1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <asm/cputable.h>
31 #include <asm/uaccess.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cputhreads.h>
35 #include <asm/irqflags.h>
36 #include "timing.h"
37 #include "irq.h"
38 #include "../mm/mmu_decl.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "trace.h"
42
43 struct kvmppc_ops *kvmppc_hv_ops;
44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
45 struct kvmppc_ops *kvmppc_pr_ops;
46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
47
48
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
50 {
51 return !!(v->arch.pending_exceptions) ||
52 v->requests;
53 }
54
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)55 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
56 {
57 return 1;
58 }
59
60 /*
61 * Common checks before entering the guest world. Call with interrupts
62 * disabled.
63 *
64 * returns:
65 *
66 * == 1 if we're ready to go into guest state
67 * <= 0 if we need to go back to the host with return value
68 */
kvmppc_prepare_to_enter(struct kvm_vcpu * vcpu)69 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
70 {
71 int r;
72
73 WARN_ON(irqs_disabled());
74 hard_irq_disable();
75
76 while (true) {
77 if (need_resched()) {
78 local_irq_enable();
79 cond_resched();
80 hard_irq_disable();
81 continue;
82 }
83
84 if (signal_pending(current)) {
85 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
86 vcpu->run->exit_reason = KVM_EXIT_INTR;
87 r = -EINTR;
88 break;
89 }
90
91 vcpu->mode = IN_GUEST_MODE;
92
93 /*
94 * Reading vcpu->requests must happen after setting vcpu->mode,
95 * so we don't miss a request because the requester sees
96 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
97 * before next entering the guest (and thus doesn't IPI).
98 */
99 smp_mb();
100
101 if (vcpu->requests) {
102 /* Make sure we process requests preemptable */
103 local_irq_enable();
104 trace_kvm_check_requests(vcpu);
105 r = kvmppc_core_check_requests(vcpu);
106 hard_irq_disable();
107 if (r > 0)
108 continue;
109 break;
110 }
111
112 if (kvmppc_core_prepare_to_enter(vcpu)) {
113 /* interrupts got enabled in between, so we
114 are back at square 1 */
115 continue;
116 }
117
118 kvm_guest_enter();
119 return 1;
120 }
121
122 /* return to host */
123 local_irq_enable();
124 return r;
125 }
126 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
127
128 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
kvmppc_swab_shared(struct kvm_vcpu * vcpu)129 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
130 {
131 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
132 int i;
133
134 shared->sprg0 = swab64(shared->sprg0);
135 shared->sprg1 = swab64(shared->sprg1);
136 shared->sprg2 = swab64(shared->sprg2);
137 shared->sprg3 = swab64(shared->sprg3);
138 shared->srr0 = swab64(shared->srr0);
139 shared->srr1 = swab64(shared->srr1);
140 shared->dar = swab64(shared->dar);
141 shared->msr = swab64(shared->msr);
142 shared->dsisr = swab32(shared->dsisr);
143 shared->int_pending = swab32(shared->int_pending);
144 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
145 shared->sr[i] = swab32(shared->sr[i]);
146 }
147 #endif
148
kvmppc_kvm_pv(struct kvm_vcpu * vcpu)149 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
150 {
151 int nr = kvmppc_get_gpr(vcpu, 11);
152 int r;
153 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
154 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
155 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
156 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
157 unsigned long r2 = 0;
158
159 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
160 /* 32 bit mode */
161 param1 &= 0xffffffff;
162 param2 &= 0xffffffff;
163 param3 &= 0xffffffff;
164 param4 &= 0xffffffff;
165 }
166
167 switch (nr) {
168 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
169 {
170 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
171 /* Book3S can be little endian, find it out here */
172 int shared_big_endian = true;
173 if (vcpu->arch.intr_msr & MSR_LE)
174 shared_big_endian = false;
175 if (shared_big_endian != vcpu->arch.shared_big_endian)
176 kvmppc_swab_shared(vcpu);
177 vcpu->arch.shared_big_endian = shared_big_endian;
178 #endif
179
180 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
181 /*
182 * Older versions of the Linux magic page code had
183 * a bug where they would map their trampoline code
184 * NX. If that's the case, remove !PR NX capability.
185 */
186 vcpu->arch.disable_kernel_nx = true;
187 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
188 }
189
190 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
191 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
192
193 #ifdef CONFIG_PPC_64K_PAGES
194 /*
195 * Make sure our 4k magic page is in the same window of a 64k
196 * page within the guest and within the host's page.
