• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55 
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66 
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70 
71 #define emul_to_vcpu(ctxt) \
72 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73 
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84 
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87 
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
91 
92 struct kvm_x86_ops *kvm_x86_ops;
93 EXPORT_SYMBOL_GPL(kvm_x86_ops);
94 
95 static bool ignore_msrs = 0;
96 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
97 
98 unsigned int min_timer_period_us = 500;
99 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
100 
101 bool kvm_has_tsc_control;
102 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
103 u32  kvm_max_guest_tsc_khz;
104 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
105 
106 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
107 static u32 tsc_tolerance_ppm = 250;
108 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
109 
110 static bool backwards_tsc_observed = false;
111 
112 #define KVM_NR_SHARED_MSRS 16
113 
114 struct kvm_shared_msrs_global {
115 	int nr;
116 	u32 msrs[KVM_NR_SHARED_MSRS];
117 };
118 
119 struct kvm_shared_msrs {
120 	struct user_return_notifier urn;
121 	bool registered;
122 	struct kvm_shared_msr_values {
123 		u64 host;
124 		u64 curr;
125 	} values[KVM_NR_SHARED_MSRS];
126 };
127 
128 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
129 static struct kvm_shared_msrs __percpu *shared_msrs;
130 
131 struct kvm_stats_debugfs_item debugfs_entries[] = {
132 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
133 	{ "pf_guest", VCPU_STAT(pf_guest) },
134 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
135 	{ "invlpg", VCPU_STAT(invlpg) },
136 	{ "exits", VCPU_STAT(exits) },
137 	{ "io_exits", VCPU_STAT(io_exits) },
138 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
139 	{ "signal_exits", VCPU_STAT(signal_exits) },
140 	{ "irq_window", VCPU_STAT(irq_window_exits) },
141 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
142 	{ "halt_exits", VCPU_STAT(halt_exits) },
143 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
144 	{ "hypercalls", VCPU_STAT(hypercalls) },
145 	{ "request_irq", VCPU_STAT(request_irq_exits) },
146 	{ "irq_exits", VCPU_STAT(irq_exits) },
147 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
148 	{ "efer_reload", VCPU_STAT(efer_reload) },
149 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
150 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
151 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
152 	{ "irq_injections", VCPU_STAT(irq_injections) },
153 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
154 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
155 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
156 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
157 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
158 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
159 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
160 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
161 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
162 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
163 	{ "largepages", VM_STAT(lpages) },
164 	{ NULL }
165 };
166 
167 u64 __read_mostly host_xcr0;
168 
169 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
170 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)171 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
172 {
173 	int i;
174 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
175 		vcpu->arch.apf.gfns[i] = ~0;
176 }
177 
kvm_on_user_return(struct user_return_notifier * urn)178 static void kvm_on_user_return(struct user_return_notifier *urn)
179 {
180 	unsigned slot;
181 	struct kvm_shared_msrs *locals
182 		= container_of(urn, struct kvm_shared_msrs, urn);
183 	struct kvm_shared_msr_values *values;
184 
185 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
186 		values = &locals->values[slot];
187 		if (values->host != values->curr) {
188 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
189 			values->curr = values->host;
190 		}
191 	}
192 	locals->registered = false;
193 	user_return_notifier_unregister(urn);
194 }
195 
shared_msr_update(unsigned slot,u32 msr)196 static void shared_msr_update(unsigned slot, u32 msr)
197 {
198 	u64 value;
199 	unsigned int cpu = smp_processor_id();
200 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
201 
202 	/* only read, and nobody should modify it at this time,
203 	 * so don't need lock */
204 	if (slot >= shared_msrs_global.nr) {
205 		printk(KERN_ERR "kvm: invalid MSR slot!");
206 		return;
207 	}
208 	rdmsrl_safe(msr, &value);
209 	smsr->values[slot].host = value;
210 	smsr->values[slot].curr = value;
211 }
212 
kvm_define_shared_msr(unsigned slot,u32 msr)213 void kvm_define_shared_msr(unsigned slot, u32 msr)
214 {
215 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
216 	if (slot >= shared_msrs_global.nr)
217 		shared_msrs_global.nr = slot + 1;
218 	shared_msrs_global.msrs[slot] = msr;
219 	/* we need ensured the shared_msr_global have been updated */
220 	smp_wmb();
221 }
222 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
223 
kvm_shared_msr_cpu_online(void)224 static void kvm_shared_msr_cpu_online(void)
225 {
226 	unsigned i;
227 
228 	for (i = 0; i < shared_msrs_global.nr; ++i)
229 		shared_msr_update(i, shared_msrs_global.msrs[i]);
230 }
231 
kvm_set_shared_msr(unsigned slot,u64 value,u64 mask)232 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
233 {
234 	unsigned int cpu = smp_processor_id();
235 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
236 	int err;
237 
238 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
239 		return 0;
240 	smsr->values[slot].curr = value;
241 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
242 	if (err)
243 		return 1;
244 
245 	if (!smsr->registered) {
246 		smsr->urn.on_user_return = kvm_on_user_return;
247 		user_return_notifier_register(&smsr->urn);
248 		smsr->registered = true;
249 	}
250 	return 0;
251 }
252 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
253 
drop_user_return_notifiers(void)254 static void drop_user_return_notifiers(void)
255 {
256 	unsigned int cpu = smp_processor_id();
257 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
258 
259 	if (smsr->registered)
260 		kvm_on_user_return(&smsr->urn);
261 }
262 
kvm_get_apic_base(struct kvm_vcpu * vcpu)263 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
264 {
265 	return vcpu->arch.apic_base;
266 }
267 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
268 
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)269 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
270 {
271 	u64 old_state = vcpu->arch.apic_base &
272 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
273 	u64 new_state = msr_info->data &
274 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
275 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
276 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
277 
278 	if (!msr_info->host_initiated &&
279 	    ((msr_info->data & reserved_bits) != 0 ||
280 	     new_state == X2APIC_ENABLE ||
281 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
282 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
283 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
284 	      old_state == 0)))
285 		return 1;
286 
287 	kvm_lapic_set_base(vcpu, msr_info->data);
288 	return 0;
289 }
290 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
291 
kvm_spurious_fault(void)292 asmlinkage __visible void kvm_spurious_fault(void)
293 {
294 	/* Fault while not rebooting.  We want the trace. */
295 	BUG();
296 }
297 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
298 
299 #define EXCPT_BENIGN		0
300 #define EXCPT_CONTRIBUTORY	1
301 #define EXCPT_PF		2
302 
exception_class(int vector)303 static int exception_class(int vector)
304 {
305 	switch (vector) {
306 	case PF_VECTOR:
307 		return EXCPT_PF;
308 	case DE_VECTOR:
309 	case TS_VECTOR:
310 	case NP_VECTOR:
311 	case SS_VECTOR:
312 	case GP_VECTOR:
313 		return EXCPT_CONTRIBUTORY;
314 	default:
315 		break;
316 	}
317 	return EXCPT_BENIGN;
318 }
319 
320 #define EXCPT_FAULT		0
321 #define EXCPT_TRAP		1
322 #define EXCPT_ABORT		2
323 #define EXCPT_INTERRUPT		3
324 
exception_type(int vector)325 static int exception_type(int vector)
326 {
327 	unsigned int mask;
328 
329 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
330 		return EXCPT_INTERRUPT;
331 
332 	mask = 1 << vector;
333 
334 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
335 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
336 		return EXCPT_TRAP;
337 
338 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
339 		return EXCPT_ABORT;
340 
341 	/* Reserved exceptions will result in fault */
342 	return EXCPT_FAULT;
343 }
344 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool reinject)345 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
346 		unsigned nr, bool has_error, u32 error_code,
347 		bool reinject)
348 {
349 	u32 prev_nr;
350 	int class1, class2;
351 
352 	kvm_make_request(KVM_REQ_EVENT, vcpu);
353 
354 	if (!vcpu->arch.exception.pending) {
355 	queue:
356 		vcpu->arch.exception.pending = true;
357 		vcpu->arch.exception.has_error_code = has_error;
358 		vcpu->arch.exception.nr = nr;
359 		vcpu->arch.exception.error_code = error_code;
360 		vcpu->arch.exception.reinject = reinject;
361 		return;
362 	}
363 
364 	/* to check exception */
365 	prev_nr = vcpu->arch.exception.nr;
366 	if (prev_nr == DF_VECTOR) {
367 		/* triple fault -> shutdown */
368 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
369 		return;
370 	}
371 	class1 = exception_class(prev_nr);
372 	class2 = exception_class(nr);
373 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
374 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
375 		/* generate double fault per SDM Table 5-5 */
376 		vcpu->arch.exception.pending = true;
377 		vcpu->arch.exception.has_error_code = true;
378 		vcpu->arch.exception.nr = DF_VECTOR;
379 		vcpu->arch.exception.error_code = 0;
380 	} else
381 		/* replace previous exception with a new one in a hope
382 		   that instruction re-execution will regenerate lost
383 		   exception */
384 		goto queue;
385 }
386 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)387 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
388 {
389 	kvm_multiple_exception(vcpu, nr, false, 0, false);
390 }
391 EXPORT_SYMBOL_GPL(kvm_queue_exception);
392 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)393 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
394 {
395 	kvm_multiple_exception(vcpu, nr, false, 0, true);
396 }
397 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
398 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)399 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
400 {
401 	if (err)
402 		kvm_inject_gp(vcpu, 0);
403 	else
404 		kvm_x86_ops->skip_emulated_instruction(vcpu);
405 }
406 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
407 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)408 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
409 {
410 	++vcpu->stat.pf_guest;
411 	vcpu->arch.cr2 = fault->address;
412 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
413 }
414 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
415 
kvm_propagate_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)416 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
417 {
418 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
419 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
420 	else
421 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
422 
423 	return fault->nested_page_fault;
424 }
425 
kvm_inject_nmi(struct kvm_vcpu * vcpu)426 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
427 {
428 	atomic_inc(&vcpu->arch.nmi_queued);
429 	kvm_make_request(KVM_REQ_NMI, vcpu);
430 }
431 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
432 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)433 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
434 {
435 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
436 }
437 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
438 
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)439 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
440 {
441 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
442 }
443 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
444 
445 /*
446  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
447  * a #GP and return false.
448  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)449 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
450 {
451 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
452 		return true;
453 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
454 	return false;
455 }
456 EXPORT_SYMBOL_GPL(kvm_require_cpl);
457 
458 /*
459  * This function will be used to read from the physical memory of the currently
460  * running guest. The difference to kvm_read_guest_page is that this function
461  * can read from guest physical or from the guest's guest physical memory.
462  */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)463 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
464 			    gfn_t ngfn, void *data, int offset, int len,
465 			    u32 access)
466 {
467 	struct x86_exception exception;
468 	gfn_t real_gfn;
469 	gpa_t ngpa;
470 
471 	ngpa     = gfn_to_gpa(ngfn);
472 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
473 	if (real_gfn == UNMAPPED_GVA)
474 		return -EFAULT;
475 
476 	real_gfn = gpa_to_gfn(real_gfn);
477 
478 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
479 }
480 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
481 
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)482 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
483 			       void *data, int offset, int len, u32 access)
484 {
485 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
486 				       data, offset, len, access);
487 }
488 
489 /*
490  * Load the pae pdptrs.  Return true is they are all valid.
491  */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)492 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
493 {
494 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
495 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
496 	int i;
497 	int ret;
498 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
499 
500 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
501 				      offset * sizeof(u64), sizeof(pdpte),
502 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
503 	if (ret < 0) {
504 		ret = 0;
505 		goto out;
506 	}
507 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
508 		if (is_present_gpte(pdpte[i]) &&
509 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
510 			ret = 0;
511 			goto out;
512 		}
513 	}
514 	ret = 1;
515 
516 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
517 	__set_bit(VCPU_EXREG_PDPTR,
518 		  (unsigned long *)&vcpu->arch.regs_avail);
519 	__set_bit(VCPU_EXREG_PDPTR,
520 		  (unsigned long *)&vcpu->arch.regs_dirty);
521 out:
522 
523 	return ret;
524 }
525 EXPORT_SYMBOL_GPL(load_pdptrs);
526 
pdptrs_changed(struct kvm_vcpu * vcpu)527 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
528 {
529 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
530 	bool changed = true;
531 	int offset;
532 	gfn_t gfn;
533 	int r;
534 
535 	if (is_long_mode(vcpu) || !is_pae(vcpu))
536 		return false;
537 
538 	if (!test_bit(VCPU_EXREG_PDPTR,
539 		      (unsigned long *)&vcpu->arch.regs_avail))
540 		return true;
541 
542 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
543 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
544 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
545 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
546 	if (r < 0)
547 		goto out;
548 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
549 out:
550 
551 	return changed;
552 }
553 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)554 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
555 {
556 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
557 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
558 				    X86_CR0_CD | X86_CR0_NW;
559 
560 	cr0 |= X86_CR0_ET;
561 
562 #ifdef CONFIG_X86_64
563 	if (cr0 & 0xffffffff00000000UL)
564 		return 1;
565 #endif
566 
567 	cr0 &= ~CR0_RESERVED_BITS;
568 
569 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
570 		return 1;
571 
572 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
573 		return 1;
574 
575 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
576 #ifdef CONFIG_X86_64
577 		if ((vcpu->arch.efer & EFER_LME)) {
578 			int cs_db, cs_l;
579 
580 			if (!is_pae(vcpu))
581 				return 1;
582 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
583 			if (cs_l)
584 				return 1;
585 		} else
586 #endif
587 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
588 						 kvm_read_cr3(vcpu)))
589 			return 1;
590 	}
591 
592 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
593 		return 1;
594 
595 	kvm_x86_ops->set_cr0(vcpu, cr0);
596 
597 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
598 		kvm_clear_async_pf_completion_queue(vcpu);
599 		kvm_async_pf_hash_reset(vcpu);
600 	}
601 
602 	if ((cr0 ^ old_cr0) & update_bits)
603 		kvm_mmu_reset_context(vcpu);
604 	return 0;
605 }
606 EXPORT_SYMBOL_GPL(kvm_set_cr0);
607 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)608 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
609 {
610 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
611 }
612 EXPORT_SYMBOL_GPL(kvm_lmsw);
613 
kvm_load_guest_xcr0(struct kvm_vcpu * vcpu)614 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
615 {
616 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
617 			!vcpu->guest_xcr0_loaded) {
618 		/* kvm_set_xcr() also depends on this */
619 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
620 		vcpu->guest_xcr0_loaded = 1;
621 	}
622 }
623 
kvm_put_guest_xcr0(struct kvm_vcpu * vcpu)624 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
625 {
626 	if (vcpu->guest_xcr0_loaded) {
627 		if (vcpu->arch.xcr0 != host_xcr0)
628 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
629 		vcpu->guest_xcr0_loaded = 0;
630 	}
631 }
632 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)633 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
634 {
635 	u64 xcr0 = xcr;
636 	u64 old_xcr0 = vcpu->arch.xcr0;
637 	u64 valid_bits;
638 
639 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
640 	if (index != XCR_XFEATURE_ENABLED_MASK)
641 		return 1;
642 	if (!(xcr0 & XSTATE_FP))
643 		return 1;
644 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
645 		return 1;
646 
647 	/*
648 	 * Do not allow the guest to set bits that we do not support
649 	 * saving.  However, xcr0 bit 0 is always set, even if the
650 	 * emulated CPU does not support XSAVE (see fx_init).
651 	 */
652 	valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
653 	if (xcr0 & ~valid_bits)
654 		return 1;
655 
656 	if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
657 		return 1;
658 
659 	vcpu->arch.xcr0 = xcr0;
660 
661 	if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
662 		kvm_update_cpuid(vcpu);
663 	return 0;
664 }
665 
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)666 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
667 {
668 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
669 	    __kvm_set_xcr(vcpu, index, xcr)) {
670 		kvm_inject_gp(vcpu, 0);
671 		return 1;
672 	}
673 	return 0;
674 }
675 EXPORT_SYMBOL_GPL(kvm_set_xcr);
676 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)677 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
678 {
679 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
680 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
681 				   X86_CR4_SMEP | X86_CR4_SMAP;
682 
683 	if (cr4 & CR4_RESERVED_BITS)
684 		return 1;
685 
686 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
687 		return 1;
688 
689 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
690 		return 1;
691 
692 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
693 		return 1;
694 
695 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
696 		return 1;
697 
698 	if (is_long_mode(vcpu)) {
699 		if (!(cr4 & X86_CR4_PAE))
700 			return 1;
701 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
702 		   && ((cr4 ^ old_cr4) & pdptr_bits)
703 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
704 				   kvm_read_cr3(vcpu)))
705 		return 1;
706 
707 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
708 		if (!guest_cpuid_has_pcid(vcpu))
709 			return 1;
710 
711 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
712 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
713 			return 1;
714 	}
715 
716 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
717 		return 1;
718 
719 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
720 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
721 		kvm_mmu_reset_context(vcpu);
722 
723 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
724 		kvm_update_cpuid(vcpu);
725 
726 	return 0;
727 }
728 EXPORT_SYMBOL_GPL(kvm_set_cr4);
729 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)730 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
731 {
732 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
733 		kvm_mmu_sync_roots(vcpu);
734 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
735 		return 0;
736 	}
737 
738 	if (is_long_mode(vcpu)) {
739 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
740 			return 1;
741 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
742 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
743 		return 1;
744 
745 	vcpu->arch.cr3 = cr3;
746 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
747 	kvm_mmu_new_cr3(vcpu);
748 	return 0;
749 }
750 EXPORT_SYMBOL_GPL(kvm_set_cr3);
751 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)752 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
753 {
754 	if (cr8 & CR8_RESERVED_BITS)
755 		return 1;
756 	if (irqchip_in_kernel(vcpu->kvm))
757 		kvm_lapic_set_tpr(vcpu, cr8);
758 	else
759 		vcpu->arch.cr8 = cr8;
760 	return 0;
761 }
762 EXPORT_SYMBOL_GPL(kvm_set_cr8);
763 
kvm_get_cr8(struct kvm_vcpu * vcpu)764 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
765 {
766 	if (irqchip_in_kernel(vcpu->kvm))
767 		return kvm_lapic_get_cr8(vcpu);
768 	else
769 		return vcpu->arch.cr8;
770 }
771 EXPORT_SYMBOL_GPL(kvm_get_cr8);
772 
kvm_update_dr6(struct kvm_vcpu * vcpu)773 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
774 {
775 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
776 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
777 }
778 
kvm_update_dr7(struct kvm_vcpu * vcpu)779 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
780 {
781 	unsigned long dr7;
782 
783 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
784 		dr7 = vcpu->arch.guest_debug_dr7;
785 	else
786 		dr7 = vcpu->arch.dr7;
787 	kvm_x86_ops->set_dr7(vcpu, dr7);
788 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
789 	if (dr7 & DR7_BP_EN_MASK)
790 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
791 }
792 
kvm_dr6_fixed(struct kvm_vcpu * vcpu)793 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
794 {
795 	u64 fixed = DR6_FIXED_1;
796 
797 	if (!guest_cpuid_has_rtm(vcpu))
798 		fixed |= DR6_RTM;
799 	return fixed;
800 }
801 
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)802 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
803 {
804 	switch (dr) {
805 	case 0 ... 3:
806 		vcpu->arch.db[dr] = val;
807 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
808 			vcpu->arch.eff_db[dr] = val;
809 		break;
810 	case 4:
811 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
812 			return 1; /* #UD */
813 		/* fall through */
814 	case 6:
815 		if (val & 0xffffffff00000000ULL)
816 			return -1; /* #GP */
817 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
818 		kvm_update_dr6(vcpu);
819 		break;
820 	case 5:
821 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
822 			return 1; /* #UD */
823 		/* fall through */
824 	default: /* 7 */
825 		if (val & 0xffffffff00000000ULL)
826 			return -1; /* #GP */
827 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
828 		kvm_update_dr7(vcpu);
829 		break;
830 	}
831 
832 	return 0;
833 }
834 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)835 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
836 {
837 	int res;
838 
839 	res = __kvm_set_dr(vcpu, dr, val);
840 	if (res > 0)
841 		kvm_queue_exception(vcpu, UD_VECTOR);
842 	else if (res < 0)
843 		kvm_inject_gp(vcpu, 0);
844 
845 	return res;
846 }
847 EXPORT_SYMBOL_GPL(kvm_set_dr);
848 
_kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)849 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
850 {
851 	switch (dr) {
852 	case 0 ... 3:
853 		*val = vcpu->arch.db[dr];
854 		break;
855 	case 4:
856 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
857 			return 1;
858 		/* fall through */
859 	case 6:
860 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
861 			*val = vcpu->arch.dr6;
862 		else
863 			*val = kvm_x86_ops->get_dr6(vcpu);
864 		break;
865 	case 5:
866 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
867 			return 1;
868 		/* fall through */
869 	default: /* 7 */
870 		*val = vcpu->arch.dr7;
871 		break;
872 	}
873 
874 	return 0;
875 }
876 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)877 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
878 {
879 	if (_kvm_get_dr(vcpu, dr, val)) {
880 		kvm_queue_exception(vcpu, UD_VECTOR);
881 		return 1;
882 	}
883 	return 0;
884 }
885 EXPORT_SYMBOL_GPL(kvm_get_dr);
886 
kvm_rdpmc(struct kvm_vcpu * vcpu)887 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
888 {
889 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
890 	u64 data;
891 	int err;
892 
893 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
894 	if (err)
895 		return err;
896 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
897 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
898 	return err;
899 }
900 EXPORT_SYMBOL_GPL(kvm_rdpmc);
901 
902 /*
903  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
904  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
905  *
906  * This list is modified at module load time to reflect the
907  * capabilities of the host cpu. This capabilities test skips MSRs that are
908  * kvm-specific. Those are put in the beginning of the list.
909  */
910 
911 #define KVM_SAVE_MSRS_BEGIN	12
912 static u32 msrs_to_save[] = {
913 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
914 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
915 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
916 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
917 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
918 	MSR_KVM_PV_EOI_EN,
919 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
920 	MSR_STAR,
921 #ifdef CONFIG_X86_64
922 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
923 #endif
924 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
925 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
926 };
927 
928 static unsigned num_msrs_to_save;
929 
930 static const u32 emulated_msrs[] = {
931 	MSR_IA32_TSC_ADJUST,
932 	MSR_IA32_TSCDEADLINE,
933 	MSR_IA32_MISC_ENABLE,
934 	MSR_IA32_MCG_STATUS,
935 	MSR_IA32_MCG_CTL,
936 };
937 
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)938 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
939 {
940 	if (efer & efer_reserved_bits)
941 		return false;
942 
943 	if (efer & EFER_FFXSR) {
944 		struct kvm_cpuid_entry2 *feat;
945 
946 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
947 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
948 			return false;
949 	}
950 
951 	if (efer & EFER_SVME) {
952 		struct kvm_cpuid_entry2 *feat;
953 
954 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
955 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
956 			return false;
957 	}
958 
959 	return true;
960 }
961 EXPORT_SYMBOL_GPL(kvm_valid_efer);
962 
set_efer(struct kvm_vcpu * vcpu,u64 efer)963 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
964 {
965 	u64 old_efer = vcpu->arch.efer;
966 
967 	if (!kvm_valid_efer(vcpu, efer))
968 		return 1;
969 
970 	if (is_paging(vcpu)
971 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
972 		return 1;
973 
974 	efer &= ~EFER_LMA;
975 	efer |= vcpu->arch.efer & EFER_LMA;
976 
977 	kvm_x86_ops->set_efer(vcpu, efer);
978 
979 	/* Update reserved bits */
980 	if ((efer ^ old_efer) & EFER_NX)
981 		kvm_mmu_reset_context(vcpu);
982 
983 	return 0;
984 }
985 
kvm_enable_efer_bits(u64 mask)986 void kvm_enable_efer_bits(u64 mask)
987 {
988        efer_reserved_bits &= ~mask;
989 }
990 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
991 
992 /*
993  * Writes msr value into into the appropriate "register".
994  * Returns 0 on success, non-0 otherwise.
995  * Assumes vcpu_load() was already called.
996  */
kvm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)997 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
998 {
999 	switch (msr->index) {
1000 	case MSR_FS_BASE:
1001 	case MSR_GS_BASE:
1002 	case MSR_KERNEL_GS_BASE:
1003 	case MSR_CSTAR:
1004 	case MSR_LSTAR:
1005 		if (is_noncanonical_address(msr->data))
1006 			return 1;
1007 		break;
1008 	case MSR_IA32_SYSENTER_EIP:
1009 	case MSR_IA32_SYSENTER_ESP:
1010 		/*
1011 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1012 		 * non-canonical address is written on Intel but not on
1013 		 * AMD (which ignores the top 32-bits, because it does
1014 		 * not implement 64-bit SYSENTER).
1015 		 *
1016 		 * 64-bit code should hence be able to write a non-canonical
1017 		 * value on AMD.  Making the address canonical ensures that
1018 		 * vmentry does not fail on Intel after writing a non-canonical
1019 		 * value, and that something deterministic happens if the guest
1020 		 * invokes 64-bit SYSENTER.
1021 		 */
1022 		msr->data = get_canonical(msr->data);
1023 	}
1024 	return kvm_x86_ops->set_msr(vcpu, msr);
1025 }
1026 EXPORT_SYMBOL_GPL(kvm_set_msr);
1027 
1028 /*
1029  * Adapt set_msr() to msr_io()'s calling convention
1030  */
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1031 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1032 {
1033 	struct msr_data msr;
1034 
1035 	msr.data = *data;
1036 	msr.index = index;
1037 	msr.host_initiated = true;
1038 	return kvm_set_msr(vcpu, &msr);
1039 }
1040 
1041 #ifdef CONFIG_X86_64
1042 struct pvclock_gtod_data {
1043 	seqcount_t	seq;
1044 
1045 	struct { /* extract of a clocksource struct */
1046 		int vclock_mode;
1047 		cycle_t	cycle_last;
1048 		cycle_t	mask;
1049 		u32	mult;
1050 		u32	shift;
1051 	} clock;
1052 
1053 	u64		boot_ns;
1054 	u64		nsec_base;
1055 };
1056 
1057 static struct pvclock_gtod_data pvclock_gtod_data;
1058 
update_pvclock_gtod(struct timekeeper * tk)1059 static void update_pvclock_gtod(struct timekeeper *tk)
1060 {
1061 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1062 	u64 boot_ns;
1063 
1064 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1065 
1066 	write_seqcount_begin(&vdata->seq);
1067 
1068 	/* copy pvclock gtod data */
1069 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1070 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1071 	vdata->clock.mask		= tk->tkr_mono.mask;
1072 	vdata->clock.mult		= tk->tkr_mono.mult;
1073 	vdata->clock.shift		= tk->tkr_mono.shift;
1074 
1075 	vdata->boot_ns			= boot_ns;
1076 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1077 
1078 	write_seqcount_end(&vdata->seq);
1079 }
1080 #endif
1081 
1082 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)1083 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1084 {
1085 	int version;
1086 	int r;
1087 	struct pvclock_wall_clock wc;
1088 	struct timespec boot;
1089 
1090 	if (!wall_clock)
1091 		return;
1092 
1093 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1094 	if (r)
1095 		return;
1096 
1097 	if (version & 1)
1098 		++version;  /* first time write, random junk */
1099 
1100 	++version;
1101 
1102 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1103 
1104 	/*
1105 	 * The guest calculates current wall clock time by adding
1106 	 * system time (updated by kvm_guest_time_update below) to the
1107 	 * wall clock specified here.  guest system time equals host
1108 	 * system time for us, thus we must fill in host boot time here.
