1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 /*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
kretprobe_table_lock_ptr(unsigned long hash)84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 return &(kretprobe_table_locks[hash].lock);
87 }
88
89 /* Blacklist -- list of struct kprobe_blacklist_entry */
90 static LIST_HEAD(kprobe_blacklist);
91
92 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
93 /*
94 * kprobe->ainsn.insn points to the copy of the instruction to be
95 * single-stepped. x86_64, POWER4 and above have no-exec support and
96 * stepping on the instruction on a vmalloced/kmalloced/data page
97 * is a recipe for disaster
98 */
99 struct kprobe_insn_page {
100 struct list_head list;
101 kprobe_opcode_t *insns; /* Page of instruction slots */
102 struct kprobe_insn_cache *cache;
103 int nused;
104 int ngarbage;
105 char slot_used[];
106 };
107
108 #define KPROBE_INSN_PAGE_SIZE(slots) \
109 (offsetof(struct kprobe_insn_page, slot_used) + \
110 (sizeof(char) * (slots)))
111
slots_per_page(struct kprobe_insn_cache * c)112 static int slots_per_page(struct kprobe_insn_cache *c)
113 {
114 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
115 }
116
117 enum kprobe_slot_state {
118 SLOT_CLEAN = 0,
119 SLOT_DIRTY = 1,
120 SLOT_USED = 2,
121 };
122
alloc_insn_page(void)123 static void *alloc_insn_page(void)
124 {
125 return module_alloc(PAGE_SIZE);
126 }
127
free_insn_page(void * page)128 static void free_insn_page(void *page)
129 {
130 module_free(NULL, page);
131 }
132
133 struct kprobe_insn_cache kprobe_insn_slots = {
134 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
135 .alloc = alloc_insn_page,
136 .free = free_insn_page,
137 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
138 .insn_size = MAX_INSN_SIZE,
139 .nr_garbage = 0,
140 };
141 static int collect_garbage_slots(struct kprobe_insn_cache *c);
142
143 /**
144 * __get_insn_slot() - Find a slot on an executable page for an instruction.
145 * We allocate an executable page if there's no room on existing ones.
146 */
__get_insn_slot(struct kprobe_insn_cache * c)147 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
148 {
149 struct kprobe_insn_page *kip;
150 kprobe_opcode_t *slot = NULL;
151
152 mutex_lock(&c->mutex);
153 retry:
154 list_for_each_entry(kip, &c->pages, list) {
155 if (kip->nused < slots_per_page(c)) {
156 int i;
157 for (i = 0; i < slots_per_page(c); i++) {
158 if (kip->slot_used[i] == SLOT_CLEAN) {
159 kip->slot_used[i] = SLOT_USED;
160 kip->nused++;
161 slot = kip->insns + (i * c->insn_size);
162 goto out;
163 }
164 }
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
168 }
169 }
170
171 /* If there are any garbage slots, collect it and try again. */
172 if (c->nr_garbage && collect_garbage_slots(c) == 0)
173 goto retry;
174
175 /* All out of space. Need to allocate a new page. */
176 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
177 if (!kip)
178 goto out;
179
180 /*
181 * Use module_alloc so this page is within +/- 2GB of where the
182 * kernel image and loaded module images reside. This is required
183 * so x86_64 can correctly handle the %rip-relative fixups.
184 */
185 kip->insns = c->alloc();
186 if (!kip->insns) {
187 kfree(kip);
188 goto out;
189 }
190 INIT_LIST_HEAD(&kip->list);
191 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
192 kip->slot_used[0] = SLOT_USED;
193 kip->nused = 1;
194 kip->ngarbage = 0;
195 kip->cache = c;
196 list_add(&kip->list, &c->pages);
197 slot = kip->insns;
198 out:
199 mutex_unlock(&c->mutex);
200 return slot;
201 }
202
203 /* Return 1 if all garbages are collected, otherwise 0. */
collect_one_slot(struct kprobe_insn_page * kip,int idx)204 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
205 {
206 kip->slot_used[idx] = SLOT_CLEAN;
207 kip->nused--;
208 if (kip->nused == 0) {
209 /*
210 * Page is no longer in use. Free it unless
211 * it's the last one. We keep the last one
212 * so as not to have to set it up again the
213 * next time somebody inserts a probe.
214 */
215 if (!list_is_singular(&kip->list)) {
216 list_del(&kip->list);
217 kip->cache->free(kip->insns);
218 kfree(kip);
219 }
220 return 1;
221 }
222 return 0;
223 }
224
collect_garbage_slots(struct kprobe_insn_cache * c)225 static int collect_garbage_slots(struct kprobe_insn_cache *c)
226 {
227 struct kprobe_insn_page *kip, *next;
228
229 /* Ensure no-one is interrupted on the garbages */
230 synchronize_sched();
231
232 list_for_each_entry_safe(kip, next, &c->pages, list) {
233 int i;
234 if (kip->ngarbage == 0)
235 continue;
236 kip->ngarbage = 0; /* we will collect all garbages */
237 for (i = 0; i < slots_per_page(c); i++) {
238 if (kip->slot_used[i] == SLOT_DIRTY &&
239 collect_one_slot(kip, i))
240 break;
241 }
242 }
243 c->nr_garbage = 0;
244 return 0;
245 }
246
__free_insn_slot(struct kprobe_insn_cache * c,kprobe_opcode_t * slot,int dirty)247 void __free_insn_slot(struct kprobe_insn_cache *c,
248 kprobe_opcode_t *slot, int dirty)
249 {
250 struct kprobe_insn_page *kip;
251
252 mutex_lock(&c->mutex);
253 list_for_each_entry(kip, &c->pages, list) {
254 long idx = ((long)slot - (long)kip->insns) /
255 (c->insn_size * sizeof(kprobe_opcode_t));
256 if (idx >= 0 && idx < slots_per_page(c)) {
257 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 if (dirty) {
259 kip->slot_used[idx] = SLOT_DIRTY;
260 kip->ngarbage++;
261 if (++c->nr_garbage > slots_per_page(c))
262 collect_garbage_slots(c);
263 } else
264 collect_one_slot(kip, idx);
265 goto out;
266 }
267 }
268 /* Could not free this slot. */
269 WARN_ON(1);
270 out:
271 mutex_unlock(&c->mutex);
272 }
273
274 #ifdef CONFIG_OPTPROBES
275 /* For optimized_kprobe buffer */
276 struct kprobe_insn_cache kprobe_optinsn_slots = {
277 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
278 .alloc = alloc_insn_page,
279 .free = free_insn_page,
280 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
281 /* .insn_size is initialized later */
282 .nr_garbage = 0,
283 };
284 #endif
285 #endif
286
287 /* We have preemption disabled.. so it is safe to use __ versions */
set_kprobe_instance(struct kprobe * kp)288 static inline void set_kprobe_instance(struct kprobe *kp)
289 {
290 __this_cpu_write(kprobe_instance, kp);
291 }
292
reset_kprobe_instance(void)293 static inline void reset_kprobe_instance(void)
294 {
295 __this_cpu_write(kprobe_instance, NULL);
296 }
297
298 /*
299 * This routine is called either:
300 * - under the kprobe_mutex - during kprobe_[un]register()
301 * OR
302 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
303 */
get_kprobe(void * addr)304 struct kprobe *get_kprobe(void *addr)
305 {
306 struct hlist_head *head;
307 struct kprobe *p;
308
309 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
310 hlist_for_each_entry_rcu(p, head, hlist) {
311 if (p->addr == addr)
312 return p;
313 }
314
315 return NULL;
316 }
317 NOKPROBE_SYMBOL(get_kprobe);
318
319 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
320
321 /* Return true if the kprobe is an aggregator */
kprobe_aggrprobe(struct kprobe * p)322 static inline int kprobe_aggrprobe(struct kprobe *p)
323 {
324 return p->pre_handler == aggr_pre_handler;
325 }
326
327 /* Return true(!0) if the kprobe is unused */
kprobe_unused(struct kprobe * p)328 static inline int kprobe_unused(struct kprobe *p)
329 {
330 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
331 list_empty(&p->list);
332 }
333
334 /*
335 * Keep all fields in the kprobe consistent
336 */
copy_kprobe(struct kprobe * ap,struct kprobe * p)337 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
338 {
339 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
340 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
341 }
342
343 #ifdef CONFIG_OPTPROBES
344 /* NOTE: change this value only with kprobe_mutex held */
345 static bool kprobes_allow_optimization;
346
347 /*
348 * Call all pre_handler on the list, but ignores its return value.
349 * This must be called from arch-dep optimized caller.
350 */
opt_pre_handler(struct kprobe * p,struct pt_regs * regs)351 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
352 {
353 struct kprobe *kp;
354
355 list_for_each_entry_rcu(kp, &p->list, list) {
356 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
357 set_kprobe_instance(kp);
358 kp->pre_handler(kp, regs);
359 }
360 reset_kprobe_instance();
361 }
362 }
363 NOKPROBE_SYMBOL(opt_pre_handler);
364
365 /* Free optimized instructions and optimized_kprobe */
free_aggr_kprobe(struct kprobe * p)366 static void free_aggr_kprobe(struct kprobe *p)
367 {
368 struct optimized_kprobe *op;
369
370 op = container_of(p, struct optimized_kprobe, kp);
371 arch_remove_optimized_kprobe(op);
372 arch_remove_kprobe(p);
373 kfree(op);
374 }
375
376 /* Return true(!0) if the kprobe is ready for optimization. */
kprobe_optready(struct kprobe * p)377 static inline int kprobe_optready(struct kprobe *p)
378 {
379 struct optimized_kprobe *op;
380
381 if (kprobe_aggrprobe(p)) {
382 op = container_of(p, struct optimized_kprobe, kp);
383 return arch_prepared_optinsn(&op->optinsn);
384 }
385
386 return 0;
387 }
388
389 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
kprobe_disarmed(struct kprobe * p)390 static inline int kprobe_disarmed(struct kprobe *p)
391 {
392 struct optimized_kprobe *op;
393
394 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
395 if (!kprobe_aggrprobe(p))
396 return kprobe_disabled(p);
397
398 op = container_of(p, struct optimized_kprobe, kp);
399
400 return kprobe_disabled(p) && list_empty(&op->list);
401 }
402
403 /* Return true(!0) if the probe is queued on (un)optimizing lists */
kprobe_queued(struct kprobe * p)404 static int kprobe_queued(struct kprobe *p)
405 {
406 struct optimized_kprobe *op;
407
408 if (kprobe_aggrprobe(p)) {
409 op = container_of(p, struct optimized_kprobe, kp);
410 if (!list_empty(&op->list))
411 return 1;
412 }
413 return 0;
414 }
415
416 /*
417 * Return an optimized kprobe whose optimizing code replaces
418 * instructions including addr (exclude breakpoint).