197 */
198 if ((vcpu->arch.magic_page_pa & 0xf000) !=
199 ((ulong)vcpu->arch.shared & 0xf000)) {
200 void *old_shared = vcpu->arch.shared;
201 ulong shared = (ulong)vcpu->arch.shared;
202 void *new_shared;
203
204 shared &= PAGE_MASK;
205 shared |= vcpu->arch.magic_page_pa & 0xf000;
206 new_shared = (void*)shared;
207 memcpy(new_shared, old_shared, 0x1000);
208 vcpu->arch.shared = new_shared;
209 }
210 #endif
211
212 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
213
214 r = EV_SUCCESS;
215 break;
216 }
217 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
218 r = EV_SUCCESS;
219 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
220 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
221 #endif
222
223 /* Second return value is in r4 */
224 break;
225 case EV_HCALL_TOKEN(EV_IDLE):
226 r = EV_SUCCESS;
227 kvm_vcpu_block(vcpu);
228 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
229 break;
230 default:
231 r = EV_UNIMPLEMENTED;
232 break;
233 }
234
235 kvmppc_set_gpr(vcpu, 4, r2);
236
237 return r;
238 }
239 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
240
kvmppc_sanity_check(struct kvm_vcpu * vcpu)241 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
242 {
243 int r = false;
244
245 /* We have to know what CPU to virtualize */
246 if (!vcpu->arch.pvr)
247 goto out;
248
249 /* PAPR only works with book3s_64 */
250 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
251 goto out;
252
253 /* HV KVM can only do PAPR mode for now */
254 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
255 goto out;
256
257 #ifdef CONFIG_KVM_BOOKE_HV
258 if (!cpu_has_feature(CPU_FTR_EMB_HV))
259 goto out;
260 #endif
261
262 r = true;
263
264 out:
265 vcpu->arch.sane = r;
266 return r ? 0 : -EINVAL;
267 }
268 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
269
kvmppc_emulate_mmio(struct kvm_run * run,struct kvm_vcpu * vcpu)270 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
271 {
272 enum emulation_result er;
273 int r;
274
275 er = kvmppc_emulate_loadstore(vcpu);
276 switch (er) {
277 case EMULATE_DONE:
278 /* Future optimization: only reload non-volatiles if they were
279 * actually modified. */
280 r = RESUME_GUEST_NV;
281 break;
282 case EMULATE_AGAIN:
283 r = RESUME_GUEST;
284 break;
285 case EMULATE_DO_MMIO:
286 run->exit_reason = KVM_EXIT_MMIO;
287 /* We must reload nonvolatiles because "update" load/store
288 * instructions modify register state. */
289 /* Future optimization: only reload non-volatiles if they were
290 * actually modified. */
291 r = RESUME_HOST_NV;
292 break;
293 case EMULATE_FAIL:
294 {
295 u32 last_inst;
296
297 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
298 /* XXX Deliver Program interrupt to guest. */
299 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
300 r = RESUME_HOST;
301 break;
302 }
303 default:
304 WARN_ON(1);
305 r = RESUME_GUEST;
306 }
307
308 return r;
309 }
310 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
311
kvmppc_st(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)312 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
313 bool data)
314 {
315 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
316 struct kvmppc_pte pte;
317 int r;
318
319 vcpu->stat.st++;
320
321 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
322 XLATE_WRITE, &pte);
323 if (r < 0)
324 return r;
325
326 *eaddr = pte.raddr;
327
328 if (!pte.may_write)
329 return -EPERM;
330
331 /* Magic page override */
332 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
333 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
334 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
335 void *magic = vcpu->arch.shared;
336 magic += pte.eaddr & 0xfff;
337 memcpy(magic, ptr, size);
338 return EMULATE_DONE;
339 }
340
341 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
342 return EMULATE_DO_MMIO;
343
344 return EMULATE_DONE;
345 }
346 EXPORT_SYMBOL_GPL(kvmppc_st);
347
kvmppc_ld(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)348 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
349 bool data)
350 {
351 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
352 struct kvmppc_pte pte;
353 int rc;
354
355 vcpu->stat.ld++;
356
357 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
358 XLATE_READ, &pte);
359 if (rc)
360 return rc;
361
362 *eaddr = pte.raddr;
363
364 if (!pte.may_read)
365 return -EPERM;
366
367 if (!data && !pte.may_execute)
368 return -ENOEXEC;
369
370 /* Magic page override */
371 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
372 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
373 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
374 void *magic = vcpu->arch.shared;
375 magic += pte.eaddr & 0xfff;