1109 	 */
1110 	getboottime(&boot);
1111 
1112 	if (kvm->arch.kvmclock_offset) {
1113 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1114 		boot = timespec_sub(boot, ts);
1115 	}
1116 	wc.sec = boot.tv_sec;
1117 	wc.nsec = boot.tv_nsec;
1118 	wc.version = version;
1119 
1120 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1121 
1122 	version++;
1123 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1124 }
1125 
div_frac(uint32_t dividend,uint32_t divisor)1126 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1127 {
1128 	uint32_t quotient, remainder;
1129 
1130 	/* Don't try to replace with do_div(), this one calculates
1131 	 * "(dividend << 32) / divisor" */
1132 	__asm__ ( "divl %4"
1133 		  : "=a" (quotient), "=d" (remainder)
1134 		  : "0" (0), "1" (dividend), "r" (divisor) );
1135 	return quotient;
1136 }
1137 
kvm_get_time_scale(uint32_t scaled_khz,uint32_t base_khz,s8 * pshift,u32 * pmultiplier)1138 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1139 			       s8 *pshift, u32 *pmultiplier)
1140 {
1141 	uint64_t scaled64;
1142 	int32_t  shift = 0;
1143 	uint64_t tps64;
1144 	uint32_t tps32;
1145 
1146 	tps64 = base_khz * 1000LL;
1147 	scaled64 = scaled_khz * 1000LL;
1148 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1149 		tps64 >>= 1;
1150 		shift--;
1151 	}
1152 
1153 	tps32 = (uint32_t)tps64;
1154 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1155 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1156 			scaled64 >>= 1;
1157 		else
1158 			tps32 <<= 1;
1159 		shift++;
1160 	}
1161 
1162 	*pshift = shift;
1163 	*pmultiplier = div_frac(scaled64, tps32);
1164 
1165 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1166 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1167 }
1168 
get_kernel_ns(void)1169 static inline u64 get_kernel_ns(void)
1170 {
1171 	return ktime_get_boot_ns();
1172 }
1173 
1174 #ifdef CONFIG_X86_64
1175 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1176 #endif
1177 
1178 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1179 unsigned long max_tsc_khz;
1180 
nsec_to_cycles(struct kvm_vcpu * vcpu,u64 nsec)1181 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1182 {
1183 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1184 				   vcpu->arch.virtual_tsc_shift);
1185 }
1186 
adjust_tsc_khz(u32 khz,s32 ppm)1187 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1188 {
1189 	u64 v = (u64)khz * (1000000 + ppm);
1190 	do_div(v, 1000000);
1191 	return v;
1192 }
1193 
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 this_tsc_khz)1194 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1195 {
1196 	u32 thresh_lo, thresh_hi;
1197 	int use_scaling = 0;
1198 
1199 	/* tsc_khz can be zero if TSC calibration fails */
1200 	if (this_tsc_khz == 0)
1201 		return;
1202 
1203 	/* Compute a scale to convert nanoseconds in TSC cycles */
1204 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1205 			   &vcpu->arch.virtual_tsc_shift,
1206 			   &vcpu->arch.virtual_tsc_mult);
1207 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1208 
1209 	/*
1210 	 * Compute the variation in TSC rate which is acceptable
1211 	 * within the range of tolerance and decide if the
1212 	 * rate being applied is within that bounds of the hardware
1213 	 * rate.  If so, no scaling or compensation need be done.
1214 	 */
1215 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1216 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1217 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1218 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1219 		use_scaling = 1;
1220 	}
1221 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1222 }
1223 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)1224 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1225 {
1226 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1227 				      vcpu->arch.virtual_tsc_mult,
1228 				      vcpu->arch.virtual_tsc_shift);
1229 	tsc += vcpu->arch.this_tsc_write;
1230 	return tsc;
1231 }
1232 
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)1233 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1234 {
1235 #ifdef CONFIG_X86_64
1236 	bool vcpus_matched;
1237 	struct kvm_arch *ka = &vcpu->kvm->arch;
1238 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1239 
1240 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1241 			 atomic_read(&vcpu->kvm->online_vcpus));
1242 
1243 	/*
1244 	 * Once the masterclock is enabled, always perform request in
1245 	 * order to update it.
1246 	 *
1247 	 * In order to enable masterclock, the host clocksource must be TSC
1248 	 * and the vcpus need to have matched TSCs.  When that happens,
1249 	 * perform request to enable masterclock.
1250 	 */
1251 	if (ka->use_master_clock ||
1252 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1253 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1254 
1255 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1256 			    atomic_read(&vcpu->kvm->online_vcpus),
1257 		            ka->use_master_clock, gtod->clock.vclock_mode);
1258 #endif
1259 }
1260 
update_ia32_tsc_adjust_msr(struct kvm_vcpu * vcpu,s64 offset)1261 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1262 {
1263 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1264 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1265 }
1266 
kvm_write_tsc(struct kvm_vcpu * vcpu,struct msr_data * msr)1267 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1268 {
1269 	struct kvm *kvm = vcpu->kvm;
1270 	u64 offset, ns, elapsed;
1271 	unsigned long flags;
1272 	s64 usdiff;
1273 	bool matched;
1274 	bool already_matched;
1275 	u64 data = msr->data;
1276 
1277 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1278 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1279 	ns = get_kernel_ns();
1280 	elapsed = ns - kvm->arch.last_tsc_nsec;
1281 
1282 	if (vcpu->arch.virtual_tsc_khz) {
1283 		int faulted = 0;
1284 
1285 		/* n.b - signed multiplication and division required */
1286 		usdiff = data - kvm->arch.last_tsc_write;
1287 #ifdef CONFIG_X86_64
1288 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1289 #else
1290 		/* do_div() only does unsigned */
1291 		asm("1: idivl %[divisor]\n"
1292 		    "2: xor %%edx, %%edx\n"
1293 		    "   movl $0, %[faulted]\n"
1294 		    "3:\n"
1295 		    ".section .fixup,\"ax\"\n"
1296 		    "4: movl $1, %[faulted]\n"
1297 		    "   jmp  3b\n"
1298 		    ".previous\n"
1299 
1300 		_ASM_EXTABLE(1b, 4b)
1301 
1302 		: "=A"(usdiff), [faulted] "=r" (faulted)
1303 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1304 
1305 #endif
1306 		do_div(elapsed, 1000);
1307 		usdiff -= elapsed;
1308 		if (usdiff < 0)
1309 			usdiff = -usdiff;
1310 
1311 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1312 		if (faulted)
1313 			usdiff = USEC_PER_SEC;
1314 	} else
1315 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1316 
1317 	/*
1318 	 * Special case: TSC write with a small delta (1 second) of virtual
1319 	 * cycle time against real time is interpreted as an attempt to
1320 	 * synchronize the CPU.
1321          *
1322 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1323 	 * TSC, we add elapsed time in this computation.  We could let the
1324 	 * compensation code attempt to catch up if we fall behind, but
1325 	 * it's better to try to match offsets from the beginning.
1326          */
1327 	if (usdiff < USEC_PER_SEC &&
1328 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1329 		if (!check_tsc_unstable()) {
1330 			offset = kvm->arch.cur_tsc_offset;
1331 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1332 		} else {
1333 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1334 			data += delta;
1335 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1336 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1337 		}
1338 		matched = true;
1339 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1340 	} else {
1341 		/*
1342 		 * We split periods of matched TSC writes into generations.
1343 		 * For each generation, we track the original measured
1344 		 * nanosecond time, offset, and write, so if TSCs are in
1345 		 * sync, we can match exact offset, and if not, we can match
1346 		 * exact software computation in compute_guest_tsc()
1347 		 *
1348 		 * These values are tracked in kvm->arch.cur_xxx variables.
1349 		 */
1350 		kvm->arch.cur_tsc_generation++;
1351 		kvm->arch.cur_tsc_nsec = ns;
1352 		kvm->arch.cur_tsc_write = data;
1353 		kvm->arch.cur_tsc_offset = offset;
1354 		matched = false;
1355 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1356 			 kvm->arch.cur_tsc_generation, data);
1357 	}
1358 
1359 	/*
1360 	 * We also track th most recent recorded KHZ, write and time to
1361 	 * allow the matching interval to be extended at each write.
1362 	 */
1363 	kvm->arch.last_tsc_nsec = ns;
1364 	kvm->arch.last_tsc_write = data;
1365 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1366 
1367 	vcpu->arch.last_guest_tsc = data;
1368 
1369 	/* Keep track of which generation this VCPU has synchronized to */
1370 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1371 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1372 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1373 
1374 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1375 		update_ia32_tsc_adjust_msr(vcpu, offset);
1376 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1377 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1378 
1379 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1380 	if (!matched) {
1381 		kvm->arch.nr_vcpus_matched_tsc = 0;
1382 	} else if (!already_matched) {
1383 		kvm->arch.nr_vcpus_matched_tsc++;
1384 	}
1385 
1386 	kvm_track_tsc_matching(vcpu);
1387 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1388 }
1389 
1390 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1391 
1392 #ifdef CONFIG_X86_64
1393 
read_tsc(void)1394 static cycle_t read_tsc(void)
1395 {
1396 	cycle_t ret;
1397 	u64 last;
1398 
1399 	/*
1400 	 * Empirically, a fence (of type that depends on the CPU)
1401 	 * before rdtsc is enough to ensure that rdtsc is ordered
1402 	 * with respect to loads.  The various CPU manuals are unclear
1403 	 * as to whether rdtsc can be reordered with later loads,
1404 	 * but no one has ever seen it happen.
1405 	 */
1406 	rdtsc_barrier();
1407 	ret = (cycle_t)vget_cycles();
1408 
1409 	last = pvclock_gtod_data.clock.cycle_last;
1410 
1411 	if (likely(ret >= last))
1412 		return ret;
1413 
1414 	/*
1415 	 * GCC likes to generate cmov here, but this branch is extremely
1416 	 * predictable (it's just a funciton of time and the likely is
1417 	 * very likely) and there's a data dependence, so force GCC
1418 	 * to generate a branch instead.  I don't barrier() because
1419 	 * we don't actually need a barrier, and if this function
1420 	 * ever gets inlined it will generate worse code.
1421 	 */
1422 	asm volatile ("");
1423 	return last;
1424 }
1425 
vgettsc(cycle_t * cycle_now)1426 static inline u64 vgettsc(cycle_t *cycle_now)
1427 {
1428 	long v;
1429 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1430 
1431 	*cycle_now = read_tsc();
1432 
1433 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1434 	return v * gtod->clock.mult;
1435 }
1436 
do_monotonic_boot(s64 * t,cycle_t * cycle_now)1437 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1438 {
1439 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1440 	unsigned long seq;
1441 	int mode;
1442 	u64 ns;
1443 
1444 	do {
1445 		seq = read_seqcount_begin(&gtod->seq);
1446 		mode = gtod->clock.vclock_mode;
1447 		ns = gtod->nsec_base;
1448 		ns += vgettsc(cycle_now);
1449 		ns >>= gtod->clock.shift;
1450 		ns += gtod->boot_ns;
1451 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1452 	*t = ns;
1453 
1454 	return mode;
1455 }
1456 
1457 /* returns true if host is using tsc clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,cycle_t * cycle_now)1458 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1459 {
1460 	/* checked again under seqlock below */
1461 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1462 		return false;
1463 
1464 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1465 }
1466 #endif
1467 
1468 /*
1469  *
1470  * Assuming a stable TSC across physical CPUS, and a stable TSC
1471  * across virtual CPUs, the following condition is possible.
1472  * Each numbered line represents an event visible to both
1473  * CPUs at the next numbered event.
1474  *
1475  * "timespecX" represents host monotonic time. "tscX" represents
1476  * RDTSC value.
1477  *
1478  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1479  *
1480  * 1.  read timespec0,tsc0
1481  * 2.					| timespec1 = timespec0 + N
1482  * 					| tsc1 = tsc0 + M
1483  * 3. transition to guest		| transition to guest
1484  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1485  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1486  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1487  *
1488  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1489  *
1490  * 	- ret0 < ret1
1491  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1492  *		...
1493  *	- 0 < N - M => M < N
1494  *
1495  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1496  * always the case (the difference between two distinct xtime instances
1497  * might be smaller then the difference between corresponding TSC reads,
1498  * when updating guest vcpus pvclock areas).
1499  *
1500  * To avoid that problem, do not allow visibility of distinct
1501  * system_timestamp/tsc_timestamp values simultaneously: use a master
1502  * copy of host monotonic time values. Update that master copy
1503  * in lockstep.
1504  *
1505  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1506  *
1507  */
1508 
pvclock_update_vm_gtod_copy(struct kvm * kvm)1509 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1510 {
1511 #ifdef CONFIG_X86_64
1512 	struct kvm_arch *ka = &kvm->arch;
1513 	int vclock_mode;
1514 	bool host_tsc_clocksource, vcpus_matched;
1515 
1516 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1517 			atomic_read(&kvm->online_vcpus));
1518 
1519 	/*
1520 	 * If the host uses TSC clock, then passthrough TSC as stable
1521 	 * to the guest.
1522 	 */
1523 	host_tsc_clocksource = kvm_get_time_and_clockread(
1524 					&ka->master_kernel_ns,
1525 					&ka->master_cycle_now);
1526 
1527 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1528 				&& !backwards_tsc_observed;
1529 
1530 	if (ka->use_master_clock)
1531 		atomic_set(&kvm_guest_has_master_clock, 1);
1532 
1533 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1534 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1535 					vcpus_matched);
1536 #endif
1537 }
1538 
kvm_gen_update_masterclock(struct kvm * kvm)1539 static void kvm_gen_update_masterclock(struct kvm *kvm)
1540 {
1541 #ifdef CONFIG_X86_64
1542 	int i;
1543 	struct kvm_vcpu *vcpu;
1544 	struct kvm_arch *ka = &kvm->arch;
1545 
1546 	spin_lock(&ka->pvclock_gtod_sync_lock);
1547 	kvm_make_mclock_inprogress_request(kvm);
1548 	/* no guest entries from this point */
1549 	pvclock_update_vm_gtod_copy(kvm);
1550 
1551 	kvm_for_each_vcpu(i, vcpu, kvm)
1552 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1553 
1554 	/* guest entries allowed */
1555 	kvm_for_each_vcpu(i, vcpu, kvm)
1556 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1557 
1558 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1559 #endif
1560 }
1561 
kvm_guest_time_update(struct kvm_vcpu * v)1562 static int kvm_guest_time_update(struct kvm_vcpu *v)
1563 {
1564 	unsigned long flags, this_tsc_khz;
1565 	struct kvm_vcpu_arch *vcpu = &v->arch;
1566 	struct kvm_arch *ka = &v->kvm->arch;
1567 	s64 kernel_ns;
1568 	u64 tsc_timestamp, host_tsc;
1569 	struct pvclock_vcpu_time_info guest_hv_clock;
1570 	u8 pvclock_flags;
1571 	bool use_master_clock;
1572 
1573 	kernel_ns = 0;
1574 	host_tsc = 0;
1575 
1576 	/*
1577 	 * If the host uses TSC clock, then passthrough TSC as stable
1578 	 * to the guest.
1579 	 */
1580 	spin_lock(&ka->pvclock_gtod_sync_lock);
1581 	use_master_clock = ka->use_master_clock;
1582 	if (use_master_clock) {
1583 		host_tsc = ka->master_cycle_now;
1584 		kernel_ns = ka->master_kernel_ns;
1585 	}
1586 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1587 
1588 	/* Keep irq disabled to prevent changes to the clock */
1589 	local_irq_save(flags);
1590 	this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1591 	if (unlikely(this_tsc_khz == 0)) {
1592 		local_irq_restore(flags);
1593 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1594 		return 1;
1595 	}
1596 	if (!use_master_clock) {
1597 		host_tsc = native_read_tsc();
1598 		kernel_ns = get_kernel_ns();
1599 	}
1600 
1601 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1602 
1603 	/*
1604 	 * We may have to catch up the TSC to match elapsed wall clock
1605 	 * time for two reasons, even if kvmclock is used.
1606 	 *   1) CPU could have been running below the maximum TSC rate
1607 	 *   2) Broken TSC compensation resets the base at each VCPU
1608 	 *      entry to avoid unknown leaps of TSC even when running
1609 	 *      again on the same CPU.  This may cause apparent elapsed
1610 	 *      time to disappear, and the guest to stand still or run
1611 	 *	very slowly.
1612 	 */
1613 	if (vcpu->tsc_catchup) {
1614 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1615 		if (tsc > tsc_timestamp) {
1616 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1617 			tsc_timestamp = tsc;
1618 		}
1619 	}
1620 
1621 	local_irq_restore(flags);
1622 
1623 	if (!vcpu->pv_time_enabled)
1624 		return 0;
1625 
1626 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1627 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1628 				   &vcpu->hv_clock.tsc_shift,
1629 				   &vcpu->hv_clock.tsc_to_system_mul);
1630 		vcpu->hw_tsc_khz = this_tsc_khz;
1631 	}
1632 
1633 	/* With all the info we got, fill in the values */
1634 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1635 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1636 	vcpu->last_guest_tsc = tsc_timestamp;
1637 
1638 	/*
1639 	 * The interface expects us to write an even number signaling that the
1640 	 * update is finished. Since the guest won't see the intermediate
1641 	 * state, we just increase by 2 at the end.
1642 	 */
1643 	vcpu->hv_clock.version += 2;
1644 
1645 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1646 		&guest_hv_clock, sizeof(guest_hv_clock))))
1647 		return 0;
1648 
1649 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1650 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1651 
1652 	if (vcpu->pvclock_set_guest_stopped_request) {
1653 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1654 		vcpu->pvclock_set_guest_stopped_request = false;
1655 	}
1656 
1657 	/* If the host uses TSC clocksource, then it is stable */
1658 	if (use_master_clock)
1659 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1660 
1661 	vcpu->hv_clock.flags = pvclock_flags;
1662 
1663 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1664 				&vcpu->hv_clock,
1665 				sizeof(vcpu->hv_clock));
1666 	return 0;
1667 }
1668 
1669 /*
1670  * kvmclock updates which are isolated to a given vcpu, such as
1671  * vcpu->cpu migration, should not allow system_timestamp from
1672  * the rest of the vcpus to remain static. Otherwise ntp frequency
1673  * correction applies to one vcpu's system_timestamp but not
1674  * the others.
1675  *
1676  * So in those cases, request a kvmclock update for all vcpus.
1677  * We need to rate-limit these requests though, as they can
1678  * considerably slow guests that have a large number of vcpus.
1679  * The time for a remote vcpu to update its kvmclock is bound
1680  * by the delay we use to rate-limit the updates.
1681  */
1682 
1683 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1684 
kvmclock_update_fn(struct work_struct * work)1685 static void kvmclock_update_fn(struct work_struct *work)
1686 {
1687 	int i;
1688 	struct delayed_work *dwork = to_delayed_work(work);
1689 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1690 					   kvmclock_update_work);
1691 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1692 	struct kvm_vcpu *vcpu;
1693 
1694 	kvm_for_each_vcpu(i, vcpu, kvm) {
1695 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1696 		kvm_vcpu_kick(vcpu);
1697 	}
1698 }
1699 
kvm_gen_kvmclock_update(struct kvm_vcpu * v)1700 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1701 {
1702 	struct kvm *kvm = v->kvm;
1703 
1704 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1705 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1706 					KVMCLOCK_UPDATE_DELAY);
1707 }
1708 
1709 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1710 
kvmclock_sync_fn(struct work_struct * work)1711 static void kvmclock_sync_fn(struct work_struct *work)
1712 {
1713 	struct delayed_work *dwork = to_delayed_work(work);
1714 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1715 					   kvmclock_sync_work);
1716 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1717 
1718 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1719 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1720 					KVMCLOCK_SYNC_PERIOD);
1721 }
1722 
msr_mtrr_valid(unsigned msr)1723 static bool msr_mtrr_valid(unsigned msr)
1724 {
1725 	switch (msr) {
1726 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1727 	case MSR_MTRRfix64K_00000:
1728 	case MSR_MTRRfix16K_80000:
1729 	case MSR_MTRRfix16K_A0000:
1730 	case MSR_MTRRfix4K_C0000:
1731 	case MSR_MTRRfix4K_C8000:
1732 	case MSR_MTRRfix4K_D0000:
1733 	case MSR_MTRRfix4K_D8000:
1734 	case MSR_MTRRfix4K_E0000:
1735 	case MSR_MTRRfix4K_E8000:
1736 	case MSR_MTRRfix4K_F0000:
1737 	case MSR_MTRRfix4K_F8000:
1738 	case MSR_MTRRdefType:
1739 	case MSR_IA32_CR_PAT:
1740 		return true;
1741 	case 0x2f8:
1742 		return true;
1743 	}
1744 	return false;
1745 }
1746 
valid_pat_type(unsigned t)1747 static bool valid_pat_type(unsigned t)
1748 {
1749 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1750 }
1751 
valid_mtrr_type(unsigned t)1752 static bool valid_mtrr_type(unsigned t)
1753 {
1754 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1755 }
1756 
kvm_mtrr_valid(struct kvm_vcpu * vcpu,u32 msr,u64 data)1757 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1758 {
1759 	int i;
1760 	u64 mask;
1761 
1762 	if (!msr_mtrr_valid(msr))
1763 		return false;
1764 
1765 	if (msr == MSR_IA32_CR_PAT) {
1766 		for (i = 0; i < 8; i++)
1767 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1768 				return false;
1769 		return true;
1770 	} else if (msr == MSR_MTRRdefType) {
1771 		if (data & ~0xcff)
1772 			return false;
1773 		return valid_mtrr_type(data & 0xff);
1774 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1775 		for (i = 0; i < 8 ; i++)
1776 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1777 				return false;
1778 		return true;
1779 	}
1780 
1781 	/* variable MTRRs */
1782 	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1783 
1784 	mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1785 	if ((msr & 1) == 0) {
1786 		/* MTRR base */
1787 		if (!valid_mtrr_type(data & 0xff))
1788 			return false;
1789 		mask |= 0xf00;
1790 	} else
1791 		/* MTRR mask */
1792 		mask |= 0x7ff;
1793 	if (data & mask) {
1794 		kvm_inject_gp(vcpu, 0);
1795 		return false;
1796 	}
1797 
1798 	return true;
1799 }
1800 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1801 
set_msr_mtrr(struct kvm_vcpu * vcpu,u32 msr,u64 data)1802 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1803 {
1804 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1805 
1806 	if (!kvm_mtrr_valid(vcpu, msr, data))
1807 		return 1;
1808 
1809 	if (msr == MSR_MTRRdefType) {
1810 		vcpu->arch.mtrr_state.def_type = data;
1811 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1812 	} else if (msr == MSR_MTRRfix64K_00000)
1813 		p[0] = data;
1814 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1815 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1816 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1817 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1818 	else if (msr == MSR_IA32_CR_PAT)
1819 		vcpu->arch.pat = data;
1820 	else {	/* Variable MTRRs */
1821 		int idx, is_mtrr_mask;
1822 		u64 *pt;
1823 
1824 		idx = (msr - 0x200) / 2;
1825 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1826 		if (!is_mtrr_mask)
1827 			pt =
1828 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1829 		else
1830 			pt =
1831 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1832 		*pt = data;
1833 	}
1834 
1835 	kvm_mmu_reset_context(vcpu);
1836 	return 0;
1837 }
1838 
set_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 data)1839 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1840 {
1841 	u64 mcg_cap = vcpu->arch.mcg_cap;
1842 	unsigned bank_num = mcg_cap & 0xff;
1843 
1844 	switch (msr) {
1845 	case MSR_IA32_MCG_STATUS:
1846 		vcpu->arch.mcg_status = data;
1847 		break;
1848 	case MSR_IA32_MCG_CTL:
1849 		if (!(mcg_cap & MCG_CTL_P))
1850 			return 1;
1851 		if (data != 0 && data != ~(u64)0)
1852 			return -1;
1853 		vcpu->arch.mcg_ctl = data;
1854 		break;
1855 	default:
1856 		if (msr >= MSR_IA32_MC0_CTL &&
1857 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1858 			u32 offset = msr - MSR_IA32_MC0_CTL;
1859 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1860 			 * some Linux kernels though clear bit 10 in bank 4 to
1861 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1862 			 * this to avoid an uncatched #GP in the guest
1863 			 */
1864 			if ((offset & 0x3) == 0 &&
1865 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1866 				return -1;
1867 			vcpu->arch.mce_banks[offset] = data;
1868 			break;
1869 		}
1870 		return 1;
1871 	}
1872 	return 0;
1873 }
1874 
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)1875 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1876 {
1877 	struct kvm *kvm = vcpu->kvm;
1878 	int lm = is_long_mode(vcpu);
1879 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1880 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1881 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1882 		: kvm->arch.xen_hvm_config.blob_size_32;
1883 	u32 page_num = data & ~PAGE_MASK;
1884 	u64 page_addr = data & PAGE_MASK;
1885 	u8 *page;
1886 	int r;
1887 
1888 	r = -E2BIG;
1889 	if (page_num >= blob_size)
1890 		goto out;
1891 	r = -ENOMEM;
1892 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1893 	if (IS_ERR(page)) {
1894 		r = PTR_ERR(page);
1895 		goto out;
1896 	}
1897 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1898 		goto out_free;
1899 	r = 0;
1900 out_free:
1901 	kfree(page);
1902 out:
1903 	return r;
1904 }
1905 
kvm_hv_hypercall_enabled(struct kvm * kvm)1906 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1907 {
1908 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1909 }
1910 
kvm_hv_msr_partition_wide(u32 msr)1911 static bool kvm_hv_msr_partition_wide(u32 msr)
1912 {
1913 	bool r = false;
1914 	switch (msr) {
1915 	case HV_X64_MSR_GUEST_OS_ID:
1916 	case HV_X64_MSR_HYPERCALL:
1917 	case HV_X64_MSR_REFERENCE_TSC:
1918 	case HV_X64_MSR_TIME_REF_COUNT:
1919 		r = true;
1920 		break;
1921 	}
1922 
1923 	return r;
1924 }
1925 
set_msr_hyperv_pw(struct kvm_vcpu * vcpu,u32 msr,u64 data)1926 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1927 {
1928 	struct kvm *kvm = vcpu->kvm;
1929 
1930 	switch (msr) {
1931 	case HV_X64_MSR_GUEST_OS_ID:
1932 		kvm->arch.hv_guest_os_id = data;
1933 		/* setting guest os id to zero disables hypercall page */
1934 		if (!kvm->arch.hv_guest_os_id)
1935 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1936 		break;
1937 	case HV_X64_MSR_HYPERCALL: {
1938 		u64 gfn;
1939 		unsigned long addr;
1940 		u8 instructions[4];
1941 
1942 		/* if guest os id is not set hypercall should remain disabled */
1943 		if (!kvm->arch.hv_guest_os_id)
1944 			break;
1945 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1946 			kvm->arch.hv_hypercall = data;
1947 			break;
1948 		}
1949 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1950 		addr = gfn_to_hva(kvm, gfn);
1951 		if (kvm_is_error_hva(addr))
1952 			return 1;
1953 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1954 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1955 		if (__copy_to_user((void __user *)addr, instructions, 4))
1956 			return 1;
1957 		kvm->arch.hv_hypercall = data;
1958 		mark_page_dirty(kvm, gfn);
1959 		break;
1960 	}
1961 	case HV_X64_MSR_REFERENCE_TSC: {
1962 		u64 gfn;
1963 		HV_REFERENCE_TSC_PAGE tsc_ref;
1964 		memset(&tsc_ref, 0, sizeof(tsc_ref));
1965 		kvm->arch.hv_tsc_page = data;
1966 		if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1967 			break;
1968 		gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1969 		if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1970 			&tsc_ref, sizeof(tsc_ref)))
1971 			return 1;
1972 		mark_page_dirty(kvm, gfn);
1973 		break;
1974 	}
1975 	default:
1976 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1977 			    "data 0x%llx\n", msr, data);
1978 		return 1;
1979 	}
1980 	return 0;
1981 }
1982 
set_msr_hyperv(struct kvm_vcpu * vcpu,u32 msr,u64 data)1983 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1984 {
1985 	switch (msr) {
1986 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1987 		u64 gfn;
1988 		unsigned long addr;
1989 
1990 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1991 			vcpu->arch.hv_vapic = data;
1992 			if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1993 				return 1;
1994 			break;
1995 		}
1996 		gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1997 		addr = gfn_to_hva(vcpu->kvm, gfn);
1998 		if (kvm_is_error_hva(addr))
1999 			return 1;
2000 		if (__clear_user((void __user *)addr, PAGE_SIZE))
2001 			return 1;
2002 		vcpu->arch.hv_vapic = data;
2003 		mark_page_dirty(vcpu->kvm, gfn);
2004 		if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2005 			return 1;
2006 		break;
2007 	}
2008 	case HV_X64_MSR_EOI:
2009 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2010 	case HV_X64_MSR_ICR:
2011 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2012 	case HV_X64_MSR_TPR:
2013 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2014 	default:
2015 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2016 			    "data 0x%llx\n", msr, data);
2017 		return 1;
2018 	}
2019 
2020 	return 0;
2021 }
2022 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)2023 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2024 {
2025 	gpa_t gpa = data & ~0x3f;
2026 
2027 	/* Bits 2:5 are reserved, Should be zero */
2028 	if (data & 0x3c)
2029 		return 1;
2030 
2031 	vcpu->arch.apf.msr_val = data;
2032 
2033 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2034 		kvm_clear_async_pf_completion_queue(vcpu);
2035 		kvm_async_pf_hash_reset(vcpu);
2036 		return 0;
2037 	}
2038 
2039 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2040 					sizeof(u32)))
2041 		return 1;
2042 
2043 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2044 	kvm_async_pf_wakeup_all(vcpu);
2045 	return 0;
2046 }
2047 
kvmclock_reset(struct kvm_vcpu * vcpu)2048 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2049 {
2050 	vcpu->arch.pv_time_enabled = false;
2051 }
2052 
accumulate_steal_time(struct kvm_vcpu * vcpu)2053 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2054 {
2055 	u64 delta;
2056 
2057 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2058 		return;
2059 
2060 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2061 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2062 	vcpu->arch.st.accum_steal = delta;
2063 }
2064 
record_steal_time(struct kvm_vcpu * vcpu)2065 static void record_steal_time(struct kvm_vcpu *vcpu)
2066 {
2067 	accumulate_steal_time(vcpu);
2068 
2069 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2070 		return;
2071 
2072 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2073 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2074 		return;
2075 
2076 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2077 	vcpu->arch.st.steal.version += 2;
2078 	vcpu->arch.st.accum_steal = 0;
2079 
2080 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2081 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2082 }
2083 
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2084 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2085 {
2086 	bool pr = false;
2087 	u32 msr = msr_info->index;
2088 	u64 data = msr_info->data;
2089 
2090 	switch (msr) {
2091 	case MSR_AMD64_NB_CFG:
2092 	case MSR_IA32_UCODE_REV:
2093 	case MSR_IA32_UCODE_WRITE:
2094 	case MSR_VM_HSAVE_PA:
2095 	case MSR_AMD64_PATCH_LOADER:
2096 	case MSR_AMD64_BU_CFG2:
2097 		break;
2098 
2099 	case MSR_EFER:
2100 		return set_efer(vcpu, data);
2101 	case MSR_K7_HWCR:
2102 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2103 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2104 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2105 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2106 		if (data != 0) {
2107 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2108 				    data);
2109 			return 1;
2110 		}
2111 		break;
2112 	case MSR_FAM10H_MMIO_CONF_BASE:
2113 		if (data != 0) {
2114 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2115 				    "0x%llx\n", data);
2116 			return 1;
2117 		}
2118 		break;
2119 	case MSR_IA32_DEBUGCTLMSR:
2120 		if (!data) {
2121 			/* We support the non-activated case already */
2122 			break;
2123 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2124 			/* Values other than LBR and BTF are vendor-specific,
2125 			   thus reserved and should throw a #GP */
2126 			return 1;
2127 		}
2128 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2129 			    __func__, data);
2130 		break;
2131 	case 0x200 ... 0x2ff:
2132 		return set_msr_mtrr(vcpu, msr, data);
2133 	case MSR_IA32_APICBASE:
2134 		return kvm_set_apic_base(vcpu, msr_info);
2135 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2136 		return kvm_x2apic_msr_write(vcpu, msr, data);
2137 	case MSR_IA32_TSCDEADLINE:
2138 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2139 		break;
2140 	case MSR_IA32_TSC_ADJUST:
2141 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2142 			if (!msr_info->host_initiated) {
2143 				u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2144 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2145 			}
2146 			vcpu->arch.ia32_tsc_adjust_msr = data;
2147 		}
2148 		break;
2149 	case MSR_IA32_MISC_ENABLE:
2150 		vcpu->arch.ia32_misc_enable_msr = data;
2151 		break;
2152 	case MSR_KVM_WALL_CLOCK_NEW:
2153 	case MSR_KVM_WALL_CLOCK:
2154 		vcpu->kvm->arch.wall_clock = data;
2155 		kvm_write_wall_clock(vcpu->kvm, data);
2156 		break;
2157 	case MSR_KVM_SYSTEM_TIME_NEW:
2158 	case MSR_KVM_SYSTEM_TIME: {
2159 		u64 gpa_offset;
2160 		kvmclock_reset(vcpu);
2161 
2162 		vcpu->arch.time = data;
2163 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2164 
2165 		/* we verify if the enable bit is set... */
2166 		if (!(data & 1))
2167 			break;
2168 
2169 		gpa_offset = data & ~(PAGE_MASK | 1);
2170 
2171 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2172 		     &vcpu->arch.pv_time, data & ~1ULL,
2173 		     sizeof(struct pvclock_vcpu_time_info)))
2174 			vcpu->arch.pv_time_enabled = false;
2175 		else
2176 			vcpu->arch.pv_time_enabled = true;
2177 
2178 		break;
2179 	}
2180 	case MSR_KVM_ASYNC_PF_EN:
2181 		if (kvm_pv_enable_async_pf(vcpu, data))
2182 			return 1;
2183 		break;
2184 	case MSR_KVM_STEAL_TIME:
2185 
2186 		if (unlikely(!sched_info_on()))
2187 			return 1;
2188 
2189 		if (data & KVM_STEAL_RESERVED_MASK)
2190 			return 1;
2191 
2192 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2193 						data & KVM_STEAL_VALID_BITS,
2194 						sizeof(struct kvm_steal_time)))
2195 			return 1;
2196 
2197 		vcpu->arch.st.msr_val = data;
2198 
2199 		if (!(data & KVM_MSR_ENABLED))
2200 			break;
2201 
2202 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2203 
2204 		break;
2205 	case MSR_KVM_PV_EOI_EN:
2206 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2207 			return 1;
2208 		break;
2209 
2210 	case MSR_IA32_MCG_CTL:
2211 	case MSR_IA32_MCG_STATUS:
2212 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2213 		return set_msr_mce(vcpu, msr, data);
2214 
2215 	/* Performance counters are not protected by a CPUID bit,
2216 	 * so we should check all of them in the generic path for the sake of
2217 	 * cross vendor migration.
