1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/mmc.h>
35
36 #include <linux/mmc/card.h>
37 #include <linux/mmc/host.h>
38 #include <linux/mmc/mmc.h>
39 #include <linux/mmc/sd.h>
40 #include <linux/mmc/slot-gpio.h>
41
42 #include "core.h"
43 #include "bus.h"
44 #include "host.h"
45 #include "sdio_bus.h"
46
47 #include "mmc_ops.h"
48 #include "sd_ops.h"
49 #include "sdio_ops.h"
50
51 EXPORT_TRACEPOINT_SYMBOL_GPL(mmc_blk_erase_start);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(mmc_blk_erase_end);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(mmc_blk_rw_start);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(mmc_blk_rw_end);
55
56 /* If the device is not responding */
57 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
58
59 /*
60 * Background operations can take a long time, depending on the housekeeping
61 * operations the card has to perform.
62 */
63 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
64
65 static struct workqueue_struct *workqueue;
66 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
67
68 /*
69 * Enabling software CRCs on the data blocks can be a significant (30%)
70 * performance cost, and for other reasons may not always be desired.
71 * So we allow it it to be disabled.
72 */
73 bool use_spi_crc = 1;
74 module_param(use_spi_crc, bool, 0);
75
76 /*
77 * Internal function. Schedule delayed work in the MMC work queue.
78 */
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)79 static int mmc_schedule_delayed_work(struct delayed_work *work,
80 unsigned long delay)
81 {
82 return queue_delayed_work(workqueue, work, delay);
83 }
84
85 /*
86 * Internal function. Flush all scheduled work from the MMC work queue.
87 */
mmc_flush_scheduled_work(void)88 static void mmc_flush_scheduled_work(void)
89 {
90 flush_workqueue(workqueue);
91 }
92
93 #ifdef CONFIG_FAIL_MMC_REQUEST
94
95 /*
96 * Internal function. Inject random data errors.
97 * If mmc_data is NULL no errors are injected.
98 */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)99 static void mmc_should_fail_request(struct mmc_host *host,
100 struct mmc_request *mrq)
101 {
102 struct mmc_command *cmd = mrq->cmd;
103 struct mmc_data *data = mrq->data;
104 static const int data_errors[] = {
105 -ETIMEDOUT,
106 -EILSEQ,
107 -EIO,
108 };
109
110 if (!data)
111 return;
112
113 if (cmd->error || data->error ||
114 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
115 return;
116
117 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
118 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
119 }
120
121 #else /* CONFIG_FAIL_MMC_REQUEST */
122
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)123 static inline void mmc_should_fail_request(struct mmc_host *host,
124 struct mmc_request *mrq)
125 {
126 }
127
128 #endif /* CONFIG_FAIL_MMC_REQUEST */
129
130 /**
131 * mmc_request_done - finish processing an MMC request
132 * @host: MMC host which completed request
133 * @mrq: MMC request which request
134 *
135 * MMC drivers should call this function when they have completed
136 * their processing of a request.
137 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)138 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
139 {
140 struct mmc_command *cmd = mrq->cmd;
141 int err = cmd->error;
142
143 if (err && cmd->retries && mmc_host_is_spi(host)) {
144 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
145 cmd->retries = 0;
146 }
147
148 if (err && cmd->retries && !mmc_card_removed(host->card)) {
149 /*
150 * Request starter must handle retries - see
151 * mmc_wait_for_req_done().
152 */
153 if (mrq->done)
154 mrq->done(mrq);
155 } else {
156 mmc_should_fail_request(host, mrq);
157
158 led_trigger_event(host->led, LED_OFF);
159
160 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
161 mmc_hostname(host), cmd->opcode, err,
162 cmd->resp[0], cmd->resp[1],
163 cmd->resp[2], cmd->resp[3]);
164
165 if (mrq->data) {
166 pr_debug("%s: %d bytes transferred: %d\n",
167 mmc_hostname(host),
168 mrq->data->bytes_xfered, mrq->data->error);
169 #ifdef CONFIG_BLOCK
170 if (mrq->lat_hist_enabled) {
171 ktime_t completion;
172 u_int64_t delta_us;
173
174 completion = ktime_get();
175 delta_us = ktime_us_delta(completion,
176 mrq->io_start);
177 blk_update_latency_hist(
178 (mrq->data->flags & MMC_DATA_READ) ?
179 &host->io_lat_read :
180 &host->io_lat_write, delta_us);
181 }
182 #endif
183 trace_mmc_blk_rw_end(cmd->opcode, cmd->arg, mrq->data);
184 }
185
186 if (mrq->stop) {
187 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host), mrq->stop->opcode,
189 mrq->stop->error,
190 mrq->stop->resp[0], mrq->stop->resp[1],
191 mrq->stop->resp[2], mrq->stop->resp[3]);
192 }
193
194 if (mrq->done)
195 mrq->done(mrq);
196
197 mmc_host_clk_release(host);
198 }
199 }
200
201 EXPORT_SYMBOL(mmc_request_done);
202
203 static void
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)204 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
205 {
206 #ifdef CONFIG_MMC_DEBUG
207 unsigned int i, sz;
208 struct scatterlist *sg;
209 #endif
210
211 if (mrq->sbc) {
212 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
213 mmc_hostname(host), mrq->sbc->opcode,
214 mrq->sbc->arg, mrq->sbc->flags);
215 }
216
217 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
218 mmc_hostname(host), mrq->cmd->opcode,
219 mrq->cmd->arg, mrq->cmd->flags);
220
221 if (mrq->data) {
222 pr_debug("%s: blksz %d blocks %d flags %08x "
223 "tsac %d ms nsac %d\n",
224 mmc_hostname(host), mrq->data->blksz,
225 mrq->data->blocks, mrq->data->flags,
226 mrq->data->timeout_ns / 1000000,
227 mrq->data->timeout_clks);
228 }
229
230 if (mrq->stop) {
231 pr_debug("%s: CMD%u arg %08x flags %08x\n",
232 mmc_hostname(host), mrq->stop->opcode,
233 mrq->stop->arg, mrq->stop->flags);
234 }
235
236 WARN_ON(!host->claimed);
237
238 mrq->cmd->error = 0;
239 mrq->cmd->mrq = mrq;
240 if (mrq->data) {
241 BUG_ON(mrq->data->blksz > host->max_blk_size);
242 BUG_ON(mrq->data->blocks > host->max_blk_count);
243 BUG_ON(mrq->data->blocks * mrq->data->blksz >
244 host->max_req_size);
245
246 #ifdef CONFIG_MMC_DEBUG
247 sz = 0;
248 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
249 sz += sg->length;
250 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
251 #endif
252
253 mrq->cmd->data = mrq->data;
254 mrq->data->error = 0;
255 mrq->data->mrq = mrq;
256 if (mrq->stop) {
257 mrq->data->stop = mrq->stop;
258 mrq->stop->error = 0;
259 mrq->stop->mrq = mrq;
260 }
261 }
262 mmc_host_clk_hold(host);
263 led_trigger_event(host->led, LED_FULL);
264 host->ops->request(host, mrq);
265 }
266
267 /**
268 * mmc_start_bkops - start BKOPS for supported cards
269 * @card: MMC card to start BKOPS
270 * @form_exception: A flag to indicate if this function was
271 * called due to an exception raised by the card
272 *
273 * Start background operations whenever requested.
274 * When the urgent BKOPS bit is set in a R1 command response
275 * then background operations should be started immediately.
276 */
mmc_start_bkops(struct mmc_card * card,bool from_exception)277 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
278 {
279 int err;
280 int timeout;
281 bool use_busy_signal;
282
283 BUG_ON(!card);
284
285 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
286 return;
287
288 err = mmc_read_bkops_status(card);
289 if (err) {
290 pr_err("%s: Failed to read bkops status: %d\n",
291 mmc_hostname(card->host), err);
292 return;
293 }
294
295 if (!card->ext_csd.raw_bkops_status)
296 return;
297
298 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
299 from_exception)
300 return;
301
302 mmc_claim_host(card->host);
303 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
304 timeout = MMC_BKOPS_MAX_TIMEOUT;
305 use_busy_signal = true;
306 } else {
307 timeout = 0;
308 use_busy_signal = false;
309 }
310
311 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
312 EXT_CSD_BKOPS_START, 1, timeout,
313 use_busy_signal, true, false);
314 if (err) {
315 pr_warn("%s: Error %d starting bkops\n",
316 mmc_hostname(card->host), err);
317 goto out;
318 }
319
320 /*
321 * For urgent bkops status (LEVEL_2 and more)
322 * bkops executed synchronously, otherwise
323 * the operation is in progress
324 */
325 if (!use_busy_signal)
326 mmc_card_set_doing_bkops(card);
327 out:
328 mmc_release_host(card->host);
329 }
330 EXPORT_SYMBOL(mmc_start_bkops);
331
332 /*
333 * mmc_wait_data_done() - done callback for data request
334 * @mrq: done data request
335 *
336 * Wakes up mmc context, passed as a callback to host controller driver
337 */
mmc_wait_data_done(struct mmc_request * mrq)338 static void mmc_wait_data_done(struct mmc_request *mrq)
339 {
340 struct mmc_context_info *context_info = &mrq->host->context_info;
341
342 context_info->is_done_rcv = true;
343 wake_up_interruptible(&context_info->wait);
344 }
345
mmc_wait_done(struct mmc_request * mrq)346 static void mmc_wait_done(struct mmc_request *mrq)
347 {
348 complete(&mrq->completion);
349 }
350
351 /*
352 *__mmc_start_data_req() - starts data request
353 * @host: MMC host to start the request
354 * @mrq: data request to start
355 *
356 * Sets the done callback to be called when request is completed by the card.
357 * Starts data mmc request execution
358 */
__mmc_start_data_req(struct mmc_host * host,struct mmc_request * mrq)359 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
360 {
361 mrq->done = mmc_wait_data_done;
362 mrq->host = host;
363 if (mmc_card_removed(host->card)) {
364 mrq->cmd->error = -ENOMEDIUM;
365 mmc_wait_data_done(mrq);
366 return -ENOMEDIUM;
367 }
368 mmc_start_request(host, mrq);
369
370 return 0;
371 }
372
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)373 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
374 {
375 init_completion(&mrq->completion);
376 mrq->done = mmc_wait_done;
377 if (mmc_card_removed(host->card)) {
378 mrq->cmd->error = -ENOMEDIUM;
379 complete(&mrq->completion);
380 return -ENOMEDIUM;
381 }
382 mmc_start_request(host, mrq);
383 return 0;
384 }
385
386 /*
387 * mmc_wait_for_data_req_done() - wait for request completed
388 * @host: MMC host to prepare the command.
389 * @mrq: MMC request to wait for
390 *
391 * Blocks MMC context till host controller will ack end of data request
392 * execution or new request notification arrives from the block layer.
393 * Handles command retries.
394 *
395 * Returns enum mmc_blk_status after checking errors.