376 memcpy(ptr, magic, size);
377 return EMULATE_DONE;
378 }
379
380 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
381 return EMULATE_DO_MMIO;
382
383 return EMULATE_DONE;
384 }
385 EXPORT_SYMBOL_GPL(kvmppc_ld);
386
kvm_arch_hardware_enable(void)387 int kvm_arch_hardware_enable(void)
388 {
389 return 0;
390 }
391
kvm_arch_hardware_setup(void)392 int kvm_arch_hardware_setup(void)
393 {
394 return 0;
395 }
396
kvm_arch_check_processor_compat(void * rtn)397 void kvm_arch_check_processor_compat(void *rtn)
398 {
399 *(int *)rtn = kvmppc_core_check_processor_compat();
400 }
401
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)402 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
403 {
404 struct kvmppc_ops *kvm_ops = NULL;
405 /*
406 * if we have both HV and PR enabled, default is HV
407 */
408 if (type == 0) {
409 if (kvmppc_hv_ops)
410 kvm_ops = kvmppc_hv_ops;
411 else
412 kvm_ops = kvmppc_pr_ops;
413 if (!kvm_ops)
414 goto err_out;
415 } else if (type == KVM_VM_PPC_HV) {
416 if (!kvmppc_hv_ops)
417 goto err_out;
418 kvm_ops = kvmppc_hv_ops;
419 } else if (type == KVM_VM_PPC_PR) {
420 if (!kvmppc_pr_ops)
421 goto err_out;
422 kvm_ops = kvmppc_pr_ops;
423 } else
424 goto err_out;
425
426 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
427 return -ENOENT;
428
429 kvm->arch.kvm_ops = kvm_ops;
430 return kvmppc_core_init_vm(kvm);
431 err_out:
432 return -EINVAL;
433 }
434
kvm_arch_destroy_vm(struct kvm * kvm)435 void kvm_arch_destroy_vm(struct kvm *kvm)
436 {
437 unsigned int i;
438 struct kvm_vcpu *vcpu;
439
440 kvm_for_each_vcpu(i, vcpu, kvm)
441 kvm_arch_vcpu_free(vcpu);
442
443 mutex_lock(&kvm->lock);
444 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
445 kvm->vcpus[i] = NULL;
446
447 atomic_set(&kvm->online_vcpus, 0);
448
449 kvmppc_core_destroy_vm(kvm);
450
451 mutex_unlock(&kvm->lock);
452
453 /* drop the module reference */
454 module_put(kvm->arch.kvm_ops->owner);
455 }
456
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)457 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
458 {
459 int r;
460 /* Assume we're using HV mode when the HV module is loaded */
461 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
462
463 if (kvm) {
464 /*
465 * Hooray - we know which VM type we're running on. Depend on
466 * that rather than the guess above.
467 */
468 hv_enabled = is_kvmppc_hv_enabled(kvm);
469 }
470
471 switch (ext) {
472 #ifdef CONFIG_BOOKE
473 case KVM_CAP_PPC_BOOKE_SREGS:
474 case KVM_CAP_PPC_BOOKE_WATCHDOG:
475 case KVM_CAP_PPC_EPR:
476 #else
477 case KVM_CAP_PPC_SEGSTATE:
478 case KVM_CAP_PPC_HIOR:
479 case KVM_CAP_PPC_PAPR:
480 #endif
481 case KVM_CAP_PPC_UNSET_IRQ:
482 case KVM_CAP_PPC_IRQ_LEVEL:
483 case KVM_CAP_ENABLE_CAP:
484 case KVM_CAP_ENABLE_CAP_VM:
485 case KVM_CAP_ONE_REG:
486 case KVM_CAP_IOEVENTFD:
487 case KVM_CAP_DEVICE_CTRL:
488 r = 1;
489 break;
490 case KVM_CAP_PPC_PAIRED_SINGLES:
491 case KVM_CAP_PPC_OSI:
492 case KVM_CAP_PPC_GET_PVINFO:
493 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
494 case KVM_CAP_SW_TLB:
495 #endif
496 /* We support this only for PR */
497 r = !hv_enabled;
498 break;
499 #ifdef CONFIG_KVM_MMIO
500 case KVM_CAP_COALESCED_MMIO:
501 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
502 break;
503 #endif
504 #ifdef CONFIG_KVM_MPIC
505 case KVM_CAP_IRQ_MPIC:
506 r = 1;
507 break;
508 #endif
509
510 #ifdef CONFIG_PPC_BOOK3S_64
511 case KVM_CAP_SPAPR_TCE:
512 case KVM_CAP_PPC_ALLOC_HTAB:
513 case KVM_CAP_PPC_RTAS:
514 case KVM_CAP_PPC_FIXUP_HCALL:
515 case KVM_CAP_PPC_ENABLE_HCALL:
516 #ifdef CONFIG_KVM_XICS
517 case KVM_CAP_IRQ_XICS:
518 #endif
519 r = 1;
520 break;
521 #endif /* CONFIG_PPC_BOOK3S_64 */
522 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
523 case KVM_CAP_PPC_SMT:
524 if (hv_enabled)
525 r = threads_per_subcore;
526 else
527 r = 0;
528 break;
529 case KVM_CAP_PPC_RMA:
530 r = hv_enabled;
531 /* PPC970 requires an RMA */
532 if (r && cpu_has_feature(CPU_FTR_ARCH_201))
533 r = 2;
534 break;
535 #endif
536 case KVM_CAP_SYNC_MMU:
537 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
538 if (hv_enabled)
539 r = cpu_has_feature(CPU_FTR_ARCH_206) ? 1 : 0;
540 else
541 r = 0;
542 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
543 r = 1;
544 #else
545 r = 0;
546 #endif
547 break;
548 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
549 case KVM_CAP_PPC_HTAB_FD:
550 r = hv_enabled;
551 break;
552 #endif
553 case KVM_CAP_NR_VCPUS:
554 /*
555 * Recommending a number of CPUs is somewhat arbitrary; we
556 * return the number of present CPUs for -HV (since a host
557 * will have secondary threads "offline"), and for other KVM
558 * implementations just count online CPUs.