2218 	 * Writing a zero into the event select MSRs disables them,
2219 	 * which we perfectly emulate ;-). Any other value should be at least
2220 	 * reported, some guests depend on them.
2221 	 */
2222 	case MSR_K7_EVNTSEL0:
2223 	case MSR_K7_EVNTSEL1:
2224 	case MSR_K7_EVNTSEL2:
2225 	case MSR_K7_EVNTSEL3:
2226 		if (data != 0)
2227 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2228 				    "0x%x data 0x%llx\n", msr, data);
2229 		break;
2230 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
2231 	 * so we ignore writes to make it happy.
2232 	 */
2233 	case MSR_K7_PERFCTR0:
2234 	case MSR_K7_PERFCTR1:
2235 	case MSR_K7_PERFCTR2:
2236 	case MSR_K7_PERFCTR3:
2237 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2238 			    "0x%x data 0x%llx\n", msr, data);
2239 		break;
2240 	case MSR_P6_PERFCTR0:
2241 	case MSR_P6_PERFCTR1:
2242 		pr = true;
2243 	case MSR_P6_EVNTSEL0:
2244 	case MSR_P6_EVNTSEL1:
2245 		if (kvm_pmu_msr(vcpu, msr))
2246 			return kvm_pmu_set_msr(vcpu, msr_info);
2247 
2248 		if (pr || data != 0)
2249 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2250 				    "0x%x data 0x%llx\n", msr, data);
2251 		break;
2252 	case MSR_K7_CLK_CTL:
2253 		/*
2254 		 * Ignore all writes to this no longer documented MSR.
2255 		 * Writes are only relevant for old K7 processors,
2256 		 * all pre-dating SVM, but a recommended workaround from
2257 		 * AMD for these chips. It is possible to specify the
2258 		 * affected processor models on the command line, hence
2259 		 * the need to ignore the workaround.
2260 		 */
2261 		break;
2262 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2263 		if (kvm_hv_msr_partition_wide(msr)) {
2264 			int r;
2265 			mutex_lock(&vcpu->kvm->lock);
2266 			r = set_msr_hyperv_pw(vcpu, msr, data);
2267 			mutex_unlock(&vcpu->kvm->lock);
2268 			return r;
2269 		} else
2270 			return set_msr_hyperv(vcpu, msr, data);
2271 		break;
2272 	case MSR_IA32_BBL_CR_CTL3:
2273 		/* Drop writes to this legacy MSR -- see rdmsr
2274 		 * counterpart for further detail.
2275 		 */
2276 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2277 		break;
2278 	case MSR_AMD64_OSVW_ID_LENGTH:
2279 		if (!guest_cpuid_has_osvw(vcpu))
2280 			return 1;
2281 		vcpu->arch.osvw.length = data;
2282 		break;
2283 	case MSR_AMD64_OSVW_STATUS:
2284 		if (!guest_cpuid_has_osvw(vcpu))
2285 			return 1;
2286 		vcpu->arch.osvw.status = data;
2287 		break;
2288 	default:
2289 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2290 			return xen_hvm_config(vcpu, data);
2291 		if (kvm_pmu_msr(vcpu, msr))
2292 			return kvm_pmu_set_msr(vcpu, msr_info);
2293 		if (!ignore_msrs) {
2294 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2295 				    msr, data);
2296 			return 1;
2297 		} else {
2298 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2299 				    msr, data);
2300 			break;
2301 		}
2302 	}
2303 	return 0;
2304 }
2305 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2306 
2307 
2308 /*
2309  * Reads an msr value (of 'msr_index') into 'pdata'.
2310  * Returns 0 on success, non-0 otherwise.
2311  * Assumes vcpu_load() was already called.
2312  */
kvm_get_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 * pdata)2313 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2314 {
2315 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2316 }
2317 
get_msr_mtrr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2318 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2319 {
2320 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2321 
2322 	if (!msr_mtrr_valid(msr))
2323 		return 1;
2324 
2325 	if (msr == MSR_MTRRdefType)
2326 		*pdata = vcpu->arch.mtrr_state.def_type +
2327 			 (vcpu->arch.mtrr_state.enabled << 10);
2328 	else if (msr == MSR_MTRRfix64K_00000)
2329 		*pdata = p[0];
2330 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2331 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2332 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2333 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2334 	else if (msr == MSR_IA32_CR_PAT)
2335 		*pdata = vcpu->arch.pat;
2336 	else {	/* Variable MTRRs */
2337 		int idx, is_mtrr_mask;
2338 		u64 *pt;
2339 
2340 		idx = (msr - 0x200) / 2;
2341 		is_mtrr_mask = msr - 0x200 - 2 * idx;
2342 		if (!is_mtrr_mask)
2343 			pt =
2344 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2345 		else
2346 			pt =
2347 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2348 		*pdata = *pt;
2349 	}
2350 
2351 	return 0;
2352 }
2353 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2354 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2355 {
2356 	u64 data;
2357 	u64 mcg_cap = vcpu->arch.mcg_cap;
2358 	unsigned bank_num = mcg_cap & 0xff;
2359 
2360 	switch (msr) {
2361 	case MSR_IA32_P5_MC_ADDR:
2362 	case MSR_IA32_P5_MC_TYPE:
2363 		data = 0;
2364 		break;
2365 	case MSR_IA32_MCG_CAP:
2366 		data = vcpu->arch.mcg_cap;
2367 		break;
2368 	case MSR_IA32_MCG_CTL:
2369 		if (!(mcg_cap & MCG_CTL_P))
2370 			return 1;
2371 		data = vcpu->arch.mcg_ctl;
2372 		break;
2373 	case MSR_IA32_MCG_STATUS:
2374 		data = vcpu->arch.mcg_status;
2375 		break;
2376 	default:
2377 		if (msr >= MSR_IA32_MC0_CTL &&
2378 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2379 			u32 offset = msr - MSR_IA32_MC0_CTL;
2380 			data = vcpu->arch.mce_banks[offset];
2381 			break;
2382 		}
2383 		return 1;
2384 	}
2385 	*pdata = data;
2386 	return 0;
2387 }
2388 
get_msr_hyperv_pw(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2389 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2390 {
2391 	u64 data = 0;
2392 	struct kvm *kvm = vcpu->kvm;
2393 
2394 	switch (msr) {
2395 	case HV_X64_MSR_GUEST_OS_ID:
2396 		data = kvm->arch.hv_guest_os_id;
2397 		break;
2398 	case HV_X64_MSR_HYPERCALL:
2399 		data = kvm->arch.hv_hypercall;
2400 		break;
2401 	case HV_X64_MSR_TIME_REF_COUNT: {
2402 		data =
2403 		     div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2404 		break;
2405 	}
2406 	case HV_X64_MSR_REFERENCE_TSC:
2407 		data = kvm->arch.hv_tsc_page;
2408 		break;
2409 	default:
2410 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2411 		return 1;
2412 	}
2413 
2414 	*pdata = data;
2415 	return 0;
2416 }
2417 
get_msr_hyperv(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2418 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2419 {
2420 	u64 data = 0;
2421 
2422 	switch (msr) {
2423 	case HV_X64_MSR_VP_INDEX: {
2424 		int r;
2425 		struct kvm_vcpu *v;
2426 		kvm_for_each_vcpu(r, v, vcpu->kvm) {
2427 			if (v == vcpu) {
2428 				data = r;
2429 				break;
2430 			}
2431 		}
2432 		break;
2433 	}
2434 	case HV_X64_MSR_EOI:
2435 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2436 	case HV_X64_MSR_ICR:
2437 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2438 	case HV_X64_MSR_TPR:
2439 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2440 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2441 		data = vcpu->arch.hv_vapic;
2442 		break;
2443 	default:
2444 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2445 		return 1;
2446 	}
2447 	*pdata = data;
2448 	return 0;
2449 }
2450 
kvm_get_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2451 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2452 {
2453 	u64 data;
2454 
2455 	switch (msr) {
2456 	case MSR_IA32_PLATFORM_ID:
2457 	case MSR_IA32_EBL_CR_POWERON:
2458 	case MSR_IA32_DEBUGCTLMSR:
2459 	case MSR_IA32_LASTBRANCHFROMIP:
2460 	case MSR_IA32_LASTBRANCHTOIP:
2461 	case MSR_IA32_LASTINTFROMIP:
2462 	case MSR_IA32_LASTINTTOIP:
2463 	case MSR_K8_SYSCFG:
2464 	case MSR_K7_HWCR:
2465 	case MSR_VM_HSAVE_PA:
2466 	case MSR_K7_EVNTSEL0:
2467 	case MSR_K7_EVNTSEL1:
2468 	case MSR_K7_EVNTSEL2:
2469 	case MSR_K7_EVNTSEL3:
2470 	case MSR_K7_PERFCTR0:
2471 	case MSR_K7_PERFCTR1:
2472 	case MSR_K7_PERFCTR2:
2473 	case MSR_K7_PERFCTR3:
2474 	case MSR_K8_INT_PENDING_MSG:
2475 	case MSR_AMD64_NB_CFG:
2476 	case MSR_FAM10H_MMIO_CONF_BASE:
2477 	case MSR_AMD64_BU_CFG2:
2478 		data = 0;
2479 		break;
2480 	case MSR_P6_PERFCTR0:
2481 	case MSR_P6_PERFCTR1:
2482 	case MSR_P6_EVNTSEL0:
2483 	case MSR_P6_EVNTSEL1:
2484 		if (kvm_pmu_msr(vcpu, msr))
2485 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2486 		data = 0;
2487 		break;
2488 	case MSR_IA32_UCODE_REV:
2489 		data = 0x100000000ULL;
2490 		break;
2491 	case MSR_MTRRcap:
2492 		data = 0x500 | KVM_NR_VAR_MTRR;
2493 		break;
2494 	case 0x200 ... 0x2ff:
2495 		return get_msr_mtrr(vcpu, msr, pdata);
2496 	case 0xcd: /* fsb frequency */
2497 		data = 3;
2498 		break;
2499 		/*
2500 		 * MSR_EBC_FREQUENCY_ID
2501 		 * Conservative value valid for even the basic CPU models.
2502 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2503 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2504 		 * and 266MHz for model 3, or 4. Set Core Clock
2505 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2506 		 * 31:24) even though these are only valid for CPU
2507 		 * models > 2, however guests may end up dividing or
2508 		 * multiplying by zero otherwise.
2509 		 */
2510 	case MSR_EBC_FREQUENCY_ID:
2511 		data = 1 << 24;
2512 		break;
2513 	case MSR_IA32_APICBASE:
2514 		data = kvm_get_apic_base(vcpu);
2515 		break;
2516 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2517 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
2518 		break;
2519 	case MSR_IA32_TSCDEADLINE:
2520 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
2521 		break;
2522 	case MSR_IA32_TSC_ADJUST:
2523 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2524 		break;
2525 	case MSR_IA32_MISC_ENABLE:
2526 		data = vcpu->arch.ia32_misc_enable_msr;
2527 		break;
2528 	case MSR_IA32_PERF_STATUS:
2529 		/* TSC increment by tick */
2530 		data = 1000ULL;
2531 		/* CPU multiplier */
2532 		data |= (((uint64_t)4ULL) << 40);
2533 		break;
2534 	case MSR_EFER:
2535 		data = vcpu->arch.efer;
2536 		break;
2537 	case MSR_KVM_WALL_CLOCK:
2538 	case MSR_KVM_WALL_CLOCK_NEW:
2539 		data = vcpu->kvm->arch.wall_clock;
2540 		break;
2541 	case MSR_KVM_SYSTEM_TIME:
2542 	case MSR_KVM_SYSTEM_TIME_NEW:
2543 		data = vcpu->arch.time;
2544 		break;
2545 	case MSR_KVM_ASYNC_PF_EN:
2546 		data = vcpu->arch.apf.msr_val;
2547 		break;
2548 	case MSR_KVM_STEAL_TIME:
2549 		data = vcpu->arch.st.msr_val;
2550 		break;
2551 	case MSR_KVM_PV_EOI_EN:
2552 		data = vcpu->arch.pv_eoi.msr_val;
2553 		break;
2554 	case MSR_IA32_P5_MC_ADDR:
2555 	case MSR_IA32_P5_MC_TYPE:
2556 	case MSR_IA32_MCG_CAP:
2557 	case MSR_IA32_MCG_CTL:
2558 	case MSR_IA32_MCG_STATUS:
2559 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2560 		return get_msr_mce(vcpu, msr, pdata);
2561 	case MSR_K7_CLK_CTL:
2562 		/*
2563 		 * Provide expected ramp-up count for K7. All other
2564 		 * are set to zero, indicating minimum divisors for
2565 		 * every field.
2566 		 *
2567 		 * This prevents guest kernels on AMD host with CPU
2568 		 * type 6, model 8 and higher from exploding due to
2569 		 * the rdmsr failing.
2570 		 */
2571 		data = 0x20000000;
2572 		break;
2573 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2574 		if (kvm_hv_msr_partition_wide(msr)) {
2575 			int r;
2576 			mutex_lock(&vcpu->kvm->lock);
2577 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2578 			mutex_unlock(&vcpu->kvm->lock);
2579 			return r;
2580 		} else
2581 			return get_msr_hyperv(vcpu, msr, pdata);
2582 		break;
2583 	case MSR_IA32_BBL_CR_CTL3:
2584 		/* This legacy MSR exists but isn't fully documented in current
2585 		 * silicon.  It is however accessed by winxp in very narrow
2586 		 * scenarios where it sets bit #19, itself documented as
2587 		 * a "reserved" bit.  Best effort attempt to source coherent
2588 		 * read data here should the balance of the register be
2589 		 * interpreted by the guest:
2590 		 *
2591 		 * L2 cache control register 3: 64GB range, 256KB size,
2592 		 * enabled, latency 0x1, configured
2593 		 */
2594 		data = 0xbe702111;
2595 		break;
2596 	case MSR_AMD64_OSVW_ID_LENGTH:
2597 		if (!guest_cpuid_has_osvw(vcpu))
2598 			return 1;
2599 		data = vcpu->arch.osvw.length;
2600 		break;
2601 	case MSR_AMD64_OSVW_STATUS:
2602 		if (!guest_cpuid_has_osvw(vcpu))
2603 			return 1;
2604 		data = vcpu->arch.osvw.status;
2605 		break;
2606 	default:
2607 		if (kvm_pmu_msr(vcpu, msr))
2608 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2609 		if (!ignore_msrs) {
2610 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2611 			return 1;
2612 		} else {
2613 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2614 			data = 0;
2615 		}
2616 		break;
2617 	}
2618 	*pdata = data;
2619 	return 0;
2620 }
2621 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2622 
2623 /*
2624  * Read or write a bunch of msrs. All parameters are kernel addresses.
2625  *
2626  * @return number of msrs set successfully.
2627  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))2628 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2629 		    struct kvm_msr_entry *entries,
2630 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2631 				  unsigned index, u64 *data))
2632 {
2633 	int i, idx;
2634 
2635 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2636 	for (i = 0; i < msrs->nmsrs; ++i)
2637 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2638 			break;
2639 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2640 
2641 	return i;
2642 }
2643 
2644 /*
2645  * Read or write a bunch of msrs. Parameters are user addresses.
2646  *
2647  * @return number of msrs set successfully.
2648  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)2649 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2650 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2651 				unsigned index, u64 *data),
2652 		  int writeback)
2653 {
2654 	struct kvm_msrs msrs;
2655 	struct kvm_msr_entry *entries;
2656 	int r, n;
2657 	unsigned size;
2658 
2659 	r = -EFAULT;
2660 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2661 		goto out;
2662 
2663 	r = -E2BIG;
2664 	if (msrs.nmsrs >= MAX_IO_MSRS)
2665 		goto out;
2666 
2667 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2668 	entries = memdup_user(user_msrs->entries, size);
2669 	if (IS_ERR(entries)) {
2670 		r = PTR_ERR(entries);
2671 		goto out;
2672 	}
2673 
2674 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2675 	if (r < 0)
2676 		goto out_free;
2677 
2678 	r = -EFAULT;
2679 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2680 		goto out_free;
2681 
2682 	r = n;
2683 
2684 out_free:
2685 	kfree(entries);
2686 out:
2687 	return r;
2688 }
2689 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)2690 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2691 {
2692 	int r;
2693 
2694 	switch (ext) {
2695 	case KVM_CAP_IRQCHIP:
2696 	case KVM_CAP_HLT:
2697 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2698 	case KVM_CAP_SET_TSS_ADDR:
2699 	case KVM_CAP_EXT_CPUID:
2700 	case KVM_CAP_EXT_EMUL_CPUID:
2701 	case KVM_CAP_CLOCKSOURCE:
2702 	case KVM_CAP_PIT:
2703 	case KVM_CAP_NOP_IO_DELAY:
2704 	case KVM_CAP_MP_STATE:
2705 	case KVM_CAP_SYNC_MMU:
2706 	case KVM_CAP_USER_NMI:
2707 	case KVM_CAP_REINJECT_CONTROL:
2708 	case KVM_CAP_IRQ_INJECT_STATUS:
2709 	case KVM_CAP_IOEVENTFD:
2710 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2711 	case KVM_CAP_PIT2:
2712 	case KVM_CAP_PIT_STATE2:
2713 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2714 	case KVM_CAP_XEN_HVM:
2715 	case KVM_CAP_ADJUST_CLOCK:
2716 	case KVM_CAP_VCPU_EVENTS:
2717 	case KVM_CAP_HYPERV:
2718 	case KVM_CAP_HYPERV_VAPIC:
2719 	case KVM_CAP_HYPERV_SPIN:
2720 	case KVM_CAP_PCI_SEGMENT:
2721 	case KVM_CAP_DEBUGREGS:
2722 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2723 	case KVM_CAP_XSAVE:
2724 	case KVM_CAP_ASYNC_PF:
2725 	case KVM_CAP_GET_TSC_KHZ:
2726 	case KVM_CAP_KVMCLOCK_CTRL:
2727 	case KVM_CAP_READONLY_MEM:
2728 	case KVM_CAP_HYPERV_TIME:
2729 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2730 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2731 	case KVM_CAP_ASSIGN_DEV_IRQ:
2732 	case KVM_CAP_PCI_2_3:
2733 #endif
2734 		r = 1;
2735 		break;
2736 	case KVM_CAP_COALESCED_MMIO:
2737 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2738 		break;
2739 	case KVM_CAP_VAPIC:
2740 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2741 		break;
2742 	case KVM_CAP_NR_VCPUS:
2743 		r = KVM_SOFT_MAX_VCPUS;
2744 		break;
2745 	case KVM_CAP_MAX_VCPUS:
2746 		r = KVM_MAX_VCPUS;
2747 		break;
2748 	case KVM_CAP_NR_MEMSLOTS:
2749 		r = KVM_USER_MEM_SLOTS;
2750 		break;
2751 	case KVM_CAP_PV_MMU:	/* obsolete */
2752 		r = 0;
2753 		break;
2754 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2755 	case KVM_CAP_IOMMU:
2756 		r = iommu_present(&pci_bus_type);
2757 		break;
2758 #endif
2759 	case KVM_CAP_MCE:
2760 		r = KVM_MAX_MCE_BANKS;
2761 		break;
2762 	case KVM_CAP_XCRS:
2763 		r = cpu_has_xsave;
2764 		break;
2765 	case KVM_CAP_TSC_CONTROL:
2766 		r = kvm_has_tsc_control;
2767 		break;
2768 	case KVM_CAP_TSC_DEADLINE_TIMER:
2769 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2770 		break;
2771 	default:
2772 		r = 0;
2773 		break;
2774 	}
2775 	return r;
2776 
2777 }
2778 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2779 long kvm_arch_dev_ioctl(struct file *filp,
2780 			unsigned int ioctl, unsigned long arg)
2781 {
2782 	void __user *argp = (void __user *)arg;
2783 	long r;
2784 
2785 	switch (ioctl) {
2786 	case KVM_GET_MSR_INDEX_LIST: {
2787 		struct kvm_msr_list __user *user_msr_list = argp;
2788 		struct kvm_msr_list msr_list;
2789 		unsigned n;
2790 
2791 		r = -EFAULT;
2792 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2793 			goto out;
2794 		n = msr_list.nmsrs;
2795 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2796 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2797 			goto out;
2798 		r = -E2BIG;
2799 		if (n < msr_list.nmsrs)
2800 			goto out;
2801 		r = -EFAULT;
2802 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2803 				 num_msrs_to_save * sizeof(u32)))
2804 			goto out;
2805 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2806 				 &emulated_msrs,
2807 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2808 			goto out;
2809 		r = 0;
2810 		break;
2811 	}
2812 	case KVM_GET_SUPPORTED_CPUID:
2813 	case KVM_GET_EMULATED_CPUID: {
2814 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2815 		struct kvm_cpuid2 cpuid;
2816 
2817 		r = -EFAULT;
2818 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2819 			goto out;
2820 
2821 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2822 					    ioctl);
2823 		if (r)
2824 			goto out;
2825 
2826 		r = -EFAULT;
2827 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2828 			goto out;
2829 		r = 0;
2830 		break;
2831 	}
2832 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2833 		u64 mce_cap;
2834 
2835 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2836 		r = -EFAULT;
2837 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2838 			goto out;
2839 		r = 0;
2840 		break;
2841 	}
2842 	default:
2843 		r = -EINVAL;
2844 	}
2845 out:
2846 	return r;
2847 }
2848 
wbinvd_ipi(void * garbage)2849 static void wbinvd_ipi(void *garbage)
2850 {
2851 	wbinvd();
2852 }
2853 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)2854 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2855 {
2856 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2857 }
2858 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2859 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2860 {
2861 	/* Address WBINVD may be executed by guest */
2862 	if (need_emulate_wbinvd(vcpu)) {
2863 		if (kvm_x86_ops->has_wbinvd_exit())
2864 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2865 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2866 			smp_call_function_single(vcpu->cpu,
2867 					wbinvd_ipi, NULL, 1);
2868 	}
2869 
2870 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2871 
2872 	/* Apply any externally detected TSC adjustments (due to suspend) */
2873 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2874 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2875 		vcpu->arch.tsc_offset_adjustment = 0;
2876 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2877 	}
2878 
2879 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2880 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2881 				native_read_tsc() - vcpu->arch.last_host_tsc;
2882 		if (tsc_delta < 0)
2883 			mark_tsc_unstable("KVM discovered backwards TSC");
2884 		if (check_tsc_unstable()) {
2885 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2886 						vcpu->arch.last_guest_tsc);
2887 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2888 			vcpu->arch.tsc_catchup = 1;
2889 		}
2890 		/*
2891 		 * On a host with synchronized TSC, there is no need to update
2892 		 * kvmclock on vcpu->cpu migration
2893 		 */
2894 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2895 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2896 		if (vcpu->cpu != cpu)
2897 			kvm_migrate_timers(vcpu);
2898 		vcpu->cpu = cpu;
2899 	}
2900 
2901 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2902 }
2903 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)2904 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2905 {
2906 	kvm_x86_ops->vcpu_put(vcpu);
2907 	kvm_put_guest_fpu(vcpu);
2908 	vcpu->arch.last_host_tsc = native_read_tsc();
2909 }
2910 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2911 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2912 				    struct kvm_lapic_state *s)
2913 {
2914 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2915 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2916 
2917 	return 0;
2918 }
2919 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2920 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2921 				    struct kvm_lapic_state *s)
2922 {
2923 	kvm_apic_post_state_restore(vcpu, s);
2924 	update_cr8_intercept(vcpu);
2925 
2926 	return 0;
2927 }
2928 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)2929 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2930 				    struct kvm_interrupt *irq)
2931 {
2932 	if (irq->irq >= KVM_NR_INTERRUPTS)
2933 		return -EINVAL;
2934 	if (irqchip_in_kernel(vcpu->kvm))
2935 		return -ENXIO;
2936 
2937 	kvm_queue_interrupt(vcpu, irq->irq, false);
2938 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2939 
2940 	return 0;
2941 }
2942 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)2943 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2944 {
2945 	kvm_inject_nmi(vcpu);
2946 
2947 	return 0;
2948 }
2949 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)2950 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2951 					   struct kvm_tpr_access_ctl *tac)
2952 {
2953 	if (tac->flags)
2954 		return -EINVAL;
2955 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2956 	return 0;
2957 }
2958 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)2959 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2960 					u64 mcg_cap)
2961 {
2962 	int r;
2963 	unsigned bank_num = mcg_cap & 0xff, bank;
2964 
2965 	r = -EINVAL;
2966 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2967 		goto out;
2968 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2969 		goto out;
2970 	r = 0;
2971 	vcpu->arch.mcg_cap = mcg_cap;
2972 	/* Init IA32_MCG_CTL to all 1s */
2973 	if (mcg_cap & MCG_CTL_P)
2974 		vcpu->arch.mcg_ctl = ~(u64)0;
2975 	/* Init IA32_MCi_CTL to all 1s */
2976 	for (bank = 0; bank < bank_num; bank++)
2977 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2978 out:
2979 	return r;
2980 }
2981 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)2982 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2983 				      struct kvm_x86_mce *mce)
2984 {
2985 	u64 mcg_cap = vcpu->arch.mcg_cap;
2986 	unsigned bank_num = mcg_cap & 0xff;
2987 	u64 *banks = vcpu->arch.mce_banks;
2988 
2989 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2990 		return -EINVAL;
2991 	/*
2992 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2993 	 * reporting is disabled
2994 	 */
2995 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2996 	    vcpu->arch.mcg_ctl != ~(u64)0)
2997 		return 0;
2998 	banks += 4 * mce->bank;
2999 	/*
3000 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3001 	 * reporting is disabled for the bank
3002 	 */
3003 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3004 		return 0;
3005 	if (mce->status & MCI_STATUS_UC) {
3006 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3007 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3008 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3009 			return 0;
3010 		}
3011 		if (banks[1] & MCI_STATUS_VAL)
3012 			mce->status |= MCI_STATUS_OVER;
3013 		banks[2] = mce->addr;
3014 		banks[3] = mce->misc;
3015 		vcpu->arch.mcg_status = mce->mcg_status;
3016 		banks[1] = mce->status;
3017 		kvm_queue_exception(vcpu, MC_VECTOR);
3018 	} else if (!(banks[1] & MCI_STATUS_VAL)
3019 		   || !(banks[1] & MCI_STATUS_UC)) {
3020 		if (banks[1] & MCI_STATUS_VAL)
3021 			mce->status |= MCI_STATUS_OVER;
3022 		banks[2] = mce->addr;
3023 		banks[3] = mce->misc;
3024 		banks[1] = mce->status;
3025 	} else
3026 		banks[1] |= MCI_STATUS_OVER;
3027 	return 0;
3028 }
3029 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3030 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3031 					       struct kvm_vcpu_events *events)
3032 {
3033 	process_nmi(vcpu);
3034 	events->exception.injected =
3035 		vcpu->arch.exception.pending &&
3036 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3037 	events->exception.nr = vcpu->arch.exception.nr;
3038 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3039 	events->exception.pad = 0;
3040 	events->exception.error_code = vcpu->arch.exception.error_code;
3041 
3042 	events->interrupt.injected =
3043 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3044 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3045 	events->interrupt.soft = 0;
3046 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3047 
3048 	events->nmi.injected = vcpu->arch.nmi_injected;
3049 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3050 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3051 	events->nmi.pad = 0;
3052 
3053 	events->sipi_vector = 0; /* never valid when reporting to user space */
3054 
3055 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3056 			 | KVM_VCPUEVENT_VALID_SHADOW);
3057 	memset(&events->reserved, 0, sizeof(events->reserved));
3058 }
3059 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3060 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3061 					      struct kvm_vcpu_events *events)
3062 {
3063 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3064 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3065 			      | KVM_VCPUEVENT_VALID_SHADOW))
3066 		return -EINVAL;
3067 
3068 	process_nmi(vcpu);
3069 	vcpu->arch.exception.pending = events->exception.injected;
3070 	vcpu->arch.exception.nr = events->exception.nr;
3071 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3072 	vcpu->arch.exception.error_code = events->exception.error_code;
3073 
3074 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3075 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3076 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3077 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3078 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3079 						  events->interrupt.shadow);
3080 
3081 	vcpu->arch.nmi_injected = events->nmi.injected;
3082 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3083 		vcpu->arch.nmi_pending = events->nmi.pending;
3084 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3085 
3086 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3087 	    kvm_vcpu_has_lapic(vcpu))
3088 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3089 
3090 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3091 
3092 	return 0;
3093 }
3094 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3095 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3096 					     struct kvm_debugregs *dbgregs)
3097 {
3098 	unsigned long val;
3099 
3100 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3101 	_kvm_get_dr(vcpu, 6, &val);
3102 	dbgregs->dr6 = val;
3103 	dbgregs->dr7 = vcpu->arch.dr7;
3104 	dbgregs->flags = 0;
3105 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3106 }
3107 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3108 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3109 					    struct kvm_debugregs *dbgregs)
3110 {
3111 	if (dbgregs->flags)
3112 		return -EINVAL;
3113 
3114 	if (dbgregs->dr6 & ~0xffffffffull)
3115 		return -EINVAL;
3116 	if (dbgregs->dr7 & ~0xffffffffull)
3117 		return -EINVAL;
3118 
3119 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3120 	vcpu->arch.dr6 = dbgregs->dr6;
3121 	kvm_update_dr6(vcpu);
3122 	vcpu->arch.dr7 = dbgregs->dr7;
3123 	kvm_update_dr7(vcpu);
3124 
3125 	return 0;
3126 }
3127 
3128 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3129 
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)3130 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3131 {
3132 	struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3133 	u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3134 	u64 valid;
3135 
3136 	/*
3137 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3138 	 * leaves 0 and 1 in the loop below.
