• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include "core.h"
17 #include "rdev-ops.h"
18 
19 
20 struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
22 			    u32 basic_rates, int bitrate)
23 {
24 	struct ieee80211_rate *result = &sband->bitrates[0];
25 	int i;
26 
27 	for (i = 0; i < sband->n_bitrates; i++) {
28 		if (!(basic_rates & BIT(i)))
29 			continue;
30 		if (sband->bitrates[i].bitrate > bitrate)
31 			continue;
32 		result = &sband->bitrates[i];
33 	}
34 
35 	return result;
36 }
37 EXPORT_SYMBOL(ieee80211_get_response_rate);
38 
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
40 			      enum nl80211_bss_scan_width scan_width)
41 {
42 	struct ieee80211_rate *bitrates;
43 	u32 mandatory_rates = 0;
44 	enum ieee80211_rate_flags mandatory_flag;
45 	int i;
46 
47 	if (WARN_ON(!sband))
48 		return 1;
49 
50 	if (sband->band == IEEE80211_BAND_2GHZ) {
51 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
52 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
53 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
54 		else
55 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
56 	} else {
57 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
58 	}
59 
60 	bitrates = sband->bitrates;
61 	for (i = 0; i < sband->n_bitrates; i++)
62 		if (bitrates[i].flags & mandatory_flag)
63 			mandatory_rates |= BIT(i);
64 	return mandatory_rates;
65 }
66 EXPORT_SYMBOL(ieee80211_mandatory_rates);
67 
ieee80211_channel_to_frequency(int chan,enum ieee80211_band band)68 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
69 {
70 	/* see 802.11 17.3.8.3.2 and Annex J
71 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
72 	if (chan <= 0)
73 		return 0; /* not supported */
74 	switch (band) {
75 	case IEEE80211_BAND_2GHZ:
76 		if (chan == 14)
77 			return 2484;
78 		else if (chan < 14)
79 			return 2407 + chan * 5;
80 		break;
81 	case IEEE80211_BAND_5GHZ:
82 		if (chan >= 182 && chan <= 196)
83 			return 4000 + chan * 5;
84 		else
85 			return 5000 + chan * 5;
86 		break;
87 	case IEEE80211_BAND_60GHZ:
88 		if (chan < 5)
89 			return 56160 + chan * 2160;
90 		break;
91 	default:
92 		;
93 	}
94 	return 0; /* not supported */
95 }
96 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
97 
ieee80211_frequency_to_channel(int freq)98 int ieee80211_frequency_to_channel(int freq)
99 {
100 	/* see 802.11 17.3.8.3.2 and Annex J */
101 	if (freq == 2484)
102 		return 14;
103 	else if (freq < 2484)
104 		return (freq - 2407) / 5;
105 	else if (freq >= 4910 && freq <= 4980)
106 		return (freq - 4000) / 5;
107 	else if (freq <= 45000) /* DMG band lower limit */
108 		return (freq - 5000) / 5;
109 	else if (freq >= 58320 && freq <= 64800)
110 		return (freq - 56160) / 2160;
111 	else
112 		return 0;
113 }
114 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
115 
__ieee80211_get_channel(struct wiphy * wiphy,int freq)116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
117 						  int freq)
118 {
119 	enum ieee80211_band band;
120 	struct ieee80211_supported_band *sband;
121 	int i;
122 
123 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
124 		sband = wiphy->bands[band];
125 
126 		if (!sband)
127 			continue;
128 
129 		for (i = 0; i < sband->n_channels; i++) {
130 			if (sband->channels[i].center_freq == freq)
131 				return &sband->channels[i];
132 		}
133 	}
134 
135 	return NULL;
136 }
137 EXPORT_SYMBOL(__ieee80211_get_channel);
138 
set_mandatory_flags_band(struct ieee80211_supported_band * sband,enum ieee80211_band band)139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
140 				     enum ieee80211_band band)
141 {
142 	int i, want;
143 
144 	switch (band) {
145 	case IEEE80211_BAND_5GHZ:
146 		want = 3;
147 		for (i = 0; i < sband->n_bitrates; i++) {
148 			if (sband->bitrates[i].bitrate == 60 ||
149 			    sband->bitrates[i].bitrate == 120 ||
150 			    sband->bitrates[i].bitrate == 240) {
151 				sband->bitrates[i].flags |=
152 					IEEE80211_RATE_MANDATORY_A;
153 				want--;
154 			}
155 		}
156 		WARN_ON(want);
157 		break;
158 	case IEEE80211_BAND_2GHZ:
159 		want = 7;
160 		for (i = 0; i < sband->n_bitrates; i++) {
161 			if (sband->bitrates[i].bitrate == 10) {
162 				sband->bitrates[i].flags |=
163 					IEEE80211_RATE_MANDATORY_B |
164 					IEEE80211_RATE_MANDATORY_G;
165 				want--;
166 			}
167 
168 			if (sband->bitrates[i].bitrate == 20 ||
169 			    sband->bitrates[i].bitrate == 55 ||
170 			    sband->bitrates[i].bitrate == 110 ||
171 			    sband->bitrates[i].bitrate == 60 ||
172 			    sband->bitrates[i].bitrate == 120 ||
173 			    sband->bitrates[i].bitrate == 240) {
174 				sband->bitrates[i].flags |=
175 					IEEE80211_RATE_MANDATORY_G;
176 				want--;
177 			}
178 
179 			if (sband->bitrates[i].bitrate != 10 &&
180 			    sband->bitrates[i].bitrate != 20 &&
181 			    sband->bitrates[i].bitrate != 55 &&
182 			    sband->bitrates[i].bitrate != 110)
183 				sband->bitrates[i].flags |=
184 					IEEE80211_RATE_ERP_G;
185 		}
186 		WARN_ON(want != 0 && want != 3 && want != 6);
187 		break;
188 	case IEEE80211_BAND_60GHZ:
189 		/* check for mandatory HT MCS 1..4 */
190 		WARN_ON(!sband->ht_cap.ht_supported);
191 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192 		break;
193 	case IEEE80211_NUM_BANDS:
194 		WARN_ON(1);
195 		break;
196 	}
197 }
198 
ieee80211_set_bitrate_flags(struct wiphy * wiphy)199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 	enum ieee80211_band band;
202 
203 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
204 		if (wiphy->bands[band])
205 			set_mandatory_flags_band(wiphy->bands[band], band);
206 }
207 
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 	int i;
211 	for (i = 0; i < wiphy->n_cipher_suites; i++)
212 		if (cipher == wiphy->cipher_suites[i])
213 			return true;
214 	return false;
215 }
216 
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 				   struct key_params *params, int key_idx,
219 				   bool pairwise, const u8 *mac_addr)
220 {
221 	if (key_idx > 5)
222 		return -EINVAL;
223 
224 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 		return -EINVAL;
226 
227 	if (pairwise && !mac_addr)
228 		return -EINVAL;
229 
230 	/*
231 	 * Disallow pairwise keys with non-zero index unless it's WEP
232 	 * or a vendor specific cipher (because current deployments use
233 	 * pairwise WEP keys with non-zero indices and for vendor specific
234 	 * ciphers this should be validated in the driver or hardware level
235 	 * - but 802.11i clearly specifies to use zero)
236 	 */
237 	if (pairwise && key_idx &&
