand. */
776 
777 /**
778  * int journal_get_create_access () - notify intent to use newly created bh
779  * @handle: transaction to new buffer to
780  * @bh: new buffer.
781  *
782  * Call this if you create a new bh.
783  */
journal_get_create_access(handle_t * handle,struct buffer_head * bh)784 int journal_get_create_access(handle_t *handle, struct buffer_head *bh)
785 {
786 	transaction_t *transaction = handle->h_transaction;
787 	journal_t *journal = transaction->t_journal;
788 	struct journal_head *jh = journal_add_journal_head(bh);
789 	int err;
790 
791 	jbd_debug(5, "journal_head %p\n", jh);
792 	err = -EROFS;
793 	if (is_handle_aborted(handle))
794 		goto out;
795 	err = 0;
796 
797 	JBUFFER_TRACE(jh, "entry");
798 	/*
799 	 * The buffer may already belong to this transaction due to pre-zeroing
800 	 * in the filesystem's new_block code.  It may also be on the previous,
801 	 * committing transaction's lists, but it HAS to be in Forget state in
802 	 * that case: the transaction must have deleted the buffer for it to be
803 	 * reused here.
804 	 */
805 	jbd_lock_bh_state(bh);
806 	spin_lock(&journal->j_list_lock);
807 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
808 		jh->b_transaction == NULL ||
809 		(jh->b_transaction == journal->j_committing_transaction &&
810 			  jh->b_jlist == BJ_Forget)));
811 
812 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
813 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
814 
815 	if (jh->b_transaction == NULL) {
816 		/*
817 		 * Previous journal_forget() could have left the buffer
818 		 * with jbddirty bit set because it was being committed. When
819 		 * the commit finished, we've filed the buffer for
820 		 * checkpointing and marked it dirty. Now we are reallocating
821 		 * the buffer so the transaction freeing it must have
822 		 * committed and so it's safe to clear the dirty bit.
823 		 */
824 		clear_buffer_dirty(jh2bh(jh));
825 
826 		/* first access by this transaction */
827 		jh->b_modified = 0;
828 
829 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
830 		__journal_file_buffer(jh, transaction, BJ_Reserved);
831 	} else if (jh->b_transaction == journal->j_committing_transaction) {
832 		/* first access by this transaction */
833 		jh->b_modified = 0;
834 
835 		JBUFFER_TRACE(jh, "set next transaction");
836 		jh->b_next_transaction = transaction;
837 	}
838 	spin_unlock(&journal->j_list_lock);
839 	jbd_unlock_bh_state(bh);
840 
841 	/*
842 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
843 	 * blocks which contain freed but then revoked metadata.  We need
844 	 * to cancel the revoke in case we end up freeing it yet again
845 	 * and the reallocating as data - this would cause a second revoke,
846 	 * which hits an assertion error.
847 	 */
848 	JBUFFER_TRACE(jh, "cancelling revoke");
849 	journal_cancel_revoke(handle, jh);
850 out:
851 	journal_put_journal_head(jh);
852 	return err;
853 }
854 
855 /**
856  * int journal_get_undo_access() - Notify intent to modify metadata with non-rewindable consequences
857  * @handle: transaction
858  * @bh: buffer to undo
859  *
860  * Sometimes there is a need to distinguish between metadata which has
861  * been committed to disk and that which has not.  The ext3fs code uses
862  * this for freeing and allocating space, we have to make sure that we
863  * do not reuse freed space until the deallocation has been committed,
864  * since if we overwrote that space we would make the delete
865  * un-rewindable in case of a crash.
866  *
867  * To deal with that, journal_get_undo_access requests write access to a
868  * buffer for parts of non-rewindable operations such as delete
869  * operations on the bitmaps.  The journaling code must keep a copy of
870  * the buffer's contents prior to the undo_access call until such time
871  * as we know that the buffer has definitely been committed to disk.
872  *
873  * We never need to know which transaction the committed data is part
874  * of, buffers touched here are guaranteed to be dirtied later and so
875  * will be committed to a new transaction in due course, at which point
876  * we can discard the old committed data pointer.
877  *
878  * Returns error number or 0 on success.
879  */
journal_get_undo_access(handle_t * handle,struct buffer_head * bh)880 int journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
881 {
882 	int err;
883 	struct journal_head *jh = journal_add_journal_head(bh);
884 	char *committed_data = NULL;
885 
886 	JBUFFER_TRACE(jh, "entry");
887 
888 	/*
889 	 * Do this first --- it can drop the journal lock, so we want to
890 	 * make sure that obtaining the committed_data is done
891 	 * atomically wrt. completion of any outstanding commits.
892 	 */
893 	err = do_get_write_access(handle, jh, 1);
894 	if (err)
895 		goto out;
896 
897 repeat:
898 	if (!jh->b_committed_data) {
899 		committed_data = jbd_alloc(jh2bh(jh)->b_size, GFP_NOFS);
900 		if (!committed_data) {
901 			printk(KERN_ERR "%s: No memory for committed data\n",
902 				__func__);
903 			err = -ENOMEM;
904 			goto out;
905 		}
906 	}
907 
908 	jbd_lock_bh_state(bh);
909 	if (!jh->b_committed_data) {
910 		/* Copy out the current buffer contents into the
911 		 * preserved, committed copy. */
912 		JBUFFER_TRACE(jh, "generate b_committed data");
913 		if (!committed_data) {
914 			jbd_unlock_bh_state(bh);
915 			goto repeat;
916 		}
917 
918 		jh->b_committed_data = committed_data;
919 		committed_data = NULL;
920 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
921 	}
922 	jbd_unlock_bh_state(bh);
923 out:
924 	journal_put_journal_head(jh);
925 	if (unlikely(committed_data))
926 		jbd_free(committed_data, bh->b_size);
927 	return err;
928 }
929 
930 /**
931  * int journal_dirty_data() - mark a buffer as containing dirty data to be flushed
932  * @handle: transaction
933  * @bh: bufferhead to mark
934  *
935  * Description:
936  * Mark a buffer as containing dirty data which needs to be flushed before
937  * we can commit the current transaction.
938  *
939  * The buffer is placed on the transaction's data list and is marked as
940  * belonging to the transaction.
941  *
942  * Returns error number or 0 on success.
943  *
944  * journal_dirty_data() can be called via page_launder->ext3_writepage
945  * by kswapd.
946  */
journal_dirty_data(handle_t * handle,struct buffer_head * bh)947 int journal_dirty_data(handle_t *handle, struct buffer_head *bh)
948 {
949 	journal_t *journal = handle->h_transaction->t_journal;
950 	int need_brelse = 0;
951 	struct journal_head *jh;
952 	int ret = 0;
953 
954 	if (is_handle_aborted(handle))
955 		return ret;
956 
957 	jh = journal_add_journal_head(bh);
958 	JBUFFER_TRACE(jh, "entry");
959 
960 	/*
961 	 * The buffer could *already* be dirty.  Writeout can start
962 	 * at any time.
963 	 */
964 	jbd_debug(4, "jh: %p, tid:%d\n", jh, handle->h_transaction->t_tid);
965 
966 	/*
967 	 * What if the buffer is already part of a running transaction?