419 */
get_optimized_kprobe(unsigned long addr)420 static struct kprobe *get_optimized_kprobe(unsigned long addr)
421 {
422 int i;
423 struct kprobe *p = NULL;
424 struct optimized_kprobe *op;
425
426 /* Don't check i == 0, since that is a breakpoint case. */
427 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
428 p = get_kprobe((void *)(addr - i));
429
430 if (p && kprobe_optready(p)) {
431 op = container_of(p, struct optimized_kprobe, kp);
432 if (arch_within_optimized_kprobe(op, addr))
433 return p;
434 }
435
436 return NULL;
437 }
438
439 /* Optimization staging list, protected by kprobe_mutex */
440 static LIST_HEAD(optimizing_list);
441 static LIST_HEAD(unoptimizing_list);
442 static LIST_HEAD(freeing_list);
443
444 static void kprobe_optimizer(struct work_struct *work);
445 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
446 #define OPTIMIZE_DELAY 5
447
448 /*
449 * Optimize (replace a breakpoint with a jump) kprobes listed on
450 * optimizing_list.
451 */
do_optimize_kprobes(void)452 static void do_optimize_kprobes(void)
453 {
454 /* Optimization never be done when disarmed */
455 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
456 list_empty(&optimizing_list))
457 return;
458
459 /*
460 * The optimization/unoptimization refers online_cpus via
461 * stop_machine() and cpu-hotplug modifies online_cpus.
462 * And same time, text_mutex will be held in cpu-hotplug and here.
463 * This combination can cause a deadlock (cpu-hotplug try to lock
464 * text_mutex but stop_machine can not be done because online_cpus
465 * has been changed)
466 * To avoid this deadlock, we need to call get_online_cpus()
467 * for preventing cpu-hotplug outside of text_mutex locking.
468 */
469 get_online_cpus();
470 mutex_lock(&text_mutex);
471 arch_optimize_kprobes(&optimizing_list);
472 mutex_unlock(&text_mutex);
473 put_online_cpus();
474 }
475
476 /*
477 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
478 * if need) kprobes listed on unoptimizing_list.
479 */
do_unoptimize_kprobes(void)480 static void do_unoptimize_kprobes(void)
481 {
482 struct optimized_kprobe *op, *tmp;
483
484 /* Unoptimization must be done anytime */
485 if (list_empty(&unoptimizing_list))
486 return;
487
488 /* Ditto to do_optimize_kprobes */
489 get_online_cpus();
490 mutex_lock(&text_mutex);
491 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
492 /* Loop free_list for disarming */
493 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
494 /* Disarm probes if marked disabled */
495 if (kprobe_disabled(&op->kp))
496 arch_disarm_kprobe(&op->kp);
497 if (kprobe_unused(&op->kp)) {
498 /*
499 * Remove unused probes from hash list. After waiting
500 * for synchronization, these probes are reclaimed.
501 * (reclaiming is done by do_free_cleaned_kprobes.)
502 */
503 hlist_del_rcu(&op->kp.hlist);
504 } else
505 list_del_init(&op->list);
506 }
507 mutex_unlock(&text_mutex);
508 put_online_cpus();
509 }
510
511 /* Reclaim all kprobes on the free_list */
do_free_cleaned_kprobes(void)512 static void do_free_cleaned_kprobes(void)
513 {
514 struct optimized_kprobe *op, *tmp;
515
516 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
517 BUG_ON(!kprobe_unused(&op->kp));
518 list_del_init(&op->list);
519 free_aggr_kprobe(&op->kp);
520 }
521 }
522
523 /* Start optimizer after OPTIMIZE_DELAY passed */
kick_kprobe_optimizer(void)524 static void kick_kprobe_optimizer(void)
525 {
526 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
527 }
528
529 /* Kprobe jump optimizer */
kprobe_optimizer(struct work_struct * work)530 static void kprobe_optimizer(struct work_struct *work)
531 {
532 mutex_lock(&kprobe_mutex);
533 /* Lock modules while optimizing kprobes */
534 mutex_lock(&module_mutex);
535
536 /*
537 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
538 * kprobes before waiting for quiesence period.
539 */
540 do_unoptimize_kprobes();
541
542 /*
543 * Step 2: Wait for quiesence period to ensure all running interrupts
544 * are done. Because optprobe may modify multiple instructions
545 * there is a chance that Nth instruction is interrupted. In that
546 * case, running interrupt can return to 2nd-Nth byte of jump
547 * instruction. This wait is for avoiding it.
548 */
549 synchronize_sched();
550
551 /* Step 3: Optimize kprobes after quiesence period */
552 do_optimize_kprobes();
553
554 /* Step 4: Free cleaned kprobes after quiesence period */
555 do_free_cleaned_kprobes();
556
557 mutex_unlock(&module_mutex);
558 mutex_unlock(&kprobe_mutex);
559
560 /* Step 5: Kick optimizer again if needed */
561 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
562 kick_kprobe_optimizer();
563 }
564
565 /* Wait for completing optimization and unoptimization */
wait_for_kprobe_optimizer(void)566 void wait_for_kprobe_optimizer(void)
567 {
568 mutex_lock(&kprobe_mutex);
569
570 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
571 mutex_unlock(&kprobe_mutex);
572
573 /* this will also make optimizing_work execute immmediately */
574 flush_delayed_work(&optimizing_work);
575 /* @optimizing_work might not have been queued yet, relax */
576 cpu_relax();
577
578 mutex_lock(&kprobe_mutex);
579 }
580
581 mutex_unlock(&kprobe_mutex);
582 }
583
584 /* Optimize kprobe if p is ready to be optimized */
optimize_kprobe(struct kprobe * p)585 static void optimize_kprobe(struct kprobe *p)
586 {
587 struct optimized_kprobe *op;
588
589 /* Check if the kprobe is disabled or not ready for optimization. */
590 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
591 (kprobe_disabled(p) || kprobes_all_disarmed))
592 return;
593
594 /* Both of break_handler and post_handler are not supported. */
595 if (p->break_handler || p->post_handler)
596 return;
597
598 op = container_of(p, struct optimized_kprobe, kp);
599
600 /* Check there is no other kprobes at the optimized instructions */
601 if (arch_check_optimized_kprobe(op) < 0)
602 return;
603
604 /* Check if it is already optimized. */
605 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
606 return;
607 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
608
609 if (!list_empty(&op->list))
610 /* This is under unoptimizing. Just dequeue the probe */
611 list_del_init(&op->list);
612 else {
613 list_add(&op->list, &optimizing_list);
614 kick_kprobe_optimizer();
615 }
616 }
617
618 /* Short cut to direct unoptimizing */
force_unoptimize_kprobe(struct optimized_kprobe * op)619 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
620 {
621 get_online_cpus();
622 arch_unoptimize_kprobe(op);
623 put_online_cpus();
624 if (kprobe_disabled(&op->kp))
625 arch_disarm_kprobe(&op->kp);
626 }
627
628 /* Unoptimize a kprobe if p is optimized */
unoptimize_kprobe(struct kprobe * p,bool force)629 static void unoptimize_kprobe(struct kprobe *p, bool force)
630 {
631 struct optimized_kprobe *op;
632
633 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
634 return; /* This is not an optprobe nor optimized */
635
636 op = container_of(p, struct optimized_kprobe, kp);
637 if (!kprobe_optimized(p)) {
638 /* Unoptimized or unoptimizing case */
639 if (force && !list_empty(&op->list)) {
640 /*
641 * Only if this is unoptimizing kprobe and forced,
642 * forcibly unoptimize it. (No need to unoptimize
643 * unoptimized kprobe again :)
644 */
645 list_del_init(&op->list);
646 force_unoptimize_kprobe(op);
647 }
648 return;
649 }
650
651 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
652 if (!list_empty(&op->list)) {
653 /* Dequeue from the optimization queue */
654 list_del_init(&op->list);
655 return;
656 }
657 /* Optimized kprobe case */
658 if (force)
659 /* Forcibly update the code: this is a special case */
660 force_unoptimize_kprobe(op);
661 else {
662 list_add(&op->list, &unoptimizing_list);
663 kick_kprobe_optimizer();
664 }
665 }
666
667 /* Cancel unoptimizing for reusing */
reuse_unused_kprobe(struct kprobe * ap)668 static void reuse_unused_kprobe(struct kprobe *ap)
669 {
670 struct optimized_kprobe *op;
671
672 BUG_ON(!kprobe_unused(ap));
673 /*
674 * Unused kprobe MUST be on the way of delayed unoptimizing (means
675 * there is still a relative jump) and disabled.
676 */
677 op = container_of(ap, struct optimized_kprobe, kp);
678 if (unlikely(list_empty(&op->list)))
679 printk(KERN_WARNING "Warning: found a stray unused "
680 "aggrprobe@%p\n", ap->addr);
681 /* Enable the probe again */
682 ap->flags &= ~KPROBE_FLAG_DISABLED;
683 /* Optimize it again (remove from op->list) */
684 BUG_ON(!kprobe_optready(ap));
685 optimize_kprobe(ap);
686 }
687
688 /* Remove optimized instructions */
kill_optimized_kprobe(struct kprobe * p)689 static void kill_optimized_kprobe(struct kprobe *p)
690 {
691 struct optimized_kprobe *op;
692
693 op = container_of(p, struct optimized_kprobe, kp);
694 if (!list_empty(&op->list))
695 /* Dequeue from the (un)optimization queue */
696 list_del_init(&op->list);
697 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
698
699 if (kprobe_unused(p)) {
700 /* Enqueue if it is unused */
701 list_add(&op->list, &freeing_list);
702 /*
703 * Remove unused probes from the hash list. After waiting
704 * for synchronization, this probe is reclaimed.