238 	    ((params->cipher == WLAN_CIPHER_SUITE_TKIP) ||
239 	     (params->cipher == WLAN_CIPHER_SUITE_CCMP) ||
240 	     (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC)))
241 		return -EINVAL;
242 
243 	switch (params->cipher) {
244 	case WLAN_CIPHER_SUITE_WEP40:
245 		if (params->key_len != WLAN_KEY_LEN_WEP40)
246 			return -EINVAL;
247 		break;
248 	case WLAN_CIPHER_SUITE_TKIP:
249 		if (params->key_len != WLAN_KEY_LEN_TKIP)
250 			return -EINVAL;
251 		break;
252 	case WLAN_CIPHER_SUITE_CCMP:
253 		if (params->key_len != WLAN_KEY_LEN_CCMP)
254 			return -EINVAL;
255 		break;
256 	case WLAN_CIPHER_SUITE_WEP104:
257 		if (params->key_len != WLAN_KEY_LEN_WEP104)
258 			return -EINVAL;
259 		break;
260 	case WLAN_CIPHER_SUITE_AES_CMAC:
261 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
262 			return -EINVAL;
263 		break;
264 	default:
265 		/*
266 		 * We don't know anything about this algorithm,
267 		 * allow using it -- but the driver must check
268 		 * all parameters! We still check below whether
269 		 * or not the driver supports this algorithm,
270 		 * of course.
271 		 */
272 		break;
273 	}
274 
275 	if (params->seq) {
276 		switch (params->cipher) {
277 		case WLAN_CIPHER_SUITE_WEP40:
278 		case WLAN_CIPHER_SUITE_WEP104:
279 			/* These ciphers do not use key sequence */
280 			return -EINVAL;
281 		case WLAN_CIPHER_SUITE_TKIP:
282 		case WLAN_CIPHER_SUITE_CCMP:
283 		case WLAN_CIPHER_SUITE_AES_CMAC:
284 			if (params->seq_len != 6)
285 				return -EINVAL;
286 			break;
287 		}
288 	}
289 
290 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
291 		return -EINVAL;
292 
293 	return 0;
294 }
295 
ieee80211_hdrlen(__le16 fc)296 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
297 {
298 	unsigned int hdrlen = 24;
299 
300 	if (ieee80211_is_data(fc)) {
301 		if (ieee80211_has_a4(fc))
302 			hdrlen = 30;
303 		if (ieee80211_is_data_qos(fc)) {
304 			hdrlen += IEEE80211_QOS_CTL_LEN;
305 			if (ieee80211_has_order(fc))
306 				hdrlen += IEEE80211_HT_CTL_LEN;
307 		}
308 		goto out;
309 	}
310 
311 	if (ieee80211_is_ctl(fc)) {
312 		/*
313 		 * ACK and CTS are 10 bytes, all others 16. To see how
314 		 * to get this condition consider
315 		 *   subtype mask:   0b0000000011110000 (0x00F0)
316 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
317 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
318 		 *   bits that matter:         ^^^      (0x00E0)
319 		 *   value of those: 0b0000000011000000 (0x00C0)
320 		 */
321 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
322 			hdrlen = 10;
323 		else
324 			hdrlen = 16;
325 	}
326 out:
327 	return hdrlen;
328 }
329 EXPORT_SYMBOL(ieee80211_hdrlen);
330 
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)331 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
332 {
333 	const struct ieee80211_hdr *hdr =
334 			(const struct ieee80211_hdr *)skb->data;
335 	unsigned int hdrlen;
336 
337 	if (unlikely(skb->len < 10))
338 		return 0;
339 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
340 	if (unlikely(hdrlen > skb->len))
341 		return 0;
342 	return hdrlen;
343 }
344 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
345 
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)346 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
347 {
348 	int ae = meshhdr->flags & MESH_FLAGS_AE;
349 	/* 802.11-2012, 8.2.4.7.3 */
350 	switch (ae) {
351 	default:
352 	case 0:
353 		return 6;
354 	case MESH_FLAGS_AE_A4:
355 		return 12;
356 	case MESH_FLAGS_AE_A5_A6:
357 		return 18;
358 	}
359 }
360 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
361 
ieee80211_data_to_8023(struct sk_buff * skb,const u8 * addr,enum nl80211_iftype iftype)362 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
363 			   enum nl80211_iftype iftype)
364 {
365 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
366 	u16 hdrlen, ethertype;
367 	u8 *payload;
368 	u8 dst[ETH_ALEN];
369 	u8 src[ETH_ALEN] __aligned(2);
370 
371 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
372 		return -1;
373 
374 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
375 
376 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
377 	 * header
378 	 * IEEE 802.11 address fields:
379 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
380 	 *   0     0   DA    SA    BSSID n/a
381 	 *   0     1   DA    BSSID SA    n/a
382 	 *   1     0   BSSID SA    DA    n/a
383 	 *   1     1   RA    TA    DA    SA
384 	 */
385 	memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
386 	memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
387 
388 	switch (hdr->frame_control &
389 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
390 	case cpu_to_le16(IEEE80211_FCTL_TODS):
391 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
392 			     iftype != NL80211_IFTYPE_AP_VLAN &&
393 			     iftype != NL80211_IFTYPE_P2P_GO))
394 			return -1;
395 		break;
396 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
397 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
398 			     iftype != NL80211_IFTYPE_MESH_POINT &&
399 			     iftype != NL80211_IFTYPE_AP_VLAN &&
400 			     iftype != NL80211_IFTYPE_STATION))
401 			return -1;
402 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
403 			struct ieee80211s_hdr *meshdr =
404 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
405 			/* make sure meshdr->flags is on the linear part */
406 			if (!pskb_may_pull(skb, hdrlen + 1))
407 				return -1;
408 			if (meshdr->flags & MESH_FLAGS_AE_A4)
409 				return -1;
410 			if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
411 				skb_copy_bits(skb, hdrlen +
412 					offsetof(struct ieee80211s_hdr, eaddr1),
413 				       	dst, ETH_ALEN);
414 				skb_copy_bits(skb, hdrlen +
415 					offsetof(struct ieee80211s_hdr, eaddr2),
416 				        src, ETH_ALEN);
417 			}
418 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
419 		}
420 		break;
421 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
422 		if ((iftype != NL80211_IFTYPE_STATION &&
423 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
424 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
425 		    (is_multicast_ether_addr(dst) &&
426 		     ether_addr_equal(src, addr)))
427 			return -1;
428 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
429 			struct ieee80211s_hdr *meshdr =
430 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
431 			/* make sure meshdr->flags is on the linear part */
432 			if (!pskb_may_pull(skb, hdrlen + 1))
433 				return -1;