559 */
560 if (hv_enabled)
561 r = num_present_cpus();
562 else
563 r = num_online_cpus();
564 break;
565 case KVM_CAP_MAX_VCPUS:
566 r = KVM_MAX_VCPUS;
567 break;
568 #ifdef CONFIG_PPC_BOOK3S_64
569 case KVM_CAP_PPC_GET_SMMU_INFO:
570 r = 1;
571 break;
572 #endif
573 default:
574 r = 0;
575 break;
576 }
577 return r;
578
579 }
580
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)581 long kvm_arch_dev_ioctl(struct file *filp,
582 unsigned int ioctl, unsigned long arg)
583 {
584 return -EINVAL;
585 }
586
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)587 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
588 struct kvm_memory_slot *dont)
589 {
590 kvmppc_core_free_memslot(kvm, free, dont);
591 }
592
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)593 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
594 unsigned long npages)
595 {
596 return kvmppc_core_create_memslot(kvm, slot, npages);
597 }
598
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)599 int kvm_arch_prepare_memory_region(struct kvm *kvm,
600 struct kvm_memory_slot *memslot,
601 struct kvm_userspace_memory_region *mem,
602 enum kvm_mr_change change)
603 {
604 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
605 }
606
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,enum kvm_mr_change change)607 void kvm_arch_commit_memory_region(struct kvm *kvm,
608 struct kvm_userspace_memory_region *mem,
609 const struct kvm_memory_slot *old,
610 enum kvm_mr_change change)
611 {
612 kvmppc_core_commit_memory_region(kvm, mem, old);
613 }
614
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)615 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
616 struct kvm_memory_slot *slot)
617 {
618 kvmppc_core_flush_memslot(kvm, slot);
619 }
620
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)621 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
622 {
623 struct kvm_vcpu *vcpu;
624 vcpu = kvmppc_core_vcpu_create(kvm, id);
625 if (!IS_ERR(vcpu)) {
626 vcpu->arch.wqp = &vcpu->wq;
627 kvmppc_create_vcpu_debugfs(vcpu, id);
628 }
629 return vcpu;
630 }
631
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)632 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
633 {
634 return 0;
635 }
636
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)637 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
638 {
639 /* Make sure we're not using the vcpu anymore */
640 hrtimer_cancel(&vcpu->arch.dec_timer);
641
642 kvmppc_remove_vcpu_debugfs(vcpu);
643
644 switch (vcpu->arch.irq_type) {
645 case KVMPPC_IRQ_MPIC:
646 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
647 break;
648 case KVMPPC_IRQ_XICS:
649 kvmppc_xics_free_icp(vcpu);
650 break;
651 }
652
653 kvmppc_core_vcpu_free(vcpu);
654 }
655
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)656 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
657 {
658 kvm_arch_vcpu_free(vcpu);
659 }
660
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)661 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
662 {
663 return kvmppc_core_pending_dec(vcpu);
664 }
665
kvmppc_decrementer_wakeup(struct hrtimer * timer)666 enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
667 {
668 struct kvm_vcpu *vcpu;
669
670 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
671 kvmppc_decrementer_func(vcpu);
672
673 return HRTIMER_NORESTART;
674 }
675
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)676 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
677 {
678 int ret;
679
680 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
681 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
682 vcpu->arch.dec_expires = ~(u64)0;
683
684 #ifdef CONFIG_KVM_EXIT_TIMING
685 mutex_init(&vcpu->arch.exit_timing_lock);
686 #endif
687 ret = kvmppc_subarch_vcpu_init(vcpu);
688 return ret;
689 }
690
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)691 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
692 {
693 kvmppc_mmu_destroy(vcpu);
694 kvmppc_subarch_vcpu_uninit(vcpu);
695 }
696
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)697 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
698 {
699 #ifdef CONFIG_BOOKE
700 /*
701 * vrsave (formerly usprg0) isn't used by Linux, but may
702 * be used by the guest.