396 */
mmc_wait_for_data_req_done(struct mmc_host * host,struct mmc_request * mrq,struct mmc_async_req * next_req)397 static int mmc_wait_for_data_req_done(struct mmc_host *host,
398 struct mmc_request *mrq,
399 struct mmc_async_req *next_req)
400 {
401 struct mmc_command *cmd;
402 struct mmc_context_info *context_info = &host->context_info;
403 int err;
404 unsigned long flags;
405
406 while (1) {
407 wait_event_interruptible(context_info->wait,
408 (context_info->is_done_rcv ||
409 context_info->is_new_req));
410 spin_lock_irqsave(&context_info->lock, flags);
411 context_info->is_waiting_last_req = false;
412 spin_unlock_irqrestore(&context_info->lock, flags);
413 if (context_info->is_done_rcv) {
414 context_info->is_done_rcv = false;
415 context_info->is_new_req = false;
416 cmd = mrq->cmd;
417
418 if (!cmd->error || !cmd->retries ||
419 mmc_card_removed(host->card)) {
420 err = host->areq->err_check(host->card,
421 host->areq);
422 break; /* return err */
423 } else {
424 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
425 mmc_hostname(host),
426 cmd->opcode, cmd->error);
427 cmd->retries--;
428 cmd->error = 0;
429 host->ops->request(host, mrq);
430 continue; /* wait for done/new event again */
431 }
432 } else if (context_info->is_new_req) {
433 context_info->is_new_req = false;
434 if (!next_req) {
435 err = MMC_BLK_NEW_REQUEST;
436 break; /* return err */
437 }
438 }
439 }
440 return err;
441 }
442
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)443 static void mmc_wait_for_req_done(struct mmc_host *host,
444 struct mmc_request *mrq)
445 {
446 struct mmc_command *cmd;
447
448 while (1) {
449 wait_for_completion(&mrq->completion);
450
451 cmd = mrq->cmd;
452
453 /*
454 * If host has timed out waiting for the sanitize
455 * to complete, card might be still in programming state
456 * so let's try to bring the card out of programming
457 * state.
458 */
459 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
460 if (!mmc_interrupt_hpi(host->card)) {
461 pr_warn("%s: %s: Interrupted sanitize\n",
462 mmc_hostname(host), __func__);
463 cmd->error = 0;
464 break;
465 } else {
466 pr_err("%s: %s: Failed to interrupt sanitize\n",
467 mmc_hostname(host), __func__);
468 }
469 }
470 if (!cmd->error || !cmd->retries ||
471 mmc_card_removed(host->card))
472 break;
473
474 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
475 mmc_hostname(host), cmd->opcode, cmd->error);
476 cmd->retries--;
477 cmd->error = 0;
478 host->ops->request(host, mrq);
479 }
480 }
481
482 /**
483 * mmc_pre_req - Prepare for a new request
484 * @host: MMC host to prepare command
485 * @mrq: MMC request to prepare for
486 * @is_first_req: true if there is no previous started request
487 * that may run in parellel to this call, otherwise false
488 *
489 * mmc_pre_req() is called in prior to mmc_start_req() to let
490 * host prepare for the new request. Preparation of a request may be
491 * performed while another request is running on the host.
492 */
mmc_pre_req(struct mmc_host * host,struct mmc_request * mrq,bool is_first_req)493 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
494 bool is_first_req)
495 {
496 if (host->ops->pre_req) {
497 mmc_host_clk_hold(host);
498 host->ops->pre_req(host, mrq, is_first_req);
499 mmc_host_clk_release(host);
500 }
501 }
502
503 /**
504 * mmc_post_req - Post process a completed request
505 * @host: MMC host to post process command
506 * @mrq: MMC request to post process for
507 * @err: Error, if non zero, clean up any resources made in pre_req
508 *
509 * Let the host post process a completed request. Post processing of
510 * a request may be performed while another reuqest is running.
511 */
mmc_post_req(struct mmc_host * host,struct mmc_request * mrq,int err)512 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
513 int err)
514 {
515 if (host->ops->post_req) {
516 mmc_host_clk_hold(host);
517 host->ops->post_req(host, mrq, err);
518 mmc_host_clk_release(host);
519 }
520 }
521
522 /**
523 * mmc_start_req - start a non-blocking request
524 * @host: MMC host to start command
525 * @areq: async request to start
526 * @error: out parameter returns 0 for success, otherwise non zero
527 *
528 * Start a new MMC custom command request for a host.
529 * If there is on ongoing async request wait for completion
530 * of that request and start the new one and return.
531 * Does not wait for the new request to complete.
532 *
533 * Returns the completed request, NULL in case of none completed.
534 * Wait for the an ongoing request (previoulsy started) to complete and
535 * return the completed request. If there is no ongoing request, NULL
536 * is returned without waiting. NULL is not an error condition.
537 */
mmc_start_req(struct mmc_host * host,struct mmc_async_req * areq,int * error)538 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
539 struct mmc_async_req *areq, int *error)
540 {
541 int err = 0;
542 int start_err = 0;
543 struct mmc_async_req *data = host->areq;
544
545 /* Prepare a new request */
546 if (areq)
547 mmc_pre_req(host, areq->mrq, !host->areq);
548
549 if (host->areq) {
550 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
551 if (err == MMC_BLK_NEW_REQUEST) {
552 if (error)
553 *error = err;
554 /*
555 * The previous request was not completed,
556 * nothing to return
557 */
558 return NULL;
559 }
560 /*
561 * Check BKOPS urgency for each R1 response
562 */
563 if (host->card && mmc_card_mmc(host->card) &&
564 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
565 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
566 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
567 mmc_start_bkops(host->card, true);
568 }
569
570 if (!err && areq) {
571 #ifdef CONFIG_BLOCK
572 if (host->latency_hist_enabled) {
573 areq->mrq->io_start = ktime_get();
574 areq->mrq->lat_hist_enabled = 1;
575 } else
576 areq->mrq->lat_hist_enabled = 0;
577 #endif
578 trace_mmc_blk_rw_start(areq->mrq->cmd->opcode,
579 areq->mrq->cmd->arg,
580 areq->mrq->data);
581 start_err = __mmc_start_data_req(host, areq->mrq);
582 }
583
584 if (host->areq)
585 mmc_post_req(host, host->areq->mrq, 0);
586
587 /* Cancel a prepared request if it was not started. */
588 if ((err || start_err) && areq)
589 mmc_post_req(host, areq->mrq, -EINVAL);
590
591 if (err)
592 host->areq = NULL;
593 else
594 host->areq = areq;
595
596 if (error)
597 *error = err;
598 return data;
599 }
600 EXPORT_SYMBOL(mmc_start_req);
601
602 /**
603 * mmc_wait_for_req - start a request and wait for completion
604 * @host: MMC host to start command
605 * @mrq: MMC request to start
606 *
607 * Start a new MMC custom command request for a host, and wait
608 * for the command to complete. Does not attempt to parse the
609 * response.
610 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)611 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
612 {
613 __mmc_start_req(host, mrq);
614 mmc_wait_for_req_done(host, mrq);
615 }
616 EXPORT_SYMBOL(mmc_wait_for_req);
617
618 /**
619 * mmc_interrupt_hpi - Issue for High priority Interrupt
620 * @card: the MMC card associated with the HPI transfer
621 *
622 * Issued High Priority Interrupt, and check for card status
623 * until out-of prg-state.
624 */
mmc_interrupt_hpi(struct mmc_card * card)625 int mmc_interrupt_hpi(struct mmc_card *card)
626 {
627 int err;
628 u32 status;
629 unsigned long prg_wait;
630
631 BUG_ON(!card);
632
633 if (!card->ext_csd.hpi_en) {
634 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
635 return 1;
636 }
637
638 mmc_claim_host(card->host);
639 err = mmc_send_status(card, &status);
640 if (err) {
641 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
642 goto out;
643 }
644
645 switch (R1_CURRENT_STATE(status)) {
646 case R1_STATE_IDLE:
647 case R1_STATE_READY:
648 case R1_STATE_STBY:
649 case R1_STATE_TRAN:
650 /*
651 * In idle and transfer states, HPI is not needed and the caller
652 * can issue the next intended command immediately
653 */
654 goto out;
655 case R1_STATE_PRG:
656 break;
657 default:
658 /* In all other states, it's illegal to issue HPI */
659 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
660 mmc_hostname(card->host), R1_CURRENT_STATE(status));
661 err = -EINVAL;
662 goto out;
663 }
664
665 err = mmc_send_hpi_cmd(card, &status);
666 if (err)
667 goto out;
668
669 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
670 do {
671 err = mmc_send_status(card, &status);
672
673 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
674 break;
675 if (time_after(jiffies, prg_wait))
676 err = -ETIMEDOUT;
677 } while (!err);
678
679 out:
680 mmc_release_host(card->host);
681 return err;
682 }
683 EXPORT_SYMBOL(mmc_interrupt_hpi);
684
685 /**
686 * mmc_wait_for_cmd - start a command and wait for completion
687 * @host: MMC host to start command
688 * @cmd: MMC command to start
689 * @retries: maximum number of retries
690 *
691 * Start a new MMC command for a host, and wait for the command
692 * to complete. Return any error that occurred while the command
693 * was executing. Do not attempt to parse the response.
694 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)695 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
696 {
697 struct mmc_request mrq = {NULL};
698
699 WARN_ON(!host->claimed);
700
701 memset(cmd->resp, 0, sizeof(cmd->resp));
702 cmd->retries = retries;
703
704 mrq.cmd = cmd;
705 cmd->data = NULL;
706
707 mmc_wait_for_req(host, &mrq);
708
709 return cmd->error;
710 }
711
712 EXPORT_SYMBOL(mmc_wait_for_cmd);
713
714 /**
715 * mmc_stop_bkops - stop ongoing BKOPS
716 * @card: MMC card to check BKOPS
717 *
718 * Send HPI command to stop ongoing background operations to
719 * allow rapid servicing of foreground operations, e.g. read/
720 * writes. Wait until the card comes out of the programming state
721 * to avoid errors in servicing read/write requests.
722 */
mmc_stop_bkops(struct mmc_card * card)723 int mmc_stop_bkops(struct mmc_card *card)
724 {
725 int err = 0;
726
727 BUG_ON(!card);
728 err = mmc_interrupt_hpi(card);
729
730 /*
731 * If err is EINVAL, we can't issue an HPI.
732 * It should complete the BKOPS.
733 */
734 if (!err || (err == -EINVAL)) {
735 mmc_card_clr_doing_bkops(card);
736 err = 0;
737 }
738
739 return err;
740 }
741 EXPORT_SYMBOL(mmc_stop_bkops);
742
mmc_read_bkops_status(struct mmc_card * card)743 int mmc_read_bkops_status(struct mmc_card *card)
744 {
745 int err;
746 u8 *ext_csd;
747
748 /*
749 * In future work, we should consider storing the entire ext_csd.
750 */
751 ext_csd = kmalloc(512, GFP_KERNEL);
752 if (!ext_csd) {
753 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
754 mmc_hostname(card->host));
755 return -ENOMEM;
756 }
757
758 mmc_claim_host(card->host);
759 err = mmc_send_ext_csd(card, ext_csd);
760 mmc_release_host(card->host);
761 if (err)
762 goto out;
763
764 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
765 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
766 out:
767 kfree(ext_csd);
768 return err;
769 }
770 EXPORT_SYMBOL(mmc_read_bkops_status);
771
772 /**
773 * mmc_set_data_timeout - set the timeout for a data command
774 * @data: data phase for command
775 * @card: the MMC card associated with the data transfer
776 *
777 * Computes the data timeout parameters according to the
778 * correct algorithm given the card type.