3139 	 */
3140 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3141 
3142 	/* Set XSTATE_BV */
3143 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3144 
3145 	/*
3146 	 * Copy each region from the possibly compacted offset to the
3147 	 * non-compacted offset.
3148 	 */
3149 	valid = xstate_bv & ~XSTATE_FPSSE;
3150 	while (valid) {
3151 		u64 feature = valid & -valid;
3152 		int index = fls64(feature) - 1;
3153 		void *src = get_xsave_addr(xsave, feature);
3154 
3155 		if (src) {
3156 			u32 size, offset, ecx, edx;
3157 			cpuid_count(XSTATE_CPUID, index,
3158 				    &size, &offset, &ecx, &edx);
3159 			memcpy(dest + offset, src, size);
3160 		}
3161 
3162 		valid -= feature;
3163 	}
3164 }
3165 
load_xsave(struct kvm_vcpu * vcpu,u8 * src)3166 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3167 {
3168 	struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3169 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3170 	u64 valid;
3171 
3172 	/*
3173 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3174 	 * leaves 0 and 1 in the loop below.
3175 	 */
3176 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3177 
3178 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3179 	xsave->xsave_hdr.xstate_bv = xstate_bv;
3180 	if (cpu_has_xsaves)
3181 		xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3182 
3183 	/*
3184 	 * Copy each region from the non-compacted offset to the
3185 	 * possibly compacted offset.
3186 	 */
3187 	valid = xstate_bv & ~XSTATE_FPSSE;
3188 	while (valid) {
3189 		u64 feature = valid & -valid;
3190 		int index = fls64(feature) - 1;
3191 		void *dest = get_xsave_addr(xsave, feature);
3192 
3193 		if (dest) {
3194 			u32 size, offset, ecx, edx;
3195 			cpuid_count(XSTATE_CPUID, index,
3196 				    &size, &offset, &ecx, &edx);
3197 			memcpy(dest, src + offset, size);
3198 		} else
3199 			WARN_ON_ONCE(1);
3200 
3201 		valid -= feature;
3202 	}
3203 }
3204 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3205 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3206 					 struct kvm_xsave *guest_xsave)
3207 {
3208 	if (cpu_has_xsave) {
3209 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3210 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3211 	} else {
3212 		memcpy(guest_xsave->region,
3213 			&vcpu->arch.guest_fpu.state->fxsave,
3214 			sizeof(struct i387_fxsave_struct));
3215 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3216 			XSTATE_FPSSE;
3217 	}
3218 }
3219 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3220 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3221 					struct kvm_xsave *guest_xsave)
3222 {
3223 	u64 xstate_bv =
3224 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3225 
3226 	if (cpu_has_xsave) {
3227 		/*
3228 		 * Here we allow setting states that are not present in
3229 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3230 		 * with old userspace.
3231 		 */
3232 		if (xstate_bv & ~kvm_supported_xcr0())
3233 			return -EINVAL;
3234 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3235 	} else {
3236 		if (xstate_bv & ~XSTATE_FPSSE)
3237 			return -EINVAL;
3238 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3239 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
3240 	}
3241 	return 0;
3242 }
3243 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3244 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3245 					struct kvm_xcrs *guest_xcrs)
3246 {
3247 	if (!cpu_has_xsave) {
3248 		guest_xcrs->nr_xcrs = 0;
3249 		return;
3250 	}
3251 
3252 	guest_xcrs->nr_xcrs = 1;
3253 	guest_xcrs->flags = 0;
3254 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3255 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3256 }
3257 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3258 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3259 				       struct kvm_xcrs *guest_xcrs)
3260 {
3261 	int i, r = 0;
3262 
3263 	if (!cpu_has_xsave)
3264 		return -EINVAL;
3265 
3266 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3267 		return -EINVAL;
3268 
3269 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3270 		/* Only support XCR0 currently */
3271 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3272 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3273 				guest_xcrs->xcrs[i].value);
3274 			break;
3275 		}
3276 	if (r)
3277 		r = -EINVAL;
3278 	return r;
3279 }
3280 
3281 /*
3282  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3283  * stopped by the hypervisor.  This function will be called from the host only.
3284  * EINVAL is returned when the host attempts to set the flag for a guest that
3285  * does not support pv clocks.
3286  */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)3287 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3288 {
3289 	if (!vcpu->arch.pv_time_enabled)
3290 		return -EINVAL;
3291 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3292 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3293 	return 0;
3294 }
3295 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3296 long kvm_arch_vcpu_ioctl(struct file *filp,
3297 			 unsigned int ioctl, unsigned long arg)
3298 {
3299 	struct kvm_vcpu *vcpu = filp->private_data;
3300 	void __user *argp = (void __user *)arg;
3301 	int r;
3302 	union {
3303 		struct kvm_lapic_state *lapic;
3304 		struct kvm_xsave *xsave;
3305 		struct kvm_xcrs *xcrs;
3306 		void *buffer;
3307 	} u;
3308 
3309 	u.buffer = NULL;
3310 	switch (ioctl) {
3311 	case KVM_GET_LAPIC: {
3312 		r = -EINVAL;
3313 		if (!vcpu->arch.apic)
3314 			goto out;
3315 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3316 
3317 		r = -ENOMEM;
3318 		if (!u.lapic)
3319 			goto out;
3320 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3321 		if (r)
3322 			goto out;
3323 		r = -EFAULT;
3324 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3325 			goto out;
3326 		r = 0;
3327 		break;
3328 	}
3329 	case KVM_SET_LAPIC: {
3330 		r = -EINVAL;
3331 		if (!vcpu->arch.apic)
3332 			goto out;
3333 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3334 		if (IS_ERR(u.lapic))
3335 			return PTR_ERR(u.lapic);
3336 
3337 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3338 		break;
3339 	}
3340 	case KVM_INTERRUPT: {
3341 		struct kvm_interrupt irq;
3342 
3343 		r = -EFAULT;
3344 		if (copy_from_user(&irq, argp, sizeof irq))
3345 			goto out;
3346 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3347 		break;
3348 	}
3349 	case KVM_NMI: {
3350 		r = kvm_vcpu_ioctl_nmi(vcpu);
3351 		break;
3352 	}
3353 	case KVM_SET_CPUID: {
3354 		struct kvm_cpuid __user *cpuid_arg = argp;
3355 		struct kvm_cpuid cpuid;
3356 
3357 		r = -EFAULT;
3358 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3359 			goto out;
3360 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3361 		break;
3362 	}
3363 	case KVM_SET_CPUID2: {
3364 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3365 		struct kvm_cpuid2 cpuid;
3366 
3367 		r = -EFAULT;
3368 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3369 			goto out;
3370 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3371 					      cpuid_arg->entries);
3372 		break;
3373 	}
3374 	case KVM_GET_CPUID2: {
3375 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3376 		struct kvm_cpuid2 cpuid;
3377 
3378 		r = -EFAULT;
3379 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3380 			goto out;
3381 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3382 					      cpuid_arg->entries);
3383 		if (r)
3384 			goto out;
3385 		r = -EFAULT;
3386 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3387 			goto out;
3388 		r = 0;
3389 		break;
3390 	}
3391 	case KVM_GET_MSRS:
3392 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3393 		break;
3394 	case KVM_SET_MSRS:
3395 		r = msr_io(vcpu, argp, do_set_msr, 0);
3396 		break;
3397 	case KVM_TPR_ACCESS_REPORTING: {
3398 		struct kvm_tpr_access_ctl tac;
3399 
3400 		r = -EFAULT;
3401 		if (copy_from_user(&tac, argp, sizeof tac))
3402 			goto out;
3403 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3404 		if (r)
3405 			goto out;
3406 		r = -EFAULT;
3407 		if (copy_to_user(argp, &tac, sizeof tac))
3408 			goto out;
3409 		r = 0;
3410 		break;
3411 	};
3412 	case KVM_SET_VAPIC_ADDR: {
3413 		struct kvm_vapic_addr va;
3414 
3415 		r = -EINVAL;
3416 		if (!irqchip_in_kernel(vcpu->kvm))
3417 			goto out;
3418 		r = -EFAULT;
3419 		if (copy_from_user(&va, argp, sizeof va))
3420 			goto out;
3421 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3422 		break;
3423 	}
3424 	case KVM_X86_SETUP_MCE: {
3425 		u64 mcg_cap;
3426 
3427 		r = -EFAULT;
3428 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3429 			goto out;
3430 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3431 		break;
3432 	}
3433 	case KVM_X86_SET_MCE: {
3434 		struct kvm_x86_mce mce;
3435 
3436 		r = -EFAULT;
3437 		if (copy_from_user(&mce, argp, sizeof mce))
3438 			goto out;
3439 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3440 		break;
3441 	}
3442 	case KVM_GET_VCPU_EVENTS: {
3443 		struct kvm_vcpu_events events;
3444 
3445 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3446 
3447 		r = -EFAULT;
3448 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3449 			break;
3450 		r = 0;
3451 		break;
3452 	}
3453 	case KVM_SET_VCPU_EVENTS: {
3454 		struct kvm_vcpu_events events;
3455 
3456 		r = -EFAULT;
3457 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3458 			break;
3459 
3460 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3461 		break;
3462 	}
3463 	case KVM_GET_DEBUGREGS: {
3464 		struct kvm_debugregs dbgregs;
3465 
3466 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3467 
3468 		r = -EFAULT;
3469 		if (copy_to_user(argp, &dbgregs,
3470 				 sizeof(struct kvm_debugregs)))
3471 			break;
3472 		r = 0;
3473 		break;
3474 	}
3475 	case KVM_SET_DEBUGREGS: {
3476 		struct kvm_debugregs dbgregs;
3477 
3478 		r = -EFAULT;
3479 		if (copy_from_user(&dbgregs, argp,
3480 				   sizeof(struct kvm_debugregs)))
3481 			break;
3482 
3483 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3484 		break;
3485 	}
3486 	case KVM_GET_XSAVE: {
3487 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3488 		r = -ENOMEM;
3489 		if (!u.xsave)
3490 			break;
3491 
3492 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3493 
3494 		r = -EFAULT;
3495 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3496 			break;
3497 		r = 0;
3498 		break;
3499 	}
3500 	case KVM_SET_XSAVE: {
3501 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3502 		if (IS_ERR(u.xsave))
3503 			return PTR_ERR(u.xsave);
3504 
3505 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3506 		break;
3507 	}
3508 	case KVM_GET_XCRS: {
3509 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3510 		r = -ENOMEM;
3511 		if (!u.xcrs)
3512 			break;
3513 
3514 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3515 
3516 		r = -EFAULT;
3517 		if (copy_to_user(argp, u.xcrs,
3518 				 sizeof(struct kvm_xcrs)))
3519 			break;
3520 		r = 0;
3521 		break;
3522 	}
3523 	case KVM_SET_XCRS: {
3524 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3525 		if (IS_ERR(u.xcrs))
3526 			return PTR_ERR(u.xcrs);
3527 
3528 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3529 		break;
3530 	}
3531 	case KVM_SET_TSC_KHZ: {
3532 		u32 user_tsc_khz;
3533 
3534 		r = -EINVAL;
3535 		user_tsc_khz = (u32)arg;
3536 
3537 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3538 			goto out;
3539 
3540 		if (user_tsc_khz == 0)
3541 			user_tsc_khz = tsc_khz;
3542 
3543 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3544 
3545 		r = 0;
3546 		goto out;
3547 	}
3548 	case KVM_GET_TSC_KHZ: {
3549 		r = vcpu->arch.virtual_tsc_khz;
3550 		goto out;
3551 	}
3552 	case KVM_KVMCLOCK_CTRL: {
3553 		r = kvm_set_guest_paused(vcpu);
3554 		goto out;
3555 	}
3556 	default:
3557 		r = -EINVAL;
3558 	}
3559 out:
3560 	kfree(u.buffer);
3561 	return r;
3562 }
3563 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)3564 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3565 {
3566 	return VM_FAULT_SIGBUS;
3567 }
3568 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)3569 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3570 {
3571 	int ret;
3572 
3573 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3574 		return -EINVAL;
3575 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3576 	return ret;
3577 }
3578 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)3579 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3580 					      u64 ident_addr)
3581 {
3582 	kvm->arch.ept_identity_map_addr = ident_addr;
3583 	return 0;
3584 }
3585 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,u32 kvm_nr_mmu_pages)3586 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3587 					  u32 kvm_nr_mmu_pages)
3588 {
3589 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3590 		return -EINVAL;
3591 
3592 	mutex_lock(&kvm->slots_lock);
3593 
3594 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3595 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3596 
3597 	mutex_unlock(&kvm->slots_lock);
3598 	return 0;
3599 }
3600 
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)3601 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3602 {
3603 	return kvm->arch.n_max_mmu_pages;
3604 }
3605 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3606 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3607 {
3608 	int r;
3609 
3610 	r = 0;
3611 	switch (chip->chip_id) {
3612 	case KVM_IRQCHIP_PIC_MASTER:
3613 		memcpy(&chip->chip.pic,
3614 			&pic_irqchip(kvm)->pics[0],
3615 			sizeof(struct kvm_pic_state));
3616 		break;
3617 	case KVM_IRQCHIP_PIC_SLAVE:
3618 		memcpy(&chip->chip.pic,
3619 			&pic_irqchip(kvm)->pics[1],
3620 			sizeof(struct kvm_pic_state));
3621 		break;
3622 	case KVM_IRQCHIP_IOAPIC:
3623 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3624 		break;
3625 	default:
3626 		r = -EINVAL;
3627 		break;
3628 	}
3629 	return r;
3630 }
3631 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3632 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3633 {
3634 	int r;
3635 
3636 	r = 0;
3637 	switch (chip->chip_id) {
3638 	case KVM_IRQCHIP_PIC_MASTER:
3639 		spin_lock(&pic_irqchip(kvm)->lock);
3640 		memcpy(&pic_irqchip(kvm)->pics[0],
3641 			&chip->chip.pic,
3642 			sizeof(struct kvm_pic_state));
3643 		spin_unlock(&pic_irqchip(kvm)->lock);
3644 		break;
3645 	case KVM_IRQCHIP_PIC_SLAVE:
3646 		spin_lock(&pic_irqchip(kvm)->lock);
3647 		memcpy(&pic_irqchip(kvm)->pics[1],
3648 			&chip->chip.pic,
3649 			sizeof(struct kvm_pic_state));
3650 		spin_unlock(&pic_irqchip(kvm)->lock);
3651 		break;
3652 	case KVM_IRQCHIP_IOAPIC:
3653 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3654 		break;
3655 	default:
3656 		r = -EINVAL;
3657 		break;
3658 	}
3659 	kvm_pic_update_irq(pic_irqchip(kvm));
3660 	return r;
3661 }
3662 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)3663 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3664 {
3665 	int r = 0;
3666 
3667 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3668 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3669 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3670 	return r;
3671 }
3672 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)3673 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3674 {
3675 	int i;
3676 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3677 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3678 	for (i = 0; i < 3; i++)
3679 		kvm_pit_load_count(kvm, i, ps->channels[i].count, 0);
3680 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3681 	return 0;
3682 }
3683 
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)3684 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3685 {
3686 	int r = 0;
3687 
3688 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3689 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3690 		sizeof(ps->channels));
3691 	ps->flags = kvm->arch.vpit->pit_state.flags;
3692 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3693 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3694 	return r;
3695 }
3696 
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)3697 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3698 {
3699 	int r = 0, start = 0;
3700 	int i;
3701 	u32 prev_legacy, cur_legacy;
3702 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3703 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3704 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3705 	if (!prev_legacy && cur_legacy)
3706 		start = 1;
3707 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3708 	       sizeof(kvm->arch.vpit->pit_state.channels));
3709 	kvm->arch.vpit->pit_state.flags = ps->flags;
3710 	for (i = 0; i < 3; i++)
3711 		kvm_pit_load_count(kvm, i, kvm->arch.vpit->pit_state.channels[i].count, start);
3712 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3713 	return r;
3714 }
3715 
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)3716 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3717 				 struct kvm_reinject_control *control)
3718 {
3719 	if (!kvm->arch.vpit)
3720 		return -ENXIO;
3721 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3722 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3723 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3724 	return 0;
3725 }
3726 
3727 /**
3728  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3729  * @kvm: kvm instance
3730  * @log: slot id and address to which we copy the log
3731  *
3732  * We need to keep it in mind that VCPU threads can write to the bitmap
3733  * concurrently.  So, to avoid losing data, we keep the following order for
3734  * each bit:
3735  *
3736  *   1. Take a snapshot of the bit and clear it if needed.
3737  *   2. Write protect the corresponding page.
3738  *   3. Flush TLB's if needed.
3739  *   4. Copy the snapshot to the userspace.
3740  *
3741  * Between 2 and 3, the guest may write to the page using the remaining TLB
3742  * entry.  This is not a problem because the page will be reported dirty at
3743  * step 4 using the snapshot taken before and step 3 ensures that successive
3744  * writes will be logged for the next call.
3745  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)3746 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3747 {
3748 	int r;
3749 	struct kvm_memory_slot *memslot;
3750 	unsigned long n, i;
3751 	unsigned long *dirty_bitmap;
3752 	unsigned long *dirty_bitmap_buffer;
3753 	bool is_dirty = false;
3754 
3755 	mutex_lock(&kvm->slots_lock);
3756 
3757 	r = -EINVAL;
3758 	if (log->slot >= KVM_USER_MEM_SLOTS)
3759 		goto out;
3760 
3761 	memslot = id_to_memslot(kvm->memslots, log->slot);
3762 
3763 	dirty_bitmap = memslot->dirty_bitmap;
3764 	r = -ENOENT;
3765 	if (!dirty_bitmap)
3766 		goto out;
3767 
3768 	n = kvm_dirty_bitmap_bytes(memslot);
3769 
3770 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3771 	memset(dirty_bitmap_buffer, 0, n);
3772 
3773 	spin_lock(&kvm->mmu_lock);
3774 
3775 	for (i = 0; i < n / sizeof(long); i++) {
3776 		unsigned long mask;
3777 		gfn_t offset;
3778 
3779 		if (!dirty_bitmap[i])
3780 			continue;
3781 
3782 		is_dirty = true;
3783 
3784 		mask = xchg(&dirty_bitmap[i], 0);
3785 		dirty_bitmap_buffer[i] = mask;
3786 
3787 		offset = i * BITS_PER_LONG;
3788 		kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3789 	}
3790 
3791 	spin_unlock(&kvm->mmu_lock);
3792 
3793 	/* See the comments in kvm_mmu_slot_remove_write_access(). */
3794 	lockdep_assert_held(&kvm->slots_lock);
3795 
3796 	/*
3797 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3798 	 * kvm_mmu_slot_remove_write_access().
3799 	 */
3800 	if (is_dirty)
3801 		kvm_flush_remote_tlbs(kvm);
3802 
3803 	r = -EFAULT;
3804 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3805 		goto out;
3806 
3807 	r = 0;
3808 out:
3809 	mutex_unlock(&kvm->slots_lock);
3810 	return r;
3811 }
3812 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)3813 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3814 			bool line_status)
3815 {
3816 	if (!irqchip_in_kernel(kvm))
3817 		return -ENXIO;
3818 
3819 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3820 					irq_event->irq, irq_event->level,
3821 					line_status);
3822 	return 0;
3823 }
3824 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3825 long kvm_arch_vm_ioctl(struct file *filp,
3826 		       unsigned int ioctl, unsigned long arg)
3827 {
3828 	struct kvm *kvm = filp->private_data;
3829 	void __user *argp = (void __user *)arg;
3830 	int r = -ENOTTY;
3831 	/*
3832 	 * This union makes it completely explicit to gcc-3.x
3833 	 * that these two variables' stack usage should be
3834 	 * combined, not added together.
