1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10 /*
11 * Handle hardware traps and faults.
12 */
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/nmi.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/slab.h>
21 #include <linux/export.h>
22
23 #if defined(CONFIG_EDAC)
24 #include <linux/edac.h>
25 #endif
26
27 #include <linux/atomic.h>
28 #include <asm/traps.h>
29 #include <asm/mach_traps.h>
30 #include <asm/nmi.h>
31 #include <asm/x86_init.h>
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/nmi.h>
35
36 struct nmi_desc {
37 spinlock_t lock;
38 struct list_head head;
39 };
40
41 static struct nmi_desc nmi_desc[NMI_MAX] =
42 {
43 {
44 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
45 .head = LIST_HEAD_INIT(nmi_desc[0].head),
46 },
47 {
48 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
49 .head = LIST_HEAD_INIT(nmi_desc[1].head),
50 },
51 {
52 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
53 .head = LIST_HEAD_INIT(nmi_desc[2].head),
54 },
55 {
56 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
57 .head = LIST_HEAD_INIT(nmi_desc[3].head),
58 },
59
60 };
61
62 struct nmi_stats {
63 unsigned int normal;
64 unsigned int unknown;
65 unsigned int external;
66 unsigned int swallow;
67 };
68
69 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
70
71 static int ignore_nmis;
72
73 int unknown_nmi_panic;
74 /*
75 * Prevent NMI reason port (0x61) being accessed simultaneously, can
76 * only be used in NMI handler.
77 */
78 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
79
setup_unknown_nmi_panic(char * str)80 static int __init setup_unknown_nmi_panic(char *str)
81 {
82 unknown_nmi_panic = 1;
83 return 1;
84 }
85 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
86
87 #define nmi_to_desc(type) (&nmi_desc[type])
88
89 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
90
nmi_warning_debugfs(void)91 static int __init nmi_warning_debugfs(void)
92 {
93 debugfs_create_u64("nmi_longest_ns", 0644,
94 arch_debugfs_dir, &nmi_longest_ns);
95 return 0;
96 }
97 fs_initcall(nmi_warning_debugfs);
98
nmi_max_handler(struct irq_work * w)99 static void nmi_max_handler(struct irq_work *w)
100 {
101 struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
102 int remainder_ns, decimal_msecs;
103 u64 whole_msecs = ACCESS_ONCE(a->max_duration);
104
105 remainder_ns = do_div(whole_msecs, (1000 * 1000));
106 decimal_msecs = remainder_ns / 1000;
107
108 printk_ratelimited(KERN_INFO
109 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
110 a->handler, whole_msecs, decimal_msecs);
111 }
112
nmi_handle(unsigned int type,struct pt_regs * regs,bool b2b)113 static int nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
114 {
115 struct nmi_desc *desc = nmi_to_desc(type);
116 struct nmiaction *a;
117 int handled=0;
118
119 rcu_read_lock();
120
121 /*
122 * NMIs are edge-triggered, which means if you have enough
123 * of them concurrently, you can lose some because only one
124 * can be latched at any given time. Walk the whole list
125 * to handle those situations.