968 	 *
969 	 * There are two cases:
970 	 * 1) It is part of the current running transaction.  Refile it,
971 	 *    just in case we have allocated it as metadata, deallocated
972 	 *    it, then reallocated it as data.
973 	 * 2) It is part of the previous, still-committing transaction.
974 	 *    If all we want to do is to guarantee that the buffer will be
975 	 *    written to disk before this new transaction commits, then
976 	 *    being sure that the *previous* transaction has this same
977 	 *    property is sufficient for us!  Just leave it on its old
978 	 *    transaction.
979 	 *
980 	 * In case (2), the buffer must not already exist as metadata
981 	 * --- that would violate write ordering (a transaction is free
982 	 * to write its data at any point, even before the previous
983 	 * committing transaction has committed).  The caller must
984 	 * never, ever allow this to happen: there's nothing we can do
985 	 * about it in this layer.
986 	 */
987 	jbd_lock_bh_state(bh);
988 	spin_lock(&journal->j_list_lock);
989 
990 	/* Now that we have bh_state locked, are we really still mapped? */
991 	if (!buffer_mapped(bh)) {
992 		JBUFFER_TRACE(jh, "unmapped buffer, bailing out");
993 		goto no_journal;
994 	}
995 
996 	if (jh->b_transaction) {
997 		JBUFFER_TRACE(jh, "has transaction");
998 		if (jh->b_transaction != handle->h_transaction) {
999 			JBUFFER_TRACE(jh, "belongs to older transaction");
1000 			J_ASSERT_JH(jh, jh->b_transaction ==
1001 					journal->j_committing_transaction);
1002 
1003 			/* @@@ IS THIS TRUE  ? */
1004 			/*
1005 			 * Not any more.  Scenario: someone does a write()
1006 			 * in data=journal mode.  The buffer's transaction has
1007 			 * moved into commit.  Then someone does another
1008 			 * write() to the file.  We do the frozen data copyout
1009 			 * and set b_next_transaction to point to j_running_t.
1010 			 * And while we're in that state, someone does a
1011 			 * writepage() in an attempt to pageout the same area
1012 			 * of the file via a shared mapping.  At present that
1013 			 * calls journal_dirty_data(), and we get right here.
1014 			 * It may be too late to journal the data.  Simply
1015 			 * falling through to the next test will suffice: the
1016 			 * data will be dirty and wil be checkpointed.  The
1017 			 * ordering comments in the next comment block still
1018 			 * apply.
1019 			 */
1020 			//J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1021 
1022 			/*
1023 			 * If we're journalling data, and this buffer was
1024 			 * subject to a write(), it could be metadata, forget
1025 			 * or shadow against the committing transaction.  Now,
1026 			 * someone has dirtied the same darn page via a mapping
1027 			 * and it is being writepage()'d.
1028 			 * We *could* just steal the page from commit, with some
1029 			 * fancy locking there.  Instead, we just skip it -
1030 			 * don't tie the page's buffers to the new transaction
1031 			 * at all.
1032 			 * Implication: if we crash before the writepage() data
1033 			 * is written into the filesystem, recovery will replay
1034 			 * the write() data.
1035 			 */
1036 			if (jh->b_jlist != BJ_None &&
1037 					jh->b_jlist != BJ_SyncData &&
1038 					jh->b_jlist != BJ_Locked) {
1039 				JBUFFER_TRACE(jh, "Not stealing");
1040 				goto no_journal;
1041 			}
1042 
1043 			/*
1044 			 * This buffer may be undergoing writeout in commit.  We
1045 			 * can't return from here and let the caller dirty it
1046 			 * again because that can cause the write-out loop in
1047 			 * commit to never terminate.
1048 			 */
1049 			if (buffer_dirty(bh)) {
1050 				get_bh(bh);
1051 				spin_unlock(&journal->j_list_lock);
1052 				jbd_unlock_bh_state(bh);
1053 				need_brelse = 1;
1054 				sync_dirty_buffer(bh);
1055 				jbd_lock_bh_state(bh);
1056 				spin_lock(&journal->j_list_lock);
1057 				/* Since we dropped the lock... */
1058 				if (!buffer_mapped(bh)) {
1059 					JBUFFER_TRACE(jh, "buffer got unmapped");
1060 					goto no_journal;
1061 				}
1062 				/* The buffer may become locked again at any
1063 				   time if it is redirtied */
1064 			}
1065 
1066 			/*
1067 			 * We cannot remove the buffer with io error from the
1068 			 * committing transaction, because otherwise it would
1069 			 * miss the error and the commit would not abort.
1070 			 */
1071 			if (unlikely(!buffer_uptodate(bh))) {
1072 				ret = -EIO;
1073 				goto no_journal;
1074 			}
1075 			/* We might have slept so buffer could be refiled now */
1076 			if (jh->b_transaction != NULL &&
1077 			    jh->b_transaction != handle->h_transaction) {
1078 				JBUFFER_TRACE(jh, "unfile from commit");
1079 				__journal_temp_unlink_buffer(jh);
1080 				/* It still points to the committing
1081 				 * transaction; move it to this one so
1082 				 * that the refile assert checks are
1083 				 * happy. */
1084 				jh->b_transaction = handle->h_transaction;
1085 			}
1086 			/* The buffer will be refiled below */
1087 
1088 		}
1089 		/*
1090 		 * Special case --- the buffer might actually have been
1091 		 * allocated and then immediately deallocated in the previous,
1092 		 * committing transaction, so might still be left on that
1093 		 * transaction's metadata lists.
1094 		 */
1095 		if (jh->b_jlist != BJ_SyncData && jh->b_jlist != BJ_Locked) {
1096 			JBUFFER_TRACE(jh, "not on correct data list: unfile");
1097 			J_ASSERT_JH(jh, jh->b_jlist != BJ_Shadow);
1098 			JBUFFER_TRACE(jh, "file as data");
1099 			__journal_file_buffer(jh, handle->h_transaction,
1100 						BJ_SyncData);
1101 		}
1102 	} else {
1103 		JBUFFER_TRACE(jh, "not on a transaction");
1104 		__journal_file_buffer(jh, handle->h_transaction, BJ_SyncData);
1105 	}
1106 no_journal:
1107 	spin_unlock(&journal->j_list_lock);
1108 	jbd_unlock_bh_state(bh);
1109 	if (need_brelse) {
1110 		BUFFER_TRACE(bh, "brelse");
1111 		__brelse(bh);
1112 	}
1113 	JBUFFER_TRACE(jh, "exit");
1114 	journal_put_journal_head(jh);
1115 	return ret;
1116 }
1117 
1118 /**
1119  * int journal_dirty_metadata() - mark a buffer as containing dirty metadata
1120  * @handle: transaction to add buffer to.
1121  * @bh: buffer to mark
1122  *
1123  * Mark dirty metadata which needs to be journaled as part of the current
1124  * transaction.
1125  *
1126  * The buffer is placed on the transaction's metadata list and is marked
1127  * as belonging to the transaction.
