• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 
dsos__init(struct dsos * dsos)16 static void dsos__init(struct dsos *dsos)
17 {
18 	INIT_LIST_HEAD(&dsos->head);
19 	dsos->root = RB_ROOT;
20 }
21 
machine__init(struct machine * machine,const char * root_dir,pid_t pid)22 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
23 {
24 	map_groups__init(&machine->kmaps);
25 	RB_CLEAR_NODE(&machine->rb_node);
26 	dsos__init(&machine->user_dsos);
27 	dsos__init(&machine->kernel_dsos);
28 
29 	machine->threads = RB_ROOT;
30 	INIT_LIST_HEAD(&machine->dead_threads);
31 	machine->last_match = NULL;
32 
33 	machine->vdso_info = NULL;
34 
35 	machine->kmaps.machine = machine;
36 	machine->pid = pid;
37 
38 	machine->symbol_filter = NULL;
39 	machine->id_hdr_size = 0;
40 	machine->comm_exec = false;
41 	machine->kernel_start = 0;
42 
43 	machine->root_dir = strdup(root_dir);
44 	if (machine->root_dir == NULL)
45 		return -ENOMEM;
46 
47 	if (pid != HOST_KERNEL_ID) {
48 		struct thread *thread = machine__findnew_thread(machine, -1,
49 								pid);
50 		char comm[64];
51 
52 		if (thread == NULL)
53 			return -ENOMEM;
54 
55 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
56 		thread__set_comm(thread, comm, 0);
57 	}
58 
59 	machine->current_tid = NULL;
60 
61 	return 0;
62 }
63 
machine__new_host(void)64 struct machine *machine__new_host(void)
65 {
66 	struct machine *machine = malloc(sizeof(*machine));
67 
68 	if (machine != NULL) {
69 		machine__init(machine, "", HOST_KERNEL_ID);
70 
71 		if (machine__create_kernel_maps(machine) < 0)
72 			goto out_delete;
73 	}
74 
75 	return machine;
76 out_delete:
77 	free(machine);
78 	return NULL;
79 }
80 
dsos__delete(struct dsos * dsos)81 static void dsos__delete(struct dsos *dsos)
82 {
83 	struct dso *pos, *n;
84 
85 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
86 		RB_CLEAR_NODE(&pos->rb_node);
87 		list_del(&pos->node);
88 		dso__delete(pos);
89 	}
90 }
91 
machine__delete_dead_threads(struct machine * machine)92 void machine__delete_dead_threads(struct machine *machine)
93 {
94 	struct thread *n, *t;
95 
96 	list_for_each_entry_safe(t, n, &machine->dead_threads, node) {
97 		list_del(&t->node);
98 		thread__delete(t);
99 	}
100 }
101 
machine__delete_threads(struct machine * machine)102 void machine__delete_threads(struct machine *machine)
103 {
104 	struct rb_node *nd = rb_first(&machine->threads);
105 
106 	while (nd) {
107 		struct thread *t = rb_entry(nd, struct thread, rb_node);
108 
109 		rb_erase(&t->rb_node, &machine->threads);
110 		nd = rb_next(nd);
111 		thread__delete(t);
112 	}
113 }
114 
machine__exit(struct machine * machine)115 void machine__exit(struct machine *machine)
116 {
117 	map_groups__exit(&machine->kmaps);
118 	dsos__delete(&machine->user_dsos);
119 	dsos__delete(&machine->kernel_dsos);
120 	vdso__exit(machine);
121 	zfree(&machine->root_dir);
122 	zfree(&machine->current_tid);
123 }
124 
machine__delete(struct machine * machine)125 void machine__delete(struct machine *machine)
126 {
127 	machine__exit(machine);
128 	free(machine);
129 }
130 
machines__init(struct machines * machines)131 void machines__init(struct machines *machines)
132 {
133 	machine__init(&machines->host, "", HOST_KERNEL_ID);
134 	machines->guests = RB_ROOT;
135 	machines->symbol_filter = NULL;
136 }
137 
machines__exit(struct machines * machines)138 void machines__exit(struct machines *machines)
139 {
140 	machine__exit(&machines->host);
141 	/* XXX exit guest */
142 }
143 
machines__add(struct machines * machines,pid_t pid,const char * root_dir)144 struct machine *machines__add(struct machines *machines, pid_t pid,
145 			      const char *root_dir)