126 */
127 list_for_each_entry_rcu(a, &desc->head, list) {
128 int thishandled;
129 u64 delta;
130
131 delta = sched_clock();
132 thishandled = a->handler(type, regs);
133 handled += thishandled;
134 delta = sched_clock() - delta;
135 trace_nmi_handler(a->handler, (int)delta, thishandled);
136
137 if (delta < nmi_longest_ns || delta < a->max_duration)
138 continue;
139
140 a->max_duration = delta;
141 irq_work_queue(&a->irq_work);
142 }
143
144 rcu_read_unlock();
145
146 /* return total number of NMI events handled */
147 return handled;
148 }
149 NOKPROBE_SYMBOL(nmi_handle);
150
__register_nmi_handler(unsigned int type,struct nmiaction * action)151 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
152 {
153 struct nmi_desc *desc = nmi_to_desc(type);
154 unsigned long flags;
155
156 if (!action->handler)
157 return -EINVAL;
158
159 init_irq_work(&action->irq_work, nmi_max_handler);
160
161 spin_lock_irqsave(&desc->lock, flags);
162
163 /*
164 * most handlers of type NMI_UNKNOWN never return because
165 * they just assume the NMI is theirs. Just a sanity check
166 * to manage expectations
167 */
168 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
169 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
170 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
171
172 /*
173 * some handlers need to be executed first otherwise a fake
174 * event confuses some handlers (kdump uses this flag)
175 */
176 if (action->flags & NMI_FLAG_FIRST)
177 list_add_rcu(&action->list, &desc->head);
178 else
179 list_add_tail_rcu(&action->list, &desc->head);
180
181 spin_unlock_irqrestore(&desc->lock, flags);
182 return 0;
183 }
184 EXPORT_SYMBOL(__register_nmi_handler);
185
unregister_nmi_handler(unsigned int type,const char * name)186 void unregister_nmi_handler(unsigned int type, const char *name)
187 {
188 struct nmi_desc *desc = nmi_to_desc(type);
189 struct nmiaction *n;
190 unsigned long flags;
191
192 spin_lock_irqsave(&desc->lock, flags);
193
194 list_for_each_entry_rcu(n, &desc->head, list) {
195 /*
196 * the name passed in to describe the nmi handler
197 * is used as the lookup key
198 */
199 if (!strcmp(n->name, name)) {
200 WARN(in_nmi(),
201 "Trying to free NMI (%s) from NMI context!\n", n->name);
202 list_del_rcu(&n->list);
203 break;
204 }
205 }
206
207 spin_unlock_irqrestore(&desc->lock, flags);
208 synchronize_rcu();
209 }
210 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
211
212 static void
pci_serr_error(unsigned char reason,struct pt_regs * regs)213 pci_serr_error(unsigned char reason, struct pt_regs *regs)
214 {
215 /* check to see if anyone registered against these types of errors */
216 if (nmi_handle(NMI_SERR, regs, false))
217 return;
218
219 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
220 reason, smp_processor_id());
221
222 /*
223 * On some machines, PCI SERR line is used to report memory
224 * errors. EDAC makes use of it.
225 */
226 #if defined(CONFIG_EDAC)
227 if (edac_handler_set()) {
228 edac_atomic_assert_error();
229 return;
230 }
231 #endif
232
233 if (panic_on_unrecovered_nmi)
234 panic("NMI: Not continuing");
235
236 pr_emerg("Dazed and confused, but trying to continue\n");
237
238 /* Clear and disable the PCI SERR error line. */
239 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
240 outb(reason, NMI_REASON_PORT);
241 }
242 NOKPROBE_SYMBOL(pci_serr_error);
243
244 static void
io_check_error(unsigned char reason,struct pt_regs * regs)245 io_check_error(unsigned char reason, struct pt_regs *regs)
246 {
247 unsigned long i;
248
249 /* check to see if anyone registered against these types of errors */
250 if (nmi_handle(NMI_IO_CHECK, regs, false))
251 return;
252
253 pr_emerg(
254 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
255 reason, smp_processor_id());
256 show_regs(regs);
257
258 if (panic_on_io_nmi)
259 panic("NMI IOCK error: Not continuing");
260
261 /* Re-enable the IOCK line, wait for a few seconds */
262 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
263 outb(reason, NMI_REASON_PORT);
264
265 i = 20000;
266 while (--i) {
267 touch_nmi_watchdog();
268 udelay(100);
269 }
270
271 reason &= ~NMI_REASON_CLEAR_IOCHK;
272 outb(reason, NMI_REASON_PORT);
273 }
274 NOKPROBE_SYMBOL(io_check_error);
275
276 static void
unknown_nmi_error(unsigned char reason,struct pt_regs * regs)277 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
278 {
279 int handled;
280
281 /*
282 * Use 'false' as back-to-back NMIs are dealt with one level up.
283 * Of course this makes having multiple 'unknown' handlers useless
284 * as only the first one is ever run (unless it can actually determine
285 * if it caused the NMI)
286 */
287 handled = nmi_handle(NMI_UNKNOWN, regs, false);
288 if (handled) {
289 __this_cpu_add(nmi_stats.unknown, handled);
290 return;
291 }
292
293 __this_cpu_add(nmi_stats.unknown, 1);
294
295 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
296 reason, smp_processor_id());
297
298 pr_emerg("Do you have a strange power saving mode enabled?\n");
299 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
300 panic("NMI: Not continuing");
301
302 pr_emerg("Dazed and confused, but trying to continue\n");
303 }
304 NOKPROBE_SYMBOL(unknown_nmi_error);
305
306 static DEFINE_PER_CPU(bool, swallow_nmi);
307 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
308
default_do_nmi(struct pt_regs * regs)309 static void default_do_nmi(struct pt_regs *regs)
310 {
311 unsigned char reason = 0;
312 int handled;
313 bool b2b = false;
314
315 /*
316 * CPU-specific NMI must be processed before non-CPU-specific
317 * NMI, otherwise we may lose it, because the CPU-specific
318 * NMI can not be detected/processed on other CPUs.