703 *
704 * On non-booke this is associated with Altivec and
705 * is handled by code in book3s.c.
706 */
707 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
708 #endif
709 kvmppc_core_vcpu_load(vcpu, cpu);
710 }
711
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)712 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
713 {
714 kvmppc_core_vcpu_put(vcpu);
715 #ifdef CONFIG_BOOKE
716 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
717 #endif
718 }
719
kvmppc_complete_mmio_load(struct kvm_vcpu * vcpu,struct kvm_run * run)720 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
721 struct kvm_run *run)
722 {
723 u64 uninitialized_var(gpr);
724
725 if (run->mmio.len > sizeof(gpr)) {
726 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
727 return;
728 }
729
730 if (vcpu->arch.mmio_is_bigendian) {
731 switch (run->mmio.len) {
732 case 8: gpr = *(u64 *)run->mmio.data; break;
733 case 4: gpr = *(u32 *)run->mmio.data; break;
734 case 2: gpr = *(u16 *)run->mmio.data; break;
735 case 1: gpr = *(u8 *)run->mmio.data; break;
736 }
737 } else {
738 /* Convert BE data from userland back to LE. */
739 switch (run->mmio.len) {
740 case 4: gpr = ld_le32((u32 *)run->mmio.data); break;
741 case 2: gpr = ld_le16((u16 *)run->mmio.data); break;
742 case 1: gpr = *(u8 *)run->mmio.data; break;
743 }
744 }
745
746 if (vcpu->arch.mmio_sign_extend) {
747 switch (run->mmio.len) {
748 #ifdef CONFIG_PPC64
749 case 4:
750 gpr = (s64)(s32)gpr;
751 break;
752 #endif
753 case 2:
754 gpr = (s64)(s16)gpr;
755 break;
756 case 1:
757 gpr = (s64)(s8)gpr;
758 break;
759 }
760 }
761
762 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
763
764 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
765 case KVM_MMIO_REG_GPR:
766 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
767 break;
768 case KVM_MMIO_REG_FPR:
769 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
770 break;
771 #ifdef CONFIG_PPC_BOOK3S
772 case KVM_MMIO_REG_QPR:
773 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
774 break;
775 case KVM_MMIO_REG_FQPR:
776 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
777 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
778 break;
779 #endif
780 default:
781 BUG();
782 }
783 }
784
kvmppc_handle_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)785 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
786 unsigned int rt, unsigned int bytes,
787 int is_default_endian)
788 {
789 int idx, ret;
790 int is_bigendian;
791
792 if (kvmppc_need_byteswap(vcpu)) {
793 /* Default endianness is "little endian". */
794 is_bigendian = !is_default_endian;
795 } else {
796 /* Default endianness is "big endian". */
797 is_bigendian = is_default_endian;
798 }
799
800 if (bytes > sizeof(run->mmio.data)) {
801 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
802 run->mmio.len);
803 }
804
805 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
806 run->mmio.len = bytes;
807 run->mmio.is_write = 0;
808
809 vcpu->arch.io_gpr = rt;
810 vcpu->arch.mmio_is_bigendian = is_bigendian;
811 vcpu->mmio_needed = 1;
812 vcpu->mmio_is_write = 0;
813 vcpu->arch.mmio_sign_extend = 0;
814
815 idx = srcu_read_lock(&vcpu->kvm->srcu);
816
817 ret = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, run->mmio.phys_addr,
818 bytes, &run->mmio.data);
819
820 srcu_read_unlock(&vcpu->kvm->srcu, idx);
821
822 if (!ret) {
823 kvmppc_complete_mmio_load(vcpu, run);
824 vcpu->mmio_needed = 0;
825 return EMULATE_DONE;
826 }
827
828 return EMULATE_DO_MMIO;
829 }
830 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
831
832 /* Same as above, but sign extends */
kvmppc_handle_loads(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)833 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
834 unsigned int rt, unsigned int bytes,
835 int is_default_endian)
836 {
837 int r;
838
839 vcpu->arch.mmio_sign_extend = 1;
840 r = kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian);
841
842 return r;
843 }
844
kvmppc_handle_store(struct kvm_run * run,struct kvm_vcpu * vcpu,u64 val,unsigned int bytes,int is_default_endian)845 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
846 u64 val, unsigned int bytes, int is_default_endian)
847 {
848 void *data = run->mmio.data;
849 int idx, ret;
850 int is_bigendian;
851
852 if (kvmppc_need_byteswap(vcpu)) {
853 /* Default endianness is "little endian". */
854 is_bigendian = !is_default_endian;
855 } else {
856 /* Default endianness is "big endian". */
857 is_bigendian = is_default_endian;
858 }
859
860 if (bytes > sizeof(run->mmio.data)) {
861 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
862 run->mmio.len);
863 }
864
865 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
866 run->mmio.len = bytes;
867 run->mmio.is_write = 1;
