1 /*
2 * Copyright (C) 2010 IBM Corporation
3 * Copyright (C) 2010 Politecnico di Torino, Italy
4 * TORSEC group -- http://security.polito.it
5 *
6 * Authors:
7 * Mimi Zohar <zohar@us.ibm.com>
8 * Roberto Sassu <roberto.sassu@polito.it>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, version 2 of the License.
13 *
14 * See Documentation/security/keys-trusted-encrypted.txt
15 */
16
17 #include <linux/uaccess.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/parser.h>
22 #include <linux/string.h>
23 #include <linux/err.h>
24 #include <keys/user-type.h>
25 #include <keys/trusted-type.h>
26 #include <keys/encrypted-type.h>
27 #include <linux/key-type.h>
28 #include <linux/random.h>
29 #include <linux/rcupdate.h>
30 #include <linux/scatterlist.h>
31 #include <linux/crypto.h>
32 #include <linux/ctype.h>
33 #include <crypto/hash.h>
34 #include <crypto/sha.h>
35 #include <crypto/aes.h>
36
37 #include "encrypted.h"
38 #include "ecryptfs_format.h"
39
40 static const char KEY_TRUSTED_PREFIX[] = "trusted:";
41 static const char KEY_USER_PREFIX[] = "user:";
42 static const char hash_alg[] = "sha256";
43 static const char hmac_alg[] = "hmac(sha256)";
44 static const char blkcipher_alg[] = "cbc(aes)";
45 static const char key_format_default[] = "default";
46 static const char key_format_ecryptfs[] = "ecryptfs";
47 static unsigned int ivsize;
48 static int blksize;
49
50 #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
51 #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
52 #define KEY_ECRYPTFS_DESC_LEN 16
53 #define HASH_SIZE SHA256_DIGEST_SIZE
54 #define MAX_DATA_SIZE 4096
55 #define MIN_DATA_SIZE 20
56
57 struct sdesc {
58 struct shash_desc shash;
59 char ctx[];
60 };
61
62 static struct crypto_shash *hashalg;
63 static struct crypto_shash *hmacalg;
64
65 enum {
66 Opt_err = -1, Opt_new, Opt_load, Opt_update
67 };
68
69 enum {
70 Opt_error = -1, Opt_default, Opt_ecryptfs
71 };
72
73 static const match_table_t key_format_tokens = {
74 {Opt_default, "default"},
75 {Opt_ecryptfs, "ecryptfs"},
76 {Opt_error, NULL}
77 };
78
79 static const match_table_t key_tokens = {
80 {Opt_new, "new"},
81 {Opt_load, "load"},
82 {Opt_update, "update"},
83 {Opt_err, NULL}
84 };
85
aes_get_sizes(void)86 static int aes_get_sizes(void)
87 {
88 struct crypto_blkcipher *tfm;
89
90 tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
91 if (IS_ERR(tfm)) {
92 pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
93 PTR_ERR(tfm));
94 return PTR_ERR(tfm);
95 }
96 ivsize = crypto_blkcipher_ivsize(tfm);
97 blksize = crypto_blkcipher_blocksize(tfm);
98 crypto_free_blkcipher(tfm);
99 return 0;
100 }
101
102 /*
103 * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
104 *
105 * The description of a encrypted key with format 'ecryptfs' must contain
106 * exactly 16 hexadecimal characters.
107 *
108 */
valid_ecryptfs_desc(const char * ecryptfs_desc)109 static int valid_ecryptfs_desc(const char *ecryptfs_desc)
110 {
111 int i;
112
113 if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
114 pr_err("encrypted_key: key description must be %d hexadecimal "
115 "characters long\n", KEY_ECRYPTFS_DESC_LEN);
116 return -EINVAL;
117 }
118
119 for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
120 if (!isxdigit(ecryptfs_desc[i])) {
121 pr_err("encrypted_key: key description must contain "
122 "only hexadecimal characters\n");
123 return -EINVAL;
124 }
125 }
126
127 return 0;
128 }
129
130 /*
131 * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
132 *
133 * key-type:= "trusted:" | "user:"
134 * desc:= master-key description
135 *
136 * Verify that 'key-type' is valid and that 'desc' exists. On key update,
137 * only the master key description is permitted to change, not the key-type.