319 */
320
321 /*
322 * Back-to-back NMIs are interesting because they can either
323 * be two NMI or more than two NMIs (any thing over two is dropped
324 * due to NMI being edge-triggered). If this is the second half
325 * of the back-to-back NMI, assume we dropped things and process
326 * more handlers. Otherwise reset the 'swallow' NMI behaviour
327 */
328 if (regs->ip == __this_cpu_read(last_nmi_rip))
329 b2b = true;
330 else
331 __this_cpu_write(swallow_nmi, false);
332
333 __this_cpu_write(last_nmi_rip, regs->ip);
334
335 handled = nmi_handle(NMI_LOCAL, regs, b2b);
336 __this_cpu_add(nmi_stats.normal, handled);
337 if (handled) {
338 /*
339 * There are cases when a NMI handler handles multiple
340 * events in the current NMI. One of these events may
341 * be queued for in the next NMI. Because the event is
342 * already handled, the next NMI will result in an unknown
343 * NMI. Instead lets flag this for a potential NMI to
344 * swallow.
345 */
346 if (handled > 1)
347 __this_cpu_write(swallow_nmi, true);
348 return;
349 }
350
351 /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
352 raw_spin_lock(&nmi_reason_lock);
353 reason = x86_platform.get_nmi_reason();
354
355 if (reason & NMI_REASON_MASK) {
356 if (reason & NMI_REASON_SERR)
357 pci_serr_error(reason, regs);
358 else if (reason & NMI_REASON_IOCHK)
359 io_check_error(reason, regs);
360 #ifdef CONFIG_X86_32
361 /*
362 * Reassert NMI in case it became active
363 * meanwhile as it's edge-triggered:
364 */
365 reassert_nmi();
366 #endif
367 __this_cpu_add(nmi_stats.external, 1);
368 raw_spin_unlock(&nmi_reason_lock);
369 return;
370 }
371 raw_spin_unlock(&nmi_reason_lock);
372
373 /*
374 * Only one NMI can be latched at a time. To handle
375 * this we may process multiple nmi handlers at once to
376 * cover the case where an NMI is dropped. The downside
377 * to this approach is we may process an NMI prematurely,
378 * while its real NMI is sitting latched. This will cause
379 * an unknown NMI on the next run of the NMI processing.
380 *
381 * We tried to flag that condition above, by setting the
382 * swallow_nmi flag when we process more than one event.
383 * This condition is also only present on the second half
384 * of a back-to-back NMI, so we flag that condition too.
385 *
386 * If both are true, we assume we already processed this
387 * NMI previously and we swallow it. Otherwise we reset
388 * the logic.
389 *
390 * There are scenarios where we may accidentally swallow
391 * a 'real' unknown NMI. For example, while processing
392 * a perf NMI another perf NMI comes in along with a
393 * 'real' unknown NMI. These two NMIs get combined into
394 * one (as descibed above). When the next NMI gets
395 * processed, it will be flagged by perf as handled, but
396 * noone will know that there was a 'real' unknown NMI sent
397 * also. As a result it gets swallowed. Or if the first
398 * perf NMI returns two events handled then the second
399 * NMI will get eaten by the logic below, again losing a
400 * 'real' unknown NMI. But this is the best we can do
401 * for now.
402 */
403 if (b2b && __this_cpu_read(swallow_nmi))
404 __this_cpu_add(nmi_stats.swallow, 1);
405 else
406 unknown_nmi_error(reason, regs);
407 }
408 NOKPROBE_SYMBOL(default_do_nmi);
409
410 /*
411 * NMIs can page fault or hit breakpoints which will cause it to lose
412 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
413 *
414 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
415 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
416 * if the outer NMI came from kernel mode, but we can still nest if the
417 * outer NMI came from user mode.
418 *
419 * To handle these nested NMIs, we have three states:
420 *
421 * 1) not running
422 * 2) executing
423 * 3) latched
424 *
425 * When no NMI is in progress, it is in the "not running" state.