1128  *
1129  * Returns error number or 0 on success.
1130  *
1131  * Special care needs to be taken if the buffer already belongs to the
1132  * current committing transaction (in which case we should have frozen
1133  * data present for that commit).  In that case, we don't relink the
1134  * buffer: that only gets done when the old transaction finally
1135  * completes its commit.
1136  */
journal_dirty_metadata(handle_t * handle,struct buffer_head * bh)1137 int journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1138 {
1139 	transaction_t *transaction = handle->h_transaction;
1140 	journal_t *journal = transaction->t_journal;
1141 	struct journal_head *jh = bh2jh(bh);
1142 
1143 	jbd_debug(5, "journal_head %p\n", jh);
1144 	JBUFFER_TRACE(jh, "entry");
1145 	if (is_handle_aborted(handle))
1146 		goto out;
1147 
1148 	jbd_lock_bh_state(bh);
1149 
1150 	if (jh->b_modified == 0) {
1151 		/*
1152 		 * This buffer's got modified and becoming part
1153 		 * of the transaction. This needs to be done
1154 		 * once a transaction -bzzz
1155 		 */
1156 		jh->b_modified = 1;
1157 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1158 		handle->h_buffer_credits--;
1159 	}
1160 
1161 	/*
1162 	 * fastpath, to avoid expensive locking.  If this buffer is already
1163 	 * on the running transaction's metadata list there is nothing to do.
1164 	 * Nobody can take it off again because there is a handle open.
1165 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1166 	 * result in this test being false, so we go in and take the locks.
1167 	 */
1168 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1169 		JBUFFER_TRACE(jh, "fastpath");
1170 		J_ASSERT_JH(jh, jh->b_transaction ==
1171 					journal->j_running_transaction);
1172 		goto out_unlock_bh;
1173 	}
1174 
1175 	set_buffer_jbddirty(bh);
1176 
1177 	/*
1178 	 * Metadata already on the current transaction list doesn't
1179 	 * need to be filed.  Metadata on another transaction's list must
1180 	 * be committing, and will be refiled once the commit completes:
1181 	 * leave it alone for now.
1182 	 */
1183 	if (jh->b_transaction != transaction) {
1184 		JBUFFER_TRACE(jh, "already on other transaction");
1185 		J_ASSERT_JH(jh, jh->b_transaction ==
1186 					journal->j_committing_transaction);
1187 		J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1188 		/* And this case is illegal: we can't reuse another
1189 		 * transaction's data buffer, ever. */
1190 		goto out_unlock_bh;
1191 	}
1192 
1193 	/* That test should have eliminated the following case: */
1194 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1195 
1196 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1197 	spin_lock(&journal->j_list_lock);
1198 	__journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1199 	spin_unlock(&journal->j_list_lock);
1200 out_unlock_bh:
1201 	jbd_unlock_bh_state(bh);
1202 out:
1203 	JBUFFER_TRACE(jh, "exit");
1204 	return 0;
1205 }
1206 
1207 /*
1208  * journal_release_buffer: undo a get_write_access without any buffer
1209  * updates, if the update decided in the end that it didn't need access.
1210  *
1211  */
1212 void
journal_release_buffer(handle_t * handle,struct buffer_head * bh)1213 journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1214 {
1215 	BUFFER_TRACE(bh, "entry");
1216 }
1217 
1218 /**
1219  * void journal_forget() - bforget() for potentially-journaled buffers.
1220  * @handle: transaction handle
1221  * @bh:     bh to 'forget'
1222  *
1223  * We can only do the bforget if there are no commits pending against the
1224  * buffer.  If the buffer is dirty in the current running transaction we
1225  * can safely unlink it.
1226  *
1227  * bh may not be a journalled buffer at all - it may be a non-JBD
1228  * buffer which came off the hashtable.  Check for this.
1229  *
1230  * Decrements bh->b_count by one.
1231  *
1232  * Allow this call even if the handle has aborted --- it may be part of
1233  * the caller's cleanup after an abort.
1234  */
journal_forget(handle_t * handle,struct buffer_head * bh)1235 int journal_forget (handle_t *handle, struct buffer_head *bh)
1236 {
1237 	transaction_t *transaction = handle->h_transaction;
1238 	journal_t *journal = transaction->t_journal;
1239 	struct journal_head *jh;
1240 	int drop_reserve = 0;
1241 	int err = 0;
1242 	int was_modified = 0;
1243 
1244 	BUFFER_TRACE(bh, "entry");
1245 
1246 	jbd_lock_bh_state(bh);
1247 	spin_lock(&journal->j_list_lock);
1248 
1249 	if (!buffer_jbd(bh))
1250 		goto not_jbd;
1251 	jh = bh2jh(bh);
1252 
1253 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1254 	 * Don't do any jbd operations, and return an error. */
1255 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1256 			 "inconsistent data on disk")) {
1257 		err = -EIO;
1258 		goto not_jbd;
1259 	}
1260 
1261 	/* keep track of whether or not this transaction modified us */
1262 	was_modified = jh->b_modified;
1263 
1264 	/*
1265 	 * The buffer's going from the transaction, we must drop
1266 	 * all references -bzzz
1267 	 */
1268 	jh->b_modified = 0;
1269 
1270 	if (jh->b_transaction == handle->h_transaction) {
1271 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1272 
1273 		/* If we are forgetting a buffer which is already part
1274 		 * of this transaction, then we can just drop it from
1275 		 * the transaction immediately. */
1276 		clear_buffer_dirty(bh);
1277 		clear_buffer_jbddirty(bh);
1278 
1279 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1280 
1281 		/*
1282 		 * we only want to drop a reference if this transaction
1283 		 * modified the buffer
1284 		 */
1285 		if (was_modified)
1286 			drop_reserve = 1;
1287 
1288 		/*
1289 		 * We are no longer going to journal this buffer.
1290 		 * However, the commit of this transaction is still
1291 		 * important to the buffer: the delete that we are now
1292 		 * processing might obsolete an old log entry, so by
1293 		 * committing, we can satisfy the buffer's checkpoint.
1294 		 *
1295 		 * So, if we have a checkpoint on the buffer, we should
1296 		 * now refile the buffer on our BJ_Forget list so that
1297 		 * we know to remove the checkpoint after we commit.