705 * (reclaiming is done by do_free_cleaned_kprobes().)
706 */
707 hlist_del_rcu(&op->kp.hlist);
708 }
709
710 /* Don't touch the code, because it is already freed. */
711 arch_remove_optimized_kprobe(op);
712 }
713
714 /* Try to prepare optimized instructions */
prepare_optimized_kprobe(struct kprobe * p)715 static void prepare_optimized_kprobe(struct kprobe *p)
716 {
717 struct optimized_kprobe *op;
718
719 op = container_of(p, struct optimized_kprobe, kp);
720 arch_prepare_optimized_kprobe(op);
721 }
722
723 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
alloc_aggr_kprobe(struct kprobe * p)724 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
725 {
726 struct optimized_kprobe *op;
727
728 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
729 if (!op)
730 return NULL;
731
732 INIT_LIST_HEAD(&op->list);
733 op->kp.addr = p->addr;
734 arch_prepare_optimized_kprobe(op);
735
736 return &op->kp;
737 }
738
739 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
740
741 /*
742 * Prepare an optimized_kprobe and optimize it
743 * NOTE: p must be a normal registered kprobe
744 */
try_to_optimize_kprobe(struct kprobe * p)745 static void try_to_optimize_kprobe(struct kprobe *p)
746 {
747 struct kprobe *ap;
748 struct optimized_kprobe *op;
749
750 /* Impossible to optimize ftrace-based kprobe */
751 if (kprobe_ftrace(p))
752 return;
753
754 /* For preparing optimization, jump_label_text_reserved() is called */
755 jump_label_lock();
756 mutex_lock(&text_mutex);
757
758 ap = alloc_aggr_kprobe(p);
759 if (!ap)
760 goto out;
761
762 op = container_of(ap, struct optimized_kprobe, kp);
763 if (!arch_prepared_optinsn(&op->optinsn)) {
764 /* If failed to setup optimizing, fallback to kprobe */
765 arch_remove_optimized_kprobe(op);
766 kfree(op);
767 goto out;
768 }
769
770 init_aggr_kprobe(ap, p);
771 optimize_kprobe(ap); /* This just kicks optimizer thread */
772
773 out:
774 mutex_unlock(&text_mutex);
775 jump_label_unlock();
776 }
777
778 #ifdef CONFIG_SYSCTL
optimize_all_kprobes(void)779 static void optimize_all_kprobes(void)
780 {
781 struct hlist_head *head;
782 struct kprobe *p;
783 unsigned int i;
784
785 mutex_lock(&kprobe_mutex);
786 /* If optimization is already allowed, just return */
787 if (kprobes_allow_optimization)
788 goto out;
789
790 kprobes_allow_optimization = true;
791 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
792 head = &kprobe_table[i];
793 hlist_for_each_entry_rcu(p, head, hlist)
794 if (!kprobe_disabled(p))
795 optimize_kprobe(p);
796 }
797 printk(KERN_INFO "Kprobes globally optimized\n");
798 out:
799 mutex_unlock(&kprobe_mutex);
800 }
801
unoptimize_all_kprobes(void)802 static void unoptimize_all_kprobes(void)
803 {
804 struct hlist_head *head;
805 struct kprobe *p;
806 unsigned int i;
807
808 mutex_lock(&kprobe_mutex);
809 /* If optimization is already prohibited, just return */
810 if (!kprobes_allow_optimization) {
811 mutex_unlock(&kprobe_mutex);
812 return;
813 }
814
815 kprobes_allow_optimization = false;
816 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
817 head = &kprobe_table[i];
818 hlist_for_each_entry_rcu(p, head, hlist) {
819 if (!kprobe_disabled(p))
820 unoptimize_kprobe(p, false);
821 }
822 }
823 mutex_unlock(&kprobe_mutex);
824
825 /* Wait for unoptimizing completion */
826 wait_for_kprobe_optimizer();
827 printk(KERN_INFO "Kprobes globally unoptimized\n");
828 }
829
830 static DEFINE_MUTEX(kprobe_sysctl_mutex);
831 int sysctl_kprobes_optimization;
proc_kprobes_optimization_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)832 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
833 void __user *buffer, size_t *length,
834 loff_t *ppos)
835 {
836 int ret;
837
838 mutex_lock(&kprobe_sysctl_mutex);
839 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
840 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
841
842 if (sysctl_kprobes_optimization)
843 optimize_all_kprobes();
844 else
845 unoptimize_all_kprobes();
846 mutex_unlock(&kprobe_sysctl_mutex);
847
848 return ret;
849 }
850 #endif /* CONFIG_SYSCTL */
851
852 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
__arm_kprobe(struct kprobe * p)853 static void __arm_kprobe(struct kprobe *p)
854 {
855 struct kprobe *_p;
856
857 /* Check collision with other optimized kprobes */
858 _p = get_optimized_kprobe((unsigned long)p->addr);
859 if (unlikely(_p))
860 /* Fallback to unoptimized kprobe */
861 unoptimize_kprobe(_p, true);
862
863 arch_arm_kprobe(p);
864 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
865 }
866
867 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
__disarm_kprobe(struct kprobe * p,bool reopt)868 static void __disarm_kprobe(struct kprobe *p, bool reopt)
869 {
870 struct kprobe *_p;
871
872 unoptimize_kprobe(p, false); /* Try to unoptimize */
873
874 if (!kprobe_queued(p)) {
875 arch_disarm_kprobe(p);
876 /* If another kprobe was blocked, optimize it. */
877 _p = get_optimized_kprobe((unsigned long)p->addr);
878 if (unlikely(_p) && reopt)
879 optimize_kprobe(_p);
880 }
881 /* TODO: reoptimize others after unoptimized this probe */
882 }
883
884 #else /* !CONFIG_OPTPROBES */
885
886 #define optimize_kprobe(p) do {} while (0)
887 #define unoptimize_kprobe(p, f) do {} while (0)
888 #define kill_optimized_kprobe(p) do {} while (0)
889 #define prepare_optimized_kprobe(p) do {} while (0)
890 #define try_to_optimize_kprobe(p) do {} while (0)
891 #define __arm_kprobe(p) arch_arm_kprobe(p)
892 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
893 #define kprobe_disarmed(p) kprobe_disabled(p)
894 #define wait_for_kprobe_optimizer() do {} while (0)
895
896 /* There should be no unused kprobes can be reused without optimization */
reuse_unused_kprobe(struct kprobe * ap)897 static void reuse_unused_kprobe(struct kprobe *ap)
898 {
899 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
900 BUG_ON(kprobe_unused(ap));
901 }
902
free_aggr_kprobe(struct kprobe * p)903 static void free_aggr_kprobe(struct kprobe *p)
904 {
905 arch_remove_kprobe(p);
906 kfree(p);
907 }
908
alloc_aggr_kprobe(struct kprobe * p)909 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
910 {
911 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
912 }
913 #endif /* CONFIG_OPTPROBES */
914
915 #ifdef CONFIG_KPROBES_ON_FTRACE
916 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
917 .func = kprobe_ftrace_handler,
918 .flags = FTRACE_OPS_FL_SAVE_REGS,
919 };
920 static int kprobe_ftrace_enabled;
921
922 /* Must ensure p->addr is really on ftrace */
prepare_kprobe(struct kprobe * p)923 static int prepare_kprobe(struct kprobe *p)
924 {
925 if (!kprobe_ftrace(p))
926 return arch_prepare_kprobe(p);
927
928 return arch_prepare_kprobe_ftrace(p);
929 }
930
931 /* Caller must lock kprobe_mutex */
arm_kprobe_ftrace(struct kprobe * p)932 static void arm_kprobe_ftrace(struct kprobe *p)
933 {
934 int ret;
935
936 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
937 (unsigned long)p->addr, 0, 0);
938 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
939 kprobe_ftrace_enabled++;
940 if (kprobe_ftrace_enabled == 1) {
941 ret = register_ftrace_function(&kprobe_ftrace_ops);
942 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
943 }
944 }
945
946 /* Caller must lock kprobe_mutex */
disarm_kprobe_ftrace(struct kprobe * p)947 static void disarm_kprobe_ftrace(struct kprobe *p)
948 {
949 int ret;
950
951 kprobe_ftrace_enabled--;
952 if (kprobe_ftrace_enabled == 0) {
953 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
954 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
955 }
956 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
957 (unsigned long)p->addr, 1, 0);
958 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
959 }
960 #else /* !CONFIG_KPROBES_ON_FTRACE */
961 #define prepare_kprobe(p) arch_prepare_kprobe(p)
962 #define arm_kprobe_ftrace(p) do {} while (0)
963 #define disarm_kprobe_ftrace(p) do {} while (0)
964 #endif
965
966 /* Arm a kprobe with text_mutex */
arm_kprobe(struct kprobe * kp)967 static void arm_kprobe(struct kprobe *kp)
968 {
969 if (unlikely(kprobe_ftrace(kp))) {
970 arm_kprobe_ftrace(kp);
971 return;
972 }
973 /*
974 * Here, since __arm_kprobe() doesn't use stop_machine(),
975 * this doesn't cause deadlock on text_mutex. So, we don't
976 * need get_online_cpus().