138 * The key-type remains constant.
139 *
140 * On success returns 0, otherwise -EINVAL.
141 */
valid_master_desc(const char * new_desc,const char * orig_desc)142 static int valid_master_desc(const char *new_desc, const char *orig_desc)
143 {
144 if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) {
145 if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN)
146 goto out;
147 if (orig_desc)
148 if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN))
149 goto out;
150 } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) {
151 if (strlen(new_desc) == KEY_USER_PREFIX_LEN)
152 goto out;
153 if (orig_desc)
154 if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN))
155 goto out;
156 } else
157 goto out;
158 return 0;
159 out:
160 return -EINVAL;
161 }
162
163 /*
164 * datablob_parse - parse the keyctl data
165 *
166 * datablob format:
167 * new [<format>] <master-key name> <decrypted data length>
168 * load [<format>] <master-key name> <decrypted data length>
169 * <encrypted iv + data>
170 * update <new-master-key name>
171 *
172 * Tokenizes a copy of the keyctl data, returning a pointer to each token,
173 * which is null terminated.
174 *
175 * On success returns 0, otherwise -EINVAL.
176 */
datablob_parse(char * datablob,const char ** format,char ** master_desc,char ** decrypted_datalen,char ** hex_encoded_iv)177 static int datablob_parse(char *datablob, const char **format,
178 char **master_desc, char **decrypted_datalen,
179 char **hex_encoded_iv)
180 {
181 substring_t args[MAX_OPT_ARGS];
182 int ret = -EINVAL;
183 int key_cmd;
184 int key_format;
185 char *p, *keyword;
186
187 keyword = strsep(&datablob, " \t");
188 if (!keyword) {
189 pr_info("encrypted_key: insufficient parameters specified\n");
190 return ret;
191 }
192 key_cmd = match_token(keyword, key_tokens, args);
193
194 /* Get optional format: default | ecryptfs */
195 p = strsep(&datablob, " \t");
196 if (!p) {
197 pr_err("encrypted_key: insufficient parameters specified\n");
198 return ret;
199 }
200
201 key_format = match_token(p, key_format_tokens, args);
202 switch (key_format) {
203 case Opt_ecryptfs:
204 case Opt_default:
205 *format = p;
206 *master_desc = strsep(&datablob, " \t");
207 break;
208 case Opt_error:
209 *master_desc = p;
210 break;
211 }
212
213 if (!*master_desc) {
214 pr_info("encrypted_key: master key parameter is missing\n");
215 goto out;
216 }
217
218 if (valid_master_desc(*master_desc, NULL) < 0) {
219 pr_info("encrypted_key: master key parameter \'%s\' "
220 "is invalid\n", *master_desc);
221 goto out;
222 }
223
224 if (decrypted_datalen) {
225 *decrypted_datalen = strsep(&datablob, " \t");
226 if (!*decrypted_datalen) {
227 pr_info("encrypted_key: keylen parameter is missing\n");
228 goto out;
229 }
230 }
231
232 switch (key_cmd) {
233 case Opt_new:
234 if (!decrypted_datalen) {
235 pr_info("encrypted_key: keyword \'%s\' not allowed "
236 "when called from .update method\n", keyword);
237 break;
238 }
239 ret = 0;
240 break;
241 case Opt_load:
242 if (!decrypted_datalen) {
243 pr_info("encrypted_key: keyword \'%s\' not allowed "
244 "when called from .update method\n", keyword);
245 break;
246 }
247 *hex_encoded_iv = strsep(&datablob, " \t");
248 if (!*hex_encoded_iv) {
249 pr_info("encrypted_key: hex blob is missing\n");
250 break;
251 }
252 ret = 0;
253 break;
254 case Opt_update:
255 if (decrypted_datalen) {
256 pr_info("encrypted_key: keyword \'%s\' not allowed "
257 "when called from .instantiate method\n",
258 keyword);
259 break;
260 }
261 ret = 0;
262 break;
263 case Opt_err:
264 pr_info("encrypted_key: keyword \'%s\' not recognized\n",
265 keyword);
266 break;
267 }
268 out:
269 return ret;
270 }
271
272 /*
273 * datablob_format - format as an ascii string, before copying to userspace
274 */
datablob_format(struct encrypted_key_payload * epayload,size_t asciiblob_len)275 static char *datablob_format(struct encrypted_key_payload *epayload,
276 size_t asciiblob_len)
277 {
278 char *ascii_buf, *bufp;
279 u8 *iv = epayload->iv;
280 int len;
281 int i;
282
283 ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
284 if (!ascii_buf)
285 goto out;
286
287 ascii_buf[asciiblob_len] = '\0';
288
289 /* copy datablob master_desc and datalen strings */
290 len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
291 epayload->master_desc, epayload->datalen);
292
293 /* convert the hex encoded iv, encrypted-data and HMAC to ascii */
294 bufp = &ascii_buf[len];
295 for (i = 0; i < (asciiblob_len - len) / 2; i++)
296 bufp = hex_byte_pack(bufp, iv[i]);
297 out:
298 return ascii_buf;
299 }
300
301 /*
302 * request_user_key - request the user key
303 *
304 * Use a user provided key to encrypt/decrypt an encrypted-key.