146 {
147 	struct rb_node **p = &machines->guests.rb_node;
148 	struct rb_node *parent = NULL;
149 	struct machine *pos, *machine = malloc(sizeof(*machine));
150 
151 	if (machine == NULL)
152 		return NULL;
153 
154 	if (machine__init(machine, root_dir, pid) != 0) {
155 		free(machine);
156 		return NULL;
157 	}
158 
159 	machine->symbol_filter = machines->symbol_filter;
160 
161 	while (*p != NULL) {
162 		parent = *p;
163 		pos = rb_entry(parent, struct machine, rb_node);
164 		if (pid < pos->pid)
165 			p = &(*p)->rb_left;
166 		else
167 			p = &(*p)->rb_right;
168 	}
169 
170 	rb_link_node(&machine->rb_node, parent, p);
171 	rb_insert_color(&machine->rb_node, &machines->guests);
172 
173 	return machine;
174 }
175 
machines__set_symbol_filter(struct machines * machines,symbol_filter_t symbol_filter)176 void machines__set_symbol_filter(struct machines *machines,
177 				 symbol_filter_t symbol_filter)
178 {
179 	struct rb_node *nd;
180 
181 	machines->symbol_filter = symbol_filter;
182 	machines->host.symbol_filter = symbol_filter;
183 
184 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
185 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
186 
187 		machine->symbol_filter = symbol_filter;
188 	}
189 }
190 
machines__set_comm_exec(struct machines * machines,bool comm_exec)191 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
192 {
193 	struct rb_node *nd;
194 
195 	machines->host.comm_exec = comm_exec;
196 
197 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
198 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
199 
200 		machine->comm_exec = comm_exec;
201 	}
202 }
203 
machines__find(struct machines * machines,pid_t pid)204 struct machine *machines__find(struct machines *machines, pid_t pid)
205 {
206 	struct rb_node **p = &machines->guests.rb_node;
207 	struct rb_node *parent = NULL;
208 	struct machine *machine;
209 	struct machine *default_machine = NULL;
210 
211 	if (pid == HOST_KERNEL_ID)
212 		return &machines->host;
213 
214 	while (*p != NULL) {
215 		parent = *p;
216 		machine = rb_entry(parent, struct machine, rb_node);
217 		if (pid < machine->pid)
218 			p = &(*p)->rb_left;
219 		else if (pid > machine->pid)
220 			p = &(*p)->rb_right;
221 		else
222 			return machine;
223 		if (!machine->pid)
224 			default_machine = machine;
225 	}
226 
227 	return default_machine;
228 }
229 
machines__findnew(struct machines * machines,pid_t pid)230 struct machine *machines__findnew(struct machines *machines, pid_t pid)
231 {
232 	char path[PATH_MAX];
233 	const char *root_dir = "";
234 	struct machine *machine = machines__find(machines, pid);
235 
236 	if (machine && (machine->pid == pid))
237 		goto out;
238 
239 	if ((pid != HOST_KERNEL_ID) &&
240 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
241 	    (symbol_conf.guestmount)) {
242 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
243 		if (access(path, R_OK)) {
244 			static struct strlist *seen;
245 
246 			if (!seen)
247 				seen = strlist__new(true, NULL);
248 
249 			if (!strlist__has_entry(seen, path)) {
250 				pr_err("Can't access file %s\n", path);
251 				strlist__add(seen, path);
252 			}
253 			machine = NULL;
254 			goto out;
255 		}
256 		root_dir = path;
257 	}
258 
259 	machine = machines__add(machines, pid, root_dir);
260 out:
261 	return machine;
262 }
263 
machines__process_guests(struct machines * machines,machine__process_t process,void * data)264 void machines__process_guests(struct machines *machines,
265 			      machine__process_t process, void *data)
266 {
267 	struct rb_node *nd;
268 
269 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