1298 		 */
1299 
1300 		if (jh->b_cp_transaction) {
1301 			__journal_temp_unlink_buffer(jh);
1302 			__journal_file_buffer(jh, transaction, BJ_Forget);
1303 		} else {
1304 			__journal_unfile_buffer(jh);
1305 			if (!buffer_jbd(bh)) {
1306 				spin_unlock(&journal->j_list_lock);
1307 				jbd_unlock_bh_state(bh);
1308 				__bforget(bh);
1309 				goto drop;
1310 			}
1311 		}
1312 	} else if (jh->b_transaction) {
1313 		J_ASSERT_JH(jh, (jh->b_transaction ==
1314 				 journal->j_committing_transaction));
1315 		/* However, if the buffer is still owned by a prior
1316 		 * (committing) transaction, we can't drop it yet... */
1317 		JBUFFER_TRACE(jh, "belongs to older transaction");
1318 		/* ... but we CAN drop it from the new transaction if we
1319 		 * have also modified it since the original commit. */
1320 
1321 		if (jh->b_next_transaction) {
1322 			J_ASSERT(jh->b_next_transaction == transaction);
1323 			jh->b_next_transaction = NULL;
1324 
1325 			/*
1326 			 * only drop a reference if this transaction modified
1327 			 * the buffer
1328 			 */
1329 			if (was_modified)
1330 				drop_reserve = 1;
1331 		}
1332 	}
1333 
1334 not_jbd:
1335 	spin_unlock(&journal->j_list_lock);
1336 	jbd_unlock_bh_state(bh);
1337 	__brelse(bh);
1338 drop:
1339 	if (drop_reserve) {
1340 		/* no need to reserve log space for this block -bzzz */
1341 		handle->h_buffer_credits++;
1342 	}
1343 	return err;
1344 }
1345 
1346 /**
1347  * int journal_stop() - complete a transaction
1348  * @handle: tranaction to complete.
1349  *
1350  * All done for a particular handle.
1351  *
1352  * There is not much action needed here.  We just return any remaining
1353  * buffer credits to the transaction and remove the handle.  The only
1354  * complication is that we need to start a commit operation if the
1355  * filesystem is marked for synchronous update.
1356  *
1357  * journal_stop itself will not usually return an error, but it may
1358  * do so in unusual circumstances.  In particular, expect it to
1359  * return -EIO if a journal_abort has been executed since the
1360  * transaction began.
1361  */
journal_stop(handle_t * handle)1362 int journal_stop(handle_t *handle)
1363 {
1364 	transaction_t *transaction = handle->h_transaction;
1365 	journal_t *journal = transaction->t_journal;
1366 	int err;
1367 	pid_t pid;
1368 
1369 	J_ASSERT(journal_current_handle() == handle);
1370 
1371 	if (is_handle_aborted(handle))
1372 		err = -EIO;
1373 	else {
1374 		J_ASSERT(transaction->t_updates > 0);
1375 		err = 0;
1376 	}
1377 
1378 	if (--handle->h_ref > 0) {
1379 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1380 			  handle->h_ref);
1381 		return err;
1382 	}
1383 
1384 	jbd_debug(4, "Handle %p going down\n", handle);
1385 
1386 	/*
1387 	 * Implement synchronous transaction batching.  If the handle
1388 	 * was synchronous, don't force a commit immediately.  Let's
1389 	 * yield and let another thread piggyback onto this transaction.
1390 	 * Keep doing that while new threads continue to arrive.
1391 	 * It doesn't cost much - we're about to run a commit and sleep
1392 	 * on IO anyway.  Speeds up many-threaded, many-dir operations
1393 	 * by 30x or more...
1394 	 *
1395 	 * We try and optimize the sleep time against what the underlying disk
1396 	 * can do, instead of having a static sleep time.  This is useful for
1397 	 * the case where our storage is so fast that it is more optimal to go
1398 	 * ahead and force a flush and wait for the transaction to be committed
1399 	 * than it is to wait for an arbitrary amount of time for new writers to
1400 	 * join the transaction.  We achieve this by measuring how long it takes
1401 	 * to commit a transaction, and compare it with how long this
1402 	 * transaction has been running, and if run time < commit time then we
1403 	 * sleep for the delta and commit.  This greatly helps super fast disks
1404 	 * that would see slowdowns as more threads started doing fsyncs.
1405 	 *
1406 	 * But don't do this if this process was the most recent one to
1407 	 * perform a synchronous write.  We do this to detect the case where a
1408 	 * single process is doing a stream of sync writes.  No point in waiting
1409 	 * for joiners in that case.
1410 	 */
1411 	pid = current->pid;
1412 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1413 		u64 commit_time, trans_time;
1414 
1415 		journal->j_last_sync_writer = pid;
1416 
1417 		spin_lock(&journal->j_state_lock);
1418 		commit_time = journal->j_average_commit_time;
1419 		spin_unlock(&journal->j_state_lock);
1420 
1421 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1422 						   transaction->t_start_time));
1423 
1424 		commit_time = min_t(u64, commit_time,
1425 				    1000*jiffies_to_usecs(1));
1426 
1427 		if (trans_time < commit_time) {
1428 			ktime_t expires = ktime_add_ns(ktime_get(),
1429 						       commit_time);
1430 			set_current_state(TASK_UNINTERRUPTIBLE);
1431 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1432 		}
1433 	}
1434 
1435 	current->journal_info = NULL;
1436 	spin_lock(&journal->j_state_lock);
1437 	spin_lock(&transaction->t_handle_lock);
1438 	transaction->t_outstanding_credits -= handle->h_buffer_credits;
1439 	transaction->t_updates--;
1440 	if (!transaction->t_updates) {
1441 		wake_up(&journal->j_wait_updates);
1442 		if (journal->j_barrier_count)
1443 			wake_up(&journal->j_wait_transaction_locked);
1444 	}
1445 
1446 	/*
1447 	 * If the handle is marked SYNC, we need to set another commit
1448 	 * going!  We also want to force a commit if the current
1449 	 * transaction is occupying too much of the log, or if the
1450 	 * transaction is too old now.
1451 	 */
1452 	if (handle->h_sync ||
1453 			transaction->t_outstanding_credits >
1454 				journal->j_max_transaction_buffers ||
1455 			time_after_eq(jiffies, transaction->t_expires)) {
1456 		/* Do this even for aborted journals: an abort still
1457 		 * completes the commit thread, it just doesn't write
1458 		 * anything to disk. */
1459 		tid_t tid = transaction->t_tid;
1460 
1461 		spin_unlock(&transaction->t_handle_lock);
1462 		jbd_debug(2, "transaction too old, requesting commit for "
1463 					"handle %p\n", handle);
1464 		/* This is non-blocking */
1465 		__log_start_commit(journal, transaction->t_tid);
1466 		spin_unlock(&journal->j_state_lock);
1467 
1468 		/*
1469 		 * Special case: JFS_SYNC synchronous updates require us
1470 		 * to wait for the commit to complete.
1471 		 */
1472 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1473 			err = log_wait_commit(journal, tid);
1474 	} else {
1475 		spin_unlock(&transaction->t_handle_lock);
1476 		spin_unlock(&journal->j_state_lock);
1477 	}
1478 
1479 	lock_map_release(&handle->h_lockdep_map);
1480 
1481 	jbd_free_handle(handle);
1482 	return err;
1483 }
1484 
1485 /**
1486  * int journal_force_commit() - force any uncommitted transactions
1487  * @journal: journal to force
1488  *
1489  * For synchronous operations: force any uncommitted transactions
1490  * to disk.  May seem kludgy, but it reuses all the handle batching
1491  * code in a very simple manner.