305 */
request_user_key(const char * master_desc,u8 ** master_key,size_t * master_keylen)306 static struct key *request_user_key(const char *master_desc, u8 **master_key,
307 size_t *master_keylen)
308 {
309 struct user_key_payload *upayload;
310 struct key *ukey;
311
312 ukey = request_key(&key_type_user, master_desc, NULL);
313 if (IS_ERR(ukey))
314 goto error;
315
316 down_read(&ukey->sem);
317 upayload = ukey->payload.data;
318 if (!upayload) {
319 /* key was revoked before we acquired its semaphore */
320 up_read(&ukey->sem);
321 key_put(ukey);
322 ukey = ERR_PTR(-EKEYREVOKED);
323 goto error;
324 }
325 *master_key = upayload->data;
326 *master_keylen = upayload->datalen;
327 error:
328 return ukey;
329 }
330
alloc_sdesc(struct crypto_shash * alg)331 static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
332 {
333 struct sdesc *sdesc;
334 int size;
335
336 size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
337 sdesc = kmalloc(size, GFP_KERNEL);
338 if (!sdesc)
339 return ERR_PTR(-ENOMEM);
340 sdesc->shash.tfm = alg;
341 sdesc->shash.flags = 0x0;
342 return sdesc;
343 }
344
calc_hmac(u8 * digest,const u8 * key,unsigned int keylen,const u8 * buf,unsigned int buflen)345 static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
346 const u8 *buf, unsigned int buflen)
347 {
348 struct sdesc *sdesc;
349 int ret;
350
351 sdesc = alloc_sdesc(hmacalg);
352 if (IS_ERR(sdesc)) {
353 pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
354 return PTR_ERR(sdesc);
355 }
356
357 ret = crypto_shash_setkey(hmacalg, key, keylen);
358 if (!ret)
359 ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
360 kfree(sdesc);
361 return ret;
362 }
363
calc_hash(u8 * digest,const u8 * buf,unsigned int buflen)364 static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
365 {
366 struct sdesc *sdesc;
367 int ret;
368
369 sdesc = alloc_sdesc(hashalg);
370 if (IS_ERR(sdesc)) {
371 pr_info("encrypted_key: can't alloc %s\n", hash_alg);
372 return PTR_ERR(sdesc);
373 }
374
375 ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
376 kfree(sdesc);
377 return ret;
378 }
379
380 enum derived_key_type { ENC_KEY, AUTH_KEY };
381
382 /* Derive authentication/encryption key from trusted key */
get_derived_key(u8 * derived_key,enum derived_key_type key_type,const u8 * master_key,size_t master_keylen)383 static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
384 const u8 *master_key, size_t master_keylen)
385 {
386 u8 *derived_buf;
387 unsigned int derived_buf_len;
388 int ret;
389
390 derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
391 if (derived_buf_len < HASH_SIZE)
392 derived_buf_len = HASH_SIZE;
393
394 derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
395 if (!derived_buf) {
396 pr_err("encrypted_key: out of memory\n");
397 return -ENOMEM;
398 }
399 if (key_type)
400 strcpy(derived_buf, "AUTH_KEY");
401 else
402 strcpy(derived_buf, "ENC_KEY");
403
404 memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
405 master_keylen);
406 ret = calc_hash(derived_key, derived_buf, derived_buf_len);
407 kfree(derived_buf);
408 return ret;
409 }
410
init_blkcipher_desc(struct blkcipher_desc * desc,const u8 * key,unsigned int key_len,const u8 * iv,unsigned int ivsize)411 static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key,
412 unsigned int key_len, const u8 *iv,
413 unsigned int ivsize)
414 {
415 int ret;
416
417 desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
418 if (IS_ERR(desc->tfm)) {
419 pr_err("encrypted_key: failed to load %s transform (%ld)\n",
420 blkcipher_alg, PTR_ERR(desc->tfm));
421 return PTR_ERR(desc->tfm);
422 }
423 desc->flags = 0;
424
425 ret = crypto_blkcipher_setkey(desc->tfm, key, key_len);
426 if (ret < 0) {
427 pr_err("encrypted_key: failed to setkey (%d)\n", ret);
428 crypto_free_blkcipher(desc->tfm);
429 return ret;