868 vcpu->mmio_needed = 1;
869 vcpu->mmio_is_write = 1;
870
871 /* Store the value at the lowest bytes in 'data'. */
872 if (is_bigendian) {
873 switch (bytes) {
874 case 8: *(u64 *)data = val; break;
875 case 4: *(u32 *)data = val; break;
876 case 2: *(u16 *)data = val; break;
877 case 1: *(u8 *)data = val; break;
878 }
879 } else {
880 /* Store LE value into 'data'. */
881 switch (bytes) {
882 case 4: st_le32(data, val); break;
883 case 2: st_le16(data, val); break;
884 case 1: *(u8 *)data = val; break;
885 }
886 }
887
888 idx = srcu_read_lock(&vcpu->kvm->srcu);
889
890 ret = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, run->mmio.phys_addr,
891 bytes, &run->mmio.data);
892
893 srcu_read_unlock(&vcpu->kvm->srcu, idx);
894
895 if (!ret) {
896 vcpu->mmio_needed = 0;
897 return EMULATE_DONE;
898 }
899
900 return EMULATE_DO_MMIO;
901 }
902 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
903
kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)904 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
905 {
906 int r = 0;
907 union kvmppc_one_reg val;
908 int size;
909
910 size = one_reg_size(reg->id);
911 if (size > sizeof(val))
912 return -EINVAL;
913
914 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
915 if (r == -EINVAL) {
916 r = 0;
917 switch (reg->id) {
918 #ifdef CONFIG_ALTIVEC
919 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
920 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
921 r = -ENXIO;
922 break;
923 }
924 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
925 break;
926 case KVM_REG_PPC_VSCR:
927 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
928 r = -ENXIO;
929 break;
930 }
931 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
932 break;
933 case KVM_REG_PPC_VRSAVE:
934 val = get_reg_val(reg->id, vcpu->arch.vrsave);
935 break;
936 #endif /* CONFIG_ALTIVEC */
937 default:
938 r = -EINVAL;
939 break;
940 }
941 }
942
943 if (r)
944 return r;
945
946 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
947 r = -EFAULT;
948
949 return r;
950 }
951
kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)952 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
953 {
954 int r;
955 union kvmppc_one_reg val;
956 int size;
957
958 size = one_reg_size(reg->id);
959 if (size > sizeof(val))
960 return -EINVAL;
961
962 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
963 return -EFAULT;
964
965 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
966 if (r == -EINVAL) {
967 r = 0;
968 switch (reg->id) {
969 #ifdef CONFIG_ALTIVEC
970 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
971 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
972 r = -ENXIO;
973 break;
974 }
975 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
976 break;
977 case KVM_REG_PPC_VSCR:
978 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
979 r = -ENXIO;
980 break;
981 }
982 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
983 break;
984 case KVM_REG_PPC_VRSAVE:
985 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
986 r = -ENXIO;
987 break;
988 }
989 vcpu->arch.vrsave = set_reg_val(reg->id, val);
990 break;
991 #endif /* CONFIG_ALTIVEC */
992 default:
993 r = -EINVAL;
994 break;
995 }
996 }
997
998 return r;
999 }
1000
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)1001 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1002 {
1003 int r;
1004 sigset_t sigsaved;
1005
1006 if (vcpu->sigset_active)
1007 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1008
1009 if (vcpu->mmio_needed) {
1010 if (!vcpu->mmio_is_write)
1011 kvmppc_complete_mmio_load(vcpu, run);
1012 vcpu->mmio_needed = 0;
1013 } else if (vcpu->arch.osi_needed) {
1014 u64 *gprs = run->osi.gprs;
1015 int i;
1016
1017 for (i = 0; i < 32; i++)
1018 kvmppc_set_gpr(vcpu, i, gprs[i]);
1019 vcpu->arch.osi_needed = 0;
1020 } else if (vcpu->arch.hcall_needed) {
1021 int i;
1022
1023 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1024 for (i = 0; i < 9; ++i)
1025 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1026 vcpu->arch.hcall_needed = 0;
1027 #ifdef CONFIG_BOOKE
1028 } else if (vcpu->arch.epr_needed) {
1029 kvmppc_set_epr(vcpu, run->epr.epr);
1030 vcpu->arch.epr_needed = 0;
1031 #endif
1032 }
1033
1034 r = kvmppc_vcpu_run(run, vcpu);
1035
1036 if (vcpu->sigset_active)
1037 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1038
1039 return r;
1040 }
1041
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)1042 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1043 {
1044 if (irq->irq == KVM_INTERRUPT_UNSET) {
1045 kvmppc_core_dequeue_external(vcpu);
1046 return 0;
1047 }
1048
1049 kvmppc_core_queue_external(vcpu, irq);
1050
1051 kvm_vcpu_kick(vcpu);
1052
1053 return 0;
1054 }
1055