1492  */
journal_force_commit(journal_t * journal)1493 int journal_force_commit(journal_t *journal)
1494 {
1495 	handle_t *handle;
1496 	int ret;
1497 
1498 	handle = journal_start(journal, 1);
1499 	if (IS_ERR(handle)) {
1500 		ret = PTR_ERR(handle);
1501 	} else {
1502 		handle->h_sync = 1;
1503 		ret = journal_stop(handle);
1504 	}
1505 	return ret;
1506 }
1507 
1508 /*
1509  *
1510  * List management code snippets: various functions for manipulating the
1511  * transaction buffer lists.
1512  *
1513  */
1514 
1515 /*
1516  * Append a buffer to a transaction list, given the transaction's list head
1517  * pointer.
1518  *
1519  * j_list_lock is held.
1520  *
1521  * jbd_lock_bh_state(jh2bh(jh)) is held.
1522  */
1523 
1524 static inline void
__blist_add_buffer(struct journal_head ** list,struct journal_head * jh)1525 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1526 {
1527 	if (!*list) {
1528 		jh->b_tnext = jh->b_tprev = jh;
1529 		*list = jh;
1530 	} else {
1531 		/* Insert at the tail of the list to preserve order */
1532 		struct journal_head *first = *list, *last = first->b_tprev;
1533 		jh->b_tprev = last;
1534 		jh->b_tnext = first;
1535 		last->b_tnext = first->b_tprev = jh;
1536 	}
1537 }
1538 
1539 /*
1540  * Remove a buffer from a transaction list, given the transaction's list
1541  * head pointer.
1542  *
1543  * Called with j_list_lock held, and the journal may not be locked.
1544  *
1545  * jbd_lock_bh_state(jh2bh(jh)) is held.
1546  */
1547 
1548 static inline void
__blist_del_buffer(struct journal_head ** list,struct journal_head * jh)1549 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1550 {
1551 	if (*list == jh) {
1552 		*list = jh->b_tnext;
1553 		if (*list == jh)
1554 			*list = NULL;
1555 	}
1556 	jh->b_tprev->b_tnext = jh->b_tnext;
1557 	jh->b_tnext->b_tprev = jh->b_tprev;
1558 }
1559 
1560 /*
1561  * Remove a buffer from the appropriate transaction list.
1562  *
1563  * Note that this function can *change* the value of
1564  * bh->b_transaction->t_sync_datalist, t_buffers, t_forget,
1565  * t_iobuf_list, t_shadow_list, t_log_list or t_reserved_list.  If the caller
1566  * is holding onto a copy of one of thee pointers, it could go bad.
1567  * Generally the caller needs to re-read the pointer from the transaction_t.
1568  *
1569  * Called under j_list_lock.  The journal may not be locked.
1570  */
__journal_temp_unlink_buffer(struct journal_head * jh)1571 static void __journal_temp_unlink_buffer(struct journal_head *jh)
1572 {
1573 	struct journal_head **list = NULL;
1574 	transaction_t *transaction;
1575 	struct buffer_head *bh = jh2bh(jh);
1576 
1577 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1578 	transaction = jh->b_transaction;
1579 	if (transaction)
1580 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1581 
1582 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1583 	if (jh->b_jlist != BJ_None)
1584 		J_ASSERT_JH(jh, transaction != NULL);
1585 
1586 	switch (jh->b_jlist) {
1587 	case BJ_None:
1588 		return;
1589 	case BJ_SyncData:
1590 		list = &transaction->t_sync_datalist;
1591 		break;
1592 	case BJ_Metadata:
1593 		transaction->t_nr_buffers--;
1594 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1595 		list = &transaction->t_buffers;
1596 		break;
1597 	case BJ_Forget:
1598 		list = &transaction->t_forget;
1599 		break;
1600 	case BJ_IO:
1601 		list = &transaction->t_iobuf_list;
1602 		break;
1603 	case BJ_Shadow:
1604 		list = &transaction->t_shadow_list;
1605 		break;
1606 	case BJ_LogCtl:
1607 		list = &transaction->t_log_list;
1608 		break;
1609 	case BJ_Reserved:
1610 		list = &transaction->t_reserved_list;
1611 		break;
1612 	case BJ_Locked:
1613 		list = &transaction->t_locked_list;
1614 		break;
1615 	}
1616 
1617 	__blist_del_buffer(list, jh);
1618 	jh->b_jlist = BJ_None;
1619 	if (test_clear_buffer_jbddirty(bh))
1620 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1621 }
1622 
1623 /*
1624  * Remove buffer from all transactions.
1625  *
1626  * Called with bh_state lock and j_list_lock
1627  *
1628  * jh and bh may be already freed when this function returns.
1629  */
__journal_unfile_buffer(struct journal_head * jh)1630 void __journal_unfile_buffer(struct journal_head *jh)
1631 {
1632 	__journal_temp_unlink_buffer(jh);
1633 	jh->b_transaction = NULL;
1634 	journal_put_journal_head(jh);
1635 }
1636 
journal_unfile_buffer(journal_t * journal,struct journal_head * jh)1637 void journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1638 {
1639 	struct buffer_head *bh = jh2bh(jh);
1640 
1641 	/* Get reference so that buffer cannot be freed before we unlock it */
1642 	get_bh(bh);
1643 	jbd_lock_bh_state(bh);
1644 	spin_lock(&journal->j_list_lock);
1645 	__journal_unfile_buffer(jh);
1646 	spin_unlock(&journal->j_list_lock);
1647 	jbd_unlock_bh_state(bh);
1648 	__brelse(bh);
1649 }
1650 
1651 /*
1652  * Called from journal_try_to_free_buffers().
1653  *
1654  * Called under jbd_lock_bh_state(bh)
1655  */
1656 static void
__journal_try_to_free_buffer(journal_t * journal,struct buffer_head * bh)1657 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1658 {
1659 	struct journal_head *jh;
1660 
1661 	jh = bh2jh(bh);
1662 
1663 	if (buffer_locked(bh) || buffer_dirty(bh))
1664 		goto out;
1665 
1666 	if (jh->b_next_transaction != NULL)
1667 		goto out;
1668 
1669 	spin_lock(&journal->j_list_lock);
1670 	if (jh->b_transaction != NULL && jh->b_cp_transaction == NULL) {
1671 		if (jh->b_jlist == BJ_SyncData || jh->b_jlist == BJ_Locked) {
1672 			/* A written-back ordered data buffer */
1673 			JBUFFER_TRACE(jh, "release data");
1674 			__journal_unfile_buffer(jh);
1675 		}
1676 	} else if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1677 		/* written-back checkpointed metadata buffer */
1678 		if (jh->b_jlist == BJ_None) {
1679 			JBUFFER_TRACE(jh, "remove from checkpoint list");
1680 			__journal_remove_checkpoint(jh);
1681 		}
1682 	}
1683 	spin_unlock(&journal->j_list_lock);
1684 out:
1685 	return;
1686 }
1687 
1688 /**
1689  * int journal_try_to_free_buffers() - try to free page buffers.
1690  * @journal: journal for operation
1691  * @page: to try and free
1692  * @gfp_mask: we use the mask to detect how hard should we try to release
1693  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1694  * release the buffers.
1695  *
1696  *
1697  * For all the buffers on this page,
1698  * if they are fully written out ordered data, move them onto BUF_CLEAN
1699  * so try_to_free_buffers() can reap them.