430 }
431 crypto_blkcipher_set_iv(desc->tfm, iv, ivsize);
432 return 0;
433 }
434
request_master_key(struct encrypted_key_payload * epayload,u8 ** master_key,size_t * master_keylen)435 static struct key *request_master_key(struct encrypted_key_payload *epayload,
436 u8 **master_key, size_t *master_keylen)
437 {
438 struct key *mkey = ERR_PTR(-EINVAL);
439
440 if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
441 KEY_TRUSTED_PREFIX_LEN)) {
442 mkey = request_trusted_key(epayload->master_desc +
443 KEY_TRUSTED_PREFIX_LEN,
444 master_key, master_keylen);
445 } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
446 KEY_USER_PREFIX_LEN)) {
447 mkey = request_user_key(epayload->master_desc +
448 KEY_USER_PREFIX_LEN,
449 master_key, master_keylen);
450 } else
451 goto out;
452
453 if (IS_ERR(mkey)) {
454 int ret = PTR_ERR(mkey);
455
456 if (ret == -ENOTSUPP)
457 pr_info("encrypted_key: key %s not supported",
458 epayload->master_desc);
459 else
460 pr_info("encrypted_key: key %s not found",
461 epayload->master_desc);
462 goto out;
463 }
464
465 dump_master_key(*master_key, *master_keylen);
466 out:
467 return mkey;
468 }
469
470 /* Before returning data to userspace, encrypt decrypted data. */
derived_key_encrypt(struct encrypted_key_payload * epayload,const u8 * derived_key,unsigned int derived_keylen)471 static int derived_key_encrypt(struct encrypted_key_payload *epayload,
472 const u8 *derived_key,
473 unsigned int derived_keylen)
474 {
475 struct scatterlist sg_in[2];
476 struct scatterlist sg_out[1];
477 struct blkcipher_desc desc;
478 unsigned int encrypted_datalen;
479 unsigned int padlen;
480 char pad[16];
481 int ret;
482
483 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
484 padlen = encrypted_datalen - epayload->decrypted_datalen;
485
486 ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
487 epayload->iv, ivsize);
488 if (ret < 0)
489 goto out;
490 dump_decrypted_data(epayload);
491
492 memset(pad, 0, sizeof pad);
493 sg_init_table(sg_in, 2);
494 sg_set_buf(&sg_in[0], epayload->decrypted_data,
495 epayload->decrypted_datalen);
496 sg_set_buf(&sg_in[1], pad, padlen);
497
498 sg_init_table(sg_out, 1);
499 sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
500
501 ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen);
502 crypto_free_blkcipher(desc.tfm);
503 if (ret < 0)
504 pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
505 else
506 dump_encrypted_data(epayload, encrypted_datalen);
507 out:
508 return ret;
509 }
510
datablob_hmac_append(struct encrypted_key_payload * epayload,const u8 * master_key,size_t master_keylen)511 static int datablob_hmac_append(struct encrypted_key_payload *epayload,
512 const u8 *master_key, size_t master_keylen)
513 {
514 u8 derived_key[HASH_SIZE];
515 u8 *digest;
516 int ret;
517
518 ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
519 if (ret < 0)
520 goto out;
521
522 digest = epayload->format + epayload->datablob_len;
523 ret = calc_hmac(digest, derived_key, sizeof derived_key,
524 epayload->format, epayload->datablob_len);
525 if (!ret)
526 dump_hmac(NULL, digest, HASH_SIZE);
527 out:
528 return ret;
529 }
530
531 /* verify HMAC before decrypting encrypted key */
datablob_hmac_verify(struct encrypted_key_payload * epayload,const u8 * format,const u8 * master_key,size_t master_keylen)532 static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
533 const u8 *format, const u8 *master_key,
534 size_t master_keylen)
535 {
536 u8 derived_key[HASH_SIZE];
537 u8 digest[HASH_SIZE];
538 int ret;
539 char *p;
540 unsigned short len;
541
542 ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
543 if (ret < 0)
544 goto out;
545
546 len = epayload->datablob_len;
547 if (!format) {
548 p = epayload->master_desc;
549 len -= strlen(epayload->format) + 1;
550 } else
551 p = epayload->format;