977 */
978 mutex_lock(&text_mutex);
979 __arm_kprobe(kp);
980 mutex_unlock(&text_mutex);
981 }
982
983 /* Disarm a kprobe with text_mutex */
disarm_kprobe(struct kprobe * kp,bool reopt)984 static void disarm_kprobe(struct kprobe *kp, bool reopt)
985 {
986 if (unlikely(kprobe_ftrace(kp))) {
987 disarm_kprobe_ftrace(kp);
988 return;
989 }
990 /* Ditto */
991 mutex_lock(&text_mutex);
992 __disarm_kprobe(kp, reopt);
993 mutex_unlock(&text_mutex);
994 }
995
996 /*
997 * Aggregate handlers for multiple kprobes support - these handlers
998 * take care of invoking the individual kprobe handlers on p->list
999 */
aggr_pre_handler(struct kprobe * p,struct pt_regs * regs)1000 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1001 {
1002 struct kprobe *kp;
1003
1004 list_for_each_entry_rcu(kp, &p->list, list) {
1005 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1006 set_kprobe_instance(kp);
1007 if (kp->pre_handler(kp, regs))
1008 return 1;
1009 }
1010 reset_kprobe_instance();
1011 }
1012 return 0;
1013 }
1014 NOKPROBE_SYMBOL(aggr_pre_handler);
1015
aggr_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)1016 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1017 unsigned long flags)
1018 {
1019 struct kprobe *kp;
1020
1021 list_for_each_entry_rcu(kp, &p->list, list) {
1022 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1023 set_kprobe_instance(kp);
1024 kp->post_handler(kp, regs, flags);
1025 reset_kprobe_instance();
1026 }
1027 }
1028 }
1029 NOKPROBE_SYMBOL(aggr_post_handler);
1030
aggr_fault_handler(struct kprobe * p,struct pt_regs * regs,int trapnr)1031 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1032 int trapnr)
1033 {
1034 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1035
1036 /*
1037 * if we faulted "during" the execution of a user specified
1038 * probe handler, invoke just that probe's fault handler
1039 */
1040 if (cur && cur->fault_handler) {
1041 if (cur->fault_handler(cur, regs, trapnr))
1042 return 1;
1043 }
1044 return 0;
1045 }
1046 NOKPROBE_SYMBOL(aggr_fault_handler);
1047
aggr_break_handler(struct kprobe * p,struct pt_regs * regs)1048 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1049 {
1050 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1051 int ret = 0;
1052
1053 if (cur && cur->break_handler) {
1054 if (cur->break_handler(cur, regs))
1055 ret = 1;
1056 }
1057 reset_kprobe_instance();
1058 return ret;
1059 }
1060 NOKPROBE_SYMBOL(aggr_break_handler);
1061
1062 /* Walks the list and increments nmissed count for multiprobe case */
kprobes_inc_nmissed_count(struct kprobe * p)1063 void kprobes_inc_nmissed_count(struct kprobe *p)
1064 {
1065 struct kprobe *kp;
1066 if (!kprobe_aggrprobe(p)) {
1067 p->nmissed++;
1068 } else {
1069 list_for_each_entry_rcu(kp, &p->list, list)
1070 kp->nmissed++;
1071 }
1072 return;
1073 }
1074 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1075
recycle_rp_inst(struct kretprobe_instance * ri,struct hlist_head * head)1076 void recycle_rp_inst(struct kretprobe_instance *ri,
1077 struct hlist_head *head)
1078 {
1079 struct kretprobe *rp = ri->rp;
1080
1081 /* remove rp inst off the rprobe_inst_table */
1082 hlist_del(&ri->hlist);
1083 INIT_HLIST_NODE(&ri->hlist);
1084 if (likely(rp)) {
1085 raw_spin_lock(&rp->lock);
1086 hlist_add_head(&ri->hlist, &rp->free_instances);
1087 raw_spin_unlock(&rp->lock);
1088 } else
1089 /* Unregistering */
1090 hlist_add_head(&ri->hlist, head);
1091 }
1092 NOKPROBE_SYMBOL(recycle_rp_inst);
1093
kretprobe_hash_lock(struct task_struct * tsk,struct hlist_head ** head,unsigned long * flags)1094 void kretprobe_hash_lock(struct task_struct *tsk,
1095 struct hlist_head **head, unsigned long *flags)
1096 __acquires(hlist_lock)
1097 {
1098 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1099 raw_spinlock_t *hlist_lock;
1100
1101 *head = &kretprobe_inst_table[hash];
1102 hlist_lock = kretprobe_table_lock_ptr(hash);
1103 raw_spin_lock_irqsave(hlist_lock, *flags);
1104 }
1105 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1106
kretprobe_table_lock(unsigned long hash,unsigned long * flags)1107 static void kretprobe_table_lock(unsigned long hash,
1108 unsigned long *flags)
1109 __acquires(hlist_lock)
1110 {
1111 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1112 raw_spin_lock_irqsave(hlist_lock, *flags);
1113 }
1114 NOKPROBE_SYMBOL(kretprobe_table_lock);
1115
kretprobe_hash_unlock(struct task_struct * tsk,unsigned long * flags)1116 void kretprobe_hash_unlock(struct task_struct *tsk,
1117 unsigned long *flags)
1118 __releases(hlist_lock)
1119 {
1120 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1121 raw_spinlock_t *hlist_lock;
1122
1123 hlist_lock = kretprobe_table_lock_ptr(hash);
1124 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1125 }
1126 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1127
kretprobe_table_unlock(unsigned long hash,unsigned long * flags)1128 static void kretprobe_table_unlock(unsigned long hash,
1129 unsigned long *flags)
1130 __releases(hlist_lock)
1131 {
1132 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1133 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1134 }
1135 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1136
1137 /*
1138 * This function is called from finish_task_switch when task tk becomes dead,
1139 * so that we can recycle any function-return probe instances associated
1140 * with this task. These left over instances represent probed functions
1141 * that have been called but will never return.
1142 */
kprobe_flush_task(struct task_struct * tk)1143 void kprobe_flush_task(struct task_struct *tk)
1144 {
1145 struct kretprobe_instance *ri;
1146 struct hlist_head *head, empty_rp;
1147 struct hlist_node *tmp;
1148 unsigned long hash, flags = 0;
1149
1150 if (unlikely(!kprobes_initialized))
1151 /* Early boot. kretprobe_table_locks not yet initialized. */
1152 return;
1153
1154 INIT_HLIST_HEAD(&empty_rp);
1155 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1156 head = &kretprobe_inst_table[hash];
1157 kretprobe_table_lock(hash, &flags);
1158 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1159 if (ri->task == tk)
1160 recycle_rp_inst(ri, &empty_rp);
1161 }
1162 kretprobe_table_unlock(hash, &flags);
1163 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1164 hlist_del(&ri->hlist);
1165 kfree(ri);
1166 }
1167 }
1168 NOKPROBE_SYMBOL(kprobe_flush_task);
1169
free_rp_inst(struct kretprobe * rp)1170 static inline void free_rp_inst(struct kretprobe *rp)
1171 {
1172 struct kretprobe_instance *ri;
1173 struct hlist_node *next;
1174
1175 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1176 hlist_del(&ri->hlist);
1177 kfree(ri);
1178 }
1179 }
1180
cleanup_rp_inst(struct kretprobe * rp)1181 static void cleanup_rp_inst(struct kretprobe *rp)
1182 {
1183 unsigned long flags, hash;
1184 struct kretprobe_instance *ri;
1185 struct hlist_node *next;
1186 struct hlist_head *head;
1187
1188 /* No race here */
1189 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1190 kretprobe_table_lock(hash, &flags);
1191 head = &kretprobe_inst_table[hash];
1192 hlist_for_each_entry_safe(ri, next, head, hlist) {
1193 if (ri->rp == rp)
1194 ri->rp = NULL;
1195 }
1196 kretprobe_table_unlock(hash, &flags);
1197 }
1198 free_rp_inst(rp);
1199 }
1200 NOKPROBE_SYMBOL(cleanup_rp_inst);
1201
1202 /*
1203 * Add the new probe to ap->list. Fail if this is the
1204 * second jprobe at the address - two jprobes can't coexist
1205 */
add_new_kprobe(struct kprobe * ap,struct kprobe * p)1206 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1207 {
1208 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1209
1210 if (p->break_handler || p->post_handler)
1211 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1212
1213 if (p->break_handler) {
1214 if (ap->break_handler)
1215 return -EEXIST;
1216 list_add_tail_rcu(&p->list, &ap->list);
1217 ap->break_handler = aggr_break_handler;
1218 } else
1219 list_add_rcu(&p->list, &ap->list);
1220 if (p->post_handler && !ap->post_handler)
1221 ap->post_handler = aggr_post_handler;
1222
1223 return 0;
1224 }
1225
1226 /*
1227 * Fill in the required fields of the "manager kprobe". Replace the
1228 * earlier kprobe in the hlist with the manager kprobe
1229 */
init_aggr_kprobe(struct kprobe * ap,struct kprobe * p)1230 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1231 {
1232 /* Copy p's insn slot to ap */
1233 copy_kprobe(p, ap);
1234 flush_insn_slot(ap);
1235 ap->addr = p->addr;
1236 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1237 ap->pre_handler = aggr_pre_handler;
1238 ap->fault_handler = aggr_fault_handler;
1239 /* We don't care the kprobe which has gone. */
1240 if (p->post_handler && !kprobe_gone(p))
1241 ap->post_handler = aggr_post_handler;
1242 if (p->break_handler && !kprobe_gone(p))
1243 ap->break_handler = aggr_break_handler;
1244
1245 INIT_LIST_HEAD(&ap->list);
1246 INIT_HLIST_NODE(&ap->hlist);
1247
1248 list_add_rcu(&p->list, &ap->list);
1249 hlist_replace_rcu(&p->hlist, &ap->hlist);
1250 }
1251
1252 /*
1253 * This is the second or subsequent kprobe at the address - handle
1254 * the intricacies
1255 */
register_aggr_kprobe(struct kprobe * orig_p,struct kprobe * p)1256 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1257 {
1258 int ret = 0;
1259 struct kprobe *ap = orig_p;
1260
1261 /* For preparing optimization, jump_label_text_reserved() is called */
1262 jump_label_lock();
1263 /*
1264 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1265 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1266 */
1267 get_online_cpus();
1268 mutex_lock(&text_mutex);
1269
1270 if (!kprobe_aggrprobe(orig_p)) {
1271 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1272 ap = alloc_aggr_kprobe(orig_p);
1273 if (!ap) {
1274 ret = -ENOMEM;
1275 goto out;
1276 }
1277 init_aggr_kprobe(ap, orig_p);
1278 } else if (kprobe_unused(ap))
1279 /* This probe is going to die. Rescue it */
1280 reuse_unused_kprobe(ap);
1281
1282 if (kprobe_gone(ap)) {
1283 /*
1284 * Attempting to insert new probe at the same location that
1285 * had a probe in the module vaddr area which already
1286 * freed. So, the instruction slot has already been
1287 * released. We need a new slot for the new probe.