1700  *
1701  * This function returns non-zero if we wish try_to_free_buffers()
1702  * to be called. We do this if the page is releasable by try_to_free_buffers().
1703  * We also do it if the page has locked or dirty buffers and the caller wants
1704  * us to perform sync or async writeout.
1705  *
1706  * This complicates JBD locking somewhat.  We aren't protected by the
1707  * BKL here.  We wish to remove the buffer from its committing or
1708  * running transaction's ->t_datalist via __journal_unfile_buffer.
1709  *
1710  * This may *change* the value of transaction_t->t_datalist, so anyone
1711  * who looks at t_datalist needs to lock against this function.
1712  *
1713  * Even worse, someone may be doing a journal_dirty_data on this
1714  * buffer.  So we need to lock against that.  journal_dirty_data()
1715  * will come out of the lock with the buffer dirty, which makes it
1716  * ineligible for release here.
1717  *
1718  * Who else is affected by this?  hmm...  Really the only contender
1719  * is do_get_write_access() - it could be looking at the buffer while
1720  * journal_try_to_free_buffer() is changing its state.  But that
1721  * cannot happen because we never reallocate freed data as metadata
1722  * while the data is part of a transaction.  Yes?
1723  *
1724  * Return 0 on failure, 1 on success
1725  */
journal_try_to_free_buffers(journal_t * journal,struct page * page,gfp_t gfp_mask)1726 int journal_try_to_free_buffers(journal_t *journal,
1727 				struct page *page, gfp_t gfp_mask)
1728 {
1729 	struct buffer_head *head;
1730 	struct buffer_head *bh;
1731 	int ret = 0;
1732 
1733 	J_ASSERT(PageLocked(page));
1734 
1735 	head = page_buffers(page);
1736 	bh = head;
1737 	do {
1738 		struct journal_head *jh;
1739 
1740 		/*
1741 		 * We take our own ref against the journal_head here to avoid
1742 		 * having to add tons of locking around each instance of
1743 		 * journal_put_journal_head().
1744 		 */
1745 		jh = journal_grab_journal_head(bh);
1746 		if (!jh)
1747 			continue;
1748 
1749 		jbd_lock_bh_state(bh);
1750 		__journal_try_to_free_buffer(journal, bh);
1751 		journal_put_journal_head(jh);
1752 		jbd_unlock_bh_state(bh);
1753 		if (buffer_jbd(bh))
1754 			goto busy;
1755 	} while ((bh = bh->b_this_page) != head);
1756 
1757 	ret = try_to_free_buffers(page);
1758 
1759 busy:
1760 	return ret;
1761 }
1762 
1763 /*
1764  * This buffer is no longer needed.  If it is on an older transaction's
1765  * checkpoint list we need to record it on this transaction's forget list
1766  * to pin this buffer (and hence its checkpointing transaction) down until
1767  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1768  * release it.
1769  * Returns non-zero if JBD no longer has an interest in the buffer.
1770  *
1771  * Called under j_list_lock.
1772  *
1773  * Called under jbd_lock_bh_state(bh).
1774  */
__dispose_buffer(struct journal_head * jh,transaction_t * transaction)1775 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1776 {
1777 	int may_free = 1;
1778 	struct buffer_head *bh = jh2bh(jh);
1779 
1780 	if (jh->b_cp_transaction) {
1781 		JBUFFER_TRACE(jh, "on running+cp transaction");
1782 		__journal_temp_unlink_buffer(jh);
1783 		/*
1784 		 * We don't want to write the buffer anymore, clear the
1785 		 * bit so that we don't confuse checks in
1786 		 * __journal_file_buffer
1787 		 */
1788 		clear_buffer_dirty(bh);
1789 		__journal_file_buffer(jh, transaction, BJ_Forget);
1790 		may_free = 0;
1791 	} else {
1792 		JBUFFER_TRACE(jh, "on running transaction");
1793 		__journal_unfile_buffer(jh);
1794 	}
1795 	return may_free;
1796 }
1797 
1798 /*
1799  * journal_invalidatepage
1800  *
1801  * This code is tricky.  It has a number of cases to deal with.
1802  *
1803  * There are two invariants which this code relies on:
1804  *
1805  * i_size must be updated on disk before we start calling invalidatepage on the
1806  * data.
1807  *
1808  *  This is done in ext3 by defining an ext3_setattr method which
1809  *  updates i_size before truncate gets going.  By maintaining this
1810  *  invariant, we can be sure that it is safe to throw away any buffers
1811  *  attached to the current transaction: once the transaction commits,
1812  *  we know that the data will not be needed.
1813  *
1814  *  Note however that we can *not* throw away data belonging to the
1815  *  previous, committing transaction!
1816  *
1817  * Any disk blocks which *are* part of the previous, committing
1818  * transaction (and which therefore cannot be discarded immediately) are
1819  * not going to be reused in the new running transaction
1820  *
1821  *  The bitmap committed_data images guarantee this: any block which is
1822  *  allocated in one transaction and removed in the next will be marked
1823  *  as in-use in the committed_data bitmap, so cannot be reused until
1824  *  the next transaction to delete the block commits.  This means that
1825  *  leaving committing buffers dirty is quite safe: the disk blocks
1826  *  cannot be reallocated to a different file and so buffer aliasing is
1827  *  not possible.
1828  *
1829  *
1830  * The above applies mainly to ordered data mode.  In writeback mode we
1831  * don't make guarantees about the order in which data hits disk --- in
1832  * particular we don't guarantee that new dirty data is flushed before
1833  * transaction commit --- so it is always safe just to discard data
1834  * immediately in that mode.  --sct
1835  */
1836 
1837 /*
1838  * The journal_unmap_buffer helper function returns zero if the buffer
1839  * concerned remains pinned as an anonymous buffer belonging to an older
1840  * transaction.
1841  *
1842  * We're outside-transaction here.  Either or both of j_running_transaction
1843  * and j_committing_transaction may be NULL.
1844  */
journal_unmap_buffer(journal_t * journal,struct buffer_head * bh,int partial_page)1845 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1846 				int partial_page)
1847 {
1848 	transaction_t *transaction;
1849 	struct journal_head *jh;
1850 	int may_free = 1;
1851 
1852 	BUFFER_TRACE(bh, "entry");
1853 
1854 retry:
1855 	/*
1856 	 * It is safe to proceed here without the j_list_lock because the
1857 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1858 	 * holding the page lock. --sct
1859 	 */
1860 
1861 	if (!buffer_jbd(bh))
1862 		goto zap_buffer_unlocked;
1863 
1864 	spin_lock(&journal->j_state_lock);
1865 	jbd_lock_bh_state(bh);
1866 	spin_lock(&journal->j_list_lock);
1867 
1868 	jh = journal_grab_journal_head(bh);
1869 	if (!jh)
1870 		goto zap_buffer_no_jh;
1871 
1872 	/*
1873 	 * We cannot remove the buffer from checkpoint lists until the
1874 	 * transaction adding inode to orphan list (let's call it T)
1875 	 * is committed.  Otherwise if the transaction changing the
1876 	 * buffer would be cleaned from the journal before T is
1877 	 * committed, a crash will cause that the correct contents of
1878 	 * the buffer will be lost.  On the other hand we have to
1879 	 * clear the buffer dirty bit at latest at the moment when the
1880 	 * transaction marking the buffer as freed in the filesystem
1881 	 * structures is committed because from that moment on the
1882 	 * block can be reallocated and used by a different page.