3835 	 */
3836 	union {
3837 		struct kvm_pit_state ps;
3838 		struct kvm_pit_state2 ps2;
3839 		struct kvm_pit_config pit_config;
3840 	} u;
3841 
3842 	switch (ioctl) {
3843 	case KVM_SET_TSS_ADDR:
3844 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3845 		break;
3846 	case KVM_SET_IDENTITY_MAP_ADDR: {
3847 		u64 ident_addr;
3848 
3849 		r = -EFAULT;
3850 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3851 			goto out;
3852 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3853 		break;
3854 	}
3855 	case KVM_SET_NR_MMU_PAGES:
3856 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3857 		break;
3858 	case KVM_GET_NR_MMU_PAGES:
3859 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3860 		break;
3861 	case KVM_CREATE_IRQCHIP: {
3862 		struct kvm_pic *vpic;
3863 
3864 		mutex_lock(&kvm->lock);
3865 		r = -EEXIST;
3866 		if (kvm->arch.vpic)
3867 			goto create_irqchip_unlock;
3868 		r = -EINVAL;
3869 		if (atomic_read(&kvm->online_vcpus))
3870 			goto create_irqchip_unlock;
3871 		r = -ENOMEM;
3872 		vpic = kvm_create_pic(kvm);
3873 		if (vpic) {
3874 			r = kvm_ioapic_init(kvm);
3875 			if (r) {
3876 				mutex_lock(&kvm->slots_lock);
3877 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3878 							  &vpic->dev_master);
3879 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3880 							  &vpic->dev_slave);
3881 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3882 							  &vpic->dev_eclr);
3883 				mutex_unlock(&kvm->slots_lock);
3884 				kfree(vpic);
3885 				goto create_irqchip_unlock;
3886 			}
3887 		} else
3888 			goto create_irqchip_unlock;
3889 		smp_wmb();
3890 		kvm->arch.vpic = vpic;
3891 		smp_wmb();
3892 		r = kvm_setup_default_irq_routing(kvm);
3893 		if (r) {
3894 			mutex_lock(&kvm->slots_lock);
3895 			mutex_lock(&kvm->irq_lock);
3896 			kvm_ioapic_destroy(kvm);
3897 			kvm_destroy_pic(kvm);
3898 			mutex_unlock(&kvm->irq_lock);
3899 			mutex_unlock(&kvm->slots_lock);
3900 		}
3901 	create_irqchip_unlock:
3902 		mutex_unlock(&kvm->lock);
3903 		break;
3904 	}
3905 	case KVM_CREATE_PIT:
3906 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3907 		goto create_pit;
3908 	case KVM_CREATE_PIT2:
3909 		r = -EFAULT;
3910 		if (copy_from_user(&u.pit_config, argp,
3911 				   sizeof(struct kvm_pit_config)))
3912 			goto out;
3913 	create_pit:
3914 		mutex_lock(&kvm->slots_lock);
3915 		r = -EEXIST;
3916 		if (kvm->arch.vpit)
3917 			goto create_pit_unlock;
3918 		r = -ENOMEM;
3919 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3920 		if (kvm->arch.vpit)
3921 			r = 0;
3922 	create_pit_unlock:
3923 		mutex_unlock(&kvm->slots_lock);
3924 		break;
3925 	case KVM_GET_IRQCHIP: {
3926 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3927 		struct kvm_irqchip *chip;
3928 
3929 		chip = memdup_user(argp, sizeof(*chip));
3930 		if (IS_ERR(chip)) {
3931 			r = PTR_ERR(chip);
3932 			goto out;
3933 		}
3934 
3935 		r = -ENXIO;
3936 		if (!irqchip_in_kernel(kvm))
3937 			goto get_irqchip_out;
3938 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3939 		if (r)
3940 			goto get_irqchip_out;
3941 		r = -EFAULT;
3942 		if (copy_to_user(argp, chip, sizeof *chip))
3943 			goto get_irqchip_out;
3944 		r = 0;
3945 	get_irqchip_out:
3946 		kfree(chip);
3947 		break;
3948 	}
3949 	case KVM_SET_IRQCHIP: {
3950 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3951 		struct kvm_irqchip *chip;
3952 
3953 		chip = memdup_user(argp, sizeof(*chip));
3954 		if (IS_ERR(chip)) {
3955 			r = PTR_ERR(chip);
3956 			goto out;
3957 		}
3958 
3959 		r = -ENXIO;
3960 		if (!irqchip_in_kernel(kvm))
3961 			goto set_irqchip_out;
3962 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3963 		if (r)
3964 			goto set_irqchip_out;
3965 		r = 0;
3966 	set_irqchip_out:
3967 		kfree(chip);
3968 		break;
3969 	}
3970 	case KVM_GET_PIT: {
3971 		r = -EFAULT;
3972 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3973 			goto out;
3974 		r = -ENXIO;
3975 		if (!kvm->arch.vpit)
3976 			goto out;
3977 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3978 		if (r)
3979 			goto out;
3980 		r = -EFAULT;
3981 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3982 			goto out;
3983 		r = 0;
3984 		break;
3985 	}
3986 	case KVM_SET_PIT: {
3987 		r = -EFAULT;
3988 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3989 			goto out;
3990 		r = -ENXIO;
3991 		if (!kvm->arch.vpit)
3992 			goto out;
3993 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3994 		break;
3995 	}
3996 	case KVM_GET_PIT2: {
3997 		r = -ENXIO;
3998 		if (!kvm->arch.vpit)
3999 			goto out;
4000 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4001 		if (r)
4002 			goto out;
4003 		r = -EFAULT;
4004 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4005 			goto out;
4006 		r = 0;
4007 		break;
4008 	}
4009 	case KVM_SET_PIT2: {
4010 		r = -EFAULT;
4011 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4012 			goto out;
4013 		r = -ENXIO;
4014 		if (!kvm->arch.vpit)
4015 			goto out;
4016 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4017 		break;
4018 	}
4019 	case KVM_REINJECT_CONTROL: {
4020 		struct kvm_reinject_control control;
4021 		r =  -EFAULT;
4022 		if (copy_from_user(&control, argp, sizeof(control)))
4023 			goto out;
4024 		r = kvm_vm_ioctl_reinject(kvm, &control);
4025 		break;
4026 	}
4027 	case KVM_XEN_HVM_CONFIG: {
4028 		r = -EFAULT;
4029 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4030 				   sizeof(struct kvm_xen_hvm_config)))
4031 			goto out;
4032 		r = -EINVAL;
4033 		if (kvm->arch.xen_hvm_config.flags)
4034 			goto out;
4035 		r = 0;
4036 		break;
4037 	}
4038 	case KVM_SET_CLOCK: {
4039 		struct kvm_clock_data user_ns;
4040 		u64 now_ns;
4041 		s64 delta;
4042 
4043 		r = -EFAULT;
4044 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4045 			goto out;
4046 
4047 		r = -EINVAL;
4048 		if (user_ns.flags)
4049 			goto out;
4050 
4051 		r = 0;
4052 		local_irq_disable();
4053 		now_ns = get_kernel_ns();
4054 		delta = user_ns.clock - now_ns;
4055 		local_irq_enable();
4056 		kvm->arch.kvmclock_offset = delta;
4057 		kvm_gen_update_masterclock(kvm);
4058 		break;
4059 	}
4060 	case KVM_GET_CLOCK: {
4061 		struct kvm_clock_data user_ns;
4062 		u64 now_ns;
4063 
4064 		local_irq_disable();
4065 		now_ns = get_kernel_ns();
4066 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4067 		local_irq_enable();
4068 		user_ns.flags = 0;
4069 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4070 
4071 		r = -EFAULT;
4072 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4073 			goto out;
4074 		r = 0;
4075 		break;
4076 	}
4077 
4078 	default:
4079 		;
4080 	}
4081 out:
4082 	return r;
4083 }
4084 
kvm_init_msr_list(void)4085 static void kvm_init_msr_list(void)
4086 {
4087 	u32 dummy[2];
4088 	unsigned i, j;
4089 
4090 	/* skip the first msrs in the list. KVM-specific */
4091 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4092 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4093 			continue;
4094 
4095 		/*
4096 		 * Even MSRs that are valid in the host may not be exposed
4097 		 * to the guests in some cases.  We could work around this
4098 		 * in VMX with the generic MSR save/load machinery, but it
4099 		 * is not really worthwhile since it will really only
4100 		 * happen with nested virtualization.
4101 		 */
4102 		switch (msrs_to_save[i]) {
4103 		case MSR_IA32_BNDCFGS:
4104 			if (!kvm_x86_ops->mpx_supported())
4105 				continue;
4106 			break;
4107 		default:
4108 			break;
4109 		}
4110 
4111 		if (j < i)
4112 			msrs_to_save[j] = msrs_to_save[i];
4113 		j++;
4114 	}
4115 	num_msrs_to_save = j;
4116 }
4117 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)4118 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4119 			   const void *v)
4120 {
4121 	int handled = 0;
4122 	int n;
4123 
4124 	do {
4125 		n = min(len, 8);
4126 		if (!(vcpu->arch.apic &&
4127 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
4128 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4129 			break;
4130 		handled += n;
4131 		addr += n;
4132 		len -= n;
4133 		v += n;
4134 	} while (len);
4135 
4136 	return handled;
4137 }
4138 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)4139 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4140 {
4141 	int handled = 0;
4142 	int n;
4143 
4144 	do {
4145 		n = min(len, 8);
4146 		if (!(vcpu->arch.apic &&
4147 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
4148 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4149 			break;
4150 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4151 		handled += n;
4152 		addr += n;
4153 		len -= n;
4154 		v += n;
4155 	} while (len);
4156 
4157 	return handled;
4158 }
4159 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4160 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4161 			struct kvm_segment *var, int seg)
4162 {
4163 	kvm_x86_ops->set_segment(vcpu, var, seg);
4164 }
4165 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4166 void kvm_get_segment(struct kvm_vcpu *vcpu,
4167 		     struct kvm_segment *var, int seg)
4168 {
4169 	kvm_x86_ops->get_segment(vcpu, var, seg);
4170 }
4171 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)4172 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4173 			   struct x86_exception *exception)
4174 {
4175 	gpa_t t_gpa;
4176 
4177 	BUG_ON(!mmu_is_nested(vcpu));
4178 
4179 	/* NPT walks are always user-walks */
4180 	access |= PFERR_USER_MASK;
4181 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4182 
4183 	return t_gpa;
4184 }
4185 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4186 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4187 			      struct x86_exception *exception)
4188 {
4189 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4190 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4191 }
4192 
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4193  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4194 				struct x86_exception *exception)
4195 {
4196 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4197 	access |= PFERR_FETCH_MASK;
4198 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4199 }
4200 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4201 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4202 			       struct x86_exception *exception)
4203 {
4204 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4205 	access |= PFERR_WRITE_MASK;
4206 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4207 }
4208 
4209 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4210 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4211 				struct x86_exception *exception)
4212 {
4213 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4214 }
4215 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)4216 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4217 				      struct kvm_vcpu *vcpu, u32 access,
4218 				      struct x86_exception *exception)
4219 {
4220 	void *data = val;
4221 	int r = X86EMUL_CONTINUE;
4222 
4223 	while (bytes) {
4224 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4225 							    exception);
4226 		unsigned offset = addr & (PAGE_SIZE-1);
4227 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4228 		int ret;
4229 
4230 		if (gpa == UNMAPPED_GVA)
4231 			return X86EMUL_PROPAGATE_FAULT;
4232 		ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4233 					  offset, toread);
4234 		if (ret < 0) {
4235 			r = X86EMUL_IO_NEEDED;
4236 			goto out;
4237 		}
4238 
4239 		bytes -= toread;
4240 		data += toread;
4241 		addr += toread;
4242 	}
4243 out:
4244 	return r;
4245 }
4246 
4247 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4248 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4249 				gva_t addr, void *val, unsigned int bytes,
4250 				struct x86_exception *exception)
4251 {
4252 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4253 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4254 	unsigned offset;
4255 	int ret;
4256 
4257 	/* Inline kvm_read_guest_virt_helper for speed.  */
4258 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4259 						    exception);
4260 	if (unlikely(gpa == UNMAPPED_GVA))
4261 		return X86EMUL_PROPAGATE_FAULT;
4262 
4263 	offset = addr & (PAGE_SIZE-1);
4264 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4265 		bytes = (unsigned)PAGE_SIZE - offset;
4266 	ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4267 				  offset, bytes);
4268 	if (unlikely(ret < 0))
4269 		return X86EMUL_IO_NEEDED;
4270 
4271 	return X86EMUL_CONTINUE;
4272 }
4273 
kvm_read_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4274 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4275 			       gva_t addr, void *val, unsigned int bytes,
4276 			       struct x86_exception *exception)
4277 {
4278 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4279 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4280 
4281 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4282 					  exception);
4283 }
4284 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4285 
kvm_read_guest_virt_system(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4286 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4287 				      gva_t addr, void *val, unsigned int bytes,
4288 				      struct x86_exception *exception)
4289 {
4290 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4291 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4292 }
4293 
kvm_write_guest_virt_system(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4294 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4295 				       gva_t addr, void *val,
4296 				       unsigned int bytes,
4297 				       struct x86_exception *exception)
4298 {
4299 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4300 	void *data = val;
4301 	int r = X86EMUL_CONTINUE;
4302 
4303 	while (bytes) {
4304 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4305 							     PFERR_WRITE_MASK,
4306 							     exception);
4307 		unsigned offset = addr & (PAGE_SIZE-1);
4308 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4309 		int ret;
4310 
4311 		if (gpa == UNMAPPED_GVA)
4312 			return X86EMUL_PROPAGATE_FAULT;
4313 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4314 		if (ret < 0) {
4315 			r = X86EMUL_IO_NEEDED;
4316 			goto out;
4317 		}
4318 
4319 		bytes -= towrite;
4320 		data += towrite;
4321 		addr += towrite;
4322 	}
4323 out:
4324 	return r;
4325 }
4326 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4327 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)4328 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4329 				gpa_t *gpa, struct x86_exception *exception,
4330 				bool write)
4331 {
4332 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4333 		| (write ? PFERR_WRITE_MASK : 0);
4334 
4335 	if (vcpu_match_mmio_gva(vcpu, gva)
4336 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4337 				 vcpu->arch.access, access)) {
4338 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4339 					(gva & (PAGE_SIZE - 1));
4340 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4341 		return 1;
4342 	}
4343 
4344 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4345 
4346 	if (*gpa == UNMAPPED_GVA)
4347 		return -1;
4348 
4349 	/* For APIC access vmexit */
4350 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4351 		return 1;
4352 
4353 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4354 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4355 		return 1;
4356 	}
4357 
4358 	return 0;
4359 }
4360 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)4361 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4362 			const void *val, int bytes)
4363 {
4364 	int ret;
4365 
4366 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4367 	if (ret < 0)
4368 		return 0;
4369 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4370 	return 1;
4371 }
4372 
4373 struct read_write_emulator_ops {
4374 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4375 				  int bytes);
4376 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4377 				  void *val, int bytes);
4378 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4379 			       int bytes, void *val);
4380 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4381 				    void *val, int bytes);
4382 	bool write;
4383 };
4384 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)4385 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4386 {
4387 	if (vcpu->mmio_read_completed) {
4388 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4389 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4390 		vcpu->mmio_read_completed = 0;
4391 		return 1;
4392 	}
4393 
4394 	return 0;
4395 }
4396 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4397 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4398 			void *val, int bytes)
4399 {
4400 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4401 }
4402 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4403 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4404 			 void *val, int bytes)
4405 {
4406 	return emulator_write_phys(vcpu, gpa, val, bytes);
4407 }
4408 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)4409 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4410 {
4411 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4412 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4413 }
4414 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4415 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4416 			  void *val, int bytes)
4417 {
4418 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4419 	return X86EMUL_IO_NEEDED;
4420 }
4421 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4422 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4423 			   void *val, int bytes)
4424 {
4425 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4426 
4427 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4428 	return X86EMUL_CONTINUE;
4429 }
4430 
4431 static const struct read_write_emulator_ops read_emultor = {
4432 	.read_write_prepare = read_prepare,
4433 	.read_write_emulate = read_emulate,
4434 	.read_write_mmio = vcpu_mmio_read,
4435 	.read_write_exit_mmio = read_exit_mmio,
4436 };
4437 
4438 static const struct read_write_emulator_ops write_emultor = {
4439 	.read_write_emulate = write_emulate,
4440 	.read_write_mmio = write_mmio,
4441 	.read_write_exit_mmio = write_exit_mmio,
4442 	.write = true,
4443 };
4444 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)4445 static int emulator_read_write_onepage(unsigned long addr, void *val,
4446 				       unsigned int bytes,
4447 				       struct x86_exception *exception,
4448 				       struct kvm_vcpu *vcpu,
4449 				       const struct read_write_emulator_ops *ops)
4450 {
4451 	gpa_t gpa;
4452 	int handled, ret;
4453 	bool write = ops->write;
4454 	struct kvm_mmio_fragment *frag;
4455 
4456 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4457 
4458 	if (ret < 0)
4459 		return X86EMUL_PROPAGATE_FAULT;
4460 
4461 	/* For APIC access vmexit */
4462 	if (ret)
4463 		goto mmio;
4464 
4465 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4466 		return X86EMUL_CONTINUE;
4467 
4468 mmio:
4469 	/*
4470 	 * Is this MMIO handled locally?
4471 	 */
4472 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4473 	if (handled == bytes)
4474 		return X86EMUL_CONTINUE;
4475 
4476 	gpa += handled;
4477 	bytes -= handled;
4478 	val += handled;
4479 
4480 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4481 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4482 	frag->gpa = gpa;
4483 	frag->data = val;
4484 	frag->len = bytes;
4485 	return X86EMUL_CONTINUE;
4486 }
4487 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)4488 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4489 			void *val, unsigned int bytes,
4490 			struct x86_exception *exception,
4491 			const struct read_write_emulator_ops *ops)
4492 {
4493 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4494 	gpa_t gpa;
4495 	int rc;
4496 
4497 	if (ops->read_write_prepare &&
4498 		  ops->read_write_prepare(vcpu, val, bytes))
4499 		return X86EMUL_CONTINUE;
4500 
4501 	vcpu->mmio_nr_fragments = 0;
4502 
4503 	/* Crossing a page boundary? */
4504 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4505 		int now;
4506 
4507 		now = -addr & ~PAGE_MASK;
4508 		rc = emulator_read_write_onepage(addr, val, now, exception,
4509 						 vcpu, ops);
4510 
4511 		if (rc != X86EMUL_CONTINUE)
4512 			return rc;
4513 		addr += now;
4514 		val += now;
4515 		bytes -= now;
4516 	}
4517 
4518 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4519 					 vcpu, ops);
4520 	if (rc != X86EMUL_CONTINUE)
4521 		return rc;
4522 
4523 	if (!vcpu->mmio_nr_fragments)
4524 		return rc;
4525 
4526 	gpa = vcpu->mmio_fragments[0].gpa;
4527 
4528 	vcpu->mmio_needed = 1;
4529 	vcpu->mmio_cur_fragment = 0;
4530 
4531 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4532 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4533 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4534 	vcpu->run->mmio.phys_addr = gpa;
4535 
4536 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4537 }
4538 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)4539 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4540 				  unsigned long addr,
4541 				  void *val,
4542 				  unsigned int bytes,
4543 				  struct x86_exception *exception)
4544 {
4545 	return emulator_read_write(ctxt, addr, val, bytes,
4546 				   exception, &read_emultor);
4547 }
4548 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)4549 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4550 			    unsigned long addr,
4551 			    const void *val,
4552 			    unsigned int bytes,
4553 			    struct x86_exception *exception)
4554 {
4555 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4556 				   exception, &write_emultor);
4557 }
4558 
4559 #define CMPXCHG_TYPE(t, ptr, old, new) \
4560 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4561 
4562 #ifdef CONFIG_X86_64
4563 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4564 #else
4565 #  define CMPXCHG64(ptr, old, new) \
4566 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4567 #endif
4568 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)4569 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4570 				     unsigned long addr,
4571 				     const void *old,
4572 				     const void *new,
4573 				     unsigned int bytes,
4574 				     struct x86_exception *exception)
4575 {
4576 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4577 	gpa_t gpa;
4578 	struct page *page;
4579 	char *kaddr;
4580 	bool exchanged;
4581 
4582 	/* guests cmpxchg8b have to be emulated atomically */
4583 	if (bytes > 8 || (bytes & (bytes - 1)))
4584 		goto emul_write;
4585 
4586 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4587 
4588 	if (gpa == UNMAPPED_GVA ||
4589 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4590 		goto emul_write;
4591 
4592 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4593 		goto emul_write;
4594 
4595 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4596 	if (is_error_page(page))
4597 		goto emul_write;
4598 
4599 	kaddr = kmap_atomic(page);
4600 	kaddr += offset_in_page(gpa);
4601 	switch (bytes) {
4602 	case 1:
4603 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4604 		break;
4605 	case 2:
4606 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4607 		break;
4608 	case 4:
4609 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4610 		break;
4611 	case 8:
4612 		exchanged = CMPXCHG64(kaddr, old, new);
4613 		break;
4614 	default:
4615 		BUG();
4616 	}
4617 	kunmap_atomic(kaddr);
4618 	kvm_release_page_dirty(page);
4619 
4620 	if (!exchanged)
4621 		return X86EMUL_CMPXCHG_FAILED;
4622 
4623 	mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4624 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4625 
4626 	return X86EMUL_CONTINUE;
4627 
4628 emul_write:
4629 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4630 
4631 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4632 }
4633 
kernel_pio(struct kvm_vcpu * vcpu,void * pd)4634 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4635 {
4636 	/* TODO: String I/O for in kernel device */
4637 	int r;
4638 
4639 	if (vcpu->arch.pio.in)
4640 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4641 				    vcpu->arch.pio.size, pd);
4642 	else
4643 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4644 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4645 				     pd);
4646 	return r;
4647 }
4648 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)4649 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4650 			       unsigned short port, void *val,
4651 			       unsigned int count, bool in)
4652 {
4653 	vcpu->arch.pio.port = port;
4654 	vcpu->arch.pio.in = in;
4655 	vcpu->arch.pio.count  = count;
4656 	vcpu->arch.pio.size = size;
4657 
4658 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4659 		vcpu->arch.pio.count = 0;
4660 		return 1;
4661 	}
4662 
4663 	vcpu->run->exit_reason = KVM_EXIT_IO;
4664 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4665 	vcpu->run->io.size = size;
4666 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4667 	vcpu->run->io.count = count;
4668 	vcpu->run->io.port = port;
4669 
4670 	return 0;
4671 }
4672 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)4673 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4674 				    int size, unsigned short port, void *val,
4675 				    unsigned int count)
4676 {
4677 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4678 	int ret;
4679 
4680 	if (vcpu->arch.pio.count)
4681 		goto data_avail;
4682 
4683 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4684 	if (ret) {
4685 data_avail:
4686 		memcpy(val, vcpu->arch.pio_data, size * count);
4687 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4688 		vcpu->arch.pio.count = 0;
4689 		return 1;
4690 	}
4691 
4692 	return 0;
4693 }
4694 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)4695 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4696 				     int size, unsigned short port,
4697 				     const void *val, unsigned int count)
4698 {
4699 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4700 
4701 	memcpy(vcpu->arch.pio_data, val, size * count);
4702 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4703 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4704 }
4705 
get_segment_base(struct kvm_vcpu * vcpu,int seg)4706 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4707 {
4708 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4709 }
4710 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)4711 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4712 {
4713 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4714 }
4715 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)4716 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4717 {
4718 	if (!need_emulate_wbinvd(vcpu))
4719 		return X86EMUL_CONTINUE;
4720 
4721 	if (kvm_x86_ops->has_wbinvd_exit()) {
4722 		int cpu = get_cpu();
4723 
4724 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4725 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4726 				wbinvd_ipi, NULL, 1);
4727 		put_cpu();
4728 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4729 	} else
4730 		wbinvd();
4731 	return X86EMUL_CONTINUE;
4732 }
4733 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4734 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)4735 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4736 {
4737 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4738 }
4739 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)4740 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4741 {
4742 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4743 }
4744 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)4745 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4746 {
4747 
4748 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4749 }
4750 
mk_cr_64(u64 curr_cr,u32 new_val)4751 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4752 {
4753 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4754 }
4755 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)4756 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4757 {
4758 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4759 	unsigned long value;
4760 
4761 	switch (cr) {
4762 	case 0:
4763 		value = kvm_read_cr0(vcpu);
4764 		break;
4765 	case 2:
4766 		value = vcpu->arch.cr2;
4767 		break;
4768 	case 3:
4769 		value = kvm_read_cr3(vcpu);
4770 		break;
4771 	case 4:
4772 		value = kvm_read_cr4(vcpu);
4773 		break;
4774 	case 8:
4775 		value = kvm_get_cr8(vcpu);
4776 		break;
4777 	default:
4778 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4779 		return 0;
4780 	}
4781 
4782 	return value;
4783 }
4784 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)4785 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4786 {
4787 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4788 	int res = 0;
4789 
4790 	switch (cr) {
4791 	case 0:
4792 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4793 		break;
4794 	case 2:
4795 		vcpu->arch.cr2 = val;
4796 		break;
4797 	case 3:
4798 		res = kvm_set_cr3(vcpu, val);
4799 		break;
4800 	case 4:
4801 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4802 		break;
4803 	case 8:
4804 		res = kvm_set_cr8(vcpu, val);
4805 		break;
4806 	default:
4807 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4808 		res = -1;
4809 	}
4810 
4811 	return res;
4812 }
4813 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)4814 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4815 {
4816 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4817 }
4818 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4819 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4820 {
4821 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4822 }
4823 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4824 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4825 {
4826 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4827 }
4828 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4829 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4830 {
4831 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4832 }
4833 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4834 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4835 {
4836 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4837 }
4838 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)4839 static unsigned long emulator_get_cached_segment_base(
4840 	struct x86_emulate_ctxt *ctxt, int seg)
4841 {
4842 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4843 }
4844 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)4845 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4846 				 struct desc_struct *desc, u32 *base3,
4847 				 int seg)
4848 {
4849 	struct kvm_segment var;
4850 
4851 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4852 	*selector = var.selector;
4853 
4854 	if (var.unusable) {
4855 		memset(desc, 0, sizeof(*desc));
4856 		if (base3)
4857 			*base3 = 0;
4858 		return false;
4859 	}
4860 
4861 	if (var.g)
4862 		var.limit >>= 12;
4863 	set_desc_limit(desc, var.limit);
4864 	set_desc_base(desc, (unsigned long)var.base);
4865 #ifdef CONFIG_X86_64
4866 	if (base3)
4867 		*base3 = var.base >> 32;
4868 #endif
4869 	desc->type = var.type;
4870 	desc->s = var.s;
4871 	desc->dpl = var.dpl;
4872 	desc->p = var.present;
4873 	desc->avl = var.avl;
4874 	desc->l = var.l;
4875 	desc->d = var.db;
4876 	desc->g = var.g;
4877 
4878 	return true;
4879 }
4880 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)4881 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4882 				 struct desc_struct *desc, u32 base3,
4883 				 int seg)
4884 {
4885 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4886 	struct kvm_segment var;
4887 
4888 	var.selector = selector;
4889 	var.base = get_desc_base(desc);
4890 #ifdef CONFIG_X86_64
4891 	var.base |= ((u64)base3) << 32;
4892 #endif
4893 	var.limit = get_desc_limit(desc);
4894 	if (desc->g)
4895 		var.limit = (var.limit << 12) | 0xfff;
4896 	var.type = desc->type;
4897 	var.dpl = desc->dpl;
4898 	var.db = desc->d;
4899 	var.s = desc->s;
4900 	var.l = desc->l;
4901 	var.g = desc->g;
4902 	var.avl = desc->avl;
4903 	var.present = desc->p;
4904 	var.unusable = !var.present;
4905 	var.padding = 0;
4906 
4907 	kvm_set_segment(vcpu, &var, seg);
4908 	return;
4909 }
4910 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)4911 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4912 			    u32 msr_index, u64 *pdata)
4913 {
4914 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4915 }
4916 
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)4917 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4918 			    u32 msr_index, u64 data)
4919 {
4920 	struct msr_data msr;
4921 
4922 	msr.data = data;
4923 	msr.index = msr_index;
4924 	msr.host_initiated = false;
4925 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4926 }
4927 
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)4928 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4929 			      u32 pmc)
4930 {
4931 	return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4932 }
4933 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)4934 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4935 			     u32 pmc, u64 *pdata)
4936 {
4937 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4938 }
4939 
emulator_halt(struct x86_emulate_ctxt * ctxt)4940 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4941 {
4942 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4943 }
4944 
emulator_get_fpu(struct x86_emulate_ctxt * ctxt)4945 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4946 {
4947 	preempt_disable();
4948 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4949 	/*
4950 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4951 	 * so it may be clear at this point.