434 			if (meshdr->flags & MESH_FLAGS_AE_A5_A6)
435 				return -1;
436 			if (meshdr->flags & MESH_FLAGS_AE_A4)
437 				skb_copy_bits(skb, hdrlen +
438 					offsetof(struct ieee80211s_hdr, eaddr1),
439 					src, ETH_ALEN);
440 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
441 		}
442 		break;
443 	case cpu_to_le16(0):
444 		if (iftype != NL80211_IFTYPE_ADHOC &&
445 		    iftype != NL80211_IFTYPE_STATION)
446 				return -1;
447 		break;
448 	}
449 
450 	if (!pskb_may_pull(skb, hdrlen + 8))
451 		return -1;
452 
453 	payload = skb->data + hdrlen;
454 	ethertype = (payload[6] << 8) | payload[7];
455 
456 	if (likely((ether_addr_equal(payload, rfc1042_header) &&
457 		    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
458 		   ether_addr_equal(payload, bridge_tunnel_header))) {
459 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
460 		 * replace EtherType */
461 		skb_pull(skb, hdrlen + 6);
462 		memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
463 		memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
464 	} else {
465 		struct ethhdr *ehdr;
466 		__be16 len;
467 
468 		skb_pull(skb, hdrlen);
469 		len = htons(skb->len);
470 		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
471 		memcpy(ehdr->h_dest, dst, ETH_ALEN);
472 		memcpy(ehdr->h_source, src, ETH_ALEN);
473 		ehdr->h_proto = len;
474 	}
475 	return 0;
476 }
477 EXPORT_SYMBOL(ieee80211_data_to_8023);
478 
ieee80211_data_from_8023(struct sk_buff * skb,const u8 * addr,enum nl80211_iftype iftype,const u8 * bssid,bool qos)479 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
480 			     enum nl80211_iftype iftype,
481 			     const u8 *bssid, bool qos)
482 {
483 	struct ieee80211_hdr hdr;
484 	u16 hdrlen, ethertype;
485 	__le16 fc;
486 	const u8 *encaps_data;
487 	int encaps_len, skip_header_bytes;
488 	int nh_pos, h_pos;
489 	int head_need;
490 
491 	if (unlikely(skb->len < ETH_HLEN))
492 		return -EINVAL;
493 
494 	nh_pos = skb_network_header(skb) - skb->data;
495 	h_pos = skb_transport_header(skb) - skb->data;
496 
497 	/* convert Ethernet header to proper 802.11 header (based on
498 	 * operation mode) */
499 	ethertype = (skb->data[12] << 8) | skb->data[13];
500 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
501 
502 	switch (iftype) {
503 	case NL80211_IFTYPE_AP:
504 	case NL80211_IFTYPE_AP_VLAN:
505 	case NL80211_IFTYPE_P2P_GO:
506 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
507 		/* DA BSSID SA */
508 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
509 		memcpy(hdr.addr2, addr, ETH_ALEN);
510 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
511 		hdrlen = 24;
512 		break;
513 	case NL80211_IFTYPE_STATION:
514 	case NL80211_IFTYPE_P2P_CLIENT:
515 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
516 		/* BSSID SA DA */
517 		memcpy(hdr.addr1, bssid, ETH_ALEN);
518 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
519 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
520 		hdrlen = 24;
521 		break;
522 	case NL80211_IFTYPE_ADHOC:
523 		/* DA SA BSSID */
524 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
525 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
526 		memcpy(hdr.addr3, bssid, ETH_ALEN);
527 		hdrlen = 24;
528 		break;
529 	default:
530 		return -EOPNOTSUPP;
531 	}
532 
533 	if (qos) {
534 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
535 		hdrlen += 2;
536 	}
537 
538 	hdr.frame_control = fc;
539 	hdr.duration_id = 0;
540 	hdr.seq_ctrl = 0;
541 
542 	skip_header_bytes = ETH_HLEN;
543 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
544 		encaps_data = bridge_tunnel_header;
545 		encaps_len = sizeof(bridge_tunnel_header);
546 		skip_header_bytes -= 2;
547 	} else if (ethertype >= ETH_P_802_3_MIN) {
548 		encaps_data = rfc1042_header;
549 		encaps_len = sizeof(rfc1042_header);
550 		skip_header_bytes -= 2;
551 	} else {
552 		encaps_data = NULL;
553 		encaps_len = 0;
554 	}
555 
556 	skb_pull(skb, skip_header_bytes);
557 	nh_pos -= skip_header_bytes;
558 	h_pos -= skip_header_bytes;
559 
560 	head_need = hdrlen + encaps_len - skb_headroom(skb);
561 
562 	if (head_need > 0 || skb_cloned(skb)) {
563 		head_need = max(head_need, 0);
564 		if (head_need)
565 			skb_orphan(skb);
566 
567 		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
568 			return -ENOMEM;
569 
570 		skb->truesize += head_need;
571 	}
572 
573 	if (encaps_data) {
574 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
575 		nh_pos += encaps_len;
576 		h_pos += encaps_len;
577 	}
578 
579 	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
580 
581 	nh_pos += hdrlen;
582 	h_pos += hdrlen;
583 
584 	/* Update skb pointers to various headers since this modified frame
585 	 * is going to go through Linux networking code that may potentially
586 	 * need things like pointer to IP header. */
587 	skb_set_mac_header(skb, 0);
588 	skb_set_network_header(skb, nh_pos);
589 	skb_set_transport_header(skb, h_pos);
590 
591 	return 0;
592 }
593 EXPORT_SYMBOL(ieee80211_data_from_8023);
594 
595 
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,bool has_80211_header)596 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
597 			      const u8 *addr, enum nl80211_iftype iftype,
598 			      const unsigned int extra_headroom,
599 			      bool has_80211_header)
600 {
601 	struct sk_buff *frame = NULL;
602 	u16 ethertype;
603 	u8 *payload;
604 	const struct ethhdr *eth;
605 	int remaining, err;
606 	u8 dst[ETH_ALEN], src[ETH_ALEN];
607 
608 	if (has_80211_header) {
609 		err = ieee80211_data_to_8023(skb, addr, iftype);
610 		if (err)
611 			goto out;
612 
613 		/* skip the wrapping header */
614 		eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
615 		if (!eth)
616 			goto out;
617 	} else {
618 		eth = (struct ethhdr *) skb->data;
619 	}
620 
621 	while (skb != frame) {
622 		u8 padding;
623 		__be16 len = eth->h_proto;
624 		unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
625 
626 		remaining = skb->len;
627 		memcpy(dst, eth->h_dest, ETH_ALEN);
628 		memcpy(src, eth->h_source, ETH_ALEN);
629 
630 		padding = (4 - subframe_len) & 0x3;
631 		/* the last MSDU has no padding */
632 		if (subframe_len > remaining)
633 			goto purge;
634 
635 		skb_pull(skb, sizeof(struct ethhdr));
636 		/* reuse skb for the last subframe */
637 		if (remaining <= subframe_len + padding)
638 			frame = skb;
639 		else {
640 			unsigned int hlen = ALIGN(extra_headroom, 4);
641 			/*
642 			 * Allocate and reserve two bytes more for payload
643 			 * alignment since sizeof(struct ethhdr) is 14.