779 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)780 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
781 {
782 unsigned int mult;
783
784 /*
785 * SDIO cards only define an upper 1 s limit on access.
786 */
787 if (mmc_card_sdio(card)) {
788 data->timeout_ns = 1000000000;
789 data->timeout_clks = 0;
790 return;
791 }
792
793 /*
794 * SD cards use a 100 multiplier rather than 10
795 */
796 mult = mmc_card_sd(card) ? 100 : 10;
797
798 /*
799 * Scale up the multiplier (and therefore the timeout) by
800 * the r2w factor for writes.
801 */
802 if (data->flags & MMC_DATA_WRITE)
803 mult <<= card->csd.r2w_factor;
804
805 data->timeout_ns = card->csd.tacc_ns * mult;
806 data->timeout_clks = card->csd.tacc_clks * mult;
807
808 /*
809 * SD cards also have an upper limit on the timeout.
810 */
811 if (mmc_card_sd(card)) {
812 unsigned int timeout_us, limit_us;
813
814 timeout_us = data->timeout_ns / 1000;
815 if (mmc_host_clk_rate(card->host))
816 timeout_us += data->timeout_clks * 1000 /
817 (mmc_host_clk_rate(card->host) / 1000);
818
819 if (data->flags & MMC_DATA_WRITE)
820 /*
821 * The MMC spec "It is strongly recommended
822 * for hosts to implement more than 500ms
823 * timeout value even if the card indicates
824 * the 250ms maximum busy length." Even the
825 * previous value of 300ms is known to be
826 * insufficient for some cards.
827 */
828 limit_us = 3000000;
829 else
830 limit_us = 100000;
831
832 /*
833 * SDHC cards always use these fixed values.
834 */
835 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
836 data->timeout_ns = limit_us * 1000;
837 data->timeout_clks = 0;
838 }
839
840 /* assign limit value if invalid */
841 if (timeout_us == 0)
842 data->timeout_ns = limit_us * 1000;
843 }
844
845 /*
846 * Some cards require longer data read timeout than indicated in CSD.
847 * Address this by setting the read timeout to a "reasonably high"
848 * value. For the cards tested, 600ms has proven enough. If necessary,
849 * this value can be increased if other problematic cards require this.
850 */
851 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
852 data->timeout_ns = 600000000;
853 data->timeout_clks = 0;
854 }
855
856 /*
857 * Some cards need very high timeouts if driven in SPI mode.
858 * The worst observed timeout was 900ms after writing a
859 * continuous stream of data until the internal logic
860 * overflowed.
861 */
862 if (mmc_host_is_spi(card->host)) {
863 if (data->flags & MMC_DATA_WRITE) {
864 if (data->timeout_ns < 1000000000)
865 data->timeout_ns = 1000000000; /* 1s */
866 } else {
867 if (data->timeout_ns < 100000000)
868 data->timeout_ns = 100000000; /* 100ms */
869 }
870 }
871 }
872 EXPORT_SYMBOL(mmc_set_data_timeout);
873
874 /**
875 * mmc_align_data_size - pads a transfer size to a more optimal value
876 * @card: the MMC card associated with the data transfer
877 * @sz: original transfer size
878 *
879 * Pads the original data size with a number of extra bytes in
880 * order to avoid controller bugs and/or performance hits
881 * (e.g. some controllers revert to PIO for certain sizes).
882 *
883 * Returns the improved size, which might be unmodified.
884 *
885 * Note that this function is only relevant when issuing a
886 * single scatter gather entry.
887 */
mmc_align_data_size(struct mmc_card * card,unsigned int sz)888 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
889 {
890 /*
891 * FIXME: We don't have a system for the controller to tell
892 * the core about its problems yet, so for now we just 32-bit
893 * align the size.
894 */
895 sz = ((sz + 3) / 4) * 4;
896
897 return sz;
898 }
899 EXPORT_SYMBOL(mmc_align_data_size);
900
901 /**
902 * __mmc_claim_host - exclusively claim a host
903 * @host: mmc host to claim
904 * @abort: whether or not the operation should be aborted
905 *
906 * Claim a host for a set of operations. If @abort is non null and
907 * dereference a non-zero value then this will return prematurely with
908 * that non-zero value without acquiring the lock. Returns zero
909 * with the lock held otherwise.
910 */
__mmc_claim_host(struct mmc_host * host,atomic_t * abort)911 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
912 {
913 DECLARE_WAITQUEUE(wait, current);
914 unsigned long flags;
915 int stop;
916
917 might_sleep();
918
919 add_wait_queue(&host->wq, &wait);
920 spin_lock_irqsave(&host->lock, flags);
921 while (1) {
922 set_current_state(TASK_UNINTERRUPTIBLE);
923 stop = abort ? atomic_read(abort) : 0;
924 if (stop || !host->claimed || host->claimer == current)
925 break;
926 spin_unlock_irqrestore(&host->lock, flags);
927 schedule();
928 spin_lock_irqsave(&host->lock, flags);
929 }
930 set_current_state(TASK_RUNNING);
931 if (!stop) {
932 host->claimed = 1;
933 host->claimer = current;
934 host->claim_cnt += 1;
935 } else
936 wake_up(&host->wq);
937 spin_unlock_irqrestore(&host->lock, flags);
938 remove_wait_queue(&host->wq, &wait);
939 if (host->ops->enable && !stop && host->claim_cnt == 1)
940 host->ops->enable(host);
941 return stop;
942 }
943
944 EXPORT_SYMBOL(__mmc_claim_host);
945
946 /**
947 * mmc_release_host - release a host
948 * @host: mmc host to release
949 *
950 * Release a MMC host, allowing others to claim the host
951 * for their operations.
952 */
mmc_release_host(struct mmc_host * host)953 void mmc_release_host(struct mmc_host *host)
954 {
955 unsigned long flags;
956
957 WARN_ON(!host->claimed);
958
959 if (host->ops->disable && host->claim_cnt == 1)
960 host->ops->disable(host);
961
962 spin_lock_irqsave(&host->lock, flags);
963 if (--host->claim_cnt) {
964 /* Release for nested claim */
965 spin_unlock_irqrestore(&host->lock, flags);
966 } else {
967 host->claimed = 0;
968 host->claimer = NULL;
969 spin_unlock_irqrestore(&host->lock, flags);
970 wake_up(&host->wq);
971 }
972 }
973 EXPORT_SYMBOL(mmc_release_host);
974
975 /*
976 * This is a helper function, which fetches a runtime pm reference for the
977 * card device and also claims the host.
978 */
mmc_get_card(struct mmc_card * card)979 void mmc_get_card(struct mmc_card *card)
980 {
981 pm_runtime_get_sync(&card->dev);
982 mmc_claim_host(card->host);
983 }
984 EXPORT_SYMBOL(mmc_get_card);
985
986 /*
987 * This is a helper function, which releases the host and drops the runtime
988 * pm reference for the card device.
989 */
mmc_put_card(struct mmc_card * card)990 void mmc_put_card(struct mmc_card *card)
991 {
992 mmc_release_host(card->host);
993 pm_runtime_mark_last_busy(&card->dev);
994 pm_runtime_put_autosuspend(&card->dev);
995 }
996 EXPORT_SYMBOL(mmc_put_card);
997
998 /*
999 * Internal function that does the actual ios call to the host driver,
1000 * optionally printing some debug output.
1001 */
mmc_set_ios(struct mmc_host * host)1002 static inline void mmc_set_ios(struct mmc_host *host)
1003 {
1004 struct mmc_ios *ios = &host->ios;
1005
1006 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1007 "width %u timing %u\n",
1008 mmc_hostname(host), ios->clock, ios->bus_mode,
1009 ios->power_mode, ios->chip_select, ios->vdd,
1010 ios->bus_width, ios->timing);
1011
1012 if (ios->clock > 0)
1013 mmc_set_ungated(host);
1014 host->ops->set_ios(host, ios);
1015 }
1016
1017 /*
1018 * Control chip select pin on a host.
1019 */
mmc_set_chip_select(struct mmc_host * host,int mode)1020 void mmc_set_chip_select(struct mmc_host *host, int mode)
1021 {
1022 mmc_host_clk_hold(host);
1023 host->ios.chip_select = mode;
1024 mmc_set_ios(host);
1025 mmc_host_clk_release(host);
1026 }
1027
1028 /*
1029 * Sets the host clock to the highest possible frequency that
1030 * is below "hz".
1031 */
__mmc_set_clock(struct mmc_host * host,unsigned int hz)1032 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
1033 {
1034 WARN_ON(hz && hz < host->f_min);
1035
1036 if (hz > host->f_max)
1037 hz = host->f_max;
1038
1039 host->ios.clock = hz;
1040 mmc_set_ios(host);
1041 }
1042
mmc_set_clock(struct mmc_host * host,unsigned int hz)1043 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1044 {
1045 mmc_host_clk_hold(host);
1046 __mmc_set_clock(host, hz);
1047 mmc_host_clk_release(host);
1048 }
1049
1050 #ifdef CONFIG_MMC_CLKGATE
1051 /*
1052 * This gates the clock by setting it to 0 Hz.
1053 */
mmc_gate_clock(struct mmc_host * host)1054 void mmc_gate_clock(struct mmc_host *host)
1055 {
1056 unsigned long flags;
1057
1058 spin_lock_irqsave(&host->clk_lock, flags);
1059 host->clk_old = host->ios.clock;
1060 host->ios.clock = 0;
1061 host->clk_gated = true;
1062 spin_unlock_irqrestore(&host->clk_lock, flags);
1063 mmc_set_ios(host);
1064 }
1065
1066 /*
1067 * This restores the clock from gating by using the cached
1068 * clock value.
1069 */
mmc_ungate_clock(struct mmc_host * host)1070 void mmc_ungate_clock(struct mmc_host *host)
1071 {
1072 /*
1073 * We should previously have gated the clock, so the clock shall
1074 * be 0 here! The clock may however be 0 during initialization,
1075 * when some request operations are performed before setting
1076 * the frequency. When ungate is requested in that situation
1077 * we just ignore the call.
1078 */
1079 if (host->clk_old) {
1080 BUG_ON(host->ios.clock);
1081 /* This call will also set host->clk_gated to false */
1082 __mmc_set_clock(host, host->clk_old);
1083 }
1084 }
1085
mmc_set_ungated(struct mmc_host * host)1086 void mmc_set_ungated(struct mmc_host *host)
1087 {
1088 unsigned long flags;
1089
1090 /*
1091 * We've been given a new frequency while the clock is gated,
1092 * so make sure we regard this as ungating it.
1093 */
1094 spin_lock_irqsave(&host->clk_lock, flags);
1095 host->clk_gated = false;
1096 spin_unlock_irqrestore(&host->clk_lock, flags);
1097 }
1098
1099 #else
mmc_set_ungated(struct mmc_host * host)1100 void mmc_set_ungated(struct mmc_host *host)
1101 {
1102 }
1103 #endif
1104
mmc_execute_tuning(struct mmc_card * card)1105 int mmc_execute_tuning(struct mmc_card *card)
1106 {
1107 struct mmc_host *host = card->host;
1108 u32 opcode;
1109 int err;
1110
1111 if (!host->ops->execute_tuning)
1112 return 0;
1113
1114 if (mmc_card_mmc(card))
1115 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1116 else
1117 opcode = MMC_SEND_TUNING_BLOCK;
1118
1119 mmc_host_clk_hold(host);
1120 err = host->ops->execute_tuning(host, opcode);
1121 mmc_host_clk_release(host);
1122
1123 if (err)
1124 pr_err("%s: tuning execution failed\n", mmc_hostname(host));
1125
1126 return err;
1127 }
1128
1129 /*
1130 * Change the bus mode (open drain/push-pull) of a host.