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)1056 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1057 struct kvm_enable_cap *cap)
1058 {
1059 int r;
1060
1061 if (cap->flags)
1062 return -EINVAL;
1063
1064 switch (cap->cap) {
1065 case KVM_CAP_PPC_OSI:
1066 r = 0;
1067 vcpu->arch.osi_enabled = true;
1068 break;
1069 case KVM_CAP_PPC_PAPR:
1070 r = 0;
1071 vcpu->arch.papr_enabled = true;
1072 break;
1073 case KVM_CAP_PPC_EPR:
1074 r = 0;
1075 if (cap->args[0])
1076 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1077 else
1078 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1079 break;
1080 #ifdef CONFIG_BOOKE
1081 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1082 r = 0;
1083 vcpu->arch.watchdog_enabled = true;
1084 break;
1085 #endif
1086 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1087 case KVM_CAP_SW_TLB: {
1088 struct kvm_config_tlb cfg;
1089 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1090
1091 r = -EFAULT;
1092 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1093 break;
1094
1095 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1096 break;
1097 }
1098 #endif
1099 #ifdef CONFIG_KVM_MPIC
1100 case KVM_CAP_IRQ_MPIC: {
1101 struct fd f;
1102 struct kvm_device *dev;
1103
1104 r = -EBADF;
1105 f = fdget(cap->args[0]);
1106 if (!f.file)
1107 break;
1108
1109 r = -EPERM;
1110 dev = kvm_device_from_filp(f.file);
1111 if (dev)
1112 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1113
1114 fdput(f);
1115 break;
1116 }
1117 #endif
1118 #ifdef CONFIG_KVM_XICS
1119 case KVM_CAP_IRQ_XICS: {
1120 struct fd f;
1121 struct kvm_device *dev;
1122
1123 r = -EBADF;
1124 f = fdget(cap->args[0]);
1125 if (!f.file)
1126 break;
1127
1128 r = -EPERM;
1129 dev = kvm_device_from_filp(f.file);
1130 if (dev)
1131 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1132
1133 fdput(f);
1134 break;
1135 }
1136 #endif /* CONFIG_KVM_XICS */
1137 default:
1138 r = -EINVAL;
1139 break;
1140 }
1141
1142 if (!r)
1143 r = kvmppc_sanity_check(vcpu);
1144
1145 return r;
1146 }
1147
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)1148 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1149 struct kvm_mp_state *mp_state)
1150 {
1151 return -EINVAL;
1152 }
1153
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)1154 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1155 struct kvm_mp_state *mp_state)
1156 {
1157 return -EINVAL;
1158 }
1159
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1160 long kvm_arch_vcpu_ioctl(struct file *filp,
1161 unsigned int ioctl, unsigned long arg)
1162 {
1163 struct kvm_vcpu *vcpu = filp->private_data;
1164 void __user *argp = (void __user *)arg;
1165 long r;
1166
1167 switch (ioctl) {
1168 case KVM_INTERRUPT: {
1169 struct kvm_interrupt irq;
1170 r = -EFAULT;
1171 if (copy_from_user(&irq, argp, sizeof(irq)))
1172 goto out;
1173 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1174 goto out;
1175 }
1176
1177 case KVM_ENABLE_CAP:
1178 {
1179 struct kvm_enable_cap cap;
1180 r = -EFAULT;
1181 if (copy_from_user(&cap, argp, sizeof(cap)))
1182 goto out;
1183 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1184 break;
1185 }
1186
1187 case KVM_SET_ONE_REG:
1188 case KVM_GET_ONE_REG:
1189 {
1190 struct kvm_one_reg reg;
1191 r = -EFAULT;
1192 if (copy_from_user(®, argp, sizeof(reg)))
1193 goto out;
1194 if (ioctl == KVM_SET_ONE_REG)
1195 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®);
1196 else
1197 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®);
1198 break;
1199 }
1200
1201 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1202 case KVM_DIRTY_TLB: {
1203 struct kvm_dirty_tlb dirty;
1204 r = -EFAULT;
1205 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1206 goto out;
1207 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1208 break;
1209 }
1210 #endif
1211 default:
1212 r = -EINVAL;
1213 }
1214
1215 out:
1216 return r;
1217 }
1218
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)1219 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1220 {
1221 return VM_FAULT_SIGBUS;
1222 }
1223
kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo * pvinfo)1224 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1225 {
1226 u32 inst_nop = 0x60000000;
1227 #ifdef CONFIG_KVM_BOOKE_HV
1228 u32 inst_sc1 = 0x44000022;
1229 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1230 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1231 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1232 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1233 #else
1234 u32 inst_lis = 0x3c000000;
1235 u32 inst_ori = 0x60000000;
1236 u32 inst_sc = 0x44000002;
1237 u32 inst_imm_mask = 0xffff;
1238
1239 /*
1240 * The hypercall to get into KVM from within guest context is as
1241 * follows:
1242 *