270 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
271 		process(pos, data);
272 	}
273 }
274 
machine__mmap_name(struct machine * machine,char * bf,size_t size)275 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
276 {
277 	if (machine__is_host(machine))
278 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
279 	else if (machine__is_default_guest(machine))
280 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
281 	else {
282 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
283 			 machine->pid);
284 	}
285 
286 	return bf;
287 }
288 
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)289 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
290 {
291 	struct rb_node *node;
292 	struct machine *machine;
293 
294 	machines->host.id_hdr_size = id_hdr_size;
295 
296 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
297 		machine = rb_entry(node, struct machine, rb_node);
298 		machine->id_hdr_size = id_hdr_size;
299 	}
300 
301 	return;
302 }
303 
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)304 static void machine__update_thread_pid(struct machine *machine,
305 				       struct thread *th, pid_t pid)
306 {
307 	struct thread *leader;
308 
309 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
310 		return;
311 
312 	th->pid_ = pid;
313 
314 	if (th->pid_ == th->tid)
315 		return;
316 
317 	leader = machine__findnew_thread(machine, th->pid_, th->pid_);
318 	if (!leader)
319 		goto out_err;
320 
321 	if (!leader->mg)
322 		leader->mg = map_groups__new();
323 
324 	if (!leader->mg)
325 		goto out_err;
326 
327 	if (th->mg == leader->mg)
328 		return;
329 
330 	if (th->mg) {
331 		/*
332 		 * Maps are created from MMAP events which provide the pid and
333 		 * tid.  Consequently there never should be any maps on a thread
334 		 * with an unknown pid.  Just print an error if there are.
335 		 */
336 		if (!map_groups__empty(th->mg))
337 			pr_err("Discarding thread maps for %d:%d\n",
338 			       th->pid_, th->tid);
339 		map_groups__delete(th->mg);
340 	}
341 
342 	th->mg = map_groups__get(leader->mg);
343 
344 	return;
345 
346 out_err:
347 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
348 }
349 
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid,bool create)350 static struct thread *__machine__findnew_thread(struct machine *machine,
351 						pid_t pid, pid_t tid,
352 						bool create)
353 {
354 	struct rb_node **p = &machine->threads.rb_node;
355 	struct rb_node *parent = NULL;
356 	struct thread *th;
357 
358 	/*
359 	 * Front-end cache - TID lookups come in blocks,
360 	 * so most of the time we dont have to look up
361 	 * the full rbtree:
362 	 */
363 	th = machine->last_match;
364 	if (th && th->tid == tid) {
365 		machine__update_thread_pid(machine, th, pid);
366 		return th;
367 	}
368 
369 	while (*p != NULL) {
370 		parent = *p;
371 		th = rb_entry(parent, struct thread, rb_node);
372 
373 		if (th->tid == tid) {
374 			machine->last_match = th;
375 			machine__update_thread_pid(machine, th, pid);
376 			return th;
377 		}
378 
379 		if (tid < th->tid)
380 			p = &(*p)->rb_left;
381 		else
382 			p = &(*p)->rb_right;
383 	}
384 
385 	if (!create)
386 		return NULL;
387 
388 	th = thread__new(pid, tid);
389 	if (th != NULL) {
390 		rb_link_node(&th->rb_node, parent, p);
391 		rb_insert_color(&th->rb_node, &machine->threads);
392 		machine->last_match = th;
393 
394 		/*
395 		 * We have to initialize map_groups separately
396 		 * after rb tree is updated.
397 		 *
398 		 * The reason is that we call machine__findnew_thread
399 		 * within thread__init_map_groups to find the thread
400 		 * leader and that would screwed the rb tree.