1131 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)1132 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1133 {
1134 mmc_host_clk_hold(host);
1135 host->ios.bus_mode = mode;
1136 mmc_set_ios(host);
1137 mmc_host_clk_release(host);
1138 }
1139
1140 /*
1141 * Change data bus width of a host.
1142 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)1143 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1144 {
1145 mmc_host_clk_hold(host);
1146 host->ios.bus_width = width;
1147 mmc_set_ios(host);
1148 mmc_host_clk_release(host);
1149 }
1150
1151 /**
1152 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1153 * @vdd: voltage (mV)
1154 * @low_bits: prefer low bits in boundary cases
1155 *
1156 * This function returns the OCR bit number according to the provided @vdd
1157 * value. If conversion is not possible a negative errno value returned.
1158 *
1159 * Depending on the @low_bits flag the function prefers low or high OCR bits
1160 * on boundary voltages. For example,
1161 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1162 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1163 *
1164 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1165 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1166 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1167 {
1168 const int max_bit = ilog2(MMC_VDD_35_36);
1169 int bit;
1170
1171 if (vdd < 1650 || vdd > 3600)
1172 return -EINVAL;
1173
1174 if (vdd >= 1650 && vdd <= 1950)
1175 return ilog2(MMC_VDD_165_195);
1176
1177 if (low_bits)
1178 vdd -= 1;
1179
1180 /* Base 2000 mV, step 100 mV, bit's base 8. */
1181 bit = (vdd - 2000) / 100 + 8;
1182 if (bit > max_bit)
1183 return max_bit;
1184 return bit;
1185 }
1186
1187 /**
1188 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1189 * @vdd_min: minimum voltage value (mV)
1190 * @vdd_max: maximum voltage value (mV)
1191 *
1192 * This function returns the OCR mask bits according to the provided @vdd_min
1193 * and @vdd_max values. If conversion is not possible the function returns 0.
1194 *
1195 * Notes wrt boundary cases:
1196 * This function sets the OCR bits for all boundary voltages, for example
1197 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1198 * MMC_VDD_34_35 mask.
1199 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1200 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1201 {
1202 u32 mask = 0;
1203
1204 if (vdd_max < vdd_min)
1205 return 0;
1206
1207 /* Prefer high bits for the boundary vdd_max values. */
1208 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1209 if (vdd_max < 0)
1210 return 0;
1211
1212 /* Prefer low bits for the boundary vdd_min values. */
1213 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1214 if (vdd_min < 0)
1215 return 0;
1216
1217 /* Fill the mask, from max bit to min bit. */
1218 while (vdd_max >= vdd_min)
1219 mask |= 1 << vdd_max--;
1220
1221 return mask;
1222 }
1223 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1224
1225 #ifdef CONFIG_OF
1226
1227 /**
1228 * mmc_of_parse_voltage - return mask of supported voltages
1229 * @np: The device node need to be parsed.
1230 * @mask: mask of voltages available for MMC/SD/SDIO
1231 *
1232 * 1. Return zero on success.
1233 * 2. Return negative errno: voltage-range is invalid.
1234 */
mmc_of_parse_voltage(struct device_node * np,u32 * mask)1235 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1236 {
1237 const u32 *voltage_ranges;
1238 int num_ranges, i;
1239
1240 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1241 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1242 if (!voltage_ranges || !num_ranges) {
1243 pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1244 return -EINVAL;
1245 }
1246
1247 for (i = 0; i < num_ranges; i++) {
1248 const int j = i * 2;
1249 u32 ocr_mask;
1250
1251 ocr_mask = mmc_vddrange_to_ocrmask(
1252 be32_to_cpu(voltage_ranges[j]),
1253 be32_to_cpu(voltage_ranges[j + 1]));
1254 if (!ocr_mask) {
1255 pr_err("%s: voltage-range #%d is invalid\n",
1256 np->full_name, i);
1257 return -EINVAL;
1258 }
1259 *mask |= ocr_mask;
1260 }
1261
1262 return 0;
1263 }
1264 EXPORT_SYMBOL(mmc_of_parse_voltage);
1265
1266 #endif /* CONFIG_OF */
1267
mmc_of_get_func_num(struct device_node * node)1268 static int mmc_of_get_func_num(struct device_node *node)
1269 {
1270 u32 reg;
1271 int ret;
1272
1273 ret = of_property_read_u32(node, "reg", ®);
1274 if (ret < 0)
1275 return ret;
1276
1277 return reg;
1278 }
1279
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1280 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1281 unsigned func_num)
1282 {
1283 struct device_node *node;
1284
1285 if (!host->parent || !host->parent->of_node)
1286 return NULL;
1287
1288 for_each_child_of_node(host->parent->of_node, node) {
1289 if (mmc_of_get_func_num(node) == func_num)
1290 return node;
1291 }
1292
1293 return NULL;
1294 }
1295
1296 #ifdef CONFIG_REGULATOR
1297
1298 /**
1299 * mmc_regulator_get_ocrmask - return mask of supported voltages
1300 * @supply: regulator to use
1301 *
1302 * This returns either a negative errno, or a mask of voltages that
1303 * can be provided to MMC/SD/SDIO devices using the specified voltage
1304 * regulator. This would normally be called before registering the
1305 * MMC host adapter.
1306 */
mmc_regulator_get_ocrmask(struct regulator * supply)1307 int mmc_regulator_get_ocrmask(struct regulator *supply)
1308 {
1309 int result = 0;
1310 int count;
1311 int i;
1312 int vdd_uV;
1313 int vdd_mV;
1314
1315 count = regulator_count_voltages(supply);
1316 if (count < 0)
1317 return count;
1318
1319 for (i = 0; i < count; i++) {
1320 vdd_uV = regulator_list_voltage(supply, i);
1321 if (vdd_uV <= 0)
1322 continue;
1323
1324 vdd_mV = vdd_uV / 1000;
1325 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1326 }
1327
1328 if (!result) {
1329 vdd_uV = regulator_get_voltage(supply);
1330 if (vdd_uV <= 0)
1331 return vdd_uV;
1332
1333 vdd_mV = vdd_uV / 1000;
1334 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1335 }
1336
1337 return result;
1338 }
1339 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1340
1341 /**
1342 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1343 * @mmc: the host to regulate
1344 * @supply: regulator to use
1345 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1346 *
1347 * Returns zero on success, else negative errno.
1348 *
1349 * MMC host drivers may use this to enable or disable a regulator using
1350 * a particular supply voltage. This would normally be called from the
1351 * set_ios() method.
1352 */
mmc_regulator_set_ocr(struct mmc_host * mmc,struct regulator * supply,unsigned short vdd_bit)1353 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1354 struct regulator *supply,
1355 unsigned short vdd_bit)
1356 {
1357 int result = 0;
1358 int min_uV, max_uV;
1359
1360 if (vdd_bit) {
1361 int tmp;
1362
1363 /*
1364 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1365 * bits this regulator doesn't quite support ... don't
1366 * be too picky, most cards and regulators are OK with
1367 * a 0.1V range goof (it's a small error percentage).
1368 */
1369 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1370 if (tmp == 0) {
1371 min_uV = 1650 * 1000;
1372 max_uV = 1950 * 1000;
1373 } else {
1374 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1375 max_uV = min_uV + 100 * 1000;
1376 }
1377
1378 result = regulator_set_voltage(supply, min_uV, max_uV);
1379 if (result == 0 && !mmc->regulator_enabled) {
1380 result = regulator_enable(supply);
1381 if (!result)
1382 mmc->regulator_enabled = true;
1383 }
1384 } else if (mmc->regulator_enabled) {
1385 result = regulator_disable(supply);
1386 if (result == 0)
1387 mmc->regulator_enabled = false;
1388 }
1389
1390 if (result)
1391 dev_err(mmc_dev(mmc),
1392 "could not set regulator OCR (%d)\n", result);
1393 return result;
1394 }
1395 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1396
1397 #endif /* CONFIG_REGULATOR */
1398
mmc_regulator_get_supply(struct mmc_host * mmc)1399 int mmc_regulator_get_supply(struct mmc_host *mmc)
1400 {
1401 struct device *dev = mmc_dev(mmc);
1402 int ret;
1403
1404 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1405 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1406
1407 if (IS_ERR(mmc->supply.vmmc)) {
1408 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1409 return -EPROBE_DEFER;
1410 dev_info(dev, "No vmmc regulator found\n");
1411 } else {
1412 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1413 if (ret > 0)
1414 mmc->ocr_avail = ret;
1415 else
1416 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1417 }
1418
1419 if (IS_ERR(mmc->supply.vqmmc)) {
1420 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1421 return -EPROBE_DEFER;
1422 dev_info(dev, "No vqmmc regulator found\n");
1423 }
1424
1425 return 0;
1426 }
1427 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1428
1429 /*
1430 * Mask off any voltages we don't support and select
1431 * the lowest voltage
1432 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1433 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1434 {
1435 int bit;
1436
1437 /*
1438 * Sanity check the voltages that the card claims to
1439 * support.
1440 */
1441 if (ocr & 0x7F) {
1442 dev_warn(mmc_dev(host),
1443 "card claims to support voltages below defined range\n");
1444 ocr &= ~0x7F;
1445 }
1446
1447 ocr &= host->ocr_avail;
1448 if (!ocr) {
1449 dev_warn(mmc_dev(host), "no support for card's volts\n");
1450 return 0;
1451 }
1452
1453 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1454 bit = ffs(ocr) - 1;
1455 ocr &= 3 << bit;
1456 mmc_power_cycle(host, ocr);
1457 } else {
1458 bit = fls(ocr) - 1;
1459 ocr &= 3 << bit;
1460 if (bit != host->ios.vdd)
1461 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1462 }
1463
1464 return ocr;
1465 }
1466
__mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1467 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1468 {
1469 int err = 0;
1470 int old_signal_voltage = host->ios.signal_voltage;
1471
1472 host->ios.signal_voltage = signal_voltage;
1473 if (host->ops->start_signal_voltage_switch) {
1474 mmc_host_clk_hold(host);
1475 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1476 mmc_host_clk_release(host);
1477 }
1478
1479 if (err)
1480 host->ios.signal_voltage = old_signal_voltage;
1481
1482 return err;
1483
1484 }
1485
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage,u32 ocr)1486 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1487 {
1488 struct mmc_command cmd = {0};
1489 int err = 0;
1490 u32 clock;
1491
1492 BUG_ON(!host);
1493
1494 /*
1495 * Send CMD11 only if the request is to switch the card to
1496 * 1.8V signalling.