644 			 */
645 			frame = dev_alloc_skb(hlen + subframe_len + 2);
646 			if (!frame)
647 				goto purge;
648 
649 			skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
650 			memcpy(skb_put(frame, ntohs(len)), skb->data,
651 				ntohs(len));
652 
653 			eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
654 							padding);
655 			if (!eth) {
656 				dev_kfree_skb(frame);
657 				goto purge;
658 			}
659 		}
660 
661 		skb_reset_network_header(frame);
662 		frame->dev = skb->dev;
663 		frame->priority = skb->priority;
664 
665 		payload = frame->data;
666 		ethertype = (payload[6] << 8) | payload[7];
667 
668 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
669 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
670 			   ether_addr_equal(payload, bridge_tunnel_header))) {
671 			/* remove RFC1042 or Bridge-Tunnel
672 			 * encapsulation and replace EtherType */
673 			skb_pull(frame, 6);
674 			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
675 			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
676 		} else {
677 			memcpy(skb_push(frame, sizeof(__be16)), &len,
678 				sizeof(__be16));
679 			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
680 			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
681 		}
682 		__skb_queue_tail(list, frame);
683 	}
684 
685 	return;
686 
687  purge:
688 	__skb_queue_purge(list);
689  out:
690 	dev_kfree_skb(skb);
691 }
692 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
693 
694 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)695 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
696 				    struct cfg80211_qos_map *qos_map)
697 {
698 	unsigned int dscp;
699 	unsigned char vlan_priority;
700 
701 	/* skb->priority values from 256->263 are magic values to
702 	 * directly indicate a specific 802.1d priority.  This is used
703 	 * to allow 802.1d priority to be passed directly in from VLAN
704 	 * tags, etc.
705 	 */
706 	if (skb->priority >= 256 && skb->priority <= 263)
707 		return skb->priority - 256;
708 
709 	if (vlan_tx_tag_present(skb)) {
710 		vlan_priority = (vlan_tx_tag_get(skb) & VLAN_PRIO_MASK)
711 			>> VLAN_PRIO_SHIFT;
712 		if (vlan_priority > 0)
713 			return vlan_priority;
714 	}
715 
716 	switch (skb->protocol) {
717 	case htons(ETH_P_IP):
718 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
719 		break;
720 	case htons(ETH_P_IPV6):
721 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
722 		break;
723 	case htons(ETH_P_MPLS_UC):
724 	case htons(ETH_P_MPLS_MC): {
725 		struct mpls_label mpls_tmp, *mpls;
726 
727 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
728 					  sizeof(*mpls), &mpls_tmp);
729 		if (!mpls)
730 			return 0;
731 
732 		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
733 			>> MPLS_LS_TC_SHIFT;
734 	}
735 	case htons(ETH_P_80221):
736 		/* 802.21 is always network control traffic */
737 		return 7;
738 	default:
739 		return 0;
740 	}
741 
742 	if (qos_map) {
743 		unsigned int i, tmp_dscp = dscp >> 2;
744 
745 		for (i = 0; i < qos_map->num_des; i++) {
746 			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
747 				return qos_map->dscp_exception[i].up;
748 		}
749 
750 		for (i = 0; i < 8; i++) {
751 			if (tmp_dscp >= qos_map->up[i].low &&
752 			    tmp_dscp <= qos_map->up[i].high)
753 				return i;
754 		}
755 	}
756 
757 	return dscp >> 5;
758 }
759 EXPORT_SYMBOL(cfg80211_classify8021d);
760 
ieee80211_bss_get_ie(struct cfg80211_bss * bss,u8 ie)761 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
762 {
763 	const struct cfg80211_bss_ies *ies;
764 
765 	ies = rcu_dereference(bss->ies);
766 	if (!ies)
767 		return NULL;
768 
769 	return cfg80211_find_ie(ie, ies->data, ies->len);
770 }
771 EXPORT_SYMBOL(ieee80211_bss_get_ie);
772 
cfg80211_upload_connect_keys(struct wireless_dev * wdev)773 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
774 {
775 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
776 	struct net_device *dev = wdev->netdev;
777 	int i;
778 
779 	if (!wdev->connect_keys)
780 		return;
781 
782 	for (i = 0; i < 6; i++) {
783 		if (!wdev->connect_keys->params[i].cipher)
784 			continue;
785 		if (rdev_add_key(rdev, dev, i, false, NULL,
786 				 &wdev->connect_keys->params[i])) {
787 			netdev_err(dev, "failed to set key %d\n", i);
788 			continue;
789 		}
790 		if (wdev->connect_keys->def == i)
791 			if (rdev_set_default_key(rdev, dev, i, true, true)) {
792 				netdev_err(dev, "failed to set defkey %d\n", i);
793 				continue;
794 			}
795 		if (wdev->connect_keys->defmgmt == i)
796 			if (rdev_set_default_mgmt_key(rdev, dev, i))
797 				netdev_err(dev, "failed to set mgtdef %d\n", i);
798 	}
799 
800 	kzfree(wdev->connect_keys);
801 	wdev->connect_keys = NULL;
802 }
803 
cfg80211_process_wdev_events(struct wireless_dev * wdev)804 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
805 {
806 	struct cfg80211_event *ev;
807 	unsigned long flags;
808 	const u8 *bssid = NULL;
809 
810 	spin_lock_irqsave(&wdev->event_lock, flags);
811 	while (!list_empty(&wdev->event_list)) {
812 		ev = list_first_entry(&wdev->event_list,