401 		 */
402 		if (thread__init_map_groups(th, machine)) {
403 			thread__delete(th);
404 			return NULL;
405 		}
406 	}
407 
408 	return th;
409 }
410 
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)411 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
412 				       pid_t tid)
413 {
414 	return __machine__findnew_thread(machine, pid, tid, true);
415 }
416 
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)417 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
418 				    pid_t tid)
419 {
420 	return __machine__findnew_thread(machine, pid, tid, false);
421 }
422 
machine__thread_exec_comm(struct machine * machine,struct thread * thread)423 struct comm *machine__thread_exec_comm(struct machine *machine,
424 				       struct thread *thread)
425 {
426 	if (machine->comm_exec)
427 		return thread__exec_comm(thread);
428 	else
429 		return thread__comm(thread);
430 }
431 
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)432 int machine__process_comm_event(struct machine *machine, union perf_event *event,
433 				struct perf_sample *sample)
434 {
435 	struct thread *thread = machine__findnew_thread(machine,
436 							event->comm.pid,
437 							event->comm.tid);
438 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
439 
440 	if (exec)
441 		machine->comm_exec = true;
442 
443 	if (dump_trace)
444 		perf_event__fprintf_comm(event, stdout);
445 
446 	if (thread == NULL ||
447 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
448 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
449 		return -1;
450 	}
451 
452 	return 0;
453 }
454 
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)455 int machine__process_lost_event(struct machine *machine __maybe_unused,
456 				union perf_event *event, struct perf_sample *sample __maybe_unused)
457 {
458 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
459 		    event->lost.id, event->lost.lost);
460 	return 0;
461 }
462 
machine__new_module(struct machine * machine,u64 start,const char * filename)463 struct map *machine__new_module(struct machine *machine, u64 start,
464 				const char *filename)
465 {
466 	struct map *map;
467 	struct dso *dso = __dsos__findnew(&machine->kernel_dsos, filename);
468 
469 	if (dso == NULL)
470 		return NULL;
471 
472 	map = map__new2(start, dso, MAP__FUNCTION);
473 	if (map == NULL)
474 		return NULL;
475 
476 	if (machine__is_host(machine))
477 		dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
478 	else
479 		dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
480 	map_groups__insert(&machine->kmaps, map);
481 	return map;
482 }
483 
machines__fprintf_dsos(struct machines * machines,FILE * fp)484 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
485 {
486 	struct rb_node *nd;
487 	size_t ret = __dsos__fprintf(&machines->host.kernel_dsos.head, fp) +
488 		     __dsos__fprintf(&machines->host.user_dsos.head, fp);
489 
490 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
491 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
492 		ret += __dsos__fprintf(&pos->kernel_dsos.head, fp);
493 		ret += __dsos__fprintf(&pos->user_dsos.head, fp);
494 	}
495 
496 	return ret;
497 }
498 
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)499 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
500 				     bool (skip)(struct dso *dso, int parm), int parm)
501 {
502 	return __dsos__fprintf_buildid(&m->kernel_dsos.head, fp, skip, parm) +
503 	       __dsos__fprintf_buildid(&m->user_dsos.head, fp, skip, parm);
504 }
505 
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)506 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
507 				     bool (skip)(struct dso *dso, int parm), int parm)
508 {
509 	struct rb_node *nd;
510 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
511 
512 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
513 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
514 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
515 	}
516 	return ret;
517 }
518 
machine__fprintf_vmlinux_path(struct machine * machine,FILE * fp)519 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
520 {
521 	int i;
522 	size_t printed = 0;
523 	struct dso *kdso = machine->vmlinux_maps[MAP__FUNCTION]->dso;
524 
525 	if (kdso->has_build_id) {
526 		char filename[PATH_MAX];