1497 */
1498 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1499 return __mmc_set_signal_voltage(host, signal_voltage);
1500
1501 /*
1502 * If we cannot switch voltages, return failure so the caller
1503 * can continue without UHS mode
1504 */
1505 if (!host->ops->start_signal_voltage_switch)
1506 return -EPERM;
1507 if (!host->ops->card_busy)
1508 pr_warn("%s: cannot verify signal voltage switch\n",
1509 mmc_hostname(host));
1510
1511 cmd.opcode = SD_SWITCH_VOLTAGE;
1512 cmd.arg = 0;
1513 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1514
1515 err = mmc_wait_for_cmd(host, &cmd, 0);
1516 if (err)
1517 return err;
1518
1519 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1520 return -EIO;
1521
1522 mmc_host_clk_hold(host);
1523 /*
1524 * The card should drive cmd and dat[0:3] low immediately
1525 * after the response of cmd11, but wait 1 ms to be sure
1526 */
1527 mmc_delay(1);
1528 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1529 err = -EAGAIN;
1530 goto power_cycle;
1531 }
1532 /*
1533 * During a signal voltage level switch, the clock must be gated
1534 * for 5 ms according to the SD spec
1535 */
1536 clock = host->ios.clock;
1537 host->ios.clock = 0;
1538 mmc_set_ios(host);
1539
1540 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1541 /*
1542 * Voltages may not have been switched, but we've already
1543 * sent CMD11, so a power cycle is required anyway
1544 */
1545 err = -EAGAIN;
1546 goto power_cycle;
1547 }
1548
1549 /* Keep clock gated for at least 5 ms */
1550 mmc_delay(5);
1551 host->ios.clock = clock;
1552 mmc_set_ios(host);
1553
1554 /* Wait for at least 1 ms according to spec */
1555 mmc_delay(1);
1556
1557 /*
1558 * Failure to switch is indicated by the card holding
1559 * dat[0:3] low
1560 */
1561 if (host->ops->card_busy && host->ops->card_busy(host))
1562 err = -EAGAIN;
1563
1564 power_cycle:
1565 if (err) {
1566 pr_debug("%s: Signal voltage switch failed, "
1567 "power cycling card\n", mmc_hostname(host));
1568 mmc_power_cycle(host, ocr);
1569 }
1570
1571 mmc_host_clk_release(host);
1572
1573 return err;
1574 }
1575
1576 /*
1577 * Select timing parameters for host.
1578 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1579 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1580 {
1581 mmc_host_clk_hold(host);
1582 host->ios.timing = timing;
1583 mmc_set_ios(host);
1584 mmc_host_clk_release(host);
1585 }
1586
1587 /*
1588 * Select appropriate driver type for host.
1589 */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1590 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1591 {
1592 mmc_host_clk_hold(host);
1593 host->ios.drv_type = drv_type;
1594 mmc_set_ios(host);
1595 mmc_host_clk_release(host);
1596 }
1597
1598 /*
1599 * Apply power to the MMC stack. This is a two-stage process.
1600 * First, we enable power to the card without the clock running.
1601 * We then wait a bit for the power to stabilise. Finally,
1602 * enable the bus drivers and clock to the card.
1603 *
1604 * We must _NOT_ enable the clock prior to power stablising.
1605 *
1606 * If a host does all the power sequencing itself, ignore the
1607 * initial MMC_POWER_UP stage.
1608 */
mmc_power_up(struct mmc_host * host,u32 ocr)1609 void mmc_power_up(struct mmc_host *host, u32 ocr)
1610 {
1611 if (host->ios.power_mode == MMC_POWER_ON)
1612 return;
1613
1614 mmc_host_clk_hold(host);
1615
1616 host->ios.vdd = fls(ocr) - 1;
1617 if (mmc_host_is_spi(host))
1618 host->ios.chip_select = MMC_CS_HIGH;
1619 else
1620 host->ios.chip_select = MMC_CS_DONTCARE;
1621 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1622 host->ios.power_mode = MMC_POWER_UP;
1623 host->ios.bus_width = MMC_BUS_WIDTH_1;
1624 host->ios.timing = MMC_TIMING_LEGACY;
1625 mmc_set_ios(host);
1626
1627 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1628 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1629 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1630 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1631 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1632 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1633 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1634
1635 /*
1636 * This delay should be sufficient to allow the power supply
1637 * to reach the minimum voltage.
1638 */
1639 mmc_delay(10);
1640
1641 host->ios.clock = host->f_init;
1642
1643 host->ios.power_mode = MMC_POWER_ON;
1644 mmc_set_ios(host);
1645
1646 /*
1647 * This delay must be at least 74 clock sizes, or 1 ms, or the
1648 * time required to reach a stable voltage.
1649 */
1650 mmc_delay(10);
1651
1652 mmc_host_clk_release(host);
1653 }
1654
mmc_power_off(struct mmc_host * host)1655 void mmc_power_off(struct mmc_host *host)
1656 {
1657 if (host->ios.power_mode == MMC_POWER_OFF)
1658 return;
1659
1660 mmc_host_clk_hold(host);
1661
1662 host->ios.clock = 0;
1663 host->ios.vdd = 0;
1664
1665 if (!mmc_host_is_spi(host)) {
1666 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1667 host->ios.chip_select = MMC_CS_DONTCARE;
1668 }
1669 host->ios.power_mode = MMC_POWER_OFF;
1670 host->ios.bus_width = MMC_BUS_WIDTH_1;
1671 host->ios.timing = MMC_TIMING_LEGACY;
1672 mmc_set_ios(host);
1673
1674 /*
1675 * Some configurations, such as the 802.11 SDIO card in the OLPC
1676 * XO-1.5, require a short delay after poweroff before the card
1677 * can be successfully turned on again.
1678 */
1679 mmc_delay(1);
1680
1681 mmc_host_clk_release(host);
1682 }
1683
mmc_power_cycle(struct mmc_host * host,u32 ocr)1684 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1685 {
1686 mmc_power_off(host);
1687 /* Wait at least 1 ms according to SD spec */
1688 mmc_delay(1);
1689 mmc_power_up(host, ocr);
1690 }
1691
1692 /*
1693 * Cleanup when the last reference to the bus operator is dropped.
1694 */
__mmc_release_bus(struct mmc_host * host)1695 static void __mmc_release_bus(struct mmc_host *host)
1696 {
1697 BUG_ON(!host);
1698 BUG_ON(host->bus_refs);
1699 BUG_ON(!host->bus_dead);
1700
1701 host->bus_ops = NULL;
1702 }
1703
1704 /*
1705 * Increase reference count of bus operator
1706 */
mmc_bus_get(struct mmc_host * host)1707 static inline void mmc_bus_get(struct mmc_host *host)
1708 {
1709 unsigned long flags;
1710
1711 spin_lock_irqsave(&host->lock, flags);
1712 host->bus_refs++;
1713 spin_unlock_irqrestore(&host->lock, flags);
1714 }
1715
1716 /*
1717 * Decrease reference count of bus operator and free it if
1718 * it is the last reference.
1719 */
mmc_bus_put(struct mmc_host * host)1720 static inline void mmc_bus_put(struct mmc_host *host)
1721 {
1722 unsigned long flags;
1723
1724 spin_lock_irqsave(&host->lock, flags);
1725 host->bus_refs--;
1726 if ((host->bus_refs == 0) && host->bus_ops)
1727 __mmc_release_bus(host);
1728 spin_unlock_irqrestore(&host->lock, flags);
1729 }
1730
1731 /*
1732 * Assign a mmc bus handler to a host. Only one bus handler may control a
1733 * host at any given time.
1734 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1735 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1736 {
1737 unsigned long flags;
1738
1739 BUG_ON(!host);
1740 BUG_ON(!ops);
1741
1742 WARN_ON(!host->claimed);
1743
1744 spin_lock_irqsave(&host->lock, flags);
1745
1746 BUG_ON(host->bus_ops);
1747 BUG_ON(host->bus_refs);
1748
1749 host->bus_ops = ops;
1750 host->bus_refs = 1;
1751 host->bus_dead = 0;
1752
1753 spin_unlock_irqrestore(&host->lock, flags);
1754 }
1755
1756 /*
1757 * Remove the current bus handler from a host.
1758 */
mmc_detach_bus(struct mmc_host * host)1759 void mmc_detach_bus(struct mmc_host *host)
1760 {
1761 unsigned long flags;
1762
1763 BUG_ON(!host);
1764
1765 WARN_ON(!host->claimed);
1766 WARN_ON(!host->bus_ops);
1767
1768 spin_lock_irqsave(&host->lock, flags);
1769
1770 host->bus_dead = 1;
1771
1772 spin_unlock_irqrestore(&host->lock, flags);
1773
1774 mmc_bus_put(host);
1775 }
1776
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1777 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1778 bool cd_irq)
1779 {
1780 #ifdef CONFIG_MMC_DEBUG
1781 unsigned long flags;
1782 spin_lock_irqsave(&host->lock, flags);
1783 WARN_ON(host->removed);
1784 spin_unlock_irqrestore(&host->lock, flags);
1785 #endif
1786
1787 /*
1788 * If the device is configured as wakeup, we prevent a new sleep for
1789 * 5 s to give provision for user space to consume the event.
1790 */
1791 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1792 device_can_wakeup(mmc_dev(host)))
1793 pm_wakeup_event(mmc_dev(host), 5000);
1794
1795 host->detect_change = 1;
1796 mmc_schedule_delayed_work(&host->detect, delay);
1797 }
1798
1799 /**
1800 * mmc_detect_change - process change of state on a MMC socket
1801 * @host: host which changed state.
1802 * @delay: optional delay to wait before detection (jiffies)
1803 *
1804 * MMC drivers should call this when they detect a card has been
1805 * inserted or removed. The MMC layer will confirm that any
1806 * present card is still functional, and initialize any newly
1807 * inserted.
1808 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1809 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1810 {
1811 _mmc_detect_change(host, delay, true);
1812 }
1813 EXPORT_SYMBOL(mmc_detect_change);
1814
mmc_init_erase(struct mmc_card * card)1815 void mmc_init_erase(struct mmc_card *card)
1816 {
1817 unsigned int sz;
1818
1819 if (is_power_of_2(card->erase_size))
1820 card->erase_shift = ffs(card->erase_size) - 1;
1821 else
1822 card->erase_shift = 0;
1823
1824 /*
1825 * It is possible to erase an arbitrarily large area of an SD or MMC
1826 * card. That is not desirable because it can take a long time
1827 * (minutes) potentially delaying more important I/O, and also the
1828 * timeout calculations become increasingly hugely over-estimated.
1829 * Consequently, 'pref_erase' is defined as a guide to limit erases
1830 * to that size and alignment.
1831 *
1832 * For SD cards that define Allocation Unit size, limit erases to one
1833 * Allocation Unit at a time. For MMC cards that define High Capacity
1834 * Erase Size, whether it is switched on or not, limit to that size.
1835 * Otherwise just have a stab at a good value. For modern cards it
1836 * will end up being 4MiB. Note that if the value is too small, it
1837 * can end up taking longer to erase.