813 				      struct cfg80211_event, list);
814 		list_del(&ev->list);
815 		spin_unlock_irqrestore(&wdev->event_lock, flags);
816 
817 		wdev_lock(wdev);
818 		switch (ev->type) {
819 		case EVENT_CONNECT_RESULT:
820 			if (!is_zero_ether_addr(ev->cr.bssid))
821 				bssid = ev->cr.bssid;
822 			__cfg80211_connect_result(
823 				wdev->netdev, bssid,
824 				ev->cr.req_ie, ev->cr.req_ie_len,
825 				ev->cr.resp_ie, ev->cr.resp_ie_len,
826 				ev->cr.status,
827 				ev->cr.status == WLAN_STATUS_SUCCESS,
828 				NULL);
829 			break;
830 		case EVENT_ROAMED:
831 			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
832 					  ev->rm.req_ie_len, ev->rm.resp_ie,
833 					  ev->rm.resp_ie_len);
834 			break;
835 		case EVENT_DISCONNECTED:
836 			__cfg80211_disconnected(wdev->netdev,
837 						ev->dc.ie, ev->dc.ie_len,
838 						ev->dc.reason, true);
839 			break;
840 		case EVENT_IBSS_JOINED:
841 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
842 					       ev->ij.channel);
843 			break;
844 		case EVENT_STOPPED:
845 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
846 			break;
847 		}
848 		wdev_unlock(wdev);
849 
850 		kfree(ev);
851 
852 		spin_lock_irqsave(&wdev->event_lock, flags);
853 	}
854 	spin_unlock_irqrestore(&wdev->event_lock, flags);
855 }
856 
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)857 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
858 {
859 	struct wireless_dev *wdev;
860 
861 	ASSERT_RTNL();
862 
863 	list_for_each_entry(wdev, &rdev->wdev_list, list)
864 		cfg80211_process_wdev_events(wdev);
865 }
866 
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,u32 * flags,struct vif_params * params)867 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
868 			  struct net_device *dev, enum nl80211_iftype ntype,
869 			  u32 *flags, struct vif_params *params)
870 {
871 	int err;
872 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
873 
874 	ASSERT_RTNL();
875 
876 	/* don't support changing VLANs, you just re-create them */
877 	if (otype == NL80211_IFTYPE_AP_VLAN)
878 		return -EOPNOTSUPP;
879 
880 	/* cannot change into P2P device type */
881 	if (ntype == NL80211_IFTYPE_P2P_DEVICE)
882 		return -EOPNOTSUPP;
883 
884 	if (!rdev->ops->change_virtual_intf ||
885 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
886 		return -EOPNOTSUPP;
887 
888 	/* if it's part of a bridge, reject changing type to station/ibss */
889 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
890 	    (ntype == NL80211_IFTYPE_ADHOC ||
891 	     ntype == NL80211_IFTYPE_STATION ||
892 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
893 		return -EBUSY;
894 
895 	if (ntype != otype && netif_running(dev)) {
896 		dev->ieee80211_ptr->use_4addr = false;
897 		dev->ieee80211_ptr->mesh_id_up_len = 0;
898 		wdev_lock(dev->ieee80211_ptr);
899 		rdev_set_qos_map(rdev, dev, NULL);
900 		wdev_unlock(dev->ieee80211_ptr);
901 
902 		switch (otype) {
903 		case NL80211_IFTYPE_AP:
904 			cfg80211_stop_ap(rdev, dev, true);
905 			break;
906 		case NL80211_IFTYPE_ADHOC:
907 			cfg80211_leave_ibss(rdev, dev, false);
908 			break;
909 		case NL80211_IFTYPE_STATION:
910 		case NL80211_IFTYPE_P2P_CLIENT:
911 			wdev_lock(dev->ieee80211_ptr);
912 			cfg80211_disconnect(rdev, dev,
913 					    WLAN_REASON_DEAUTH_LEAVING, true);
914 			wdev_unlock(dev->ieee80211_ptr);
915 			break;
916 		case NL80211_IFTYPE_MESH_POINT:
917 			/* mesh should be handled? */
918 			break;
919 		default:
920 			break;
921 		}
922 
923 		cfg80211_process_rdev_events(rdev);
924 	}
925 
926 	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
927 
928 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
929 
930 	if (!err && params && params->use_4addr != -1)
931 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
932 
933 	if (!err) {
934 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
935 		switch (ntype) {
936 		case NL80211_IFTYPE_STATION:
937 			if (dev->ieee80211_ptr->use_4addr)
938 				break;
939 			/* fall through */
940 		case NL80211_IFTYPE_P2P_CLIENT:
941 		case NL80211_IFTYPE_ADHOC:
942 			dev->priv_flags |= IFF_DONT_BRIDGE;
943 			break;
944 		case NL80211_IFTYPE_P2P_GO:
945 		case NL80211_IFTYPE_AP:
946 		case NL80211_IFTYPE_AP_VLAN:
947 		case NL80211_IFTYPE_WDS:
948 		case NL80211_IFTYPE_MESH_POINT:
949 			/* bridging OK */
950 			break;
951 		case NL80211_IFTYPE_MONITOR:
952 			/* monitor can't bridge anyway */
953 			break;
954 		case NL80211_IFTYPE_UNSPECIFIED:
955 		case NUM_NL80211_IFTYPES:
956 			/* not happening */
957 			break;
958 		case NL80211_IFTYPE_P2P_DEVICE:
959 			WARN_ON(1);
960 			break;
961 		}
962 	}
963 
964 	if (!err && ntype != otype && netif_running(dev)) {
965 		cfg80211_update_iface_num(rdev, ntype, 1);
966 		cfg80211_update_iface_num(rdev, otype, -1);
967 	}
968 
969 	return err;
970 }
971 
cfg80211_calculate_bitrate_60g(struct rate_info * rate)972 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
973 {
974 	static const u32 __mcs2bitrate[] = {
975 		/* control PHY */
976 		[0] =   275,
977 		/* SC PHY */
978 		[1] =  3850,
979 		[2] =  7700,