1288 */
1289 ret = arch_prepare_kprobe(ap);
1290 if (ret)
1291 /*
1292 * Even if fail to allocate new slot, don't need to
1293 * free aggr_probe. It will be used next time, or
1294 * freed by unregister_kprobe.
1295 */
1296 goto out;
1297
1298 /* Prepare optimized instructions if possible. */
1299 prepare_optimized_kprobe(ap);
1300
1301 /*
1302 * Clear gone flag to prevent allocating new slot again, and
1303 * set disabled flag because it is not armed yet.
1304 */
1305 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1306 | KPROBE_FLAG_DISABLED;
1307 }
1308
1309 /* Copy ap's insn slot to p */
1310 copy_kprobe(ap, p);
1311 ret = add_new_kprobe(ap, p);
1312
1313 out:
1314 mutex_unlock(&text_mutex);
1315 put_online_cpus();
1316 jump_label_unlock();
1317
1318 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1319 ap->flags &= ~KPROBE_FLAG_DISABLED;
1320 if (!kprobes_all_disarmed)
1321 /* Arm the breakpoint again. */
1322 arm_kprobe(ap);
1323 }
1324 return ret;
1325 }
1326
arch_within_kprobe_blacklist(unsigned long addr)1327 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1328 {
1329 /* The __kprobes marked functions and entry code must not be probed */
1330 return addr >= (unsigned long)__kprobes_text_start &&
1331 addr < (unsigned long)__kprobes_text_end;
1332 }
1333
within_kprobe_blacklist(unsigned long addr)1334 static bool within_kprobe_blacklist(unsigned long addr)
1335 {
1336 struct kprobe_blacklist_entry *ent;
1337
1338 if (arch_within_kprobe_blacklist(addr))
1339 return true;
1340 /*
1341 * If there exists a kprobe_blacklist, verify and
1342 * fail any probe registration in the prohibited area
1343 */
1344 list_for_each_entry(ent, &kprobe_blacklist, list) {
1345 if (addr >= ent->start_addr && addr < ent->end_addr)
1346 return true;
1347 }
1348
1349 return false;
1350 }
1351
1352 /*
1353 * If we have a symbol_name argument, look it up and add the offset field
1354 * to it. This way, we can specify a relative address to a symbol.
1355 * This returns encoded errors if it fails to look up symbol or invalid
1356 * combination of parameters.
1357 */
kprobe_addr(struct kprobe * p)1358 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1359 {
1360 kprobe_opcode_t *addr = p->addr;
1361
1362 if ((p->symbol_name && p->addr) ||
1363 (!p->symbol_name && !p->addr))
1364 goto invalid;
1365
1366 if (p->symbol_name) {
1367 kprobe_lookup_name(p->symbol_name, addr);
1368 if (!addr)
1369 return ERR_PTR(-ENOENT);
1370 }
1371
1372 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1373 if (addr)
1374 return addr;
1375
1376 invalid:
1377 return ERR_PTR(-EINVAL);
1378 }
1379
1380 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
__get_valid_kprobe(struct kprobe * p)1381 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1382 {
1383 struct kprobe *ap, *list_p;
1384
1385 ap = get_kprobe(p->addr);
1386 if (unlikely(!ap))
1387 return NULL;
1388
1389 if (p != ap) {
1390 list_for_each_entry_rcu(list_p, &ap->list, list)
1391 if (list_p == p)
1392 /* kprobe p is a valid probe */
1393 goto valid;
1394 return NULL;
1395 }
1396 valid:
1397 return ap;
1398 }
1399
1400 /* Return error if the kprobe is being re-registered */
check_kprobe_rereg(struct kprobe * p)1401 static inline int check_kprobe_rereg(struct kprobe *p)
1402 {
1403 int ret = 0;
1404
1405 mutex_lock(&kprobe_mutex);
1406 if (__get_valid_kprobe(p))
1407 ret = -EINVAL;
1408 mutex_unlock(&kprobe_mutex);
1409
1410 return ret;
1411 }
1412
check_kprobe_address_safe(struct kprobe * p,struct module ** probed_mod)1413 static int check_kprobe_address_safe(struct kprobe *p,
1414 struct module **probed_mod)
1415 {
1416 int ret = 0;
1417 unsigned long ftrace_addr;
1418
1419 /*
1420 * If the address is located on a ftrace nop, set the
1421 * breakpoint to the following instruction.
1422 */
1423 ftrace_addr = ftrace_location((unsigned long)p->addr);
1424 if (ftrace_addr) {
1425 #ifdef CONFIG_KPROBES_ON_FTRACE
1426 /* Given address is not on the instruction boundary */
1427 if ((unsigned long)p->addr != ftrace_addr)
1428 return -EILSEQ;
1429 p->flags |= KPROBE_FLAG_FTRACE;
1430 #else /* !CONFIG_KPROBES_ON_FTRACE */
1431 return -EINVAL;
1432 #endif
1433 }
1434
1435 jump_label_lock();
1436 preempt_disable();
1437
1438 /* Ensure it is not in reserved area nor out of text */
1439 if (!kernel_text_address((unsigned long) p->addr) ||
1440 within_kprobe_blacklist((unsigned long) p->addr) ||
1441 jump_label_text_reserved(p->addr, p->addr)) {
1442 ret = -EINVAL;
1443 goto out;
1444 }
1445
1446 /* Check if are we probing a module */
1447 *probed_mod = __module_text_address((unsigned long) p->addr);
1448 if (*probed_mod) {
1449 /*
1450 * We must hold a refcount of the probed module while updating
1451 * its code to prohibit unexpected unloading.
1452 */
1453 if (unlikely(!try_module_get(*probed_mod))) {
1454 ret = -ENOENT;
1455 goto out;
1456 }
1457
1458 /*
1459 * If the module freed .init.text, we couldn't insert
1460 * kprobes in there.
1461 */
1462 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1463 (*probed_mod)->state != MODULE_STATE_COMING) {
1464 module_put(*probed_mod);
1465 *probed_mod = NULL;
1466 ret = -ENOENT;
1467 }
1468 }
1469 out:
1470 preempt_enable();
1471 jump_label_unlock();
1472
1473 return ret;
1474 }
1475
register_kprobe(struct kprobe * p)1476 int register_kprobe(struct kprobe *p)
1477 {
1478 int ret;
1479 struct kprobe *old_p;
1480 struct module *probed_mod;
1481 kprobe_opcode_t *addr;
1482
1483 /* Adjust probe address from symbol */
1484 addr = kprobe_addr(p);
1485 if (IS_ERR(addr))
1486 return PTR_ERR(addr);
1487 p->addr = addr;
1488
1489 ret = check_kprobe_rereg(p);
1490 if (ret)
1491 return ret;
1492
1493 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1494 p->flags &= KPROBE_FLAG_DISABLED;
1495 p->nmissed = 0;
1496 INIT_LIST_HEAD(&p->list);
1497
1498 ret = check_kprobe_address_safe(p, &probed_mod);
1499 if (ret)
1500 return ret;
1501
1502 mutex_lock(&kprobe_mutex);
1503
1504 old_p = get_kprobe(p->addr);
1505 if (old_p) {
1506 /* Since this may unoptimize old_p, locking text_mutex. */
1507 ret = register_aggr_kprobe(old_p, p);
1508 goto out;
1509 }
1510
1511 mutex_lock(&text_mutex); /* Avoiding text modification */
1512 ret = prepare_kprobe(p);
1513 mutex_unlock(&text_mutex);
1514 if (ret)
1515 goto out;
1516
1517 INIT_HLIST_NODE(&p->hlist);
1518 hlist_add_head_rcu(&p->hlist,
1519 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1520
1521 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1522 arm_kprobe(p);
1523
1524 /* Try to optimize kprobe */
1525 try_to_optimize_kprobe(p);
1526
1527 out:
1528 mutex_unlock(&kprobe_mutex);
1529
1530 if (probed_mod)
1531 module_put(probed_mod);
1532
1533 return ret;
1534 }
1535 EXPORT_SYMBOL_GPL(register_kprobe);
1536
1537 /* Check if all probes on the aggrprobe are disabled */
aggr_kprobe_disabled(struct kprobe * ap)1538 static int aggr_kprobe_disabled(struct kprobe *ap)
1539 {
1540 struct kprobe *kp;
1541
1542 list_for_each_entry_rcu(kp, &ap->list, list)
1543 if (!kprobe_disabled(kp))
1544 /*
1545 * There is an active probe on the list.
1546 * We can't disable this ap.
1547 */
1548 return 0;
1549
1550 return 1;
1551 }
1552
1553 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
__disable_kprobe(struct kprobe * p)1554 static struct kprobe *__disable_kprobe(struct kprobe *p)
1555 {
1556 struct kprobe *orig_p;
1557
1558 /* Get an original kprobe for return */
1559 orig_p = __get_valid_kprobe(p);
1560 if (unlikely(orig_p == NULL))
1561 return NULL;
1562
1563 if (!kprobe_disabled(p)) {
1564 /* Disable probe if it is a child probe */
1565 if (p != orig_p)
1566 p->flags |= KPROBE_FLAG_DISABLED;
1567
1568 /* Try to disarm and disable this/parent probe */
1569 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1570 disarm_kprobe(orig_p, true);
1571 orig_p->flags |= KPROBE_FLAG_DISABLED;
1572 }
1573 }
1574
1575 return orig_p;
1576 }
1577
1578 /*
1579 * Unregister a kprobe without a scheduler synchronization.