1838 */
1839 if (mmc_card_sd(card) && card->ssr.au) {
1840 card->pref_erase = card->ssr.au;
1841 card->erase_shift = ffs(card->ssr.au) - 1;
1842 } else if (card->ext_csd.hc_erase_size) {
1843 card->pref_erase = card->ext_csd.hc_erase_size;
1844 } else if (card->erase_size) {
1845 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1846 if (sz < 128)
1847 card->pref_erase = 512 * 1024 / 512;
1848 else if (sz < 512)
1849 card->pref_erase = 1024 * 1024 / 512;
1850 else if (sz < 1024)
1851 card->pref_erase = 2 * 1024 * 1024 / 512;
1852 else
1853 card->pref_erase = 4 * 1024 * 1024 / 512;
1854 if (card->pref_erase < card->erase_size)
1855 card->pref_erase = card->erase_size;
1856 else {
1857 sz = card->pref_erase % card->erase_size;
1858 if (sz)
1859 card->pref_erase += card->erase_size - sz;
1860 }
1861 } else
1862 card->pref_erase = 0;
1863 }
1864
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1865 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1866 unsigned int arg, unsigned int qty)
1867 {
1868 unsigned int erase_timeout;
1869
1870 if (arg == MMC_DISCARD_ARG ||
1871 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1872 erase_timeout = card->ext_csd.trim_timeout;
1873 } else if (card->ext_csd.erase_group_def & 1) {
1874 /* High Capacity Erase Group Size uses HC timeouts */
1875 if (arg == MMC_TRIM_ARG)
1876 erase_timeout = card->ext_csd.trim_timeout;
1877 else
1878 erase_timeout = card->ext_csd.hc_erase_timeout;
1879 } else {
1880 /* CSD Erase Group Size uses write timeout */
1881 unsigned int mult = (10 << card->csd.r2w_factor);
1882 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1883 unsigned int timeout_us;
1884
1885 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1886 if (card->csd.tacc_ns < 1000000)
1887 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1888 else
1889 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1890
1891 /*
1892 * ios.clock is only a target. The real clock rate might be
1893 * less but not that much less, so fudge it by multiplying by 2.
1894 */
1895 timeout_clks <<= 1;
1896 timeout_us += (timeout_clks * 1000) /
1897 (mmc_host_clk_rate(card->host) / 1000);
1898
1899 erase_timeout = timeout_us / 1000;
1900
1901 /*
1902 * Theoretically, the calculation could underflow so round up
1903 * to 1ms in that case.
1904 */
1905 if (!erase_timeout)
1906 erase_timeout = 1;
1907 }
1908
1909 /* Multiplier for secure operations */
1910 if (arg & MMC_SECURE_ARGS) {
1911 if (arg == MMC_SECURE_ERASE_ARG)
1912 erase_timeout *= card->ext_csd.sec_erase_mult;
1913 else
1914 erase_timeout *= card->ext_csd.sec_trim_mult;
1915 }
1916
1917 erase_timeout *= qty;
1918
1919 /*
1920 * Ensure at least a 1 second timeout for SPI as per
1921 * 'mmc_set_data_timeout()'
1922 */
1923 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1924 erase_timeout = 1000;
1925
1926 return erase_timeout;
1927 }
1928
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1929 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1930 unsigned int arg,
1931 unsigned int qty)
1932 {
1933 unsigned int erase_timeout;
1934
1935 if (card->ssr.erase_timeout) {
1936 /* Erase timeout specified in SD Status Register (SSR) */
1937 erase_timeout = card->ssr.erase_timeout * qty +
1938 card->ssr.erase_offset;
1939 } else {
1940 /*
1941 * Erase timeout not specified in SD Status Register (SSR) so
1942 * use 250ms per write block.
1943 */
1944 erase_timeout = 250 * qty;
1945 }
1946
1947 /* Must not be less than 1 second */
1948 if (erase_timeout < 1000)
1949 erase_timeout = 1000;
1950
1951 return erase_timeout;
1952 }
1953
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1954 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1955 unsigned int arg,
1956 unsigned int qty)
1957 {
1958 if (mmc_card_sd(card))
1959 return mmc_sd_erase_timeout(card, arg, qty);
1960 else
1961 return mmc_mmc_erase_timeout(card, arg, qty);
1962 }
1963
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1964 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1965 unsigned int to, unsigned int arg)
1966 {
1967 struct mmc_command cmd = {0};
1968 unsigned int qty = 0;
1969 unsigned long timeout;
1970 unsigned int fr, nr;
1971 int err;
1972
1973 fr = from;
1974 nr = to - from + 1;
1975 trace_mmc_blk_erase_start(arg, fr, nr);
1976
1977 /*
1978 * qty is used to calculate the erase timeout which depends on how many
1979 * erase groups (or allocation units in SD terminology) are affected.
1980 * We count erasing part of an erase group as one erase group.
1981 * For SD, the allocation units are always a power of 2. For MMC, the
1982 * erase group size is almost certainly also power of 2, but it does not
1983 * seem to insist on that in the JEDEC standard, so we fall back to
1984 * division in that case. SD may not specify an allocation unit size,
1985 * in which case the timeout is based on the number of write blocks.
1986 *
1987 * Note that the timeout for secure trim 2 will only be correct if the
1988 * number of erase groups specified is the same as the total of all
1989 * preceding secure trim 1 commands. Since the power may have been
1990 * lost since the secure trim 1 commands occurred, it is generally
1991 * impossible to calculate the secure trim 2 timeout correctly.
1992 */
1993 if (card->erase_shift)
1994 qty += ((to >> card->erase_shift) -
1995 (from >> card->erase_shift)) + 1;
1996 else if (mmc_card_sd(card))
1997 qty += to - from + 1;
1998 else
1999 qty += ((to / card->erase_size) -
2000 (from / card->erase_size)) + 1;
2001
2002 if (!mmc_card_blockaddr(card)) {
2003 from <<= 9;
2004 to <<= 9;
2005 }
2006
2007 if (mmc_card_sd(card))
2008 cmd.opcode = SD_ERASE_WR_BLK_START;
2009 else
2010 cmd.opcode = MMC_ERASE_GROUP_START;
2011 cmd.arg = from;
2012 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2013 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2014 if (err) {
2015 pr_err("mmc_erase: group start error %d, "
2016 "status %#x\n", err, cmd.resp[0]);
2017 err = -EIO;
2018 goto out;
2019 }
2020
2021 memset(&cmd, 0, sizeof(struct mmc_command));
2022 if (mmc_card_sd(card))
2023 cmd.opcode = SD_ERASE_WR_BLK_END;
2024 else
2025 cmd.opcode = MMC_ERASE_GROUP_END;
2026 cmd.arg = to;
2027 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2028 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2029 if (err) {
2030 pr_err("mmc_erase: group end error %d, status %#x\n",
2031 err, cmd.resp[0]);
2032 err = -EIO;
2033 goto out;
2034 }
2035
2036 memset(&cmd, 0, sizeof(struct mmc_command));
2037 cmd.opcode = MMC_ERASE;
2038 cmd.arg = arg;
2039 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2040 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
2041 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2042 if (err) {
2043 pr_err("mmc_erase: erase error %d, status %#x\n",
2044 err, cmd.resp[0]);
2045 err = -EIO;
2046 goto out;
2047 }
2048
2049 if (mmc_host_is_spi(card->host))
2050 goto out;
2051
2052 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
2053 do {
2054 memset(&cmd, 0, sizeof(struct mmc_command));
2055 cmd.opcode = MMC_SEND_STATUS;
2056 cmd.arg = card->rca << 16;
2057 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2058 /* Do not retry else we can't see errors */
2059 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2060 if (err || (cmd.resp[0] & 0xFDF92000)) {
2061 pr_err("error %d requesting status %#x\n",
2062 err, cmd.resp[0]);
2063 err = -EIO;
2064 goto out;
2065 }
2066
2067 /* Timeout if the device never becomes ready for data and
2068 * never leaves the program state.
2069 */
2070 if (time_after(jiffies, timeout)) {
2071 pr_err("%s: Card stuck in programming state! %s\n",
2072 mmc_hostname(card->host), __func__);
2073 err = -EIO;
2074 goto out;
2075 }
2076
2077 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2078 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2079 out:
2080
2081 trace_mmc_blk_erase_end(arg, fr, nr);
2082 return err;
2083 }
2084
2085 /**
2086 * mmc_erase - erase sectors.
2087 * @card: card to erase
2088 * @from: first sector to erase
2089 * @nr: number of sectors to erase
2090 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2091 *
2092 * Caller must claim host before calling this function.
2093 */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)2094 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2095 unsigned int arg)
2096 {
2097 unsigned int rem, to = from + nr;
2098
2099 if (!(card->host->caps & MMC_CAP_ERASE) ||
2100 !(card->csd.cmdclass & CCC_ERASE))
2101 return -EOPNOTSUPP;
2102
2103 if (!card->erase_size)
2104 return -EOPNOTSUPP;
2105
2106 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2107 return -EOPNOTSUPP;
2108
2109 if ((arg & MMC_SECURE_ARGS) &&
2110 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2111 return -EOPNOTSUPP;
2112
2113 if ((arg & MMC_TRIM_ARGS) &&
2114 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2115 return -EOPNOTSUPP;
2116
2117 if (arg == MMC_SECURE_ERASE_ARG) {
2118 if (from % card->erase_size || nr % card->erase_size)
2119 return -EINVAL;
2120 }
2121
2122 if (arg == MMC_ERASE_ARG) {
2123 rem = from % card->erase_size;
2124 if (rem) {
2125 rem = card->erase_size - rem;
2126 from += rem;
2127 if (nr > rem)
2128 nr -= rem;
2129 else
2130 return 0;
2131 }
2132 rem = nr % card->erase_size;
2133 if (rem)
2134 nr -= rem;
2135 }
2136
2137 if (nr == 0)
2138 return 0;
2139
2140 to = from + nr;
2141
2142 if (to <= from)
2143 return -EINVAL;
2144
2145 /* 'from' and 'to' are inclusive */
2146 to -= 1;
2147
2148 return mmc_do_erase(card, from, to, arg);
2149 }
2150 EXPORT_SYMBOL(mmc_erase);
2151
mmc_can_erase(struct mmc_card * card)2152 int mmc_can_erase(struct mmc_card *card)
2153 {
2154 if ((card->host->caps & MMC_CAP_ERASE) &&
2155 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2156 return 1;
2157 return 0;
2158 }
2159 EXPORT_SYMBOL(mmc_can_erase);
2160
mmc_can_trim(struct mmc_card * card)2161 int mmc_can_trim(struct mmc_card *card)
2162 {
2163 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2164 return 1;
2165 return 0;
2166 }
2167 EXPORT_SYMBOL(mmc_can_trim);
2168
mmc_can_discard(struct mmc_card * card)2169 int mmc_can_discard(struct mmc_card *card)
2170 {
2171 /*
2172 * As there's no way to detect the discard support bit at v4.5
2173 * use the s/w feature support filed.