552
553 ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
554 if (ret < 0)
555 goto out;
556 ret = memcmp(digest, epayload->format + epayload->datablob_len,
557 sizeof digest);
558 if (ret) {
559 ret = -EINVAL;
560 dump_hmac("datablob",
561 epayload->format + epayload->datablob_len,
562 HASH_SIZE);
563 dump_hmac("calc", digest, HASH_SIZE);
564 }
565 out:
566 return ret;
567 }
568
derived_key_decrypt(struct encrypted_key_payload * epayload,const u8 * derived_key,unsigned int derived_keylen)569 static int derived_key_decrypt(struct encrypted_key_payload *epayload,
570 const u8 *derived_key,
571 unsigned int derived_keylen)
572 {
573 struct scatterlist sg_in[1];
574 struct scatterlist sg_out[2];
575 struct blkcipher_desc desc;
576 unsigned int encrypted_datalen;
577 char pad[16];
578 int ret;
579
580 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
581 ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
582 epayload->iv, ivsize);
583 if (ret < 0)
584 goto out;
585 dump_encrypted_data(epayload, encrypted_datalen);
586
587 memset(pad, 0, sizeof pad);
588 sg_init_table(sg_in, 1);
589 sg_init_table(sg_out, 2);
590 sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
591 sg_set_buf(&sg_out[0], epayload->decrypted_data,
592 epayload->decrypted_datalen);
593 sg_set_buf(&sg_out[1], pad, sizeof pad);
594
595 ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen);
596 crypto_free_blkcipher(desc.tfm);
597 if (ret < 0)
598 goto out;
599 dump_decrypted_data(epayload);
600 out:
601 return ret;
602 }
603
604 /* Allocate memory for decrypted key and datablob. */
encrypted_key_alloc(struct key * key,const char * format,const char * master_desc,const char * datalen)605 static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
606 const char *format,
607 const char *master_desc,
608 const char *datalen)
609 {
610 struct encrypted_key_payload *epayload = NULL;
611 unsigned short datablob_len;
612 unsigned short decrypted_datalen;
613 unsigned short payload_datalen;
614 unsigned int encrypted_datalen;
615 unsigned int format_len;
616 long dlen;
617 int ret;
618
619 ret = kstrtol(datalen, 10, &dlen);
620 if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
621 return ERR_PTR(-EINVAL);
622
623 format_len = (!format) ? strlen(key_format_default) : strlen(format);
624 decrypted_datalen = dlen;
625 payload_datalen = decrypted_datalen;
626 if (format && !strcmp(format, key_format_ecryptfs)) {
627 if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
628 pr_err("encrypted_key: keylen for the ecryptfs format "
629 "must be equal to %d bytes\n",
630 ECRYPTFS_MAX_KEY_BYTES);
631 return ERR_PTR(-EINVAL);
632 }
633 decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
634 payload_datalen = sizeof(struct ecryptfs_auth_tok);
635 }
636
637 encrypted_datalen = roundup(decrypted_datalen, blksize);
638
639 datablob_len = format_len + 1 + strlen(master_desc) + 1
640 + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
641
642 ret = key_payload_reserve(key, payload_datalen + datablob_len
643 + HASH_SIZE + 1);
644 if (ret < 0)
645 return ERR_PTR(ret);
646
647 epayload = kzalloc(sizeof(*epayload) + payload_datalen +
648 datablob_len + HASH_SIZE + 1, GFP_KERNEL);
649 if (!epayload)
650 return ERR_PTR(-ENOMEM);
651
652 epayload->payload_datalen = payload_datalen;
653 epayload->decrypted_datalen = decrypted_datalen;
654 epayload->datablob_len = datablob_len;
655 return epayload;
656 }
657
encrypted_key_decrypt(struct encrypted_key_payload * epayload,const char * format,const char * hex_encoded_iv)658 static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
659 const char *format, const char *hex_encoded_iv)
660 {
661 struct key *mkey;
662 u8 derived_key[HASH_SIZE];
663 u8 *master_key;
664 u8 *hmac;
665 const char *hex_encoded_data;
666 unsigned int encrypted_datalen;