4952 	 */
4953 	clts();
4954 }
4955 
emulator_put_fpu(struct x86_emulate_ctxt * ctxt)4956 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4957 {
4958 	preempt_enable();
4959 }
4960 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)4961 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4962 			      struct x86_instruction_info *info,
4963 			      enum x86_intercept_stage stage)
4964 {
4965 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4966 }
4967 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx)4968 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4969 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4970 {
4971 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4972 }
4973 
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)4974 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4975 {
4976 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4977 }
4978 
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)4979 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4980 {
4981 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4982 }
4983 
4984 static const struct x86_emulate_ops emulate_ops = {
4985 	.read_gpr            = emulator_read_gpr,
4986 	.write_gpr           = emulator_write_gpr,
4987 	.read_std            = kvm_read_guest_virt_system,
4988 	.write_std           = kvm_write_guest_virt_system,
4989 	.fetch               = kvm_fetch_guest_virt,
4990 	.read_emulated       = emulator_read_emulated,
4991 	.write_emulated      = emulator_write_emulated,
4992 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4993 	.invlpg              = emulator_invlpg,
4994 	.pio_in_emulated     = emulator_pio_in_emulated,
4995 	.pio_out_emulated    = emulator_pio_out_emulated,
4996 	.get_segment         = emulator_get_segment,
4997 	.set_segment         = emulator_set_segment,
4998 	.get_cached_segment_base = emulator_get_cached_segment_base,
4999 	.get_gdt             = emulator_get_gdt,
5000 	.get_idt	     = emulator_get_idt,
5001 	.set_gdt             = emulator_set_gdt,
5002 	.set_idt	     = emulator_set_idt,
5003 	.get_cr              = emulator_get_cr,
5004 	.set_cr              = emulator_set_cr,
5005 	.cpl                 = emulator_get_cpl,
5006 	.get_dr              = emulator_get_dr,
5007 	.set_dr              = emulator_set_dr,
5008 	.set_msr             = emulator_set_msr,
5009 	.get_msr             = emulator_get_msr,
5010 	.check_pmc	     = emulator_check_pmc,
5011 	.read_pmc            = emulator_read_pmc,
5012 	.halt                = emulator_halt,
5013 	.wbinvd              = emulator_wbinvd,
5014 	.fix_hypercall       = emulator_fix_hypercall,
5015 	.get_fpu             = emulator_get_fpu,
5016 	.put_fpu             = emulator_put_fpu,
5017 	.intercept           = emulator_intercept,
5018 	.get_cpuid           = emulator_get_cpuid,
5019 };
5020 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)5021 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5022 {
5023 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5024 	/*
5025 	 * an sti; sti; sequence only disable interrupts for the first
5026 	 * instruction. So, if the last instruction, be it emulated or
5027 	 * not, left the system with the INT_STI flag enabled, it
5028 	 * means that the last instruction is an sti. We should not
5029 	 * leave the flag on in this case. The same goes for mov ss
5030 	 */
5031 	if (int_shadow & mask)
5032 		mask = 0;
5033 	if (unlikely(int_shadow || mask)) {
5034 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5035 		if (!mask)
5036 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5037 	}
5038 }
5039 
inject_emulated_exception(struct kvm_vcpu * vcpu)5040 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5041 {
5042 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5043 	if (ctxt->exception.vector == PF_VECTOR)
5044 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5045 
5046 	if (ctxt->exception.error_code_valid)
5047 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5048 				      ctxt->exception.error_code);
5049 	else
5050 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5051 	return false;
5052 }
5053 
init_emulate_ctxt(struct kvm_vcpu * vcpu)5054 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5055 {
5056 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5057 	int cs_db, cs_l;
5058 
5059 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5060 
5061 	ctxt->eflags = kvm_get_rflags(vcpu);
5062 	ctxt->eip = kvm_rip_read(vcpu);
5063 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5064 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5065 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5066 		     cs_db				? X86EMUL_MODE_PROT32 :
5067 							  X86EMUL_MODE_PROT16;
5068 	ctxt->guest_mode = is_guest_mode(vcpu);
5069 
5070 	init_decode_cache(ctxt);
5071 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5072 }
5073 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)5074 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5075 {
5076 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5077 	int ret;
5078 
5079 	init_emulate_ctxt(vcpu);
5080 
5081 	ctxt->op_bytes = 2;
5082 	ctxt->ad_bytes = 2;
5083 	ctxt->_eip = ctxt->eip + inc_eip;
5084 	ret = emulate_int_real(ctxt, irq);
5085 
5086 	if (ret != X86EMUL_CONTINUE)
5087 		return EMULATE_FAIL;
5088 
5089 	ctxt->eip = ctxt->_eip;
5090 	kvm_rip_write(vcpu, ctxt->eip);
5091 	kvm_set_rflags(vcpu, ctxt->eflags);
5092 
5093 	if (irq == NMI_VECTOR)
5094 		vcpu->arch.nmi_pending = 0;
5095 	else
5096 		vcpu->arch.interrupt.pending = false;
5097 
5098 	return EMULATE_DONE;
5099 }
5100 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5101 
handle_emulation_failure(struct kvm_vcpu * vcpu)5102 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5103 {
5104 	int r = EMULATE_DONE;
5105 
5106 	++vcpu->stat.insn_emulation_fail;
5107 	trace_kvm_emulate_insn_failed(vcpu);
5108 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5109 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5110 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5111 		vcpu->run->internal.ndata = 0;
5112 		r = EMULATE_USER_EXIT;
5113 	}
5114 	kvm_queue_exception(vcpu, UD_VECTOR);
5115 
5116 	return r;
5117 }
5118 
reexecute_instruction(struct kvm_vcpu * vcpu,gva_t cr2,bool write_fault_to_shadow_pgtable,int emulation_type)5119 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5120 				  bool write_fault_to_shadow_pgtable,
5121 				  int emulation_type)
5122 {
5123 	gpa_t gpa = cr2;
5124 	pfn_t pfn;
5125 
5126 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5127 		return false;
5128 
5129 	if (!vcpu->arch.mmu.direct_map) {
5130 		/*
5131 		 * Write permission should be allowed since only
5132 		 * write access need to be emulated.
5133 		 */
5134 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5135 
5136 		/*
5137 		 * If the mapping is invalid in guest, let cpu retry
5138 		 * it to generate fault.
5139 		 */
5140 		if (gpa == UNMAPPED_GVA)
5141 			return true;
5142 	}
5143 
5144 	/*
5145 	 * Do not retry the unhandleable instruction if it faults on the
5146 	 * readonly host memory, otherwise it will goto a infinite loop:
5147 	 * retry instruction -> write #PF -> emulation fail -> retry
5148 	 * instruction -> ...
5149 	 */
5150 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5151 
5152 	/*
5153 	 * If the instruction failed on the error pfn, it can not be fixed,
5154 	 * report the error to userspace.
5155 	 */
5156 	if (is_error_noslot_pfn(pfn))
5157 		return false;
5158 
5159 	kvm_release_pfn_clean(pfn);
5160 
5161 	/* The instructions are well-emulated on direct mmu. */
5162 	if (vcpu->arch.mmu.direct_map) {
5163 		unsigned int indirect_shadow_pages;
5164 
5165 		spin_lock(&vcpu->kvm->mmu_lock);
5166 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5167 		spin_unlock(&vcpu->kvm->mmu_lock);
5168 
5169 		if (indirect_shadow_pages)
5170 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5171 
5172 		return true;
5173 	}
5174 
5175 	/*
5176 	 * if emulation was due to access to shadowed page table
5177 	 * and it failed try to unshadow page and re-enter the
5178 	 * guest to let CPU execute the instruction.
5179 	 */
5180 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5181 
5182 	/*
5183 	 * If the access faults on its page table, it can not
5184 	 * be fixed by unprotecting shadow page and it should
5185 	 * be reported to userspace.
5186 	 */
5187 	return !write_fault_to_shadow_pgtable;
5188 }
5189 
retry_instruction(struct x86_emulate_ctxt * ctxt,unsigned long cr2,int emulation_type)5190 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5191 			      unsigned long cr2,  int emulation_type)
5192 {
5193 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5194 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5195 
5196 	last_retry_eip = vcpu->arch.last_retry_eip;
5197 	last_retry_addr = vcpu->arch.last_retry_addr;
5198 
5199 	/*
5200 	 * If the emulation is caused by #PF and it is non-page_table
5201 	 * writing instruction, it means the VM-EXIT is caused by shadow
5202 	 * page protected, we can zap the shadow page and retry this
5203 	 * instruction directly.
5204 	 *
5205 	 * Note: if the guest uses a non-page-table modifying instruction
5206 	 * on the PDE that points to the instruction, then we will unmap
5207 	 * the instruction and go to an infinite loop. So, we cache the
5208 	 * last retried eip and the last fault address, if we meet the eip
5209 	 * and the address again, we can break out of the potential infinite
5210 	 * loop.
5211 	 */
5212 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5213 
5214 	if (!(emulation_type & EMULTYPE_RETRY))
5215 		return false;
5216 
5217 	if (x86_page_table_writing_insn(ctxt))
5218 		return false;
5219 
5220 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5221 		return false;
5222 
5223 	vcpu->arch.last_retry_eip = ctxt->eip;
5224 	vcpu->arch.last_retry_addr = cr2;
5225 
5226 	if (!vcpu->arch.mmu.direct_map)
5227 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5228 
5229 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5230 
5231 	return true;
5232 }
5233 
5234 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5235 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5236 
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)5237 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5238 				unsigned long *db)
5239 {
5240 	u32 dr6 = 0;
5241 	int i;
5242 	u32 enable, rwlen;
5243 
5244 	enable = dr7;
5245 	rwlen = dr7 >> 16;
5246 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5247 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5248 			dr6 |= (1 << i);
5249 	return dr6;
5250 }
5251 
kvm_vcpu_check_singlestep(struct kvm_vcpu * vcpu,unsigned long rflags,int * r)5252 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5253 {
5254 	struct kvm_run *kvm_run = vcpu->run;
5255 
5256 	/*
5257 	 * rflags is the old, "raw" value of the flags.  The new value has
5258 	 * not been saved yet.
5259 	 *
5260 	 * This is correct even for TF set by the guest, because "the
5261 	 * processor will not generate this exception after the instruction
5262 	 * that sets the TF flag".
5263 	 */
5264 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5265 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5266 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5267 						  DR6_RTM;
5268 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5269 			kvm_run->debug.arch.exception = DB_VECTOR;
5270 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5271 			*r = EMULATE_USER_EXIT;
5272 		} else {
5273 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5274 			/*
5275 			 * "Certain debug exceptions may clear bit 0-3.  The
5276 			 * remaining contents of the DR6 register are never
5277 			 * cleared by the processor".
5278 			 */
5279 			vcpu->arch.dr6 &= ~15;
5280 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5281 			kvm_queue_exception(vcpu, DB_VECTOR);
5282 		}
5283 	}
5284 }
5285 
kvm_vcpu_check_breakpoint(struct kvm_vcpu * vcpu,int * r)5286 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5287 {
5288 	struct kvm_run *kvm_run = vcpu->run;
5289 	unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5290 	u32 dr6 = 0;
5291 
5292 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5293 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5294 		dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5295 					   vcpu->arch.guest_debug_dr7,
5296 					   vcpu->arch.eff_db);
5297 
5298 		if (dr6 != 0) {
5299 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5300 			kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5301 				get_segment_base(vcpu, VCPU_SREG_CS);
5302 
5303 			kvm_run->debug.arch.exception = DB_VECTOR;
5304 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5305 			*r = EMULATE_USER_EXIT;
5306 			return true;
5307 		}
5308 	}
5309 
5310 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5311 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5312 		dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5313 					   vcpu->arch.dr7,
5314 					   vcpu->arch.db);
5315 
5316 		if (dr6 != 0) {
5317 			vcpu->arch.dr6 &= ~15;
5318 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5319 			kvm_queue_exception(vcpu, DB_VECTOR);
5320 			*r = EMULATE_DONE;
5321 			return true;
5322 		}
5323 	}
5324 
5325 	return false;
5326 }
5327 
x86_emulate_instruction(struct kvm_vcpu * vcpu,unsigned long cr2,int emulation_type,void * insn,int insn_len)5328 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5329 			    unsigned long cr2,
5330 			    int emulation_type,
5331 			    void *insn,
5332 			    int insn_len)
5333 {
5334 	int r;
5335 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5336 	bool writeback = true;
5337 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5338 
5339 	/*
5340 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5341 	 * never reused.
5342 	 */
5343 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5344 	kvm_clear_exception_queue(vcpu);
5345 
5346 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5347 		init_emulate_ctxt(vcpu);
5348 
5349 		/*
5350 		 * We will reenter on the same instruction since
5351 		 * we do not set complete_userspace_io.  This does not
5352 		 * handle watchpoints yet, those would be handled in
5353 		 * the emulate_ops.
5354 		 */
5355 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5356 			return r;
5357 
5358 		ctxt->interruptibility = 0;
5359 		ctxt->have_exception = false;
5360 		ctxt->exception.vector = -1;
5361 		ctxt->perm_ok = false;
5362 
5363 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5364 
5365 		r = x86_decode_insn(ctxt, insn, insn_len);
5366 
5367 		trace_kvm_emulate_insn_start(vcpu);
5368 		++vcpu->stat.insn_emulation;
5369 		if (r != EMULATION_OK)  {
5370 			if (emulation_type & EMULTYPE_TRAP_UD)
5371 				return EMULATE_FAIL;
5372 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5373 						emulation_type))
5374 				return EMULATE_DONE;
5375 			if (ctxt->have_exception && inject_emulated_exception(vcpu))
5376 				return EMULATE_DONE;
5377 			if (emulation_type & EMULTYPE_SKIP)
5378 				return EMULATE_FAIL;
5379 			return handle_emulation_failure(vcpu);
5380 		}
5381 	}
5382 
5383 	if (emulation_type & EMULTYPE_SKIP) {
5384 		kvm_rip_write(vcpu, ctxt->_eip);
5385 		if (ctxt->eflags & X86_EFLAGS_RF)
5386 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5387 		return EMULATE_DONE;
5388 	}
5389 
5390 	if (retry_instruction(ctxt, cr2, emulation_type))
5391 		return EMULATE_DONE;
5392 
5393 	/* this is needed for vmware backdoor interface to work since it
5394 	   changes registers values  during IO operation */
5395 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5396 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5397 		emulator_invalidate_register_cache(ctxt);
5398 	}
5399 
5400 restart:
5401 	r = x86_emulate_insn(ctxt);
5402 
5403 	if (r == EMULATION_INTERCEPTED)
5404 		return EMULATE_DONE;
5405 
5406 	if (r == EMULATION_FAILED) {
5407 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5408 					emulation_type))
5409 			return EMULATE_DONE;
5410 
5411 		return handle_emulation_failure(vcpu);
5412 	}
5413 
5414 	if (ctxt->have_exception) {
5415 		r = EMULATE_DONE;
5416 		if (inject_emulated_exception(vcpu))
5417 			return r;
5418 	} else if (vcpu->arch.pio.count) {
5419 		if (!vcpu->arch.pio.in) {
5420 			/* FIXME: return into emulator if single-stepping.  */
5421 			vcpu->arch.pio.count = 0;
5422 		} else {
5423 			writeback = false;
5424 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5425 		}
5426 		r = EMULATE_USER_EXIT;
5427 	} else if (vcpu->mmio_needed) {
5428 		if (!vcpu->mmio_is_write)
5429 			writeback = false;
5430 		r = EMULATE_USER_EXIT;
5431 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5432 	} else if (r == EMULATION_RESTART)
5433 		goto restart;
5434 	else
5435 		r = EMULATE_DONE;
5436 
5437 	if (writeback) {
5438 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5439 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5440 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5441 		kvm_rip_write(vcpu, ctxt->eip);
5442 		if (r == EMULATE_DONE)
5443 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5444 		__kvm_set_rflags(vcpu, ctxt->eflags);
5445 
5446 		/*
5447 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5448 		 * do nothing, and it will be requested again as soon as
5449 		 * the shadow expires.  But we still need to check here,
5450 		 * because POPF has no interrupt shadow.
5451 		 */
5452 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5453 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5454 	} else
5455 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5456 
5457 	return r;
5458 }
5459 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5460 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)5461 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5462 {
5463 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5464 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5465 					    size, port, &val, 1);
5466 	/* do not return to emulator after return from userspace */
5467 	vcpu->arch.pio.count = 0;
5468 	return ret;
5469 }
5470 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5471 
tsc_bad(void * info)5472 static void tsc_bad(void *info)
5473 {
5474 	__this_cpu_write(cpu_tsc_khz, 0);
5475 }
5476 
tsc_khz_changed(void * data)5477 static void tsc_khz_changed(void *data)
5478 {
5479 	struct cpufreq_freqs *freq = data;
5480 	unsigned long khz = 0;
5481 
5482 	if (data)
5483 		khz = freq->new;
5484 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5485 		khz = cpufreq_quick_get(raw_smp_processor_id());
5486 	if (!khz)
5487 		khz = tsc_khz;
5488 	__this_cpu_write(cpu_tsc_khz, khz);
5489 }
5490 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)5491 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5492 				     void *data)
5493 {
5494 	struct cpufreq_freqs *freq = data;
5495 	struct kvm *kvm;
5496 	struct kvm_vcpu *vcpu;
5497 	int i, send_ipi = 0;
5498 
5499 	/*
5500 	 * We allow guests to temporarily run on slowing clocks,
5501 	 * provided we notify them after, or to run on accelerating
5502 	 * clocks, provided we notify them before.  Thus time never
5503 	 * goes backwards.
5504 	 *
5505 	 * However, we have a problem.  We can't atomically update
5506 	 * the frequency of a given CPU from this function; it is
5507 	 * merely a notifier, which can be called from any CPU.
5508 	 * Changing the TSC frequency at arbitrary points in time
5509 	 * requires a recomputation of local variables related to
5510 	 * the TSC for each VCPU.  We must flag these local variables
5511 	 * to be updated and be sure the update takes place with the
5512 	 * new frequency before any guests proceed.
5513 	 *
5514 	 * Unfortunately, the combination of hotplug CPU and frequency
5515 	 * change creates an intractable locking scenario; the order
5516 	 * of when these callouts happen is undefined with respect to
5517 	 * CPU hotplug, and they can race with each other.  As such,
5518 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5519 	 * undefined; you can actually have a CPU frequency change take
5520 	 * place in between the computation of X and the setting of the
5521 	 * variable.  To protect against this problem, all updates of
5522 	 * the per_cpu tsc_khz variable are done in an interrupt
5523 	 * protected IPI, and all callers wishing to update the value
5524 	 * must wait for a synchronous IPI to complete (which is trivial
5525 	 * if the caller is on the CPU already).  This establishes the
5526 	 * necessary total order on variable updates.
5527 	 *
5528 	 * Note that because a guest time update may take place
5529 	 * anytime after the setting of the VCPU's request bit, the
5530 	 * correct TSC value must be set before the request.  However,
5531 	 * to ensure the update actually makes it to any guest which
5532 	 * starts running in hardware virtualization between the set
5533 	 * and the acquisition of the spinlock, we must also ping the
5534 	 * CPU after setting the request bit.
5535 	 *
5536 	 */
5537 
5538 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5539 		return 0;
5540 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5541 		return 0;
5542 
5543 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5544 
5545 	spin_lock(&kvm_lock);
5546 	list_for_each_entry(kvm, &vm_list, vm_list) {
5547 		kvm_for_each_vcpu(i, vcpu, kvm) {
5548 			if (vcpu->cpu != freq->cpu)
5549 				continue;
5550 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5551 			if (vcpu->cpu != smp_processor_id())
5552 				send_ipi = 1;
5553 		}
5554 	}
5555 	spin_unlock(&kvm_lock);
5556 
5557 	if (freq->old < freq->new && send_ipi) {
5558 		/*
5559 		 * We upscale the frequency.  Must make the guest
5560 		 * doesn't see old kvmclock values while running with
5561 		 * the new frequency, otherwise we risk the guest sees
5562 		 * time go backwards.
5563 		 *
5564 		 * In case we update the frequency for another cpu
5565 		 * (which might be in guest context) send an interrupt
5566 		 * to kick the cpu out of guest context.  Next time
5567 		 * guest context is entered kvmclock will be updated,
5568 		 * so the guest will not see stale values.
5569 		 */
5570 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5571 	}
5572 	return 0;
5573 }
5574 
5575 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5576 	.notifier_call  = kvmclock_cpufreq_notifier
5577 };
5578 
kvmclock_cpu_notifier(struct notifier_block * nfb,unsigned long action,void * hcpu)5579 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5580 					unsigned long action, void *hcpu)
5581 {
5582 	unsigned int cpu = (unsigned long)hcpu;
5583 
5584 	switch (action) {
5585 		case CPU_ONLINE:
5586 		case CPU_DOWN_FAILED:
5587 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5588 			break;
5589 		case CPU_DOWN_PREPARE:
5590 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5591 			break;
5592 	}
5593 	return NOTIFY_OK;
5594 }
5595 
5596 static struct notifier_block kvmclock_cpu_notifier_block = {
5597 	.notifier_call  = kvmclock_cpu_notifier,
5598 	.priority = -INT_MAX
5599 };
5600 
kvm_timer_init(void)5601 static void kvm_timer_init(void)
5602 {
5603 	int cpu;
5604 
5605 	max_tsc_khz = tsc_khz;
5606 
5607 	cpu_notifier_register_begin();
5608 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5609 #ifdef CONFIG_CPU_FREQ
5610 		struct cpufreq_policy policy;
5611 		memset(&policy, 0, sizeof(policy));
5612 		cpu = get_cpu();
5613 		cpufreq_get_policy(&policy, cpu);
5614 		if (policy.cpuinfo.max_freq)
5615 			max_tsc_khz = policy.cpuinfo.max_freq;
5616 		put_cpu();
5617 #endif
5618 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5619 					  CPUFREQ_TRANSITION_NOTIFIER);
5620 	}
5621 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5622 	for_each_online_cpu(cpu)
5623 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5624 
5625 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5626 	cpu_notifier_register_done();
5627 
5628 }
5629 
5630 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5631 
kvm_is_in_guest(void)5632 int kvm_is_in_guest(void)
5633 {
5634 	return __this_cpu_read(current_vcpu) != NULL;
5635 }
5636 
kvm_is_user_mode(void)5637 static int kvm_is_user_mode(void)
5638 {
5639 	int user_mode = 3;
5640 
5641 	if (__this_cpu_read(current_vcpu))
5642 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5643 
5644 	return user_mode != 0;
5645 }
5646 
kvm_get_guest_ip(void)5647 static unsigned long kvm_get_guest_ip(void)
5648 {
5649 	unsigned long ip = 0;
5650 
5651 	if (__this_cpu_read(current_vcpu))
5652 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5653 
5654 	return ip;
5655 }
5656 
5657 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5658 	.is_in_guest		= kvm_is_in_guest,
5659 	.is_user_mode		= kvm_is_user_mode,
5660 	.get_guest_ip		= kvm_get_guest_ip,
5661 };
5662 
kvm_before_handle_nmi(struct kvm_vcpu * vcpu)5663 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5664 {
5665 	__this_cpu_write(current_vcpu, vcpu);
5666 }
5667 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5668 
kvm_after_handle_nmi(struct kvm_vcpu * vcpu)5669 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5670 {
5671 	__this_cpu_write(current_vcpu, NULL);
5672 }
5673 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5674 
kvm_set_mmio_spte_mask(void)5675 static void kvm_set_mmio_spte_mask(void)
5676 {
5677 	u64 mask;
5678 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5679 
5680 	/*
5681 	 * Set the reserved bits and the present bit of an paging-structure
5682 	 * entry to generate page fault with PFER.RSV = 1.
5683 	 */
5684 	 /* Mask the reserved physical address bits. */
5685 	mask = rsvd_bits(maxphyaddr, 51);
5686 
5687 	/* Bit 62 is always reserved for 32bit host. */
5688 	mask |= 0x3ull << 62;
5689 
5690 	/* Set the present bit. */
5691 	mask |= 1ull;
5692 
5693 #ifdef CONFIG_X86_64
5694 	/*
5695 	 * If reserved bit is not supported, clear the present bit to disable
5696 	 * mmio page fault.
5697 	 */
5698 	if (maxphyaddr == 52)
5699 		mask &= ~1ull;
5700 #endif
5701 
5702 	kvm_mmu_set_mmio_spte_mask(mask);
5703 }
5704 
5705 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)5706 static void pvclock_gtod_update_fn(struct work_struct *work)
5707 {
5708 	struct kvm *kvm;
5709 
5710 	struct kvm_vcpu *vcpu;
5711 	int i;
5712 
5713 	spin_lock(&kvm_lock);
5714 	list_for_each_entry(kvm, &vm_list, vm_list)
5715 		kvm_for_each_vcpu(i, vcpu, kvm)
5716 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5717 	atomic_set(&kvm_guest_has_master_clock, 0);
5718 	spin_unlock(&kvm_lock);
5719 }
5720 
5721 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5722 
5723 /*
5724  * Notification about pvclock gtod data update.
5725  */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)5726 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5727 			       void *priv)
5728 {
5729 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5730 	struct timekeeper *tk = priv;
5731 
5732 	update_pvclock_gtod(tk);
5733 
5734 	/* disable master clock if host does not trust, or does not
5735 	 * use, TSC clocksource
5736 	 */
5737 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5738 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5739 		queue_work(system_long_wq, &pvclock_gtod_work);
5740 
5741 	return 0;
5742 }
5743 
5744 static struct notifier_block pvclock_gtod_notifier = {
5745 	.notifier_call = pvclock_gtod_notify,
5746 };
5747 #endif
5748 
kvm_arch_init(void * opaque)5749 int kvm_arch_init(void *opaque)
5750 {
5751 	int r;
5752 	struct kvm_x86_ops *ops = opaque;
5753 
5754 	if (kvm_x86_ops) {
5755 		printk(KERN_ERR "kvm: already loaded the other module\n");
5756 		r = -EEXIST;
5757 		goto out;
5758 	}
5759 
5760 	if (!ops->cpu_has_kvm_support()) {
5761 		printk(KERN_ERR "kvm: no hardware support\n");
5762 		r = -EOPNOTSUPP;
5763 		goto out;
5764 	}
5765 	if (ops->disabled_by_bios()) {
5766 		printk(KERN_ERR "kvm: disabled by bios\n");
5767 		r = -EOPNOTSUPP;
5768 		goto out;
5769 	}
5770 
5771 	r = -ENOMEM;
5772 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5773 	if (!shared_msrs) {
5774 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5775 		goto out;
5776 	}
5777 
5778 	r = kvm_mmu_module_init();
5779 	if (r)
5780 		goto out_free_percpu;
5781 
5782 	kvm_set_mmio_spte_mask();
5783 
5784 	kvm_x86_ops = ops;
5785 
5786 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5787 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5788 
5789 	kvm_timer_init();
5790 
5791 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5792 
5793 	if (cpu_has_xsave)
5794 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5795 
5796 	kvm_lapic_init();
5797 #ifdef CONFIG_X86_64
5798 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5799 #endif
5800 
5801 	return 0;
5802 
5803 out_free_percpu:
5804 	free_percpu(shared_msrs);
5805 out:
5806 	return r;
5807 }
5808 
kvm_arch_exit(void)5809 void kvm_arch_exit(void)
5810 {
5811 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5812 
5813 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5814 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5815 					    CPUFREQ_TRANSITION_NOTIFIER);
5816 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5817 #ifdef CONFIG_X86_64
5818 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5819 #endif
5820 	kvm_x86_ops = NULL;
5821 	kvm_mmu_module_exit();
5822 	free_percpu(shared_msrs);
5823 }
5824 
kvm_emulate_halt(struct kvm_vcpu * vcpu)5825 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5826 {
5827 	++vcpu->stat.halt_exits;
5828 	if (irqchip_in_kernel(vcpu->kvm)) {
5829 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5830 		return 1;
5831 	} else {
5832 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5833 		return 0;
5834 	}
5835 }
5836 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5837 
kvm_hv_hypercall(struct kvm_vcpu * vcpu)5838 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5839 {
5840 	u64 param, ingpa, outgpa, ret;
5841 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5842 	bool fast, longmode;
5843 
5844 	/*
5845 	 * hypercall generates UD from non zero cpl and real mode
5846 	 * per HYPER-V spec
5847 	 */
5848 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5849 		kvm_queue_exception(vcpu, UD_VECTOR);
5850 		return 0;
5851 	}
5852 
5853 	longmode = is_64_bit_mode(vcpu);
5854 
5855 	if (!longmode) {
5856 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5857 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5858 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5859 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5860 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5861 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5862 	}
5863 #ifdef CONFIG_X86_64
5864 	else {
5865 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5866 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5867 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5868 	}
5869 #endif
5870 
5871 	code = param & 0xffff;
5872 	fast = (param >> 16) & 0x1;
5873 	rep_cnt = (param >> 32) & 0xfff;
5874 	rep_idx = (param >> 48) & 0xfff;
5875 
5876 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5877 
5878 	switch (code) {
5879 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5880 		kvm_vcpu_on_spin(vcpu);
5881 		break;
5882 	default:
5883 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5884 		break;
5885 	}
5886 
5887 	ret = res | (((u64)rep_done & 0xfff) << 32);
5888 	if (longmode) {
5889 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5890 	} else {
5891 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5892 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5893 	}
5894 
5895 	return 1;
5896 }
5897 
5898 /*
5899  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5900  *
5901  * @apicid - apicid of vcpu to be kicked.