1883 	 * Since the block hasn't been freed yet but the inode has
1884 	 * already been added to orphan list, it is safe for us to add
1885 	 * the buffer to BJ_Forget list of the newest transaction.
1886 	 *
1887 	 * Also we have to clear buffer_mapped flag of a truncated buffer
1888 	 * because the buffer_head may be attached to the page straddling
1889 	 * i_size (can happen only when blocksize < pagesize) and thus the
1890 	 * buffer_head can be reused when the file is extended again. So we end
1891 	 * up keeping around invalidated buffers attached to transactions'
1892 	 * BJ_Forget list just to stop checkpointing code from cleaning up
1893 	 * the transaction this buffer was modified in.
1894 	 */
1895 	transaction = jh->b_transaction;
1896 	if (transaction == NULL) {
1897 		/* First case: not on any transaction.  If it
1898 		 * has no checkpoint link, then we can zap it:
1899 		 * it's a writeback-mode buffer so we don't care
1900 		 * if it hits disk safely. */
1901 		if (!jh->b_cp_transaction) {
1902 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1903 			goto zap_buffer;
1904 		}
1905 
1906 		if (!buffer_dirty(bh)) {
1907 			/* bdflush has written it.  We can drop it now */
1908 			goto zap_buffer;
1909 		}
1910 
1911 		/* OK, it must be in the journal but still not
1912 		 * written fully to disk: it's metadata or
1913 		 * journaled data... */
1914 
1915 		if (journal->j_running_transaction) {
1916 			/* ... and once the current transaction has
1917 			 * committed, the buffer won't be needed any
1918 			 * longer. */
1919 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1920 			may_free = __dispose_buffer(jh,
1921 					journal->j_running_transaction);
1922 			goto zap_buffer;
1923 		} else {
1924 			/* There is no currently-running transaction. So the
1925 			 * orphan record which we wrote for this file must have
1926 			 * passed into commit.  We must attach this buffer to
1927 			 * the committing transaction, if it exists. */
1928 			if (journal->j_committing_transaction) {
1929 				JBUFFER_TRACE(jh, "give to committing trans");
1930 				may_free = __dispose_buffer(jh,
1931 					journal->j_committing_transaction);
1932 				goto zap_buffer;
1933 			} else {
1934 				/* The orphan record's transaction has
1935 				 * committed.  We can cleanse this buffer */
1936 				clear_buffer_jbddirty(bh);
1937 				goto zap_buffer;
1938 			}
1939 		}
1940 	} else if (transaction == journal->j_committing_transaction) {
1941 		JBUFFER_TRACE(jh, "on committing transaction");
1942 		if (jh->b_jlist == BJ_Locked) {
1943 			/*
1944 			 * The buffer is on the committing transaction's locked
1945 			 * list.  We have the buffer locked, so I/O has
1946 			 * completed.  So we can nail the buffer now.
1947 			 */
1948 			may_free = __dispose_buffer(jh, transaction);
1949 			goto zap_buffer;
1950 		}
1951 		/*
1952 		 * The buffer is committing, we simply cannot touch
1953 		 * it. If the page is straddling i_size we have to wait
1954 		 * for commit and try again.
1955 		 */
1956 		if (partial_page) {
1957 			tid_t tid = journal->j_committing_transaction->t_tid;
1958 
1959 			journal_put_journal_head(jh);
1960 			spin_unlock(&journal->j_list_lock);
1961 			jbd_unlock_bh_state(bh);
1962 			spin_unlock(&journal->j_state_lock);
1963 			unlock_buffer(bh);
1964 			log_wait_commit(journal, tid);
1965 			lock_buffer(bh);
1966 			goto retry;
1967 		}
1968 		/*
1969 		 * OK, buffer won't be reachable after truncate. We just set
1970 		 * j_next_transaction to the running transaction (if there is
1971 		 * one) and mark buffer as freed so that commit code knows it
1972 		 * should clear dirty bits when it is done with the buffer.
1973 		 */
1974 		set_buffer_freed(bh);
1975 		if (journal->j_running_transaction && buffer_jbddirty(bh))
1976 			jh->b_next_transaction = journal->j_running_transaction;
1977 		journal_put_journal_head(jh);
1978 		spin_unlock(&journal->j_list_lock);
1979 		jbd_unlock_bh_state(bh);
1980 		spin_unlock(&journal->j_state_lock);
1981 		return 0;
1982 	} else {
1983 		/* Good, the buffer belongs to the running transaction.
1984 		 * We are writing our own transaction's data, not any
1985 		 * previous one's, so it is safe to throw it away
1986 		 * (remember that we expect the filesystem to have set
1987 		 * i_size already for this truncate so recovery will not
1988 		 * expose the disk blocks we are discarding here.) */
1989 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1990 		JBUFFER_TRACE(jh, "on running transaction");
1991 		may_free = __dispose_buffer(jh, transaction);
1992 	}
1993 
1994 zap_buffer:
1995 	/*
1996 	 * This is tricky. Although the buffer is truncated, it may be reused
1997 	 * if blocksize < pagesize and it is attached to the page straddling
1998 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
1999 	 * running transaction, journal_get_write_access() won't clear
2000 	 * b_modified and credit accounting gets confused. So clear b_modified
2001 	 * here. */
2002 	jh->b_modified = 0;
2003 	journal_put_journal_head(jh);
2004 zap_buffer_no_jh:
2005 	spin_unlock(&journal->j_list_lock);
2006 	jbd_unlock_bh_state(bh);
2007 	spin_unlock(&journal->j_state_lock);
2008 zap_buffer_unlocked:
2009 	clear_buffer_dirty(bh);
2010 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2011 	clear_buffer_mapped(bh);
2012 	clear_buffer_req(bh);
2013 	clear_buffer_new(bh);
2014 	bh->b_bdev = NULL;
2015 	return may_free;
2016 }
2017 
2018 /**
2019  * void journal_invalidatepage() - invalidate a journal page
2020  * @journal: journal to use for flush
2021  * @page:    page to flush
2022  * @offset:  offset of the range to invalidate
2023  * @length:  length of the range to invalidate
2024  *
2025  * Reap page buffers containing data in specified range in page.