667 size_t master_keylen;
668 size_t asciilen;
669 int ret;
670
671 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
672 asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
673 if (strlen(hex_encoded_iv) != asciilen)
674 return -EINVAL;
675
676 hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
677 ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
678 if (ret < 0)
679 return -EINVAL;
680 ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
681 encrypted_datalen);
682 if (ret < 0)
683 return -EINVAL;
684
685 hmac = epayload->format + epayload->datablob_len;
686 ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
687 HASH_SIZE);
688 if (ret < 0)
689 return -EINVAL;
690
691 mkey = request_master_key(epayload, &master_key, &master_keylen);
692 if (IS_ERR(mkey))
693 return PTR_ERR(mkey);
694
695 ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
696 if (ret < 0) {
697 pr_err("encrypted_key: bad hmac (%d)\n", ret);
698 goto out;
699 }
700
701 ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
702 if (ret < 0)
703 goto out;
704
705 ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
706 if (ret < 0)
707 pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
708 out:
709 up_read(&mkey->sem);
710 key_put(mkey);
711 return ret;
712 }
713
__ekey_init(struct encrypted_key_payload * epayload,const char * format,const char * master_desc,const char * datalen)714 static void __ekey_init(struct encrypted_key_payload *epayload,
715 const char *format, const char *master_desc,
716 const char *datalen)
717 {
718 unsigned int format_len;
719
720 format_len = (!format) ? strlen(key_format_default) : strlen(format);
721 epayload->format = epayload->payload_data + epayload->payload_datalen;
722 epayload->master_desc = epayload->format + format_len + 1;
723 epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
724 epayload->iv = epayload->datalen + strlen(datalen) + 1;
725 epayload->encrypted_data = epayload->iv + ivsize + 1;
726 epayload->decrypted_data = epayload->payload_data;
727
728 if (!format)
729 memcpy(epayload->format, key_format_default, format_len);
730 else {
731 if (!strcmp(format, key_format_ecryptfs))
732 epayload->decrypted_data =
733 ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
734
735 memcpy(epayload->format, format, format_len);
736 }
737
738 memcpy(epayload->master_desc, master_desc, strlen(master_desc));
739 memcpy(epayload->datalen, datalen, strlen(datalen));
740 }
741
742 /*
743 * encrypted_init - initialize an encrypted key
744 *
745 * For a new key, use a random number for both the iv and data
746 * itself. For an old key, decrypt the hex encoded data.
747 */
encrypted_init(struct encrypted_key_payload * epayload,const char * key_desc,const char * format,const char * master_desc,const char * datalen,const char * hex_encoded_iv)748 static int encrypted_init(struct encrypted_key_payload *epayload,
749 const char *key_desc, const char *format,
750 const char *master_desc, const char *datalen,
751 const char *hex_encoded_iv)
752 {
753 int ret = 0;
754
755 if (format && !strcmp(format, key_format_ecryptfs)) {
756 ret = valid_ecryptfs_desc(key_desc);
757 if (ret < 0)
758 return ret;
759
760 ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
761 key_desc);
762 }
763
764 __ekey_init(epayload, format, master_desc, datalen);
765 if (!hex_encoded_iv) {
766 get_random_bytes(epayload->iv, ivsize);
767
768 get_random_bytes(epayload->decrypted_data,
769 epayload->decrypted_datalen);
770 } else
771 ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
772 return ret;
773 }
774
775 /*
776 * encrypted_instantiate - instantiate an encrypted key
777 *
778 * Decrypt an existing encrypted datablob or create a new encrypted key
779 * based on a kernel random number.
780 *
781 * On success, return 0. Otherwise return errno.