980 		[3] =  9625,
981 		[4] = 11550,
982 		[5] = 12512, /* 1251.25 mbps */
983 		[6] = 15400,
984 		[7] = 19250,
985 		[8] = 23100,
986 		[9] = 25025,
987 		[10] = 30800,
988 		[11] = 38500,
989 		[12] = 46200,
990 		/* OFDM PHY */
991 		[13] =  6930,
992 		[14] =  8662, /* 866.25 mbps */
993 		[15] = 13860,
994 		[16] = 17325,
995 		[17] = 20790,
996 		[18] = 27720,
997 		[19] = 34650,
998 		[20] = 41580,
999 		[21] = 45045,
1000 		[22] = 51975,
1001 		[23] = 62370,
1002 		[24] = 67568, /* 6756.75 mbps */
1003 		/* LP-SC PHY */
1004 		[25] =  6260,
1005 		[26] =  8340,
1006 		[27] = 11120,
1007 		[28] = 12510,
1008 		[29] = 16680,
1009 		[30] = 22240,
1010 		[31] = 25030,
1011 	};
1012 
1013 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1014 		return 0;
1015 
1016 	return __mcs2bitrate[rate->mcs];
1017 }
1018 
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1019 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1020 {
1021 	static const u32 base[4][10] = {
1022 		{   6500000,
1023 		   13000000,
1024 		   19500000,
1025 		   26000000,
1026 		   39000000,
1027 		   52000000,
1028 		   58500000,
1029 		   65000000,
1030 		   78000000,
1031 		   0,
1032 		},
1033 		{  13500000,
1034 		   27000000,
1035 		   40500000,
1036 		   54000000,
1037 		   81000000,
1038 		  108000000,
1039 		  121500000,
1040 		  135000000,
1041 		  162000000,
1042 		  180000000,
1043 		},
1044 		{  29300000,
1045 		   58500000,
1046 		   87800000,
1047 		  117000000,
1048 		  175500000,
1049 		  234000000,
1050 		  263300000,
1051 		  292500000,
1052 		  351000000,
1053 		  390000000,
1054 		},
1055 		{  58500000,
1056 		  117000000,
1057 		  175500000,
1058 		  234000000,
1059 		  351000000,
1060 		  468000000,
1061 		  526500000,
1062 		  585000000,
1063 		  702000000,
1064 		  780000000,
1065 		},
1066 	};
1067 	u32 bitrate;
1068 	int idx;
1069 
1070 	if (WARN_ON_ONCE(rate->mcs > 9))
1071 		return 0;
1072 
1073 	idx = rate->flags & (RATE_INFO_FLAGS_160_MHZ_WIDTH |
1074 			     RATE_INFO_FLAGS_80P80_MHZ_WIDTH) ? 3 :
1075 		  rate->flags & RATE_INFO_FLAGS_80_MHZ_WIDTH ? 2 :
1076 		  rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH ? 1 : 0;
1077 
1078 	bitrate = base[idx][rate->mcs];
1079 	bitrate *= rate->nss;
1080 
1081 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1082 		bitrate = (bitrate / 9) * 10;
1083 
1084 	/* do NOT round down here */
1085 	return (bitrate + 50000) / 100000;
1086 }
1087 
cfg80211_calculate_bitrate(struct rate_info * rate)1088 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1089 {
1090 	int modulation, streams, bitrate;
1091 
1092 	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1093 	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1094 		return rate->legacy;
1095 	if (rate->flags & RATE_INFO_FLAGS_60G)
1096 		return cfg80211_calculate_bitrate_60g(rate);
1097 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1098 		return cfg80211_calculate_bitrate_vht(rate);
1099 
1100 	/* the formula below does only work for MCS values smaller than 32 */
1101 	if (WARN_ON_ONCE(rate->mcs >= 32))
1102 		return 0;
1103 
1104 	modulation = rate->mcs & 7;
1105 	streams = (rate->mcs >> 3) + 1;
1106 
1107 	bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
1108 			13500000 : 6500000;
1109 
1110 	if (modulation < 4)
1111 		bitrate *= (modulation + 1);
1112 	else if (modulation == 4)
1113 		bitrate *= (modulation + 2);
1114 	else
1115 		bitrate *= (modulation + 3);
1116 
1117 	bitrate *= streams;
1118 
1119 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1120 		bitrate = (bitrate / 9) * 10;
1121 
1122 	/* do NOT round down here */
1123 	return (bitrate + 50000) / 100000;
1124 }
1125 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1126 
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1127 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1128 			  enum ieee80211_p2p_attr_id attr,
1129 			  u8 *buf, unsigned int bufsize)
1130 {
1131 	u8 *out = buf;
1132 	u16 attr_remaining = 0;
1133 	bool desired_attr = false;
1134 	u16 desired_len = 0;
1135 
1136 	while (len > 0) {
1137 		unsigned int iedatalen;
1138 		unsigned int copy;
1139 		const u8 *iedata;
1140 
1141 		if (len < 2)
1142 			return -EILSEQ;
1143 		iedatalen = ies[1];
1144 		if (iedatalen + 2 > len)
1145 			return -EILSEQ;
1146 
1147 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1148 			goto cont;
1149 
1150 		if (iedatalen < 4)
1151 			goto cont;
1152 
1153 		iedata = ies + 2;
1154 
1155 		/* check WFA OUI, P2P subtype */
1156 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1157 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1158 			goto cont;
1159 
1160 		iedatalen -= 4;
1161 		iedata += 4;
1162 
1163 		/* check attribute continuation into this IE */
1164 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1165 		if (copy && desired_attr) {
1166 			desired_len += copy;
1167 			if (out) {
1168 				memcpy(out, iedata, min(bufsize, copy));
1169 				out += min(bufsize, copy);
1170 				bufsize -= min(bufsize, copy);
1171 			}
1172 
1173 
1174 			if (copy == attr_remaining)