426 * When an NMI comes in, it goes into the "executing" state.
427 * Normally, if another NMI is triggered, it does not interrupt
428 * the running NMI and the HW will simply latch it so that when
429 * the first NMI finishes, it will restart the second NMI.
430 * (Note, the latch is binary, thus multiple NMIs triggering,
431 * when one is running, are ignored. Only one NMI is restarted.)
432 *
433 * If an NMI executes an iret, another NMI can preempt it. We do not
434 * want to allow this new NMI to run, but we want to execute it when the
435 * first one finishes. We set the state to "latched", and the exit of
436 * the first NMI will perform a dec_return, if the result is zero
437 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
438 * dec_return would have set the state to NMI_EXECUTING (what we want it
439 * to be when we are running). In this case, we simply jump back to
440 * rerun the NMI handler again, and restart the 'latched' NMI.
441 *
442 * No trap (breakpoint or page fault) should be hit before nmi_restart,
443 * thus there is no race between the first check of state for NOT_RUNNING
444 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
445 * at this point.
446 *
447 * In case the NMI takes a page fault, we need to save off the CR2
448 * because the NMI could have preempted another page fault and corrupt
449 * the CR2 that is about to be read. As nested NMIs must be restarted
450 * and they can not take breakpoints or page faults, the update of the
451 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
452 * Otherwise, there would be a race of another nested NMI coming in
453 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
454 */
455 enum nmi_states {
456 NMI_NOT_RUNNING = 0,
457 NMI_EXECUTING,
458 NMI_LATCHED,
459 };
460 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
461 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
462
463 #ifdef CONFIG_X86_64
464 /*
465 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
466 * some care, the inner breakpoint will clobber the outer breakpoint's
467 * stack.
468 *
469 * If a breakpoint is being processed, and the debug stack is being
470 * used, if an NMI comes in and also hits a breakpoint, the stack
471 * pointer will be set to the same fixed address as the breakpoint that
472 * was interrupted, causing that stack to be corrupted. To handle this
473 * case, check if the stack that was interrupted is the debug stack, and
474 * if so, change the IDT so that new breakpoints will use the current
475 * stack and not switch to the fixed address. On return of the NMI,
476 * switch back to the original IDT.
477 */
478 static DEFINE_PER_CPU(int, update_debug_stack);
479 #endif
480
481 dotraplinkage notrace __kprobes void
do_nmi(struct pt_regs * regs,long error_code)482 do_nmi(struct pt_regs *regs, long error_code)
483 {
484 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
485 this_cpu_write(nmi_state, NMI_LATCHED);
486 return;
487 }
488 this_cpu_write(nmi_state, NMI_EXECUTING);
489 this_cpu_write(nmi_cr2, read_cr2());
490 nmi_restart:
491
492 #ifdef CONFIG_X86_64
493 /*
494 * If we interrupted a breakpoint, it is possible that
495 * the nmi handler will have breakpoints too. We need to
496 * change the IDT such that breakpoints that happen here
497 * continue to use the NMI stack.
498 */
499 if (unlikely(is_debug_stack(regs->sp))) {
500 debug_stack_set_zero();
501 this_cpu_write(update_debug_stack, 1);
502 }
503 #endif
504
505 nmi_enter();
506
507 inc_irq_stat(__nmi_count);
508
509 if (!ignore_nmis)
510 default_do_nmi(regs);
511
512 nmi_exit();
513
514 #ifdef CONFIG_X86_64
515 if (unlikely(this_cpu_read(update_debug_stack))) {
516 debug_stack_reset();
517 this_cpu_write(update_debug_stack, 0);
518 }
519 #endif
520
521 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
522 write_cr2(this_cpu_read(nmi_cr2));
523 if (this_cpu_dec_return(nmi_state))
524 goto nmi_restart;
525 }
526 NOKPROBE_SYMBOL(do_nmi);
527
stop_nmi(void)528 void stop_nmi(void)
529 {
530 ignore_nmis++;
531 }
532
restart_nmi(void)533 void restart_nmi(void)
534 {
535 ignore_nmis--;
536 }
537
538 /* reset the back-to-back NMI logic */
local_touch_nmi(void)539 void local_touch_nmi(void)
540 {
541 __this_cpu_write(last_nmi_rip, 0);
542 }
543 EXPORT_SYMBOL_GPL(local_touch_nmi);
544