2026  */
journal_invalidatepage(journal_t * journal,struct page * page,unsigned int offset,unsigned int length)2027 void journal_invalidatepage(journal_t *journal,
2028 		      struct page *page,
2029 		      unsigned int offset,
2030 		      unsigned int length)
2031 {
2032 	struct buffer_head *head, *bh, *next;
2033 	unsigned int stop = offset + length;
2034 	unsigned int curr_off = 0;
2035 	int partial_page = (offset || length < PAGE_CACHE_SIZE);
2036 	int may_free = 1;
2037 
2038 	if (!PageLocked(page))
2039 		BUG();
2040 	if (!page_has_buffers(page))
2041 		return;
2042 
2043 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2044 
2045 	/* We will potentially be playing with lists other than just the
2046 	 * data lists (especially for journaled data mode), so be
2047 	 * cautious in our locking. */
2048 
2049 	head = bh = page_buffers(page);
2050 	do {
2051 		unsigned int next_off = curr_off + bh->b_size;
2052 		next = bh->b_this_page;
2053 
2054 		if (next_off > stop)
2055 			return;
2056 
2057 		if (offset <= curr_off) {
2058 			/* This block is wholly outside the truncation point */
2059 			lock_buffer(bh);
2060 			may_free &= journal_unmap_buffer(journal, bh,
2061 							 partial_page);
2062 			unlock_buffer(bh);
2063 		}
2064 		curr_off = next_off;
2065 		bh = next;
2066 
2067 	} while (bh != head);
2068 
2069 	if (!partial_page) {
2070 		if (may_free && try_to_free_buffers(page))
2071 			J_ASSERT(!page_has_buffers(page));
2072 	}
2073 }
2074 
2075 /*
2076  * File a buffer on the given transaction list.
2077  */
__journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2078 void __journal_file_buffer(struct journal_head *jh,
2079 			transaction_t *transaction, int jlist)
2080 {
2081 	struct journal_head **list = NULL;
2082 	int was_dirty = 0;
2083 	struct buffer_head *bh = jh2bh(jh);
2084 
2085 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2086 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2087 
2088 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2089 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2090 				jh->b_transaction == NULL);
2091 
2092 	if (jh->b_transaction && jh->b_jlist == jlist)
2093 		return;
2094 
2095 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2096 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2097 		/*
2098 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2099 		 * instead of buffer_dirty. We should not see a dirty bit set
2100 		 * here because we clear it in do_get_write_access but e.g.
2101 		 * tune2fs can modify the sb and set the dirty bit at any time
2102 		 * so we try to gracefully handle that.
2103 		 */
2104 		if (buffer_dirty(bh))
2105 			warn_dirty_buffer(bh);
2106 		if (test_clear_buffer_dirty(bh) ||
2107 		    test_clear_buffer_jbddirty(bh))
2108 			was_dirty = 1;
2109 	}
2110 
2111 	if (jh->b_transaction)
2112 		__journal_temp_unlink_buffer(jh);
2113 	else
2114 		journal_grab_journal_head(bh);
2115 	jh->b_transaction = transaction;
2116 
2117 	switch (jlist) {
2118 	case BJ_None:
2119 		J_ASSERT_JH(jh, !jh->b_committed_data);
2120 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2121 		return;
2122 	case BJ_SyncData:
2123 		list = &transaction->t_sync_datalist;
2124 		break;
2125 	case BJ_Metadata:
2126 		transaction->t_nr_buffers++;
2127 		list = &transaction->t_buffers;
2128 		break;
2129 	case BJ_Forget:
2130 		list = &transaction->t_forget;
2131 		break;
2132 	case BJ_IO:
2133 		list = &transaction->t_iobuf_list;
2134 		break;
2135 	case BJ_Shadow:
2136 		list = &transaction->t_shadow_list;
2137 		break;
2138 	case BJ_LogCtl:
2139 		list = &transaction->t_log_list;
2140 		break;
2141 	case BJ_Reserved:
2142 		list = &transaction->t_reserved_list;
2143 		break;
2144 	case BJ_Locked:
2145 		list =  &transaction->t_locked_list;
2146 		break;
2147 	}
2148 
2149 	__blist_add_buffer(list, jh);
2150 	jh->b_jlist = jlist;
2151 
2152 	if (was_dirty)
2153 		set_buffer_jbddirty(bh);
2154 }
2155 
journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2156 void journal_file_buffer(struct journal_head *jh,
2157 				transaction_t *transaction, int jlist)
2158 {
2159 	jbd_lock_bh_state(jh2bh(jh));
2160 	spin_lock(&transaction->t_journal->j_list_lock);
2161 	__journal_file_buffer(jh, transaction, jlist);
2162 	spin_unlock(&transaction->t_journal->j_list_lock);
2163 	jbd_unlock_bh_state(jh2bh(jh));
2164 }
2165 
2166 /*
2167  * Remove a buffer from its current buffer list in preparation for
2168  * dropping it from its current transaction entirely.  If the buffer has
2169  * already started to be used by a subsequent transaction, refile the
2170  * buffer on that transaction's metadata list.
2171  *
2172  * Called under j_list_lock
2173  * Called under jbd_lock_bh_state(jh2bh(jh))
2174  *
2175  * jh and bh may be already free when this function returns
2176  */
__journal_refile_buffer(struct journal_head * jh)2177 void __journal_refile_buffer(struct journal_head *jh)
2178 {
2179 	int was_dirty, jlist;
2180 	struct buffer_head *bh = jh2bh(jh);
2181 
2182 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2183 	if (jh->b_transaction)
2184 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2185 
2186 	/* If the buffer is now unused, just drop it. */
2187 	if (jh->b_next_transaction == NULL) {
2188 		__journal_unfile_buffer(jh);
2189 		return;
2190 	}
2191 
2192 	/*
2193 	 * It has been modified by a later transaction: add it to the new
2194 	 * transaction's metadata list.
2195 	 */
2196 
2197 	was_dirty = test_clear_buffer_jbddirty(bh);
2198 	__journal_temp_unlink_buffer(jh);
2199 	/*
2200 	 * We set b_transaction here because b_next_transaction will inherit
2201 	 * our jh reference and thus __journal_file_buffer() must not take a
2202 	 * new one.
2203 	 */
2204 	jh->b_transaction = jh->b_next_transaction;
2205 	jh->b_next_transaction = NULL;
2206 	if (buffer_freed(bh))
2207 		jlist = BJ_Forget;
2208 	else if (jh->b_modified)
2209 		jlist = BJ_Metadata;
2210 	else
2211 		jlist = BJ_Reserved;
2212 	__journal_file_buffer(jh, jh->b_transaction, jlist);
2213 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2214 
2215 	if (was_dirty)
2216 		set_buffer_jbddirty(bh);
2217 }
2218 
2219 /*
2220  * __journal_refile_buffer() with necessary locking added. We take our bh
2221  * reference so that we can safely unlock bh.
2222  *
2223  * The jh and bh may be freed by this call.
2224  */
journal_refile_buffer(journal_t * journal,struct journal_head * jh)2225 void journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2226 {
2227 	struct buffer_head *bh = jh2bh(jh);
2228 
2229 	/* Get reference so that buffer cannot be freed before we unlock it */
2230 	get_bh(bh);
2231 	jbd_lock_bh_state(bh);
2232 	spin_lock(&journal->j_list_lock);
2233 	__journal_refile_buffer(jh);
2234 	jbd_unlock_bh_state(bh);
2235 	spin_unlock(&journal->j_list_lock);
2236 	__brelse(bh);
2237 }
2238