1175 				return desired_len;
1176 		}
1177 
1178 		attr_remaining -= copy;
1179 		if (attr_remaining)
1180 			goto cont;
1181 
1182 		iedatalen -= copy;
1183 		iedata += copy;
1184 
1185 		while (iedatalen > 0) {
1186 			u16 attr_len;
1187 
1188 			/* P2P attribute ID & size must fit */
1189 			if (iedatalen < 3)
1190 				return -EILSEQ;
1191 			desired_attr = iedata[0] == attr;
1192 			attr_len = get_unaligned_le16(iedata + 1);
1193 			iedatalen -= 3;
1194 			iedata += 3;
1195 
1196 			copy = min_t(unsigned int, attr_len, iedatalen);
1197 
1198 			if (desired_attr) {
1199 				desired_len += copy;
1200 				if (out) {
1201 					memcpy(out, iedata, min(bufsize, copy));
1202 					out += min(bufsize, copy);
1203 					bufsize -= min(bufsize, copy);
1204 				}
1205 
1206 				if (copy == attr_len)
1207 					return desired_len;
1208 			}
1209 
1210 			iedata += copy;
1211 			iedatalen -= copy;
1212 			attr_remaining = attr_len - copy;
1213 		}
1214 
1215  cont:
1216 		len -= ies[1] + 2;
1217 		ies += ies[1] + 2;
1218 	}
1219 
1220 	if (attr_remaining && desired_attr)
1221 		return -EILSEQ;
1222 
1223 	return -ENOENT;
1224 }
1225 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1226 
ieee80211_operating_class_to_band(u8 operating_class,enum ieee80211_band * band)1227 bool ieee80211_operating_class_to_band(u8 operating_class,
1228 				       enum ieee80211_band *band)
1229 {
1230 	switch (operating_class) {
1231 	case 112:
1232 	case 115 ... 127:
1233 		*band = IEEE80211_BAND_5GHZ;
1234 		return true;
1235 	case 81:
1236 	case 82:
1237 	case 83:
1238 	case 84:
1239 		*band = IEEE80211_BAND_2GHZ;
1240 		return true;
1241 	case 180:
1242 		*band = IEEE80211_BAND_60GHZ;
1243 		return true;
1244 	}
1245 
1246 	return false;
1247 }
1248 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1249 
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,u32 beacon_int)1250 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1251 				 u32 beacon_int)
1252 {
1253 	struct wireless_dev *wdev;
1254 	int res = 0;
1255 
1256 	if (!beacon_int)
1257 		return -EINVAL;
1258 
1259 	list_for_each_entry(wdev, &rdev->wdev_list, list) {
1260 		if (!wdev->beacon_interval)
1261 			continue;
1262 		if (wdev->beacon_interval != beacon_int) {
1263 			res = -EINVAL;
1264 			break;
1265 		}
1266 	}
1267 
1268 	return res;
1269 }
1270 
cfg80211_iter_combinations(struct wiphy * wiphy,const int num_different_channels,const u8 radar_detect,const int iftype_num[NUM_NL80211_IFTYPES],void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)1271 int cfg80211_iter_combinations(struct wiphy *wiphy,
1272 			       const int num_different_channels,
1273 			       const u8 radar_detect,
1274 			       const int iftype_num[NUM_NL80211_IFTYPES],
1275 			       void (*iter)(const struct ieee80211_iface_combination *c,
1276 					    void *data),
1277 			       void *data)
1278 {
1279 	const struct ieee80211_regdomain *regdom;
1280 	enum nl80211_dfs_regions region = 0;
1281 	int i, j, iftype;
1282 	int num_interfaces = 0;
1283 	u32 used_iftypes = 0;
1284 
1285 	if (radar_detect) {
1286 		rcu_read_lock();
1287 		regdom = rcu_dereference(cfg80211_regdomain);
1288 		if (regdom)
1289 			region = regdom->dfs_region;
1290 		rcu_read_unlock();
1291 	}
1292 
1293 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1294 		num_interfaces += iftype_num[iftype];
1295 		if (iftype_num[iftype] > 0 &&
1296 		    !(wiphy->software_iftypes & BIT(iftype)))
1297 			used_iftypes |= BIT(iftype);
1298 	}
1299 
1300 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1301 		const struct ieee80211_iface_combination *c;
1302 		struct ieee80211_iface_limit *limits;
1303 		u32 all_iftypes = 0;
1304 
1305 		c = &wiphy->iface_combinations[i];
1306 
1307 		if (num_interfaces > c->max_interfaces)
1308 			continue;
1309 		if (num_different_channels > c->num_different_channels)
1310 			continue;
1311 
1312 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1313 				 GFP_KERNEL);
1314 		if (!limits)
1315 			return -ENOMEM;
1316 
1317 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1318 			if (wiphy->software_iftypes & BIT(iftype))
1319 				continue;
1320 			for (j = 0; j < c->n_limits; j++) {
1321 				all_iftypes |= limits[j].types;
1322 				if (!(limits[j].types & BIT(iftype)))
1323 					continue;
1324 				if (limits[j].max < iftype_num[iftype])
1325 					goto cont;
1326 				limits[j].max -= iftype_num[iftype];
1327 			}
1328 		}
1329 
1330 		if (radar_detect != (c->radar_detect_widths & radar_detect))
1331 			goto cont;
1332 
1333 		if (radar_detect && c->radar_detect_regions &&
1334 		    !(c->radar_detect_regions & BIT(region)))
1335 			goto cont;
1336 
1337 		/* Finally check that all iftypes that we're currently
1338 		 * using are actually part of this combination. If they
1339 		 * aren't then we can't use this combination and have
1340 		 * to continue to the next.
1341 		 */
1342 		if ((all_iftypes & used_iftypes) != used_iftypes)
1343 			goto cont;
1344 
1345 		/* This combination covered all interface types and
1346 		 * supported the requested numbers, so we're good.