2174 */
2175 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2176 return 1;
2177 return 0;
2178 }
2179 EXPORT_SYMBOL(mmc_can_discard);
2180
mmc_can_sanitize(struct mmc_card * card)2181 int mmc_can_sanitize(struct mmc_card *card)
2182 {
2183 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2184 return 0;
2185 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2186 return 1;
2187 return 0;
2188 }
2189 EXPORT_SYMBOL(mmc_can_sanitize);
2190
mmc_can_secure_erase_trim(struct mmc_card * card)2191 int mmc_can_secure_erase_trim(struct mmc_card *card)
2192 {
2193 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2194 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2195 return 1;
2196 return 0;
2197 }
2198 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2199
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)2200 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2201 unsigned int nr)
2202 {
2203 if (!card->erase_size)
2204 return 0;
2205 if (from % card->erase_size || nr % card->erase_size)
2206 return 0;
2207 return 1;
2208 }
2209 EXPORT_SYMBOL(mmc_erase_group_aligned);
2210
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)2211 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2212 unsigned int arg)
2213 {
2214 struct mmc_host *host = card->host;
2215 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2216 unsigned int last_timeout = 0;
2217
2218 if (card->erase_shift)
2219 max_qty = UINT_MAX >> card->erase_shift;
2220 else if (mmc_card_sd(card))
2221 max_qty = UINT_MAX;
2222 else
2223 max_qty = UINT_MAX / card->erase_size;
2224
2225 /* Find the largest qty with an OK timeout */
2226 do {
2227 y = 0;
2228 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2229 timeout = mmc_erase_timeout(card, arg, qty + x);
2230 if (timeout > host->max_busy_timeout)
2231 break;
2232 if (timeout < last_timeout)
2233 break;
2234 last_timeout = timeout;
2235 y = x;
2236 }
2237 qty += y;
2238 } while (y);
2239
2240 if (!qty)
2241 return 0;
2242
2243 if (qty == 1)
2244 return 1;
2245
2246 /* Convert qty to sectors */
2247 if (card->erase_shift)
2248 max_discard = --qty << card->erase_shift;
2249 else if (mmc_card_sd(card))
2250 max_discard = qty;
2251 else
2252 max_discard = --qty * card->erase_size;
2253
2254 return max_discard;
2255 }
2256
mmc_calc_max_discard(struct mmc_card * card)2257 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2258 {
2259 struct mmc_host *host = card->host;
2260 unsigned int max_discard, max_trim;
2261
2262 if (!host->max_busy_timeout)
2263 return UINT_MAX;
2264
2265 /*
2266 * Without erase_group_def set, MMC erase timeout depends on clock
2267 * frequence which can change. In that case, the best choice is
2268 * just the preferred erase size.
2269 */
2270 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2271 return card->pref_erase;
2272
2273 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2274 if (mmc_can_trim(card)) {
2275 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2276 if (max_trim < max_discard)
2277 max_discard = max_trim;
2278 } else if (max_discard < card->erase_size) {
2279 max_discard = 0;
2280 }
2281 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2282 mmc_hostname(host), max_discard, host->max_busy_timeout);
2283 return max_discard;
2284 }
2285 EXPORT_SYMBOL(mmc_calc_max_discard);
2286
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2287 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2288 {
2289 struct mmc_command cmd = {0};
2290
2291 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2292 return 0;
2293
2294 cmd.opcode = MMC_SET_BLOCKLEN;
2295 cmd.arg = blocklen;
2296 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2297 return mmc_wait_for_cmd(card->host, &cmd, 5);
2298 }
2299 EXPORT_SYMBOL(mmc_set_blocklen);
2300
mmc_set_blockcount(struct mmc_card * card,unsigned int blockcount,bool is_rel_write)2301 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2302 bool is_rel_write)
2303 {
2304 struct mmc_command cmd = {0};
2305
2306 cmd.opcode = MMC_SET_BLOCK_COUNT;
2307 cmd.arg = blockcount & 0x0000FFFF;
2308 if (is_rel_write)
2309 cmd.arg |= 1 << 31;
2310 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2311 return mmc_wait_for_cmd(card->host, &cmd, 5);
2312 }
2313 EXPORT_SYMBOL(mmc_set_blockcount);
2314
mmc_hw_reset_for_init(struct mmc_host * host)2315 static void mmc_hw_reset_for_init(struct mmc_host *host)
2316 {
2317 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2318 return;
2319 mmc_host_clk_hold(host);
2320 host->ops->hw_reset(host);
2321 mmc_host_clk_release(host);
2322 }
2323
mmc_can_reset(struct mmc_card * card)2324 int mmc_can_reset(struct mmc_card *card)
2325 {
2326 u8 rst_n_function;
2327
2328 if (!mmc_card_mmc(card))
2329 return 0;
2330 rst_n_function = card->ext_csd.rst_n_function;
2331 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2332 return 0;
2333 return 1;
2334 }
2335 EXPORT_SYMBOL(mmc_can_reset);
2336
mmc_do_hw_reset(struct mmc_host * host,int check)2337 static int mmc_do_hw_reset(struct mmc_host *host, int check)
2338 {
2339 struct mmc_card *card = host->card;
2340
2341 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2342 return -EOPNOTSUPP;
2343
2344 if (!card)
2345 return -EINVAL;
2346
2347 if (!mmc_can_reset(card))
2348 return -EOPNOTSUPP;
2349
2350 mmc_host_clk_hold(host);
2351 mmc_set_clock(host, host->f_init);
2352
2353 host->ops->hw_reset(host);
2354
2355 /* If the reset has happened, then a status command will fail */
2356 if (check) {
2357 struct mmc_command cmd = {0};
2358 int err;
2359
2360 cmd.opcode = MMC_SEND_STATUS;
2361 if (!mmc_host_is_spi(card->host))
2362 cmd.arg = card->rca << 16;
2363 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2364 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2365 if (!err) {
2366 mmc_host_clk_release(host);
2367 return -ENOSYS;
2368 }
2369 }
2370
2371 if (mmc_host_is_spi(host)) {
2372 host->ios.chip_select = MMC_CS_HIGH;
2373 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2374 } else {
2375 host->ios.chip_select = MMC_CS_DONTCARE;
2376 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2377 }
2378 host->ios.bus_width = MMC_BUS_WIDTH_1;
2379 host->ios.timing = MMC_TIMING_LEGACY;
2380 mmc_set_ios(host);
2381
2382 mmc_host_clk_release(host);
2383
2384 return host->bus_ops->power_restore(host);
2385 }
2386
mmc_hw_reset(struct mmc_host * host)2387 int mmc_hw_reset(struct mmc_host *host)
2388 {
2389 return mmc_do_hw_reset(host, 0);
2390 }
2391 EXPORT_SYMBOL(mmc_hw_reset);
2392
mmc_hw_reset_check(struct mmc_host * host)2393 int mmc_hw_reset_check(struct mmc_host *host)
2394 {
2395 return mmc_do_hw_reset(host, 1);
2396 }
2397 EXPORT_SYMBOL(mmc_hw_reset_check);
2398
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2399 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2400 {
2401 host->f_init = freq;
2402
2403 #ifdef CONFIG_MMC_DEBUG
2404 pr_info("%s: %s: trying to init card at %u Hz\n",
2405 mmc_hostname(host), __func__, host->f_init);
2406 #endif
2407 mmc_power_up(host, host->ocr_avail);
2408
2409 /*
2410 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2411 * do a hardware reset if possible.
2412 */
2413 mmc_hw_reset_for_init(host);
2414
2415 /*
2416 * sdio_reset sends CMD52 to reset card. Since we do not know
2417 * if the card is being re-initialized, just send it. CMD52
2418 * should be ignored by SD/eMMC cards.
2419 */
2420 sdio_reset(host);
2421 mmc_go_idle(host);
2422
2423 mmc_send_if_cond(host, host->ocr_avail);
2424
2425 /* Order's important: probe SDIO, then SD, then MMC */
2426 if (!mmc_attach_sdio(host))
2427 return 0;
2428 if (!mmc_attach_sd(host))
2429 return 0;
2430 if (!mmc_attach_mmc(host))
2431 return 0;
2432
2433 mmc_power_off(host);
2434 return -EIO;
2435 }
2436
_mmc_detect_card_removed(struct mmc_host * host)2437 int _mmc_detect_card_removed(struct mmc_host *host)
2438 {
2439 int ret;
2440
2441 if (host->caps & MMC_CAP_NONREMOVABLE)
2442 return 0;
2443
2444 if (!host->card || mmc_card_removed(host->card))
2445 return 1;
2446
2447 ret = host->bus_ops->alive(host);
2448
2449 /*
2450 * Card detect status and alive check may be out of sync if card is
2451 * removed slowly, when card detect switch changes while card/slot
2452 * pads are still contacted in hardware (refer to "SD Card Mechanical
2453 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2454 * detect work 200ms later for this case.
2455 */
2456 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2457 mmc_detect_change(host, msecs_to_jiffies(200));
2458 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2459 }
2460
2461 if (ret) {
2462 mmc_card_set_removed(host->card);
2463 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2464 }
2465
2466 return ret;
2467 }
2468
mmc_detect_card_removed(struct mmc_host * host)2469 int mmc_detect_card_removed(struct mmc_host *host)
2470 {
2471 struct mmc_card *card = host->card;
2472 int ret;
2473
2474 WARN_ON(!host->claimed);
2475
2476 if (!card)
2477 return 1;
2478
2479 ret = mmc_card_removed(card);
2480 /*
2481 * The card will be considered unchanged unless we have been asked to
2482 * detect a change or host requires polling to provide card detection.
2483 */
2484 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2485 return ret;
2486
2487 host->detect_change = 0;
2488 if (!ret) {
2489 ret = _mmc_detect_card_removed(host);
2490 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2491 /*
2492 * Schedule a detect work as soon as possible to let a
2493 * rescan handle the card removal.
2494 */
2495 cancel_delayed_work(&host->detect);
2496 _mmc_detect_change(host, 0, false);
2497 }
2498 }
2499
2500 return ret;
2501 }
2502 EXPORT_SYMBOL(mmc_detect_card_removed);
2503
mmc_rescan(struct work_struct * work)2504 void mmc_rescan(struct work_struct *work)
2505 {
2506 struct mmc_host *host =
2507 container_of(work, struct mmc_host, detect.work);
2508 int i;
2509
2510 if (host->trigger_card_event && host->ops->card_event) {
2511 host->ops->card_event(host);
2512 host->trigger_card_event = false;
2513 }
2514
2515 if (host->rescan_disable)
2516 return;
2517
2518 /* If there is a non-removable card registered, only scan once */
2519 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2520 return;
2521 host->rescan_entered = 1;
2522
2523 mmc_bus_get(host);
2524
2525 /*
2526 * if there is a _removable_ card registered, check whether it is
2527 * still present
2528 */
2529 if (host->bus_ops && !host->bus_dead
2530 && !(host->caps & MMC_CAP_NONREMOVABLE))
2531 host->bus_ops->detect(host);
2532
2533 host->detect_change = 0;
2534
2535 /*
2536 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2537 * the card is no longer present.
2538 */
2539 mmc_bus_put(host);
2540 mmc_bus_get(host);
2541
2542 /* if there still is a card present, stop here */
2543 if (host->bus_ops != NULL) {
2544 mmc_bus_put(host);
2545 goto out;
2546 }
2547
2548 /*
2549 * Only we can add a new handler, so it's safe to
2550 * release the lock here.