782 */
encrypted_instantiate(struct key * key,struct key_preparsed_payload * prep)783 static int encrypted_instantiate(struct key *key,
784 struct key_preparsed_payload *prep)
785 {
786 struct encrypted_key_payload *epayload = NULL;
787 char *datablob = NULL;
788 const char *format = NULL;
789 char *master_desc = NULL;
790 char *decrypted_datalen = NULL;
791 char *hex_encoded_iv = NULL;
792 size_t datalen = prep->datalen;
793 int ret;
794
795 if (datalen <= 0 || datalen > 32767 || !prep->data)
796 return -EINVAL;
797
798 datablob = kmalloc(datalen + 1, GFP_KERNEL);
799 if (!datablob)
800 return -ENOMEM;
801 datablob[datalen] = 0;
802 memcpy(datablob, prep->data, datalen);
803 ret = datablob_parse(datablob, &format, &master_desc,
804 &decrypted_datalen, &hex_encoded_iv);
805 if (ret < 0)
806 goto out;
807
808 epayload = encrypted_key_alloc(key, format, master_desc,
809 decrypted_datalen);
810 if (IS_ERR(epayload)) {
811 ret = PTR_ERR(epayload);
812 goto out;
813 }
814 ret = encrypted_init(epayload, key->description, format, master_desc,
815 decrypted_datalen, hex_encoded_iv);
816 if (ret < 0) {
817 kfree(epayload);
818 goto out;
819 }
820
821 rcu_assign_keypointer(key, epayload);
822 out:
823 kfree(datablob);
824 return ret;
825 }
826
encrypted_rcu_free(struct rcu_head * rcu)827 static void encrypted_rcu_free(struct rcu_head *rcu)
828 {
829 struct encrypted_key_payload *epayload;
830
831 epayload = container_of(rcu, struct encrypted_key_payload, rcu);
832 memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
833 kfree(epayload);
834 }
835
836 /*
837 * encrypted_update - update the master key description
838 *
839 * Change the master key description for an existing encrypted key.
840 * The next read will return an encrypted datablob using the new
841 * master key description.
842 *
843 * On success, return 0. Otherwise return errno.
844 */
encrypted_update(struct key * key,struct key_preparsed_payload * prep)845 static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
846 {
847 struct encrypted_key_payload *epayload = key->payload.data;
848 struct encrypted_key_payload *new_epayload;
849 char *buf;
850 char *new_master_desc = NULL;
851 const char *format = NULL;
852 size_t datalen = prep->datalen;
853 int ret = 0;
854
855 if (test_bit(KEY_FLAG_NEGATIVE, &key->flags))
856 return -ENOKEY;
857 if (datalen <= 0 || datalen > 32767 || !prep->data)
858 return -EINVAL;
859
860 buf = kmalloc(datalen + 1, GFP_KERNEL);
861 if (!buf)
862 return -ENOMEM;
863
864 buf[datalen] = 0;
865 memcpy(buf, prep->data, datalen);
866 ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
867 if (ret < 0)
868 goto out;
869
870 ret = valid_master_desc(new_master_desc, epayload->master_desc);
871 if (ret < 0)
872 goto out;
873
874 new_epayload = encrypted_key_alloc(key, epayload->format,
875 new_master_desc, epayload->datalen);
876 if (IS_ERR(new_epayload)) {
877 ret = PTR_ERR(new_epayload);
878 goto out;
879 }
880
881 __ekey_init(new_epayload, epayload->format, new_master_desc,
882 epayload->datalen);
883
884 memcpy(new_epayload->iv, epayload->iv, ivsize);
885 memcpy(new_epayload->payload_data, epayload->payload_data,
886 epayload->payload_datalen);
887
888 rcu_assign_keypointer(key, new_epayload);
889 call_rcu(&epayload->rcu, encrypted_rcu_free);
890 out:
891 kfree(buf);
892 return ret;
893 }
894
895 /*
896 * encrypted_read - format and copy the encrypted data to userspace
897 *
898 * The resulting datablob format is:
899 * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
900 *
901 * On success, return to userspace the encrypted key datablob size.