5902  */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)5903 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5904 {
5905 	struct kvm_lapic_irq lapic_irq;
5906 
5907 	lapic_irq.shorthand = 0;
5908 	lapic_irq.dest_mode = 0;
5909 	lapic_irq.dest_id = apicid;
5910 
5911 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5912 	kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5913 }
5914 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)5915 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5916 {
5917 	unsigned long nr, a0, a1, a2, a3, ret;
5918 	int op_64_bit, r = 1;
5919 
5920 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5921 		return kvm_hv_hypercall(vcpu);
5922 
5923 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5924 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5925 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5926 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5927 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5928 
5929 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5930 
5931 	op_64_bit = is_64_bit_mode(vcpu);
5932 	if (!op_64_bit) {
5933 		nr &= 0xFFFFFFFF;
5934 		a0 &= 0xFFFFFFFF;
5935 		a1 &= 0xFFFFFFFF;
5936 		a2 &= 0xFFFFFFFF;
5937 		a3 &= 0xFFFFFFFF;
5938 	}
5939 
5940 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5941 		ret = -KVM_EPERM;
5942 		goto out;
5943 	}
5944 
5945 	switch (nr) {
5946 	case KVM_HC_VAPIC_POLL_IRQ:
5947 		ret = 0;
5948 		break;
5949 	case KVM_HC_KICK_CPU:
5950 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5951 		ret = 0;
5952 		break;
5953 	default:
5954 		ret = -KVM_ENOSYS;
5955 		break;
5956 	}
5957 out:
5958 	if (!op_64_bit)
5959 		ret = (u32)ret;
5960 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5961 	++vcpu->stat.hypercalls;
5962 	return r;
5963 }
5964 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5965 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)5966 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5967 {
5968 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5969 	char instruction[3];
5970 	unsigned long rip = kvm_rip_read(vcpu);
5971 
5972 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5973 
5974 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5975 }
5976 
5977 /*
5978  * Check if userspace requested an interrupt window, and that the
5979  * interrupt window is open.
5980  *
5981  * No need to exit to userspace if we already have an interrupt queued.
5982  */
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)5983 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5984 {
5985 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5986 		vcpu->run->request_interrupt_window &&
5987 		kvm_arch_interrupt_allowed(vcpu));
5988 }
5989 
post_kvm_run_save(struct kvm_vcpu * vcpu)5990 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5991 {
5992 	struct kvm_run *kvm_run = vcpu->run;
5993 
5994 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5995 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5996 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5997 	if (irqchip_in_kernel(vcpu->kvm))
5998 		kvm_run->ready_for_interrupt_injection = 1;
5999 	else
6000 		kvm_run->ready_for_interrupt_injection =
6001 			kvm_arch_interrupt_allowed(vcpu) &&
6002 			!kvm_cpu_has_interrupt(vcpu) &&
6003 			!kvm_event_needs_reinjection(vcpu);
6004 }
6005 
update_cr8_intercept(struct kvm_vcpu * vcpu)6006 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6007 {
6008 	int max_irr, tpr;
6009 
6010 	if (!kvm_x86_ops->update_cr8_intercept)
6011 		return;
6012 
6013 	if (!vcpu->arch.apic)
6014 		return;
6015 
6016 	if (!vcpu->arch.apic->vapic_addr)
6017 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6018 	else
6019 		max_irr = -1;
6020 
6021 	if (max_irr != -1)
6022 		max_irr >>= 4;
6023 
6024 	tpr = kvm_lapic_get_cr8(vcpu);
6025 
6026 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6027 }
6028 
inject_pending_event(struct kvm_vcpu * vcpu,bool req_int_win)6029 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6030 {
6031 	int r;
6032 
6033 	/* try to reinject previous events if any */
6034 	if (vcpu->arch.exception.pending) {
6035 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6036 					vcpu->arch.exception.has_error_code,
6037 					vcpu->arch.exception.error_code);
6038 
6039 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6040 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6041 					     X86_EFLAGS_RF);
6042 
6043 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6044 					  vcpu->arch.exception.has_error_code,
6045 					  vcpu->arch.exception.error_code,
6046 					  vcpu->arch.exception.reinject);
6047 		return 0;
6048 	}
6049 
6050 	if (vcpu->arch.nmi_injected) {
6051 		kvm_x86_ops->set_nmi(vcpu);
6052 		return 0;
6053 	}
6054 
6055 	if (vcpu->arch.interrupt.pending) {
6056 		kvm_x86_ops->set_irq(vcpu);
6057 		return 0;
6058 	}
6059 
6060 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6061 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6062 		if (r != 0)
6063 			return r;
6064 	}
6065 
6066 	/* try to inject new event if pending */
6067 	if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6068 		--vcpu->arch.nmi_pending;
6069 		vcpu->arch.nmi_injected = true;
6070 		kvm_x86_ops->set_nmi(vcpu);
6071 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6072 		/*
6073 		 * Because interrupts can be injected asynchronously, we are
6074 		 * calling check_nested_events again here to avoid a race condition.
6075 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6076 		 * proposal and current concerns.  Perhaps we should be setting
6077 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6078 		 */
6079 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6080 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6081 			if (r != 0)
6082 				return r;
6083 		}
6084 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6085 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6086 					    false);
6087 			kvm_x86_ops->set_irq(vcpu);
6088 		}
6089 	}
6090 	return 0;
6091 }
6092 
process_nmi(struct kvm_vcpu * vcpu)6093 static void process_nmi(struct kvm_vcpu *vcpu)
6094 {
6095 	unsigned limit = 2;
6096 
6097 	/*
6098 	 * x86 is limited to one NMI running, and one NMI pending after it.
6099 	 * If an NMI is already in progress, limit further NMIs to just one.
6100 	 * Otherwise, allow two (and we'll inject the first one immediately).
6101 	 */
6102 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6103 		limit = 1;
6104 
6105 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6106 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6107 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6108 }
6109 
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)6110 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6111 {
6112 	u64 eoi_exit_bitmap[4];
6113 	u32 tmr[8];
6114 
6115 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6116 		return;
6117 
6118 	memset(eoi_exit_bitmap, 0, 32);
6119 	memset(tmr, 0, 32);
6120 
6121 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6122 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6123 	kvm_apic_update_tmr(vcpu, tmr);
6124 }
6125 
kvm_vcpu_flush_tlb(struct kvm_vcpu * vcpu)6126 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6127 {
6128 	++vcpu->stat.tlb_flush;
6129 	kvm_x86_ops->tlb_flush(vcpu);
6130 }
6131 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)6132 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6133 {
6134 	struct page *page = NULL;
6135 
6136 	if (!irqchip_in_kernel(vcpu->kvm))
6137 		return;
6138 
6139 	if (!kvm_x86_ops->set_apic_access_page_addr)
6140 		return;
6141 
6142 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6143 	if (is_error_page(page))
6144 		return;
6145 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6146 
6147 	/*
6148 	 * Do not pin apic access page in memory, the MMU notifier
6149 	 * will call us again if it is migrated or swapped out.
6150 	 */
6151 	put_page(page);
6152 }
6153 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6154 
kvm_arch_mmu_notifier_invalidate_page(struct kvm * kvm,unsigned long address)6155 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6156 					   unsigned long address)
6157 {
6158 	/*
6159 	 * The physical address of apic access page is stored in the VMCS.
6160 	 * Update it when it becomes invalid.
6161 	 */
6162 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6163 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6164 }
6165 
6166 /*
6167  * Returns 1 to let __vcpu_run() continue the guest execution loop without
6168  * exiting to the userspace.  Otherwise, the value will be returned to the
6169  * userspace.
6170  */
vcpu_enter_guest(struct kvm_vcpu * vcpu)6171 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6172 {
6173 	int r;
6174 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6175 		vcpu->run->request_interrupt_window;
6176 	bool req_immediate_exit = false;
6177 
6178 	if (vcpu->requests) {
6179 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6180 			kvm_mmu_unload(vcpu);
6181 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6182 			__kvm_migrate_timers(vcpu);
6183 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6184 			kvm_gen_update_masterclock(vcpu->kvm);
6185 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6186 			kvm_gen_kvmclock_update(vcpu);
6187 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6188 			r = kvm_guest_time_update(vcpu);
6189 			if (unlikely(r))
6190 				goto out;
6191 		}
6192 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6193 			kvm_mmu_sync_roots(vcpu);
6194 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6195 			kvm_vcpu_flush_tlb(vcpu);
6196 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6197 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6198 			r = 0;
6199 			goto out;
6200 		}
6201 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6202 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6203 			r = 0;
6204 			goto out;
6205 		}
6206 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6207 			vcpu->fpu_active = 0;
6208 			kvm_x86_ops->fpu_deactivate(vcpu);
6209 		}
6210 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6211 			/* Page is swapped out. Do synthetic halt */
6212 			vcpu->arch.apf.halted = true;
6213 			r = 1;
6214 			goto out;
6215 		}
6216 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6217 			record_steal_time(vcpu);
6218 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6219 			process_nmi(vcpu);
6220 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6221 			kvm_handle_pmu_event(vcpu);
6222 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6223 			kvm_deliver_pmi(vcpu);
6224 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6225 			vcpu_scan_ioapic(vcpu);
6226 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6227 			kvm_vcpu_reload_apic_access_page(vcpu);
6228 	}
6229 
6230 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6231 		kvm_apic_accept_events(vcpu);
6232 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6233 			r = 1;
6234 			goto out;
6235 		}
6236 
6237 		if (inject_pending_event(vcpu, req_int_win) != 0)
6238 			req_immediate_exit = true;
6239 		/* enable NMI/IRQ window open exits if needed */
6240 		else {
6241 			if (vcpu->arch.nmi_pending)
6242 				kvm_x86_ops->enable_nmi_window(vcpu);
6243 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6244 				kvm_x86_ops->enable_irq_window(vcpu);
6245 		}
6246 
6247 		if (kvm_lapic_enabled(vcpu)) {
6248 			/*
6249 			 * Update architecture specific hints for APIC
6250 			 * virtual interrupt delivery.
6251 			 */
6252 			if (kvm_x86_ops->hwapic_irr_update)
6253 				kvm_x86_ops->hwapic_irr_update(vcpu,
6254 					kvm_lapic_find_highest_irr(vcpu));
6255 			update_cr8_intercept(vcpu);
6256 			kvm_lapic_sync_to_vapic(vcpu);
6257 		}
6258 	}
6259 
6260 	r = kvm_mmu_reload(vcpu);
6261 	if (unlikely(r)) {
6262 		goto cancel_injection;
6263 	}
6264 
6265 	preempt_disable();
6266 
6267 	kvm_x86_ops->prepare_guest_switch(vcpu);
6268 	if (vcpu->fpu_active)
6269 		kvm_load_guest_fpu(vcpu);
6270 	vcpu->mode = IN_GUEST_MODE;
6271 
6272 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6273 
6274 	/* We should set ->mode before check ->requests,
6275 	 * see the comment in make_all_cpus_request.
6276 	 */
6277 	smp_mb__after_srcu_read_unlock();
6278 
6279 	local_irq_disable();
6280 
6281 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6282 	    || need_resched() || signal_pending(current)) {
6283 		vcpu->mode = OUTSIDE_GUEST_MODE;
6284 		smp_wmb();
6285 		local_irq_enable();
6286 		preempt_enable();
6287 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6288 		r = 1;
6289 		goto cancel_injection;
6290 	}
6291 
6292 	kvm_load_guest_xcr0(vcpu);
6293 
6294 	if (req_immediate_exit)
6295 		smp_send_reschedule(vcpu->cpu);
6296 
6297 	kvm_guest_enter();
6298 
6299 	if (unlikely(vcpu->arch.switch_db_regs)) {
6300 		set_debugreg(0, 7);
6301 		set_debugreg(vcpu->arch.eff_db[0], 0);
6302 		set_debugreg(vcpu->arch.eff_db[1], 1);
6303 		set_debugreg(vcpu->arch.eff_db[2], 2);
6304 		set_debugreg(vcpu->arch.eff_db[3], 3);
6305 		set_debugreg(vcpu->arch.dr6, 6);
6306 	}
6307 
6308 	trace_kvm_entry(vcpu->vcpu_id);
6309 	kvm_x86_ops->run(vcpu);
6310 
6311 	/*
6312 	 * Do this here before restoring debug registers on the host.  And
6313 	 * since we do this before handling the vmexit, a DR access vmexit
6314 	 * can (a) read the correct value of the debug registers, (b) set
6315 	 * KVM_DEBUGREG_WONT_EXIT again.
6316 	 */
6317 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6318 		int i;
6319 
6320 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6321 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6322 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6323 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6324 	}
6325 
6326 	/*
6327 	 * If the guest has used debug registers, at least dr7
6328 	 * will be disabled while returning to the host.
6329 	 * If we don't have active breakpoints in the host, we don't
6330 	 * care about the messed up debug address registers. But if
6331 	 * we have some of them active, restore the old state.
6332 	 */
6333 	if (hw_breakpoint_active())
6334 		hw_breakpoint_restore();
6335 
6336 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6337 							   native_read_tsc());
6338 
6339 	vcpu->mode = OUTSIDE_GUEST_MODE;
6340 	smp_wmb();
6341 
6342 	kvm_put_guest_xcr0(vcpu);
6343 
6344 	/* Interrupt is enabled by handle_external_intr() */
6345 	kvm_x86_ops->handle_external_intr(vcpu);
6346 
6347 	++vcpu->stat.exits;
6348 
6349 	/*
6350 	 * We must have an instruction between local_irq_enable() and
6351 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6352 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6353 	 * But we need to prevent reordering, hence this barrier():
6354 	 */
6355 	barrier();
6356 
6357 	kvm_guest_exit();
6358 
6359 	preempt_enable();
6360 
6361 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6362 
6363 	/*
6364 	 * Profile KVM exit RIPs:
6365 	 */
6366 	if (unlikely(prof_on == KVM_PROFILING)) {
6367 		unsigned long rip = kvm_rip_read(vcpu);
6368 		profile_hit(KVM_PROFILING, (void *)rip);
6369 	}
6370 
6371 	if (unlikely(vcpu->arch.tsc_always_catchup))
6372 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6373 
6374 	if (vcpu->arch.apic_attention)
6375 		kvm_lapic_sync_from_vapic(vcpu);
6376 
6377 	r = kvm_x86_ops->handle_exit(vcpu);
6378 	return r;
6379 
6380 cancel_injection:
6381 	kvm_x86_ops->cancel_injection(vcpu);
6382 	if (unlikely(vcpu->arch.apic_attention))
6383 		kvm_lapic_sync_from_vapic(vcpu);
6384 out:
6385 	return r;
6386 }
6387 
6388 
__vcpu_run(struct kvm_vcpu * vcpu)6389 static int __vcpu_run(struct kvm_vcpu *vcpu)
6390 {
6391 	int r;
6392 	struct kvm *kvm = vcpu->kvm;
6393 
6394 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6395 
6396 	r = 1;
6397 	while (r > 0) {
6398 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6399 		    !vcpu->arch.apf.halted)
6400 			r = vcpu_enter_guest(vcpu);
6401 		else {
6402 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6403 			kvm_vcpu_block(vcpu);
6404 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6405 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6406 				kvm_apic_accept_events(vcpu);
6407 				switch(vcpu->arch.mp_state) {
6408 				case KVM_MP_STATE_HALTED:
6409 					vcpu->arch.pv.pv_unhalted = false;
6410 					vcpu->arch.mp_state =
6411 						KVM_MP_STATE_RUNNABLE;
6412 				case KVM_MP_STATE_RUNNABLE:
6413 					vcpu->arch.apf.halted = false;
6414 					break;
6415 				case KVM_MP_STATE_INIT_RECEIVED:
6416 					break;
6417 				default:
6418 					r = -EINTR;
6419 					break;
6420 				}
6421 			}
6422 		}
6423 
6424 		if (r <= 0)
6425 			break;
6426 
6427 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6428 		if (kvm_cpu_has_pending_timer(vcpu))
6429 			kvm_inject_pending_timer_irqs(vcpu);
6430 
6431 		if (dm_request_for_irq_injection(vcpu)) {
6432 			r = -EINTR;
6433 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6434 			++vcpu->stat.request_irq_exits;
6435 		}
6436 
6437 		kvm_check_async_pf_completion(vcpu);
6438 
6439 		if (signal_pending(current)) {
6440 			r = -EINTR;
6441 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6442 			++vcpu->stat.signal_exits;
6443 		}
6444 		if (need_resched()) {
6445 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6446 			cond_resched();
6447 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6448 		}
6449 	}
6450 
6451 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6452 
6453 	return r;
6454 }
6455 
complete_emulated_io(struct kvm_vcpu * vcpu)6456 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6457 {
6458 	int r;
6459 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6460 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6461 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6462 	if (r != EMULATE_DONE)
6463 		return 0;
6464 	return 1;
6465 }
6466 
complete_emulated_pio(struct kvm_vcpu * vcpu)6467 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6468 {
6469 	BUG_ON(!vcpu->arch.pio.count);
6470 
6471 	return complete_emulated_io(vcpu);
6472 }
6473 
6474 /*
6475  * Implements the following, as a state machine:
6476  *
6477  * read:
6478  *   for each fragment
6479  *     for each mmio piece in the fragment
6480  *       write gpa, len
6481  *       exit
6482  *       copy data
6483  *   execute insn
6484  *
6485  * write:
6486  *   for each fragment
6487  *     for each mmio piece in the fragment
6488  *       write gpa, len
6489  *       copy data
6490  *       exit
6491  */
complete_emulated_mmio(struct kvm_vcpu * vcpu)6492 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6493 {
6494 	struct kvm_run *run = vcpu->run;
6495 	struct kvm_mmio_fragment *frag;
6496 	unsigned len;
6497 
6498 	BUG_ON(!vcpu->mmio_needed);
6499 
6500 	/* Complete previous fragment */
6501 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6502 	len = min(8u, frag->len);
6503 	if (!vcpu->mmio_is_write)
6504 		memcpy(frag->data, run->mmio.data, len);
6505 
6506 	if (frag->len <= 8) {
6507 		/* Switch to the next fragment. */
6508 		frag++;
6509 		vcpu->mmio_cur_fragment++;
6510 	} else {
6511 		/* Go forward to the next mmio piece. */
6512 		frag->data += len;
6513 		frag->gpa += len;
6514 		frag->len -= len;
6515 	}
6516 
6517 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6518 		vcpu->mmio_needed = 0;
6519 
6520 		/* FIXME: return into emulator if single-stepping.  */
6521 		if (vcpu->mmio_is_write)
6522 			return 1;
6523 		vcpu->mmio_read_completed = 1;
6524 		return complete_emulated_io(vcpu);
6525 	}
6526 
6527 	run->exit_reason = KVM_EXIT_MMIO;
6528 	run->mmio.phys_addr = frag->gpa;
6529 	if (vcpu->mmio_is_write)
6530 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6531 	run->mmio.len = min(8u, frag->len);
6532 	run->mmio.is_write = vcpu->mmio_is_write;
6533 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6534 	return 0;
6535 }
6536 
6537 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)6538 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6539 {
6540 	int r;
6541 	sigset_t sigsaved;
6542 
6543 	if (!tsk_used_math(current) && init_fpu(current))
6544 		return -ENOMEM;
6545 
6546 	if (vcpu->sigset_active)
6547 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6548 
6549 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6550 		kvm_vcpu_block(vcpu);
6551 		kvm_apic_accept_events(vcpu);
6552 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6553 		r = -EAGAIN;
6554 		goto out;
6555 	}
6556 
6557 	/* re-sync apic's tpr */
6558 	if (!irqchip_in_kernel(vcpu->kvm)) {
6559 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6560 			r = -EINVAL;
6561 			goto out;
6562 		}
6563 	}
6564 
6565 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6566 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6567 		vcpu->arch.complete_userspace_io = NULL;
6568 		r = cui(vcpu);
6569 		if (r <= 0)
6570 			goto out;
6571 	} else
6572 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6573 
6574 	r = __vcpu_run(vcpu);
6575 
6576 out:
6577 	post_kvm_run_save(vcpu);
6578 	if (vcpu->sigset_active)
6579 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6580 
6581 	return r;
6582 }
6583 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)6584 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6585 {
6586 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6587 		/*
6588 		 * We are here if userspace calls get_regs() in the middle of
6589 		 * instruction emulation. Registers state needs to be copied
6590 		 * back from emulation context to vcpu. Userspace shouldn't do
6591 		 * that usually, but some bad designed PV devices (vmware
6592 		 * backdoor interface) need this to work
6593 		 */
6594 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6595 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6596 	}
6597 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6598 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6599 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6600 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6601 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6602 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6603 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6604 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6605 #ifdef CONFIG_X86_64
6606 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6607 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6608 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6609 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6610 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6611 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6612 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6613 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6614 #endif
6615 
6616 	regs->rip = kvm_rip_read(vcpu);
6617 	regs->rflags = kvm_get_rflags(vcpu);
6618 
6619 	return 0;
6620 }
6621 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)6622 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6623 {
6624 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6625 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6626 
6627 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6628 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6629 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6630 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6631 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6632 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6633 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6634 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6635 #ifdef CONFIG_X86_64
6636 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6637 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6638 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6639 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6640 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6641 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6642 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6643 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6644 #endif
6645 
6646 	kvm_rip_write(vcpu, regs->rip);
6647 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
6648 
6649 	vcpu->arch.exception.pending = false;
6650 
6651 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6652 
6653 	return 0;
6654 }
6655 
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)6656 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6657 {
6658 	struct kvm_segment cs;
6659 
6660 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6661 	*db = cs.db;
6662 	*l = cs.l;
6663 }
6664 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6665 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)6666 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6667 				  struct kvm_sregs *sregs)
6668 {
6669 	struct desc_ptr dt;
6670 
6671 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6672 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6673 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6674 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6675 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6676 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6677 
6678 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6679 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6680 
6681 	kvm_x86_ops->get_idt(vcpu, &dt);
6682 	sregs->idt.limit = dt.size;
6683 	sregs->idt.base = dt.address;
6684 	kvm_x86_ops->get_gdt(vcpu, &dt);
6685 	sregs->gdt.limit = dt.size;
6686 	sregs->gdt.base = dt.address;
6687 
6688 	sregs->cr0 = kvm_read_cr0(vcpu);
6689 	sregs->cr2 = vcpu->arch.cr2;
6690 	sregs->cr3 = kvm_read_cr3(vcpu);
6691 	sregs->cr4 = kvm_read_cr4(vcpu);
6692 	sregs->cr8 = kvm_get_cr8(vcpu);
6693 	sregs->efer = vcpu->arch.efer;
6694 	sregs->apic_base = kvm_get_apic_base(vcpu);
6695 
6696 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6697 
6698 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6699 		set_bit(vcpu->arch.interrupt.nr,
6700 			(unsigned long *)sregs->interrupt_bitmap);
6701 
6702 	return 0;
6703 }
6704 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)6705 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6706 				    struct kvm_mp_state *mp_state)
6707 {
6708 	kvm_apic_accept_events(vcpu);
6709 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6710 					vcpu->arch.pv.pv_unhalted)
6711 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6712 	else
6713 		mp_state->mp_state = vcpu->arch.mp_state;
6714 
6715 	return 0;
6716 }
6717 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)6718 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6719 				    struct kvm_mp_state *mp_state)
6720 {
6721 	if (!kvm_vcpu_has_lapic(vcpu) &&
6722 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6723 		return -EINVAL;
6724 
6725 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6726 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6727 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6728 	} else
6729 		vcpu->arch.mp_state = mp_state->mp_state;
6730 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6731 	return 0;
6732 }
6733 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)6734 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6735 		    int reason, bool has_error_code, u32 error_code)
6736 {
6737 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6738 	int ret;
6739 
6740 	init_emulate_ctxt(vcpu);
6741 
6742 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6743 				   has_error_code, error_code);
6744 
6745 	if (ret)
6746 		return EMULATE_FAIL;
6747 
6748 	kvm_rip_write(vcpu, ctxt->eip);
6749 	kvm_set_rflags(vcpu, ctxt->eflags);
6750 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6751 	return EMULATE_DONE;
6752 }
6753 EXPORT_SYMBOL_GPL(kvm_task_switch);
6754 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)6755 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6756 				  struct kvm_sregs *sregs)
6757 {
6758 	struct msr_data apic_base_msr;
6759 	int mmu_reset_needed = 0;
6760 	int pending_vec, max_bits, idx;
6761 	struct desc_ptr dt;
6762 
6763 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6764 		return -EINVAL;
6765 
6766 	dt.size = sregs->idt.limit;
6767 	dt.address = sregs->idt.base;
6768 	kvm_x86_ops->set_idt(vcpu, &dt);
6769 	dt.size = sregs->gdt.limit;
6770 	dt.address = sregs->gdt.base;
6771 	kvm_x86_ops->set_gdt(vcpu, &dt);
6772 
6773 	vcpu->arch.cr2 = sregs->cr2;
6774 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6775 	vcpu->arch.cr3 = sregs->cr3;
6776 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6777 
6778 	kvm_set_cr8(vcpu, sregs->cr8);
6779 
6780 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6781 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6782 	apic_base_msr.data = sregs->apic_base;
6783 	apic_base_msr.host_initiated = true;
6784 	kvm_set_apic_base(vcpu, &apic_base_msr);
6785 
6786 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6787 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6788 	vcpu->arch.cr0 = sregs->cr0;
6789 
6790 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6791 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6792 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6793 		kvm_update_cpuid(vcpu);
6794 
6795 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6796 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6797 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6798 		mmu_reset_needed = 1;
6799 	}
6800 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6801 
6802 	if (mmu_reset_needed)
6803 		kvm_mmu_reset_context(vcpu);
6804 
6805 	max_bits = KVM_NR_INTERRUPTS;
6806 	pending_vec = find_first_bit(
6807 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6808 	if (pending_vec < max_bits) {
6809 		kvm_queue_interrupt(vcpu, pending_vec, false);
6810 		pr_debug("Set back pending irq %d\n", pending_vec);
6811 	}
6812 
6813 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6814 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6815 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6816 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6817 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6818 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6819 
6820 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6821 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6822 
6823 	update_cr8_intercept(vcpu);
6824 
6825 	/* Older userspace won't unhalt the vcpu on reset. */
6826 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6827 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6828 	    !is_protmode(vcpu))
6829 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6830 
6831 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6832 
6833 	return 0;
6834 }
6835 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)6836 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6837 					struct kvm_guest_debug *dbg)
6838 {
6839 	unsigned long rflags;
6840 	int i, r;
6841 
6842 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6843 		r = -EBUSY;
6844 		if (vcpu->arch.exception.pending)
6845 			goto out;
6846 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6847 			kvm_queue_exception(vcpu, DB_VECTOR);
6848 		else
6849 			kvm_queue_exception(vcpu, BP_VECTOR);
6850 	}
6851 
6852 	/*
6853 	 * Read rflags as long as potentially injected trace flags are still
6854 	 * filtered out.
6855 	 */
6856 	rflags = kvm_get_rflags(vcpu);
6857 
6858 	vcpu->guest_debug = dbg->control;
6859 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6860 		vcpu->guest_debug = 0;
6861 
6862 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6863 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6864 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6865 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6866 	} else {
6867 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6868 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6869 	}
6870 	kvm_update_dr7(vcpu);
6871 
6872 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6873 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6874 			get_segment_base(vcpu, VCPU_SREG_CS);
6875 
6876 	/*
6877 	 * Trigger an rflags update that will inject or remove the trace
6878 	 * flags.
6879 	 */
6880 	kvm_set_rflags(vcpu, rflags);
6881 
6882 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6883 
6884 	r = 0;
6885 
6886 out:
6887 
6888 	return r;
6889 }
6890 
6891 /*
6892  * Translate a guest virtual address to a guest physical address.