2551 */
2552 mmc_bus_put(host);
2553
2554 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2555 host->ops->get_cd(host) == 0) {
2556 mmc_claim_host(host);
2557 mmc_power_off(host);
2558 mmc_release_host(host);
2559 goto out;
2560 }
2561
2562 mmc_claim_host(host);
2563 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2564 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2565 break;
2566 if (freqs[i] <= host->f_min)
2567 break;
2568 }
2569 mmc_release_host(host);
2570
2571 out:
2572 if (host->caps & MMC_CAP_NEEDS_POLL)
2573 mmc_schedule_delayed_work(&host->detect, HZ);
2574 }
2575
mmc_start_host(struct mmc_host * host)2576 void mmc_start_host(struct mmc_host *host)
2577 {
2578 host->f_init = max(freqs[0], host->f_min);
2579 host->rescan_disable = 0;
2580 host->ios.power_mode = MMC_POWER_UNDEFINED;
2581 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2582 mmc_power_off(host);
2583 else
2584 mmc_power_up(host, host->ocr_avail);
2585 mmc_gpiod_request_cd_irq(host);
2586 _mmc_detect_change(host, 0, false);
2587 }
2588
mmc_stop_host(struct mmc_host * host)2589 void mmc_stop_host(struct mmc_host *host)
2590 {
2591 #ifdef CONFIG_MMC_DEBUG
2592 unsigned long flags;
2593 spin_lock_irqsave(&host->lock, flags);
2594 host->removed = 1;
2595 spin_unlock_irqrestore(&host->lock, flags);
2596 #endif
2597 if (host->slot.cd_irq >= 0)
2598 disable_irq(host->slot.cd_irq);
2599
2600 host->rescan_disable = 1;
2601 cancel_delayed_work_sync(&host->detect);
2602 mmc_flush_scheduled_work();
2603
2604 /* clear pm flags now and let card drivers set them as needed */
2605 host->pm_flags = 0;
2606
2607 mmc_bus_get(host);
2608 if (host->bus_ops && !host->bus_dead) {
2609 /* Calling bus_ops->remove() with a claimed host can deadlock */
2610 host->bus_ops->remove(host);
2611 mmc_claim_host(host);
2612 mmc_detach_bus(host);
2613 mmc_power_off(host);
2614 mmc_release_host(host);
2615 mmc_bus_put(host);
2616 return;
2617 }
2618 mmc_bus_put(host);
2619
2620 BUG_ON(host->card);
2621
2622 mmc_power_off(host);
2623 }
2624
mmc_power_save_host(struct mmc_host * host)2625 int mmc_power_save_host(struct mmc_host *host)
2626 {
2627 int ret = 0;
2628
2629 #ifdef CONFIG_MMC_DEBUG
2630 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2631 #endif
2632
2633 mmc_bus_get(host);
2634
2635 if (!host->bus_ops || host->bus_dead) {
2636 mmc_bus_put(host);
2637 return -EINVAL;
2638 }
2639
2640 if (host->bus_ops->power_save)
2641 ret = host->bus_ops->power_save(host);
2642
2643 mmc_bus_put(host);
2644
2645 mmc_power_off(host);
2646
2647 return ret;
2648 }
2649 EXPORT_SYMBOL(mmc_power_save_host);
2650
mmc_power_restore_host(struct mmc_host * host)2651 int mmc_power_restore_host(struct mmc_host *host)
2652 {
2653 int ret;
2654
2655 #ifdef CONFIG_MMC_DEBUG
2656 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2657 #endif
2658
2659 mmc_bus_get(host);
2660
2661 if (!host->bus_ops || host->bus_dead) {
2662 mmc_bus_put(host);
2663 return -EINVAL;
2664 }
2665
2666 mmc_power_up(host, host->card->ocr);
2667 ret = host->bus_ops->power_restore(host);
2668
2669 mmc_bus_put(host);
2670
2671 return ret;
2672 }
2673 EXPORT_SYMBOL(mmc_power_restore_host);
2674
2675 /*
2676 * Flush the cache to the non-volatile storage.
2677 */
mmc_flush_cache(struct mmc_card * card)2678 int mmc_flush_cache(struct mmc_card *card)
2679 {
2680 int err = 0;
2681
2682 if (mmc_card_mmc(card) &&
2683 (card->ext_csd.cache_size > 0) &&
2684 (card->ext_csd.cache_ctrl & 1)) {
2685 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2686 EXT_CSD_FLUSH_CACHE, 1, 0);
2687 if (err)
2688 pr_err("%s: cache flush error %d\n",
2689 mmc_hostname(card->host), err);
2690 }
2691
2692 return err;
2693 }
2694 EXPORT_SYMBOL(mmc_flush_cache);
2695
2696 #ifdef CONFIG_PM
2697
2698 /* Do the card removal on suspend if card is assumed removeable
2699 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2700 to sync the card.
2701 */
mmc_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)2702 int mmc_pm_notify(struct notifier_block *notify_block,
2703 unsigned long mode, void *unused)
2704 {
2705 struct mmc_host *host = container_of(
2706 notify_block, struct mmc_host, pm_notify);
2707 unsigned long flags;
2708 int err = 0;
2709
2710 switch (mode) {
2711 case PM_HIBERNATION_PREPARE:
2712 case PM_SUSPEND_PREPARE:
2713 case PM_RESTORE_PREPARE:
2714 spin_lock_irqsave(&host->lock, flags);
2715 host->rescan_disable = 1;
2716 spin_unlock_irqrestore(&host->lock, flags);
2717 cancel_delayed_work_sync(&host->detect);
2718
2719 if (!host->bus_ops)
2720 break;
2721
2722 /* Validate prerequisites for suspend */
2723 if (host->bus_ops->pre_suspend)
2724 err = host->bus_ops->pre_suspend(host);
2725 if (!err)
2726 break;
2727
2728 /* Calling bus_ops->remove() with a claimed host can deadlock */
2729 host->bus_ops->remove(host);
2730 mmc_claim_host(host);
2731 mmc_detach_bus(host);
2732 mmc_power_off(host);
2733 mmc_release_host(host);
2734 host->pm_flags = 0;
2735 break;
2736
2737 case PM_POST_SUSPEND:
2738 case PM_POST_HIBERNATION:
2739 case PM_POST_RESTORE:
2740
2741 spin_lock_irqsave(&host->lock, flags);
2742 host->rescan_disable = 0;
2743 spin_unlock_irqrestore(&host->lock, flags);
2744 _mmc_detect_change(host, 0, false);
2745
2746 }
2747
2748 return 0;
2749 }
2750 #endif
2751
2752 /**
2753 * mmc_init_context_info() - init synchronization context
2754 * @host: mmc host
2755 *
2756 * Init struct context_info needed to implement asynchronous
2757 * request mechanism, used by mmc core, host driver and mmc requests
2758 * supplier.
2759 */
mmc_init_context_info(struct mmc_host * host)2760 void mmc_init_context_info(struct mmc_host *host)
2761 {
2762 spin_lock_init(&host->context_info.lock);
2763 host->context_info.is_new_req = false;
2764 host->context_info.is_done_rcv = false;
2765 host->context_info.is_waiting_last_req = false;
2766 init_waitqueue_head(&host->context_info.wait);
2767 }
2768
2769 #ifdef CONFIG_MMC_EMBEDDED_SDIO
mmc_set_embedded_sdio_data(struct mmc_host * host,struct sdio_cis * cis,struct sdio_cccr * cccr,struct sdio_embedded_func * funcs,int num_funcs)2770 void mmc_set_embedded_sdio_data(struct mmc_host *host,
2771 struct sdio_cis *cis,
2772 struct sdio_cccr *cccr,
2773 struct sdio_embedded_func *funcs,
2774 int num_funcs)
2775 {
2776 host->embedded_sdio_data.cis = cis;
2777 host->embedded_sdio_data.cccr = cccr;
2778 host->embedded_sdio_data.funcs = funcs;
2779 host->embedded_sdio_data.num_funcs = num_funcs;
2780 }
2781
2782 EXPORT_SYMBOL(mmc_set_embedded_sdio_data);
2783 #endif
2784
mmc_init(void)2785 static int __init mmc_init(void)
2786 {
2787 int ret;
2788
2789 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2790 if (!workqueue)
2791 return -ENOMEM;
2792
2793 ret = mmc_register_bus();
2794 if (ret)
2795 goto destroy_workqueue;
2796
2797 ret = mmc_register_host_class();
2798 if (ret)
2799 goto unregister_bus;
2800
2801 ret = sdio_register_bus();
2802 if (ret)
2803 goto unregister_host_class;
2804
2805 return 0;
2806
2807 unregister_host_class:
2808 mmc_unregister_host_class();
2809 unregister_bus:
2810 mmc_unregister_bus();
2811 destroy_workqueue:
2812 destroy_workqueue(workqueue);
2813
2814 return ret;
2815 }
2816
mmc_exit(void)2817 static void __exit mmc_exit(void)
2818 {
2819 sdio_unregister_bus();
2820 mmc_unregister_host_class();
2821 mmc_unregister_bus();
2822 destroy_workqueue(workqueue);
2823 }
2824
2825 #ifdef CONFIG_BLOCK
2826 static ssize_t
latency_hist_show(struct device * dev,struct device_attribute * attr,char * buf)2827 latency_hist_show(struct device *dev, struct device_attribute *attr, char *buf)
2828 {
2829 struct mmc_host *host = cls_dev_to_mmc_host(dev);
2830 size_t written_bytes;
2831
2832 written_bytes = blk_latency_hist_show("Read", &host->io_lat_read,
2833 buf, PAGE_SIZE);
2834 written_bytes += blk_latency_hist_show("Write", &host->io_lat_write,
2835 buf + written_bytes, PAGE_SIZE - written_bytes);
2836
2837 return written_bytes;
2838 }
2839
2840 /*
2841 * Values permitted 0, 1, 2.
2842 * 0 -> Disable IO latency histograms (default)
2843 * 1 -> Enable IO latency histograms
2844 * 2 -> Zero out IO latency histograms
2845 */
2846 static ssize_t
latency_hist_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2847 latency_hist_store(struct device *dev, struct device_attribute *attr,
2848 const char *buf, size_t count)
2849 {
2850 struct mmc_host *host = cls_dev_to_mmc_host(dev);
2851 long value;
2852
2853 if (kstrtol(buf, 0, &value))
2854 return -EINVAL;
2855 if (value == BLK_IO_LAT_HIST_ZERO) {
2856 memset(&host->io_lat_read, 0, sizeof(host->io_lat_read));
2857 memset(&host->io_lat_write, 0, sizeof(host->io_lat_write));
2858 } else if (value == BLK_IO_LAT_HIST_ENABLE ||
2859 value == BLK_IO_LAT_HIST_DISABLE)
2860 host->latency_hist_enabled = value;
2861 return count;
2862 }
2863
2864 static DEVICE_ATTR(latency_hist, S_IRUGO | S_IWUSR,
2865 latency_hist_show, latency_hist_store);
2866
2867 void
mmc_latency_hist_sysfs_init(struct mmc_host * host)2868 mmc_latency_hist_sysfs_init(struct mmc_host *host)
2869 {
2870 if (device_create_file(&host->class_dev, &dev_attr_latency_hist))
2871 dev_err(&host->class_dev,
2872 "Failed to create latency_hist sysfs entry\n");
2873 }
2874
2875 void
mmc_latency_hist_sysfs_exit(struct mmc_host * host)2876 mmc_latency_hist_sysfs_exit(struct mmc_host *host)
2877 {
2878 device_remove_file(&host->class_dev, &dev_attr_latency_hist);
2879 }
2880 #endif
2881
2882 subsys_initcall(mmc_init);
2883 module_exit(mmc_exit);
2884
2885 MODULE_LICENSE("GPL");
2886