902 */
encrypted_read(const struct key * key,char __user * buffer,size_t buflen)903 static long encrypted_read(const struct key *key, char __user *buffer,
904 size_t buflen)
905 {
906 struct encrypted_key_payload *epayload;
907 struct key *mkey;
908 u8 *master_key;
909 size_t master_keylen;
910 char derived_key[HASH_SIZE];
911 char *ascii_buf;
912 size_t asciiblob_len;
913 int ret;
914
915 epayload = rcu_dereference_key(key);
916
917 /* returns the hex encoded iv, encrypted-data, and hmac as ascii */
918 asciiblob_len = epayload->datablob_len + ivsize + 1
919 + roundup(epayload->decrypted_datalen, blksize)
920 + (HASH_SIZE * 2);
921
922 if (!buffer || buflen < asciiblob_len)
923 return asciiblob_len;
924
925 mkey = request_master_key(epayload, &master_key, &master_keylen);
926 if (IS_ERR(mkey))
927 return PTR_ERR(mkey);
928
929 ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
930 if (ret < 0)
931 goto out;
932
933 ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
934 if (ret < 0)
935 goto out;
936
937 ret = datablob_hmac_append(epayload, master_key, master_keylen);
938 if (ret < 0)
939 goto out;
940
941 ascii_buf = datablob_format(epayload, asciiblob_len);
942 if (!ascii_buf) {
943 ret = -ENOMEM;
944 goto out;
945 }
946
947 up_read(&mkey->sem);
948 key_put(mkey);
949
950 if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
951 ret = -EFAULT;
952 kfree(ascii_buf);
953
954 return asciiblob_len;
955 out:
956 up_read(&mkey->sem);
957 key_put(mkey);
958 return ret;
959 }
960
961 /*
962 * encrypted_destroy - before freeing the key, clear the decrypted data
963 *
964 * Before freeing the key, clear the memory containing the decrypted
965 * key data.
966 */
encrypted_destroy(struct key * key)967 static void encrypted_destroy(struct key *key)
968 {
969 struct encrypted_key_payload *epayload = key->payload.data;
970
971 if (!epayload)
972 return;
973
974 memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
975 kfree(key->payload.data);
976 }
977
978 struct key_type key_type_encrypted = {
979 .name = "encrypted",
980 .instantiate = encrypted_instantiate,
981 .update = encrypted_update,
982 .destroy = encrypted_destroy,
983 .describe = user_describe,
984 .read = encrypted_read,
985 };
986 EXPORT_SYMBOL_GPL(key_type_encrypted);
987
encrypted_shash_release(void)988 static void encrypted_shash_release(void)
989 {
990 if (hashalg)
991 crypto_free_shash(hashalg);
992 if (hmacalg)
993 crypto_free_shash(hmacalg);
994 }
995
encrypted_shash_alloc(void)996 static int __init encrypted_shash_alloc(void)
997 {
998 int ret;
999
1000 hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
1001 if (IS_ERR(hmacalg)) {
1002 pr_info("encrypted_key: could not allocate crypto %s\n",
1003 hmac_alg);
1004 return PTR_ERR(hmacalg);
1005 }
1006
1007 hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
1008 if (IS_ERR(hashalg)) {
1009 pr_info("encrypted_key: could not allocate crypto %s\n",
1010 hash_alg);
1011 ret = PTR_ERR(hashalg);
1012 goto hashalg_fail;
1013 }
1014
1015 return 0;
1016
1017 hashalg_fail:
1018 crypto_free_shash(hmacalg);
1019 return ret;
1020 }
1021
init_encrypted(void)1022 static int __init init_encrypted(void)
1023 {
1024 int ret;
1025
1026 ret = encrypted_shash_alloc();
1027 if (ret < 0)
1028 return ret;
1029 ret = aes_get_sizes();
1030 if (ret < 0)
1031 goto out;
1032 ret = register_key_type(&key_type_encrypted);
1033 if (ret < 0)
1034 goto out;
1035 return 0;
1036 out:
1037 encrypted_shash_release();
1038 return ret;
1039
1040 }
1041
cleanup_encrypted(void)1042 static void __exit cleanup_encrypted(void)
1043 {
1044 encrypted_shash_release();
1045 unregister_key_type(&key_type_encrypted);
1046 }
1047
1048 late_initcall(init_encrypted);
1049 module_exit(cleanup_encrypted);
1050
1051 MODULE_LICENSE("GPL");
1052