6893  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)6894 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6895 				    struct kvm_translation *tr)
6896 {
6897 	unsigned long vaddr = tr->linear_address;
6898 	gpa_t gpa;
6899 	int idx;
6900 
6901 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6902 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6903 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6904 	tr->physical_address = gpa;
6905 	tr->valid = gpa != UNMAPPED_GVA;
6906 	tr->writeable = 1;
6907 	tr->usermode = 0;
6908 
6909 	return 0;
6910 }
6911 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)6912 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6913 {
6914 	struct i387_fxsave_struct *fxsave =
6915 			&vcpu->arch.guest_fpu.state->fxsave;
6916 
6917 	memcpy(fpu->fpr, fxsave->st_space, 128);
6918 	fpu->fcw = fxsave->cwd;
6919 	fpu->fsw = fxsave->swd;
6920 	fpu->ftwx = fxsave->twd;
6921 	fpu->last_opcode = fxsave->fop;
6922 	fpu->last_ip = fxsave->rip;
6923 	fpu->last_dp = fxsave->rdp;
6924 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6925 
6926 	return 0;
6927 }
6928 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)6929 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6930 {
6931 	struct i387_fxsave_struct *fxsave =
6932 			&vcpu->arch.guest_fpu.state->fxsave;
6933 
6934 	memcpy(fxsave->st_space, fpu->fpr, 128);
6935 	fxsave->cwd = fpu->fcw;
6936 	fxsave->swd = fpu->fsw;
6937 	fxsave->twd = fpu->ftwx;
6938 	fxsave->fop = fpu->last_opcode;
6939 	fxsave->rip = fpu->last_ip;
6940 	fxsave->rdp = fpu->last_dp;
6941 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6942 
6943 	return 0;
6944 }
6945 
fx_init(struct kvm_vcpu * vcpu)6946 int fx_init(struct kvm_vcpu *vcpu)
6947 {
6948 	int err;
6949 
6950 	err = fpu_alloc(&vcpu->arch.guest_fpu);
6951 	if (err)
6952 		return err;
6953 
6954 	fpu_finit(&vcpu->arch.guest_fpu);
6955 	if (cpu_has_xsaves)
6956 		vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
6957 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
6958 
6959 	/*
6960 	 * Ensure guest xcr0 is valid for loading
6961 	 */
6962 	vcpu->arch.xcr0 = XSTATE_FP;
6963 
6964 	vcpu->arch.cr0 |= X86_CR0_ET;
6965 
6966 	return 0;
6967 }
6968 EXPORT_SYMBOL_GPL(fx_init);
6969 
fx_free(struct kvm_vcpu * vcpu)6970 static void fx_free(struct kvm_vcpu *vcpu)
6971 {
6972 	fpu_free(&vcpu->arch.guest_fpu);
6973 }
6974 
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)6975 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6976 {
6977 	if (vcpu->guest_fpu_loaded)
6978 		return;
6979 
6980 	/*
6981 	 * Restore all possible states in the guest,
6982 	 * and assume host would use all available bits.
6983 	 * Guest xcr0 would be loaded later.
6984 	 */
6985 	vcpu->guest_fpu_loaded = 1;
6986 	__kernel_fpu_begin();
6987 	fpu_restore_checking(&vcpu->arch.guest_fpu);
6988 	trace_kvm_fpu(1);
6989 }
6990 
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)6991 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6992 {
6993 	if (!vcpu->guest_fpu_loaded)
6994 		return;
6995 
6996 	vcpu->guest_fpu_loaded = 0;
6997 	fpu_save_init(&vcpu->arch.guest_fpu);
6998 	__kernel_fpu_end();
6999 	++vcpu->stat.fpu_reload;
7000 	if (!vcpu->arch.eager_fpu)
7001 		kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7002 
7003 	trace_kvm_fpu(0);
7004 }
7005 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)7006 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7007 {
7008 	kvmclock_reset(vcpu);
7009 
7010 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7011 	fx_free(vcpu);
7012 	kvm_x86_ops->vcpu_free(vcpu);
7013 }
7014 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)7015 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7016 						unsigned int id)
7017 {
7018 	struct kvm_vcpu *vcpu;
7019 
7020 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7021 		printk_once(KERN_WARNING
7022 		"kvm: SMP vm created on host with unstable TSC; "
7023 		"guest TSC will not be reliable\n");
7024 
7025 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7026 
7027 	/*
7028 	 * Activate fpu unconditionally in case the guest needs eager FPU.  It will be
7029 	 * deactivated soon if it doesn't.
7030 	 */
7031 	kvm_x86_ops->fpu_activate(vcpu);
7032 	return vcpu;
7033 }
7034 
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)7035 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7036 {
7037 	int r;
7038 
7039 	vcpu->arch.mtrr_state.have_fixed = 1;
7040 	r = vcpu_load(vcpu);
7041 	if (r)
7042 		return r;
7043 	kvm_vcpu_reset(vcpu);
7044 	kvm_mmu_setup(vcpu);
7045 	vcpu_put(vcpu);
7046 
7047 	return r;
7048 }
7049 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)7050 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7051 {
7052 	int r;
7053 	struct msr_data msr;
7054 	struct kvm *kvm = vcpu->kvm;
7055 
7056 	r = vcpu_load(vcpu);
7057 	if (r)
7058 		return r;
7059 	msr.data = 0x0;
7060 	msr.index = MSR_IA32_TSC;
7061 	msr.host_initiated = true;
7062 	kvm_write_tsc(vcpu, &msr);
7063 	vcpu_put(vcpu);
7064 
7065 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7066 					KVMCLOCK_SYNC_PERIOD);
7067 
7068 	return r;
7069 }
7070 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)7071 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7072 {
7073 	int r;
7074 	vcpu->arch.apf.msr_val = 0;
7075 
7076 	r = vcpu_load(vcpu);
7077 	BUG_ON(r);
7078 	kvm_mmu_unload(vcpu);
7079 	vcpu_put(vcpu);
7080 
7081 	fx_free(vcpu);
7082 	kvm_x86_ops->vcpu_free(vcpu);
7083 }
7084 
kvm_vcpu_reset(struct kvm_vcpu * vcpu)7085 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
7086 {
7087 	atomic_set(&vcpu->arch.nmi_queued, 0);
7088 	vcpu->arch.nmi_pending = 0;
7089 	vcpu->arch.nmi_injected = false;
7090 	kvm_clear_interrupt_queue(vcpu);
7091 	kvm_clear_exception_queue(vcpu);
7092 
7093 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7094 	vcpu->arch.dr6 = DR6_INIT;
7095 	kvm_update_dr6(vcpu);
7096 	vcpu->arch.dr7 = DR7_FIXED_1;
7097 	kvm_update_dr7(vcpu);
7098 
7099 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7100 	vcpu->arch.apf.msr_val = 0;
7101 	vcpu->arch.st.msr_val = 0;
7102 
7103 	kvmclock_reset(vcpu);
7104 
7105 	kvm_clear_async_pf_completion_queue(vcpu);
7106 	kvm_async_pf_hash_reset(vcpu);
7107 	vcpu->arch.apf.halted = false;
7108 
7109 	kvm_pmu_reset(vcpu);
7110 
7111 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7112 	vcpu->arch.regs_avail = ~0;
7113 	vcpu->arch.regs_dirty = ~0;
7114 
7115 	kvm_x86_ops->vcpu_reset(vcpu);
7116 }
7117 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,unsigned int vector)7118 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
7119 {
7120 	struct kvm_segment cs;
7121 
7122 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7123 	cs.selector = vector << 8;
7124 	cs.base = vector << 12;
7125 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7126 	kvm_rip_write(vcpu, 0);
7127 }
7128 
kvm_arch_hardware_enable(void)7129 int kvm_arch_hardware_enable(void)
7130 {
7131 	struct kvm *kvm;
7132 	struct kvm_vcpu *vcpu;
7133 	int i;
7134 	int ret;
7135 	u64 local_tsc;
7136 	u64 max_tsc = 0;
7137 	bool stable, backwards_tsc = false;
7138 
7139 	kvm_shared_msr_cpu_online();
7140 	ret = kvm_x86_ops->hardware_enable();
7141 	if (ret != 0)
7142 		return ret;
7143 
7144 	local_tsc = native_read_tsc();
7145 	stable = !check_tsc_unstable();
7146 	list_for_each_entry(kvm, &vm_list, vm_list) {
7147 		kvm_for_each_vcpu(i, vcpu, kvm) {
7148 			if (!stable && vcpu->cpu == smp_processor_id())
7149 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7150 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7151 				backwards_tsc = true;
7152 				if (vcpu->arch.last_host_tsc > max_tsc)
7153 					max_tsc = vcpu->arch.last_host_tsc;
7154 			}
7155 		}
7156 	}
7157 
7158 	/*
7159 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7160 	 * platforms that reset TSC during suspend or hibernate actions, but
7161 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7162 	 * detect that condition here, which happens early in CPU bringup,
7163 	 * before any KVM threads can be running.  Unfortunately, we can't
7164 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7165 	 * enough into CPU bringup that we know how much real time has actually
7166 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7167 	 * variables that haven't been updated yet.
7168 	 *
7169 	 * So we simply find the maximum observed TSC above, then record the
7170 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7171 	 * the adjustment will be applied.  Note that we accumulate
7172 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7173 	 * gets a chance to run again.  In the event that no KVM threads get a
7174 	 * chance to run, we will miss the entire elapsed period, as we'll have
7175 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7176 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7177 	 * uniform across all VCPUs (not to mention the scenario is extremely
7178 	 * unlikely). It is possible that a second hibernate recovery happens
7179 	 * much faster than a first, causing the observed TSC here to be
7180 	 * smaller; this would require additional padding adjustment, which is
7181 	 * why we set last_host_tsc to the local tsc observed here.
7182 	 *
7183 	 * N.B. - this code below runs only on platforms with reliable TSC,
7184 	 * as that is the only way backwards_tsc is set above.  Also note
7185 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7186 	 * have the same delta_cyc adjustment applied if backwards_tsc
7187 	 * is detected.  Note further, this adjustment is only done once,
7188 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7189 	 * called multiple times (one for each physical CPU bringup).
7190 	 *
7191 	 * Platforms with unreliable TSCs don't have to deal with this, they
7192 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7193 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7194 	 * guarantee that they stay in perfect synchronization.
7195 	 */
7196 	if (backwards_tsc) {
7197 		u64 delta_cyc = max_tsc - local_tsc;
7198 		backwards_tsc_observed = true;
7199 		list_for_each_entry(kvm, &vm_list, vm_list) {
7200 			kvm_for_each_vcpu(i, vcpu, kvm) {
7201 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7202 				vcpu->arch.last_host_tsc = local_tsc;
7203 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7204 			}
7205 
7206 			/*
7207 			 * We have to disable TSC offset matching.. if you were
7208 			 * booting a VM while issuing an S4 host suspend....
7209 			 * you may have some problem.  Solving this issue is
7210 			 * left as an exercise to the reader.
7211 			 */
7212 			kvm->arch.last_tsc_nsec = 0;
7213 			kvm->arch.last_tsc_write = 0;
7214 		}
7215 
7216 	}
7217 	return 0;
7218 }
7219 
kvm_arch_hardware_disable(void)7220 void kvm_arch_hardware_disable(void)
7221 {
7222 	kvm_x86_ops->hardware_disable();
7223 	drop_user_return_notifiers();
7224 }
7225 
kvm_arch_hardware_setup(void)7226 int kvm_arch_hardware_setup(void)
7227 {
7228 	int r;
7229 
7230 	r = kvm_x86_ops->hardware_setup();
7231 	if (r != 0)
7232 		return r;
7233 
7234 	kvm_init_msr_list();
7235 	return 0;
7236 }
7237 
kvm_arch_hardware_unsetup(void)7238 void kvm_arch_hardware_unsetup(void)
7239 {
7240 	kvm_x86_ops->hardware_unsetup();
7241 }
7242 
kvm_arch_check_processor_compat(void * rtn)7243 void kvm_arch_check_processor_compat(void *rtn)
7244 {
7245 	kvm_x86_ops->check_processor_compatibility(rtn);
7246 }
7247 
kvm_vcpu_compatible(struct kvm_vcpu * vcpu)7248 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7249 {
7250 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7251 }
7252 
7253 struct static_key kvm_no_apic_vcpu __read_mostly;
7254 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)7255 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7256 {
7257 	struct page *page;
7258 	struct kvm *kvm;
7259 	int r;
7260 
7261 	BUG_ON(vcpu->kvm == NULL);
7262 	kvm = vcpu->kvm;
7263 
7264 	vcpu->arch.pv.pv_unhalted = false;
7265 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7266 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7267 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7268 	else
7269 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7270 
7271 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7272 	if (!page) {
7273 		r = -ENOMEM;
7274 		goto fail;
7275 	}
7276 	vcpu->arch.pio_data = page_address(page);
7277 
7278 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7279 
7280 	r = kvm_mmu_create(vcpu);
7281 	if (r < 0)
7282 		goto fail_free_pio_data;
7283 
7284 	if (irqchip_in_kernel(kvm)) {
7285 		r = kvm_create_lapic(vcpu);
7286 		if (r < 0)
7287 			goto fail_mmu_destroy;
7288 	} else
7289 		static_key_slow_inc(&kvm_no_apic_vcpu);
7290 
7291 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7292 				       GFP_KERNEL);
7293 	if (!vcpu->arch.mce_banks) {
7294 		r = -ENOMEM;
7295 		goto fail_free_lapic;
7296 	}
7297 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7298 
7299 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7300 		r = -ENOMEM;
7301 		goto fail_free_mce_banks;
7302 	}
7303 
7304 	r = fx_init(vcpu);
7305 	if (r)
7306 		goto fail_free_wbinvd_dirty_mask;
7307 
7308 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7309 	vcpu->arch.pv_time_enabled = false;
7310 
7311 	vcpu->arch.guest_supported_xcr0 = 0;
7312 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7313 
7314 	kvm_async_pf_hash_reset(vcpu);
7315 	kvm_pmu_init(vcpu);
7316 
7317 	return 0;
7318 fail_free_wbinvd_dirty_mask:
7319 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7320 fail_free_mce_banks:
7321 	kfree(vcpu->arch.mce_banks);
7322 fail_free_lapic:
7323 	kvm_free_lapic(vcpu);
7324 fail_mmu_destroy:
7325 	kvm_mmu_destroy(vcpu);
7326 fail_free_pio_data:
7327 	free_page((unsigned long)vcpu->arch.pio_data);
7328 fail:
7329 	return r;
7330 }
7331 
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)7332 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7333 {
7334 	int idx;
7335 
7336 	kvm_pmu_destroy(vcpu);
7337 	kfree(vcpu->arch.mce_banks);
7338 	kvm_free_lapic(vcpu);
7339 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7340 	kvm_mmu_destroy(vcpu);
7341 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7342 	free_page((unsigned long)vcpu->arch.pio_data);
7343 	if (!irqchip_in_kernel(vcpu->kvm))
7344 		static_key_slow_dec(&kvm_no_apic_vcpu);
7345 }
7346 
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)7347 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7348 {
7349 	kvm_x86_ops->sched_in(vcpu, cpu);
7350 }
7351 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)7352 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7353 {
7354 	if (type)
7355 		return -EINVAL;
7356 
7357 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7358 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7359 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7360 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7361 
7362 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7363 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7364 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7365 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7366 		&kvm->arch.irq_sources_bitmap);
7367 
7368 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7369 	mutex_init(&kvm->arch.apic_map_lock);
7370 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7371 
7372 	pvclock_update_vm_gtod_copy(kvm);
7373 
7374 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7375 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7376 
7377 	return 0;
7378 }
7379 
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)7380 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7381 {
7382 	int r;
7383 	r = vcpu_load(vcpu);
7384 	BUG_ON(r);
7385 	kvm_mmu_unload(vcpu);
7386 	vcpu_put(vcpu);
7387 }
7388 
kvm_free_vcpus(struct kvm * kvm)7389 static void kvm_free_vcpus(struct kvm *kvm)
7390 {
7391 	unsigned int i;
7392 	struct kvm_vcpu *vcpu;
7393 
7394 	/*
7395 	 * Unpin any mmu pages first.
7396 	 */
7397 	kvm_for_each_vcpu(i, vcpu, kvm) {
7398 		kvm_clear_async_pf_completion_queue(vcpu);
7399 		kvm_unload_vcpu_mmu(vcpu);
7400 	}
7401 	kvm_for_each_vcpu(i, vcpu, kvm)
7402 		kvm_arch_vcpu_free(vcpu);
7403 
7404 	mutex_lock(&kvm->lock);
7405 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7406 		kvm->vcpus[i] = NULL;
7407 
7408 	atomic_set(&kvm->online_vcpus, 0);
7409 	mutex_unlock(&kvm->lock);
7410 }
7411 
kvm_arch_sync_events(struct kvm * kvm)7412 void kvm_arch_sync_events(struct kvm *kvm)
7413 {
7414 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7415 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7416 	kvm_free_all_assigned_devices(kvm);
7417 	kvm_free_pit(kvm);
7418 }
7419 
kvm_arch_destroy_vm(struct kvm * kvm)7420 void kvm_arch_destroy_vm(struct kvm *kvm)
7421 {
7422 	if (current->mm == kvm->mm) {
7423 		/*
7424 		 * Free memory regions allocated on behalf of userspace,
7425 		 * unless the the memory map has changed due to process exit
7426 		 * or fd copying.
7427 		 */
7428 		struct kvm_userspace_memory_region mem;
7429 		memset(&mem, 0, sizeof(mem));
7430 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7431 		kvm_set_memory_region(kvm, &mem);
7432 
7433 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7434 		kvm_set_memory_region(kvm, &mem);
7435 
7436 		mem.slot = TSS_PRIVATE_MEMSLOT;
7437 		kvm_set_memory_region(kvm, &mem);
7438 	}
7439 	kvm_iommu_unmap_guest(kvm);
7440 	kfree(kvm->arch.vpic);
7441 	kfree(kvm->arch.vioapic);
7442 	kvm_free_vcpus(kvm);
7443 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7444 }
7445 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)7446 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7447 			   struct kvm_memory_slot *dont)
7448 {
7449 	int i;
7450 
7451 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7452 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7453 			kvm_kvfree(free->arch.rmap[i]);
7454 			free->arch.rmap[i] = NULL;
7455 		}
7456 		if (i == 0)
7457 			continue;
7458 
7459 		if (!dont || free->arch.lpage_info[i - 1] !=
7460 			     dont->arch.lpage_info[i - 1]) {
7461 			kvm_kvfree(free->arch.lpage_info[i - 1]);
7462 			free->arch.lpage_info[i - 1] = NULL;
7463 		}
7464 	}
7465 }
7466 
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)7467 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7468 			    unsigned long npages)
7469 {
7470 	int i;
7471 
7472 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7473 		unsigned long ugfn;
7474 		int lpages;
7475 		int level = i + 1;
7476 
7477 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7478 				      slot->base_gfn, level) + 1;
7479 
7480 		slot->arch.rmap[i] =
7481 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7482 		if (!slot->arch.rmap[i])
7483 			goto out_free;
7484 		if (i == 0)
7485 			continue;
7486 
7487 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7488 					sizeof(*slot->arch.lpage_info[i - 1]));
7489 		if (!slot->arch.lpage_info[i - 1])
7490 			goto out_free;
7491 
7492 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7493 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7494 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7495 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7496 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7497 		/*
7498 		 * If the gfn and userspace address are not aligned wrt each
7499 		 * other, or if explicitly asked to, disable large page
7500 		 * support for this slot
7501 		 */
7502 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7503 		    !kvm_largepages_enabled()) {
7504 			unsigned long j;
7505 
7506 			for (j = 0; j < lpages; ++j)
7507 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7508 		}
7509 	}
7510 
7511 	return 0;
7512 
7513 out_free:
7514 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7515 		kvm_kvfree(slot->arch.rmap[i]);
7516 		slot->arch.rmap[i] = NULL;
7517 		if (i == 0)
7518 			continue;
7519 
7520 		kvm_kvfree(slot->arch.lpage_info[i - 1]);
7521 		slot->arch.lpage_info[i - 1] = NULL;
7522 	}
7523 	return -ENOMEM;
7524 }
7525 
kvm_arch_memslots_updated(struct kvm * kvm)7526 void kvm_arch_memslots_updated(struct kvm *kvm)
7527 {
7528 	/*
7529 	 * memslots->generation has been incremented.
7530 	 * mmio generation may have reached its maximum value.
7531 	 */
7532 	kvm_mmu_invalidate_mmio_sptes(kvm);
7533 }
7534 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)7535 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7536 				struct kvm_memory_slot *memslot,
7537 				struct kvm_userspace_memory_region *mem,
7538 				enum kvm_mr_change change)
7539 {
7540 	/*
7541 	 * Only private memory slots need to be mapped here since
7542 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7543 	 */
7544 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7545 		unsigned long userspace_addr;
7546 
7547 		/*
7548 		 * MAP_SHARED to prevent internal slot pages from being moved
7549 		 * by fork()/COW.
7550 		 */
7551 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7552 					 PROT_READ | PROT_WRITE,
7553 					 MAP_SHARED | MAP_ANONYMOUS, 0);
7554 
7555 		if (IS_ERR((void *)userspace_addr))
7556 			return PTR_ERR((void *)userspace_addr);
7557 
7558 		memslot->userspace_addr = userspace_addr;
7559 	}
7560 
7561 	return 0;
7562 }
7563 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,enum kvm_mr_change change)7564 void kvm_arch_commit_memory_region(struct kvm *kvm,
7565 				struct kvm_userspace_memory_region *mem,
7566 				const struct kvm_memory_slot *old,
7567 				enum kvm_mr_change change)
7568 {
7569 
7570 	int nr_mmu_pages = 0;
7571 
7572 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7573 		int ret;
7574 
7575 		ret = vm_munmap(old->userspace_addr,
7576 				old->npages * PAGE_SIZE);
7577 		if (ret < 0)
7578 			printk(KERN_WARNING
7579 			       "kvm_vm_ioctl_set_memory_region: "
7580 			       "failed to munmap memory\n");
7581 	}
7582 
7583 	if (!kvm->arch.n_requested_mmu_pages)
7584 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7585 
7586 	if (nr_mmu_pages)
7587 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7588 	/*
7589 	 * Write protect all pages for dirty logging.
7590 	 *
7591 	 * All the sptes including the large sptes which point to this
7592 	 * slot are set to readonly. We can not create any new large
7593 	 * spte on this slot until the end of the logging.
7594 	 *
7595 	 * See the comments in fast_page_fault().
7596 	 */
7597 	if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7598 		kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7599 }
7600 
kvm_arch_flush_shadow_all(struct kvm * kvm)7601 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7602 {
7603 	kvm_mmu_invalidate_zap_all_pages(kvm);
7604 }
7605 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)7606 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7607 				   struct kvm_memory_slot *slot)
7608 {
7609 	kvm_mmu_invalidate_zap_all_pages(kvm);
7610 }
7611 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)7612 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7613 {
7614 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7615 		kvm_x86_ops->check_nested_events(vcpu, false);
7616 
7617 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7618 		!vcpu->arch.apf.halted)
7619 		|| !list_empty_careful(&vcpu->async_pf.done)
7620 		|| kvm_apic_has_events(vcpu)
7621 		|| vcpu->arch.pv.pv_unhalted
7622 		|| atomic_read(&vcpu->arch.nmi_queued) ||
7623 		(kvm_arch_interrupt_allowed(vcpu) &&
7624 		 kvm_cpu_has_interrupt(vcpu));
7625 }
7626 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)7627 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7628 {
7629 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7630 }
7631 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)7632 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7633 {
7634 	return kvm_x86_ops->interrupt_allowed(vcpu);
7635 }
7636 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)7637 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7638 {
7639 	unsigned long current_rip = kvm_rip_read(vcpu) +
7640 		get_segment_base(vcpu, VCPU_SREG_CS);
7641 
7642 	return current_rip == linear_rip;
7643 }
7644 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7645 
kvm_get_rflags(struct kvm_vcpu * vcpu)7646 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7647 {
7648 	unsigned long rflags;
7649 
7650 	rflags = kvm_x86_ops->get_rflags(vcpu);
7651 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7652 		rflags &= ~X86_EFLAGS_TF;
7653 	return rflags;
7654 }
7655 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7656 
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)7657 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7658 {
7659 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7660 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7661 		rflags |= X86_EFLAGS_TF;
7662 	kvm_x86_ops->set_rflags(vcpu, rflags);
7663 }
7664 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)7665 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7666 {
7667 	__kvm_set_rflags(vcpu, rflags);
7668 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7669 }
7670 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7671 
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)7672 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7673 {
7674 	int r;
7675 
7676 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7677 	      work->wakeup_all)
7678 		return;
7679 
7680 	r = kvm_mmu_reload(vcpu);
7681 	if (unlikely(r))
7682 		return;
7683 
7684 	if (!vcpu->arch.mmu.direct_map &&
7685 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7686 		return;
7687 
7688 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7689 }
7690 
kvm_async_pf_hash_fn(gfn_t gfn)7691 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7692 {
7693 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7694 }
7695 
kvm_async_pf_next_probe(u32 key)7696 static inline u32 kvm_async_pf_next_probe(u32 key)
7697 {
7698 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7699 }
7700 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)7701 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7702 {
7703 	u32 key = kvm_async_pf_hash_fn(gfn);
7704 
7705 	while (vcpu->arch.apf.gfns[key] != ~0)
7706 		key = kvm_async_pf_next_probe(key);
7707 
7708 	vcpu->arch.apf.gfns[key] = gfn;
7709 }
7710 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)7711 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7712 {
7713 	int i;
7714 	u32 key = kvm_async_pf_hash_fn(gfn);
7715 
7716 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7717 		     (vcpu->arch.apf.gfns[key] != gfn &&
7718 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7719 		key = kvm_async_pf_next_probe(key);
7720 
7721 	return key;
7722 }
7723 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)7724 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7725 {
7726 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7727 }
7728 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)7729 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7730 {
7731 	u32 i, j, k;
7732 
7733 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7734 	while (true) {
7735 		vcpu->arch.apf.gfns[i] = ~0;
7736 		do {
7737 			j = kvm_async_pf_next_probe(j);
7738 			if (vcpu->arch.apf.gfns[j] == ~0)
7739 				return;
7740 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7741 			/*
7742 			 * k lies cyclically in ]i,j]
7743 			 * |    i.k.j |
7744 			 * |....j i.k.| or  |.k..j i...|
7745 			 */
7746 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7747 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7748 		i = j;
7749 	}
7750 }
7751 
apf_put_user(struct kvm_vcpu * vcpu,u32 val)7752 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7753 {
7754 
7755 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7756 				      sizeof(val));
7757 }
7758 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)7759 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7760 				     struct kvm_async_pf *work)
7761 {
7762 	struct x86_exception fault;
7763 
7764 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7765 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7766 
7767 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7768 	    (vcpu->arch.apf.send_user_only &&
7769 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7770 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7771 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7772 		fault.vector = PF_VECTOR;
7773 		fault.error_code_valid = true;
7774 		fault.error_code = 0;
7775 		fault.nested_page_fault = false;
7776 		fault.address = work->arch.token;
7777 		kvm_inject_page_fault(vcpu, &fault);
7778 	}
7779 }
7780 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)7781 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7782 				 struct kvm_async_pf *work)
7783 {
7784 	struct x86_exception fault;
7785 
7786 	if (work->wakeup_all)
7787 		work->arch.token = ~0; /* broadcast wakeup */
7788 	else
7789 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7790 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7791 
7792 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7793 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7794 		fault.vector = PF_VECTOR;
7795 		fault.error_code_valid = true;
7796 		fault.error_code = 0;
7797 		fault.nested_page_fault = false;
7798 		fault.address = work->arch.token;
7799 		kvm_inject_page_fault(vcpu, &fault);
7800 	}
7801 	vcpu->arch.apf.halted = false;
7802 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7803 }
7804 
kvm_arch_can_inject_async_page_present(struct kvm_vcpu * vcpu)7805 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7806 {
7807 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7808 		return true;
7809 	else
7810 		return !kvm_event_needs_reinjection(vcpu) &&
7811 			kvm_x86_ops->interrupt_allowed(vcpu);
7812 }
7813 
kvm_arch_register_noncoherent_dma(struct kvm * kvm)7814 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7815 {
7816 	atomic_inc(&kvm->arch.noncoherent_dma_count);
7817 }
7818 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7819 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)7820 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7821 {
7822 	atomic_dec(&kvm->arch.noncoherent_dma_count);
7823 }
7824 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7825 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)7826 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7827 {
7828 	return atomic_read(&kvm->arch.noncoherent_dma_count);
7829 }
7830 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7831 
7832 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7833 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7834 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7835 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7836 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7837 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7838 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7839 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7840 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7841 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7842 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7843 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7844 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7845 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
7846