1580 */
__unregister_kprobe_top(struct kprobe * p)1581 static int __unregister_kprobe_top(struct kprobe *p)
1582 {
1583 struct kprobe *ap, *list_p;
1584
1585 /* Disable kprobe. This will disarm it if needed. */
1586 ap = __disable_kprobe(p);
1587 if (ap == NULL)
1588 return -EINVAL;
1589
1590 if (ap == p)
1591 /*
1592 * This probe is an independent(and non-optimized) kprobe
1593 * (not an aggrprobe). Remove from the hash list.
1594 */
1595 goto disarmed;
1596
1597 /* Following process expects this probe is an aggrprobe */
1598 WARN_ON(!kprobe_aggrprobe(ap));
1599
1600 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1601 /*
1602 * !disarmed could be happen if the probe is under delayed
1603 * unoptimizing.
1604 */
1605 goto disarmed;
1606 else {
1607 /* If disabling probe has special handlers, update aggrprobe */
1608 if (p->break_handler && !kprobe_gone(p))
1609 ap->break_handler = NULL;
1610 if (p->post_handler && !kprobe_gone(p)) {
1611 list_for_each_entry_rcu(list_p, &ap->list, list) {
1612 if ((list_p != p) && (list_p->post_handler))
1613 goto noclean;
1614 }
1615 ap->post_handler = NULL;
1616 }
1617 noclean:
1618 /*
1619 * Remove from the aggrprobe: this path will do nothing in
1620 * __unregister_kprobe_bottom().
1621 */
1622 list_del_rcu(&p->list);
1623 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1624 /*
1625 * Try to optimize this probe again, because post
1626 * handler may have been changed.
1627 */
1628 optimize_kprobe(ap);
1629 }
1630 return 0;
1631
1632 disarmed:
1633 BUG_ON(!kprobe_disarmed(ap));
1634 hlist_del_rcu(&ap->hlist);
1635 return 0;
1636 }
1637
__unregister_kprobe_bottom(struct kprobe * p)1638 static void __unregister_kprobe_bottom(struct kprobe *p)
1639 {
1640 struct kprobe *ap;
1641
1642 if (list_empty(&p->list))
1643 /* This is an independent kprobe */
1644 arch_remove_kprobe(p);
1645 else if (list_is_singular(&p->list)) {
1646 /* This is the last child of an aggrprobe */
1647 ap = list_entry(p->list.next, struct kprobe, list);
1648 list_del(&p->list);
1649 free_aggr_kprobe(ap);
1650 }
1651 /* Otherwise, do nothing. */
1652 }
1653
register_kprobes(struct kprobe ** kps,int num)1654 int register_kprobes(struct kprobe **kps, int num)
1655 {
1656 int i, ret = 0;
1657
1658 if (num <= 0)
1659 return -EINVAL;
1660 for (i = 0; i < num; i++) {
1661 ret = register_kprobe(kps[i]);
1662 if (ret < 0) {
1663 if (i > 0)
1664 unregister_kprobes(kps, i);
1665 break;
1666 }
1667 }
1668 return ret;
1669 }
1670 EXPORT_SYMBOL_GPL(register_kprobes);
1671
unregister_kprobe(struct kprobe * p)1672 void unregister_kprobe(struct kprobe *p)
1673 {
1674 unregister_kprobes(&p, 1);
1675 }
1676 EXPORT_SYMBOL_GPL(unregister_kprobe);
1677
unregister_kprobes(struct kprobe ** kps,int num)1678 void unregister_kprobes(struct kprobe **kps, int num)
1679 {
1680 int i;
1681
1682 if (num <= 0)
1683 return;
1684 mutex_lock(&kprobe_mutex);
1685 for (i = 0; i < num; i++)
1686 if (__unregister_kprobe_top(kps[i]) < 0)
1687 kps[i]->addr = NULL;
1688 mutex_unlock(&kprobe_mutex);
1689
1690 synchronize_sched();
1691 for (i = 0; i < num; i++)
1692 if (kps[i]->addr)
1693 __unregister_kprobe_bottom(kps[i]);
1694 }
1695 EXPORT_SYMBOL_GPL(unregister_kprobes);
1696
1697 static struct notifier_block kprobe_exceptions_nb = {
1698 .notifier_call = kprobe_exceptions_notify,
1699 .priority = 0x7fffffff /* we need to be notified first */
1700 };
1701
arch_deref_entry_point(void * entry)1702 unsigned long __weak arch_deref_entry_point(void *entry)
1703 {
1704 return (unsigned long)entry;
1705 }
1706
register_jprobes(struct jprobe ** jps,int num)1707 int register_jprobes(struct jprobe **jps, int num)
1708 {
1709 struct jprobe *jp;
1710 int ret = 0, i;
1711
1712 if (num <= 0)
1713 return -EINVAL;
1714 for (i = 0; i < num; i++) {
1715 unsigned long addr, offset;
1716 jp = jps[i];
1717 addr = arch_deref_entry_point(jp->entry);
1718
1719 /* Verify probepoint is a function entry point */
1720 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1721 offset == 0) {
1722 jp->kp.pre_handler = setjmp_pre_handler;
1723 jp->kp.break_handler = longjmp_break_handler;
1724 ret = register_kprobe(&jp->kp);
1725 } else
1726 ret = -EINVAL;
1727
1728 if (ret < 0) {
1729 if (i > 0)
1730 unregister_jprobes(jps, i);
1731 break;
1732 }
1733 }
1734 return ret;
1735 }
1736 EXPORT_SYMBOL_GPL(register_jprobes);
1737
register_jprobe(struct jprobe * jp)1738 int register_jprobe(struct jprobe *jp)
1739 {
1740 return register_jprobes(&jp, 1);
1741 }
1742 EXPORT_SYMBOL_GPL(register_jprobe);
1743
unregister_jprobe(struct jprobe * jp)1744 void unregister_jprobe(struct jprobe *jp)
1745 {
1746 unregister_jprobes(&jp, 1);
1747 }
1748 EXPORT_SYMBOL_GPL(unregister_jprobe);
1749
unregister_jprobes(struct jprobe ** jps,int num)1750 void unregister_jprobes(struct jprobe **jps, int num)
1751 {
1752 int i;
1753
1754 if (num <= 0)
1755 return;
1756 mutex_lock(&kprobe_mutex);
1757 for (i = 0; i < num; i++)
1758 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1759 jps[i]->kp.addr = NULL;
1760 mutex_unlock(&kprobe_mutex);
1761
1762 synchronize_sched();
1763 for (i = 0; i < num; i++) {
1764 if (jps[i]->kp.addr)
1765 __unregister_kprobe_bottom(&jps[i]->kp);
1766 }
1767 }
1768 EXPORT_SYMBOL_GPL(unregister_jprobes);
1769
1770 #ifdef CONFIG_KRETPROBES
1771 /*
1772 * This kprobe pre_handler is registered with every kretprobe. When probe
1773 * hits it will set up the return probe.
1774 */
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)1775 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1776 {
1777 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1778 unsigned long hash, flags = 0;
1779 struct kretprobe_instance *ri;
1780
1781 /*
1782 * To avoid deadlocks, prohibit return probing in NMI contexts,
1783 * just skip the probe and increase the (inexact) 'nmissed'
1784 * statistical counter, so that the user is informed that
1785 * something happened:
1786 */
1787 if (unlikely(in_nmi())) {
1788 rp->nmissed++;
1789 return 0;
1790 }
1791
1792 /* TODO: consider to only swap the RA after the last pre_handler fired */
1793 hash = hash_ptr(current, KPROBE_HASH_BITS);
1794 raw_spin_lock_irqsave(&rp->lock, flags);
1795 if (!hlist_empty(&rp->free_instances)) {
1796 ri = hlist_entry(rp->free_instances.first,
1797 struct kretprobe_instance, hlist);
1798 hlist_del(&ri->hlist);
1799 raw_spin_unlock_irqrestore(&rp->lock, flags);
1800
1801 ri->rp = rp;
1802 ri->task = current;
1803
1804 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1805 raw_spin_lock_irqsave(&rp->lock, flags);
1806 hlist_add_head(&ri->hlist, &rp->free_instances);
1807 raw_spin_unlock_irqrestore(&rp->lock, flags);
1808 return 0;
1809 }
1810
1811 arch_prepare_kretprobe(ri, regs);
1812
1813 /* XXX(hch): why is there no hlist_move_head? */
1814 INIT_HLIST_NODE(&ri->hlist);
1815 kretprobe_table_lock(hash, &flags);
1816 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1817 kretprobe_table_unlock(hash, &flags);
1818 } else {
1819 rp->nmissed++;
1820 raw_spin_unlock_irqrestore(&rp->lock, flags);
1821 }
1822 return 0;
1823 }
1824 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1825
register_kretprobe(struct kretprobe * rp)1826 int register_kretprobe(struct kretprobe *rp)
1827 {
1828 int ret = 0;
1829 struct kretprobe_instance *inst;
1830 int i;
1831 void *addr;
1832
1833 if (kretprobe_blacklist_size) {
1834 addr = kprobe_addr(&rp->kp);
1835 if (IS_ERR(addr))
1836 return PTR_ERR(addr);
1837
1838 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1839 if (kretprobe_blacklist[i].addr == addr)
1840 return -EINVAL;
1841 }
1842 }
1843
1844 rp->kp.pre_handler = pre_handler_kretprobe;
1845 rp->kp.post_handler = NULL;
1846 rp->kp.fault_handler = NULL;
1847 rp->kp.break_handler = NULL;