1347 		 */
1348 
1349 		(*iter)(c, data);
1350  cont:
1351 		kfree(limits);
1352 	}
1353 
1354 	return 0;
1355 }
1356 EXPORT_SYMBOL(cfg80211_iter_combinations);
1357 
1358 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)1359 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1360 			  void *data)
1361 {
1362 	int *num = data;
1363 	(*num)++;
1364 }
1365 
cfg80211_check_combinations(struct wiphy * wiphy,const int num_different_channels,const u8 radar_detect,const int iftype_num[NUM_NL80211_IFTYPES])1366 int cfg80211_check_combinations(struct wiphy *wiphy,
1367 				const int num_different_channels,
1368 				const u8 radar_detect,
1369 				const int iftype_num[NUM_NL80211_IFTYPES])
1370 {
1371 	int err, num = 0;
1372 
1373 	err = cfg80211_iter_combinations(wiphy, num_different_channels,
1374 					 radar_detect, iftype_num,
1375 					 cfg80211_iter_sum_ifcombs, &num);
1376 	if (err)
1377 		return err;
1378 	if (num == 0)
1379 		return -EBUSY;
1380 
1381 	return 0;
1382 }
1383 EXPORT_SYMBOL(cfg80211_check_combinations);
1384 
cfg80211_can_use_iftype_chan(struct cfg80211_registered_device * rdev,struct wireless_dev * wdev,enum nl80211_iftype iftype,struct ieee80211_channel * chan,enum cfg80211_chan_mode chanmode,u8 radar_detect)1385 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev,
1386 				 struct wireless_dev *wdev,
1387 				 enum nl80211_iftype iftype,
1388 				 struct ieee80211_channel *chan,
1389 				 enum cfg80211_chan_mode chanmode,
1390 				 u8 radar_detect)
1391 {
1392 	struct wireless_dev *wdev_iter;
1393 	int num[NUM_NL80211_IFTYPES];
1394 	struct ieee80211_channel
1395 			*used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS];
1396 	struct ieee80211_channel *ch;
1397 	enum cfg80211_chan_mode chmode;
1398 	int num_different_channels = 0;
1399 	int total = 1;
1400 	int i;
1401 
1402 	ASSERT_RTNL();
1403 
1404 	if (WARN_ON(hweight32(radar_detect) > 1))
1405 		return -EINVAL;
1406 
1407 	if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
1408 		return -EINVAL;
1409 
1410 	/* Always allow software iftypes */
1411 	if (rdev->wiphy.software_iftypes & BIT(iftype)) {
1412 		if (radar_detect)
1413 			return -EINVAL;
1414 		return 0;
1415 	}
1416 
1417 	memset(num, 0, sizeof(num));
1418 	memset(used_channels, 0, sizeof(used_channels));
1419 
1420 	num[iftype] = 1;
1421 
1422 	/* TODO: We'll probably not need this anymore, since this
1423 	 * should only be called with CHAN_MODE_UNDEFINED. There are
1424 	 * still a couple of pending calls where other chanmodes are
1425 	 * used, but we should get rid of them.
1426 	 */
1427 	switch (chanmode) {
1428 	case CHAN_MODE_UNDEFINED:
1429 		break;
1430 	case CHAN_MODE_SHARED:
1431 		WARN_ON(!chan);
1432 		used_channels[0] = chan;
1433 		num_different_channels++;
1434 		break;
1435 	case CHAN_MODE_EXCLUSIVE:
1436 		num_different_channels++;
1437 		break;
1438 	}
1439 
1440 	list_for_each_entry(wdev_iter, &rdev->wdev_list, list) {
1441 		if (wdev_iter == wdev)
1442 			continue;
1443 		if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) {
1444 			if (!wdev_iter->p2p_started)
1445 				continue;
1446 		} else if (wdev_iter->netdev) {
1447 			if (!netif_running(wdev_iter->netdev))
1448 				continue;
1449 		} else {
1450 			WARN_ON(1);
1451 		}
1452 
1453 		if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
1454 			continue;
1455 
1456 		/*
1457 		 * We may be holding the "wdev" mutex, but now need to lock
1458 		 * wdev_iter. This is OK because once we get here wdev_iter
1459 		 * is not wdev (tested above), but we need to use the nested
1460 		 * locking for lockdep.
1461 		 */
1462 		mutex_lock_nested(&wdev_iter->mtx, 1);
1463 		__acquire(wdev_iter->mtx);
1464 		cfg80211_get_chan_state(wdev_iter, &ch, &chmode, &radar_detect);
1465 		wdev_unlock(wdev_iter);
1466 
1467 		switch (chmode) {
1468 		case CHAN_MODE_UNDEFINED:
1469 			break;
1470 		case CHAN_MODE_SHARED:
1471 			for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++)
1472 				if (!used_channels[i] || used_channels[i] == ch)
1473 					break;
1474 
1475 			if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS)
1476 				return -EBUSY;
1477 
1478 			if (used_channels[i] == NULL) {
1479 				used_channels[i] = ch;
1480 				num_different_channels++;
1481 			}
1482 			break;
1483 		case CHAN_MODE_EXCLUSIVE:
1484 			num_different_channels++;
1485 			break;
1486 		}
1487 
1488 		num[wdev_iter->iftype]++;
1489 		total++;
1490 	}
1491 
1492 	if (total == 1 && !radar_detect)
1493 		return 0;
1494 
1495 	return cfg80211_check_combinations(&rdev->wiphy, num_different_channels,
1496 					   radar_detect, num);
1497 }
1498 
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)1499 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1500 			   const u8 *rates, unsigned int n_rates,
1501 			   u32 *mask)
1502 {
1503 	int i, j;
1504 
1505 	if (!sband)
1506 		return -EINVAL;
1507 
1508 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1509 		return -EINVAL;
1510 
1511 	*mask = 0;
1512 
1513 	for (i = 0; i < n_rates; i++) {
1514 		int rate = (rates[i] & 0x7f) * 5;
1515 		bool found = false;
1516 
1517 		for (j = 0; j < sband->n_bitrates; j++) {
1518 			if (sband->bitrates[j].bitrate == rate) {
1519 				found = true;
1520 				*mask |= BIT(j);
1521 				break;
1522 			}
1523 		}
1524 		if (!found)
1525 			return -EINVAL;
1526 	}
1527 
1528 	/*
1529 	 * mask must have at least one bit set here since we
1530 	 * didn't accept a 0-length rates array nor allowed
1531 	 * entries in the array that didn't exist
1532 	 */
1533 
1534 	return 0;
1535 }
1536 
ieee80211_get_num_supported_channels(struct wiphy * wiphy)1537 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1538 {
1539 	enum ieee80211_band band;
1540 	unsigned int n_channels = 0;
1541 
1542 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1543 		if (wiphy->bands[band])
1544 			n_channels += wiphy->bands[band]->n_channels;
1545 
1546 	return n_channels;
1547 }
1548 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1549 
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)1550 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1551 			 struct station_info *sinfo)
1552 {
1553 	struct cfg80211_registered_device *rdev;
1554 	struct wireless_dev *wdev;
1555 
1556 	wdev = dev->ieee80211_ptr;
1557 	if (!wdev)
1558 		return -EOPNOTSUPP;
1559 
1560 	rdev = wiphy_to_rdev(wdev->wiphy);
1561 	if (!rdev->ops->get_station)
1562 		return -EOPNOTSUPP;
1563 
1564 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1565 }
1566 EXPORT_SYMBOL(cfg80211_get_station);
1567 
1568 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1569 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1570 const unsigned char rfc1042_header[] __aligned(2) =
1571 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1572 EXPORT_SYMBOL(rfc1042_header);
1573 
1574 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1575 const unsigned char bridge_tunnel_header[] __aligned(2) =
1576 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1577 EXPORT_SYMBOL(bridge_tunnel_header);
1578