1243 * lis r0, r0, KVM_SC_MAGIC_R0@h
1244 * ori r0, KVM_SC_MAGIC_R0@l
1245 * sc
1246 * nop
1247 */
1248 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1249 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1250 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1251 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1252 #endif
1253
1254 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1255
1256 return 0;
1257 }
1258
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)1259 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1260 bool line_status)
1261 {
1262 if (!irqchip_in_kernel(kvm))
1263 return -ENXIO;
1264
1265 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1266 irq_event->irq, irq_event->level,
1267 line_status);
1268 return 0;
1269 }
1270
1271
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)1272 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1273 struct kvm_enable_cap *cap)
1274 {
1275 int r;
1276
1277 if (cap->flags)
1278 return -EINVAL;
1279
1280 switch (cap->cap) {
1281 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1282 case KVM_CAP_PPC_ENABLE_HCALL: {
1283 unsigned long hcall = cap->args[0];
1284
1285 r = -EINVAL;
1286 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1287 cap->args[1] > 1)
1288 break;
1289 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1290 break;
1291 if (cap->args[1])
1292 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1293 else
1294 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1295 r = 0;
1296 break;
1297 }
1298 #endif
1299 default:
1300 r = -EINVAL;
1301 break;
1302 }
1303
1304 return r;
1305 }
1306
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1307 long kvm_arch_vm_ioctl(struct file *filp,
1308 unsigned int ioctl, unsigned long arg)
1309 {
1310 struct kvm *kvm __maybe_unused = filp->private_data;
1311 void __user *argp = (void __user *)arg;
1312 long r;
1313
1314 switch (ioctl) {
1315 case KVM_PPC_GET_PVINFO: {
1316 struct kvm_ppc_pvinfo pvinfo;
1317 memset(&pvinfo, 0, sizeof(pvinfo));
1318 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1319 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1320 r = -EFAULT;
1321 goto out;
1322 }
1323
1324 break;
1325 }
1326 case KVM_ENABLE_CAP:
1327 {
1328 struct kvm_enable_cap cap;
1329 r = -EFAULT;
1330 if (copy_from_user(&cap, argp, sizeof(cap)))
1331 goto out;
1332 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1333 break;
1334 }
1335 #ifdef CONFIG_PPC_BOOK3S_64
1336 case KVM_CREATE_SPAPR_TCE: {
1337 struct kvm_create_spapr_tce create_tce;
1338
1339 r = -EFAULT;
1340 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1341 goto out;
1342 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce);
1343 goto out;
1344 }
1345 case KVM_PPC_GET_SMMU_INFO: {
1346 struct kvm_ppc_smmu_info info;
1347 struct kvm *kvm = filp->private_data;
1348
1349 memset(&info, 0, sizeof(info));
1350 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1351 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1352 r = -EFAULT;
1353 break;
1354 }
1355 case KVM_PPC_RTAS_DEFINE_TOKEN: {
1356 struct kvm *kvm = filp->private_data;
1357
1358 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1359 break;
1360 }
1361 default: {
1362 struct kvm *kvm = filp->private_data;
1363 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1364 }
1365 #else /* CONFIG_PPC_BOOK3S_64 */
1366 default:
1367 r = -ENOTTY;
1368 #endif
1369 }
1370 out:
1371 return r;
1372 }
1373
1374 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1375 static unsigned long nr_lpids;
1376
kvmppc_alloc_lpid(void)1377 long kvmppc_alloc_lpid(void)
1378 {
1379 long lpid;
1380
1381 do {
1382 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1383 if (lpid >= nr_lpids) {
1384 pr_err("%s: No LPIDs free\n", __func__);
1385 return -ENOMEM;
1386 }
1387 } while (test_and_set_bit(lpid, lpid_inuse));
1388
1389 return lpid;
1390 }
1391 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1392
kvmppc_claim_lpid(long lpid)1393 void kvmppc_claim_lpid(long lpid)
1394 {
1395 set_bit(lpid, lpid_inuse);
1396 }
1397 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1398
kvmppc_free_lpid(long lpid)1399 void kvmppc_free_lpid(long lpid)
1400 {
1401 clear_bit(lpid, lpid_inuse);
1402 }
1403 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1404
kvmppc_init_lpid(unsigned long nr_lpids_param)1405 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1406 {
1407 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1408 memset(lpid_inuse, 0, sizeof(lpid_inuse));
1409 }
1410 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1411
kvm_arch_init(void * opaque)1412 int kvm_arch_init(void *opaque)
1413 {
1414 return 0;
1415 }
1416
1417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
1418