1848
1849 /* Pre-allocate memory for max kretprobe instances */
1850 if (rp->maxactive <= 0) {
1851 #ifdef CONFIG_PREEMPT
1852 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1853 #else
1854 rp->maxactive = num_possible_cpus();
1855 #endif
1856 }
1857 raw_spin_lock_init(&rp->lock);
1858 INIT_HLIST_HEAD(&rp->free_instances);
1859 for (i = 0; i < rp->maxactive; i++) {
1860 inst = kmalloc(sizeof(struct kretprobe_instance) +
1861 rp->data_size, GFP_KERNEL);
1862 if (inst == NULL) {
1863 free_rp_inst(rp);
1864 return -ENOMEM;
1865 }
1866 INIT_HLIST_NODE(&inst->hlist);
1867 hlist_add_head(&inst->hlist, &rp->free_instances);
1868 }
1869
1870 rp->nmissed = 0;
1871 /* Establish function entry probe point */
1872 ret = register_kprobe(&rp->kp);
1873 if (ret != 0)
1874 free_rp_inst(rp);
1875 return ret;
1876 }
1877 EXPORT_SYMBOL_GPL(register_kretprobe);
1878
register_kretprobes(struct kretprobe ** rps,int num)1879 int register_kretprobes(struct kretprobe **rps, int num)
1880 {
1881 int ret = 0, i;
1882
1883 if (num <= 0)
1884 return -EINVAL;
1885 for (i = 0; i < num; i++) {
1886 ret = register_kretprobe(rps[i]);
1887 if (ret < 0) {
1888 if (i > 0)
1889 unregister_kretprobes(rps, i);
1890 break;
1891 }
1892 }
1893 return ret;
1894 }
1895 EXPORT_SYMBOL_GPL(register_kretprobes);
1896
unregister_kretprobe(struct kretprobe * rp)1897 void unregister_kretprobe(struct kretprobe *rp)
1898 {
1899 unregister_kretprobes(&rp, 1);
1900 }
1901 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1902
unregister_kretprobes(struct kretprobe ** rps,int num)1903 void unregister_kretprobes(struct kretprobe **rps, int num)
1904 {
1905 int i;
1906
1907 if (num <= 0)
1908 return;
1909 mutex_lock(&kprobe_mutex);
1910 for (i = 0; i < num; i++)
1911 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1912 rps[i]->kp.addr = NULL;
1913 mutex_unlock(&kprobe_mutex);
1914
1915 synchronize_sched();
1916 for (i = 0; i < num; i++) {
1917 if (rps[i]->kp.addr) {
1918 __unregister_kprobe_bottom(&rps[i]->kp);
1919 cleanup_rp_inst(rps[i]);
1920 }
1921 }
1922 }
1923 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1924
1925 #else /* CONFIG_KRETPROBES */
register_kretprobe(struct kretprobe * rp)1926 int register_kretprobe(struct kretprobe *rp)
1927 {
1928 return -ENOSYS;
1929 }
1930 EXPORT_SYMBOL_GPL(register_kretprobe);
1931
register_kretprobes(struct kretprobe ** rps,int num)1932 int register_kretprobes(struct kretprobe **rps, int num)
1933 {
1934 return -ENOSYS;
1935 }
1936 EXPORT_SYMBOL_GPL(register_kretprobes);
1937
unregister_kretprobe(struct kretprobe * rp)1938 void unregister_kretprobe(struct kretprobe *rp)
1939 {
1940 }
1941 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1942
unregister_kretprobes(struct kretprobe ** rps,int num)1943 void unregister_kretprobes(struct kretprobe **rps, int num)
1944 {
1945 }
1946 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1947
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)1948 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1949 {
1950 return 0;
1951 }
1952 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1953
1954 #endif /* CONFIG_KRETPROBES */
1955
1956 /* Set the kprobe gone and remove its instruction buffer. */
kill_kprobe(struct kprobe * p)1957 static void kill_kprobe(struct kprobe *p)
1958 {
1959 struct kprobe *kp;
1960
1961 p->flags |= KPROBE_FLAG_GONE;
1962 if (kprobe_aggrprobe(p)) {
1963 /*
1964 * If this is an aggr_kprobe, we have to list all the
1965 * chained probes and mark them GONE.
1966 */
1967 list_for_each_entry_rcu(kp, &p->list, list)
1968 kp->flags |= KPROBE_FLAG_GONE;
1969 p->post_handler = NULL;
1970 p->break_handler = NULL;
1971 kill_optimized_kprobe(p);
1972 }
1973 /*
1974 * Here, we can remove insn_slot safely, because no thread calls
1975 * the original probed function (which will be freed soon) any more.
1976 */
1977 arch_remove_kprobe(p);
1978 }
1979
1980 /* Disable one kprobe */
disable_kprobe(struct kprobe * kp)1981 int disable_kprobe(struct kprobe *kp)
1982 {
1983 int ret = 0;
1984
1985 mutex_lock(&kprobe_mutex);
1986
1987 /* Disable this kprobe */
1988 if (__disable_kprobe(kp) == NULL)
1989 ret = -EINVAL;
1990
1991 mutex_unlock(&kprobe_mutex);
1992 return ret;
1993 }
1994 EXPORT_SYMBOL_GPL(disable_kprobe);
1995
1996 /* Enable one kprobe */
enable_kprobe(struct kprobe * kp)1997 int enable_kprobe(struct kprobe *kp)
1998 {
1999 int ret = 0;
2000 struct kprobe *p;
2001
2002 mutex_lock(&kprobe_mutex);
2003
2004 /* Check whether specified probe is valid. */
2005 p = __get_valid_kprobe(kp);
2006 if (unlikely(p == NULL)) {
2007 ret = -EINVAL;
2008 goto out;
2009 }
2010
2011 if (kprobe_gone(kp)) {
2012 /* This kprobe has gone, we couldn't enable it. */
2013 ret = -EINVAL;
2014 goto out;
2015 }
2016
2017 if (p != kp)
2018 kp->flags &= ~KPROBE_FLAG_DISABLED;
2019
2020 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2021 p->flags &= ~KPROBE_FLAG_DISABLED;
2022 arm_kprobe(p);
2023 }
2024 out:
2025 mutex_unlock(&kprobe_mutex);
2026 return ret;
2027 }
2028 EXPORT_SYMBOL_GPL(enable_kprobe);
2029
dump_kprobe(struct kprobe * kp)2030 void dump_kprobe(struct kprobe *kp)
2031 {
2032 printk(KERN_WARNING "Dumping kprobe:\n");
2033 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2034 kp->symbol_name, kp->addr, kp->offset);
2035 }
2036 NOKPROBE_SYMBOL(dump_kprobe);
2037
2038 /*
2039 * Lookup and populate the kprobe_blacklist.
2040 *
2041 * Unlike the kretprobe blacklist, we'll need to determine
2042 * the range of addresses that belong to the said functions,
2043 * since a kprobe need not necessarily be at the beginning
2044 * of a function.
2045 */
populate_kprobe_blacklist(unsigned long * start,unsigned long * end)2046 static int __init populate_kprobe_blacklist(unsigned long *start,
2047 unsigned long *end)
2048 {
2049 unsigned long *iter;
2050 struct kprobe_blacklist_entry *ent;
2051 unsigned long entry, offset = 0, size = 0;
2052
2053 for (iter = start; iter < end; iter++) {
2054 entry = arch_deref_entry_point((void *)*iter);
2055
2056 if (!kernel_text_address(entry) ||
2057 !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2058 pr_err("Failed to find blacklist at %p\n",
2059 (void *)entry);
2060 continue;
2061 }
2062
2063 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2064 if (!ent)
2065 return -ENOMEM;
2066 ent->start_addr = entry;
2067 ent->end_addr = entry + size;
2068 INIT_LIST_HEAD(&ent->list);
2069 list_add_tail(&ent->list, &kprobe_blacklist);
2070 }
2071 return 0;
2072 }
2073
2074 /* Module notifier call back, checking kprobes on the module */
kprobes_module_callback(struct notifier_block * nb,unsigned long val,void * data)2075 static int kprobes_module_callback(struct notifier_block *nb,
2076 unsigned long val, void *data)
2077 {
2078 struct module *mod = data;
2079 struct hlist_head *head;
2080 struct kprobe *p;
2081 unsigned int i;
2082 int checkcore = (val == MODULE_STATE_GOING);
2083
2084 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2085 return NOTIFY_DONE;
2086
2087 /*
2088 * When MODULE_STATE_GOING was notified, both of module .text and
2089 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2090 * notified, only .init.text section would be freed. We need to
2091 * disable kprobes which have been inserted in the sections.
2092 */
2093 mutex_lock(&kprobe_mutex);
2094 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2095 head = &kprobe_table[i];
2096 hlist_for_each_entry_rcu(p, head, hlist)
2097 if (within_module_init((unsigned long)p->addr, mod) ||
2098 (checkcore &&
2099 within_module_core((unsigned long)p->addr, mod))) {
2100 /*
2101 * The vaddr this probe is installed will soon
2102 * be vfreed buy not synced to disk. Hence,
2103 * disarming the breakpoint isn't needed.
2104 */
2105 kill_kprobe(p);
2106 }
2107 }
2108 mutex_unlock(&kprobe_mutex);
2109 return NOTIFY_DONE;
2110 }
2111
2112 static struct notifier_block kprobe_module_nb = {
2113 .notifier_call = kprobes_module_callback,
2114 .priority = 0
2115 };
2116
2117 /* Markers of _kprobe_blacklist section */
2118 extern unsigned long __start_kprobe_blacklist[];
2119 extern unsigned long __stop_kprobe_blacklist[];
2120
init_kprobes(void)2121 static int __init init_kprobes(void)
2122 {
2123 int i, err = 0;
2124
2125 /* FIXME allocate the probe table, currently defined statically */
2126 /* initialize all list heads */
2127 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2128 INIT_HLIST_HEAD(&kprobe_table[i]);
2129 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2130 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2131 }
2132
2133 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2134 __stop_kprobe_blacklist);
2135 if (err) {
2136 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2137 pr_err("Please take care of using kprobes.\n");
2138 }
2139
2140 if (kretprobe_blacklist_size) {
2141 /* lookup the function address from its name */
2142 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2143 kprobe_lookup_name(kretprobe_blacklist[i].name,
2144 kretprobe_blacklist[i].addr);
2145 if (!kretprobe_blacklist[i].addr)
2146 printk("kretprobe: lookup failed: %s\n",
2147 kretprobe_blacklist[i].name);
2148 }
2149 }
2150
2151 #if defined(CONFIG_OPTPROBES)
2152 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2153 /* Init kprobe_optinsn_slots */
2154 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2155 #endif
2156 /* By default, kprobes can be optimized */
2157 kprobes_allow_optimization = true;
2158 #endif
2159
2160 /* By default, kprobes are armed */
2161 kprobes_all_disarmed = false;
2162
2163 err = arch_init_kprobes();
2164 if (!err)
2165 err = register_die_notifier(&kprobe_exceptions_nb);
2166 if (!err)
2167 err = register_module_notifier(&kprobe_module_nb);
2168
2169 kprobes_initialized = (err == 0);
2170
2171 if (!err)
2172 init_test_probes();
2173 return err;
2174 }
2175
2176 #ifdef CONFIG_DEBUG_FS
report_probe(struct seq_file * pi,struct kprobe * p,const char * sym,int offset,char * modname,struct kprobe * pp)2177 static void report_probe(struct seq_file *pi, struct kprobe *p,
2178 const char *sym, int offset, char *modname, struct kprobe *pp)
2179 {
2180 char *kprobe_type;
2181
2182 if (p->pre_handler == pre_handler_kretprobe)
2183 kprobe_type = "r";
2184 else if (p->pre_handler == setjmp_pre_handler)
2185 kprobe_type = "j";
2186 else
2187 kprobe_type = "k";
2188
2189 if (sym)
2190 seq_printf(pi, "%p %s %s+0x%x %s ",
2191 p->addr, kprobe_type, sym, offset,
2192 (modname ? modname : " "));
2193 else
2194 seq_printf(pi, "%p %s %p ",
2195 p->addr, kprobe_type, p->addr);
2196
2197 if (!pp)
2198 pp = p;
2199 seq_printf(pi, "%s%s%s%s\n",
2200 (kprobe_gone(p) ? "[GONE]" : ""),
2201 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2202 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2203 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2204 }
2205
kprobe_seq_start(struct seq_file * f,loff_t * pos)2206 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2207 {
2208 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2209 }
2210
kprobe_seq_next(struct seq_file * f,void * v,loff_t * pos)2211 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2212 {
2213 (*pos)++;
2214 if (*pos >= KPROBE_TABLE_SIZE)
2215 return NULL;
2216 return pos;
2217 }
2218
kprobe_seq_stop(struct seq_file * f,void * v)2219 static void kprobe_seq_stop(struct seq_file *f, void *v)
2220 {
2221 /* Nothing to do */
2222 }
2223
show_kprobe_addr(struct seq_file * pi,void * v)2224 static int show_kprobe_addr(struct seq_file *pi, void *v)
2225 {
2226 struct hlist_head *head;
2227 struct kprobe *p, *kp;
2228 const char *sym = NULL;
2229 unsigned int i = *(loff_t *) v;
2230 unsigned long offset = 0;
2231 char *modname, namebuf[KSYM_NAME_LEN];
2232
2233 head = &kprobe_table[i];
2234 preempt_disable();
2235 hlist_for_each_entry_rcu(p, head, hlist) {
2236 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2237 &offset, &modname, namebuf);
2238 if (kprobe_aggrprobe(p)) {
2239 list_for_each_entry_rcu(kp, &p->list, list)
2240 report_probe(pi, kp, sym, offset, modname, p);
2241 } else
2242 report_probe(pi, p, sym, offset, modname, NULL);
2243 }
2244 preempt_enable();
2245 return 0;
2246 }
2247
2248 static const struct seq_operations kprobes_seq_ops = {
2249 .start = kprobe_seq_start,
2250 .next = kprobe_seq_next,
2251 .stop = kprobe_seq_stop,
2252 .show = show_kprobe_addr
2253 };
2254
kprobes_open(struct inode * inode,struct file * filp)2255 static int kprobes_open(struct inode *inode, struct file *filp)
2256 {
2257 return seq_open(filp, &kprobes_seq_ops);
2258 }
2259
2260 static const struct file_operations debugfs_kprobes_operations = {
2261 .open = kprobes_open,
2262 .read = seq_read,
2263 .llseek = seq_lseek,
2264 .release = seq_release,
2265 };
2266
2267 /* kprobes/blacklist -- shows which functions can not be probed */
kprobe_blacklist_seq_start(struct seq_file * m,loff_t * pos)2268 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2269 {
2270 return seq_list_start(&kprobe_blacklist, *pos);
2271 }
2272
kprobe_blacklist_seq_next(struct seq_file * m,void * v,loff_t * pos)2273 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2274 {
2275 return seq_list_next(v, &kprobe_blacklist, pos);
2276 }
2277
kprobe_blacklist_seq_show(struct seq_file * m,void * v)2278 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2279 {
2280 struct kprobe_blacklist_entry *ent =
2281 list_entry(v, struct kprobe_blacklist_entry, list);
2282
2283 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2284 (void *)ent->end_addr, (void *)ent->start_addr);
2285 return 0;
2286 }
2287
2288 static const struct seq_operations kprobe_blacklist_seq_ops = {
2289 .start = kprobe_blacklist_seq_start,
2290 .next = kprobe_blacklist_seq_next,
2291 .stop = kprobe_seq_stop, /* Reuse void function */
2292 .show = kprobe_blacklist_seq_show,
2293 };
2294
kprobe_blacklist_open(struct inode * inode,struct file * filp)2295 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2296 {
2297 return seq_open(filp, &kprobe_blacklist_seq_ops);
2298 }
2299
2300 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2301 .open = kprobe_blacklist_open,
2302 .read = seq_read,
2303 .llseek = seq_lseek,
2304 .release = seq_release,
2305 };
2306
arm_all_kprobes(void)2307 static void arm_all_kprobes(void)
2308 {
2309 struct hlist_head *head;
2310 struct kprobe *p;
2311 unsigned int i;
2312
2313 mutex_lock(&kprobe_mutex);
2314
2315 /* If kprobes are armed, just return */
2316 if (!kprobes_all_disarmed)
2317 goto already_enabled;
2318
2319 /* Arming kprobes doesn't optimize kprobe itself */
2320 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2321 head = &kprobe_table[i];
2322 hlist_for_each_entry_rcu(p, head, hlist)
2323 if (!kprobe_disabled(p))
2324 arm_kprobe(p);
2325 }
2326
2327 kprobes_all_disarmed = false;
2328 printk(KERN_INFO "Kprobes globally enabled\n");
2329
2330 already_enabled:
2331 mutex_unlock(&kprobe_mutex);
2332 return;
2333 }
2334
disarm_all_kprobes(void)2335 static void disarm_all_kprobes(void)
2336 {
2337 struct hlist_head *head;
2338 struct kprobe *p;
2339 unsigned int i;
2340
2341 mutex_lock(&kprobe_mutex);
2342
2343 /* If kprobes are already disarmed, just return */
2344 if (kprobes_all_disarmed) {
2345 mutex_unlock(&kprobe_mutex);
2346 return;
2347 }
2348
2349 kprobes_all_disarmed = true;
2350 printk(KERN_INFO "Kprobes globally disabled\n");
2351
2352 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2353 head = &kprobe_table[i];
2354 hlist_for_each_entry_rcu(p, head, hlist) {
2355 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2356 disarm_kprobe(p, false);
2357 }
2358 }
2359 mutex_unlock(&kprobe_mutex);
2360
2361 /* Wait for disarming all kprobes by optimizer */
2362 wait_for_kprobe_optimizer();
2363 }
2364
2365 /*
2366 * XXX: The debugfs bool file interface doesn't allow for callbacks
2367 * when the bool state is switched. We can reuse that facility when
2368 * available
2369 */
read_enabled_file_bool(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)2370 static ssize_t read_enabled_file_bool(struct file *file,
2371 char __user *user_buf, size_t count, loff_t *ppos)
2372 {
2373 char buf[3];
2374
2375 if (!kprobes_all_disarmed)
2376 buf[0] = '1';
2377 else
2378 buf[0] = '0';
2379 buf[1] = '\n';
2380 buf[2] = 0x00;
2381 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2382 }
2383
write_enabled_file_bool(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)2384 static ssize_t write_enabled_file_bool(struct file *file,
2385 const char __user *user_buf, size_t count, loff_t *ppos)
2386 {
2387 char buf[32];
2388 size_t buf_size;
2389
2390 buf_size = min(count, (sizeof(buf)-1));
2391 if (copy_from_user(buf, user_buf, buf_size))
2392 return -EFAULT;
2393
2394 buf[buf_size] = '\0';
2395 switch (buf[0]) {
2396 case 'y':
2397 case 'Y':
2398 case '1':
2399 arm_all_kprobes();
2400 break;
2401 case 'n':
2402 case 'N':
2403 case '0':
2404 disarm_all_kprobes();
2405 break;
2406 default:
2407 return -EINVAL;
2408 }
2409
2410 return count;
2411 }
2412
2413 static const struct file_operations fops_kp = {
2414 .read = read_enabled_file_bool,
2415 .write = write_enabled_file_bool,
2416 .llseek = default_llseek,
2417 };
2418
debugfs_kprobe_init(void)2419 static int __init debugfs_kprobe_init(void)
2420 {
2421 struct dentry *dir, *file;
2422 unsigned int value = 1;
2423
2424 dir = debugfs_create_dir("kprobes", NULL);
2425 if (!dir)
2426 return -ENOMEM;
2427
2428 file = debugfs_create_file("list", 0444, dir, NULL,
2429 &debugfs_kprobes_operations);
2430 if (!file)
2431 goto error;
2432
2433 file = debugfs_create_file("enabled", 0600, dir,
2434 &value, &fops_kp);
2435 if (!file)
2436 goto error;
2437
2438 file = debugfs_create_file("blacklist", 0444, dir, NULL,
2439 &debugfs_kprobe_blacklist_ops);
2440 if (!file)
2441 goto error;
2442
2443 return 0;
2444
2445 error:
2446 debugfs_remove(dir);
2447 return -ENOMEM;
2448 }
2449
2450 late_initcall(debugfs_kprobe_init);
2451 #endif /* CONFIG_DEBUG_FS */
2452
2453 module_init(init_kprobes);
2454
2455 /* defined in arch/.../kernel/kprobes.c */
2456 EXPORT_SYMBOL_GPL(jprobe_return);
2457