527 		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
528 			printed += fprintf(fp, "[0] %s\n", filename);
529 	}
530 
531 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
532 		printed += fprintf(fp, "[%d] %s\n",
533 				   i + kdso->has_build_id, vmlinux_path[i]);
534 
535 	return printed;
536 }
537 
machine__fprintf(struct machine * machine,FILE * fp)538 size_t machine__fprintf(struct machine *machine, FILE *fp)
539 {
540 	size_t ret = 0;
541 	struct rb_node *nd;
542 
543 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
544 		struct thread *pos = rb_entry(nd, struct thread, rb_node);
545 
546 		ret += thread__fprintf(pos, fp);
547 	}
548 
549 	return ret;
550 }
551 
machine__get_kernel(struct machine * machine)552 static struct dso *machine__get_kernel(struct machine *machine)
553 {
554 	const char *vmlinux_name = NULL;
555 	struct dso *kernel;
556 
557 	if (machine__is_host(machine)) {
558 		vmlinux_name = symbol_conf.vmlinux_name;
559 		if (!vmlinux_name)
560 			vmlinux_name = "[kernel.kallsyms]";
561 
562 		kernel = dso__kernel_findnew(machine, vmlinux_name,
563 					     "[kernel]",
564 					     DSO_TYPE_KERNEL);
565 	} else {
566 		char bf[PATH_MAX];
567 
568 		if (machine__is_default_guest(machine))
569 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
570 		if (!vmlinux_name)
571 			vmlinux_name = machine__mmap_name(machine, bf,
572 							  sizeof(bf));
573 
574 		kernel = dso__kernel_findnew(machine, vmlinux_name,
575 					     "[guest.kernel]",
576 					     DSO_TYPE_GUEST_KERNEL);
577 	}
578 
579 	if (kernel != NULL && (!kernel->has_build_id))
580 		dso__read_running_kernel_build_id(kernel, machine);
581 
582 	return kernel;
583 }
584 
585 struct process_args {
586 	u64 start;
587 };
588 
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)589 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
590 					   size_t bufsz)
591 {
592 	if (machine__is_default_guest(machine))
593 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
594 	else
595 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
596 }
597 
598 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
599 
600 /* Figure out the start address of kernel map from /proc/kallsyms.
601  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
602  * symbol_name if it's not that important.
603  */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name)604 static u64 machine__get_running_kernel_start(struct machine *machine,
605 					     const char **symbol_name)
606 {
607 	char filename[PATH_MAX];
608 	int i;
609 	const char *name;
610 	u64 addr = 0;
611 
612 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
613 
614 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
615 		return 0;
616 
617 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
618 		addr = kallsyms__get_function_start(filename, name);
619 		if (addr)
620 			break;
621 	}
622 
623 	if (symbol_name)
624 		*symbol_name = name;
625 
626 	return addr;
627 }
628 
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)629 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
630 {
631 	enum map_type type;
632 	u64 start = machine__get_running_kernel_start(machine, NULL);
633 
634 	for (type = 0; type < MAP__NR_TYPES; ++type) {
635 		struct kmap *kmap;
636 
637 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
638 		if (machine->vmlinux_maps[type] == NULL)
639 			return -1;
640 
641 		machine->vmlinux_maps[type]->map_ip =
642 			machine->vmlinux_maps[type]->unmap_ip =
643 				identity__map_ip;
644 		kmap = map__kmap(machine->vmlinux_maps[type]);
645 		kmap->kmaps = &machine->kmaps;
646 		map_groups__insert(&machine->kmaps,
647 				   machine->vmlinux_maps[type]);
648 	}
649 
650 	return 0;
651 }
652 
machine__destroy_kernel_maps(struct machine * machine)653 void machine__destroy_kernel_maps(struct machine *machine)
654 {
655 	enum map_type type;
656 
657 	for (type = 0; type < MAP__NR_TYPES; ++type) {
658 		struct kmap *kmap;
659 
660 		if (machine->vmlinux_maps[type] == NULL)
661 			continue;
662 
663 		kmap = map__kmap(machine->vmlinux_maps[type]);
664 		map_groups__remove(&machine->kmaps,
665 				   machine->vmlinux_maps[type]);
666 		if (kmap->ref_reloc_sym) {
667 			/*
668 			 * ref_reloc_sym is shared among all maps, so free just
669 			 * on one of them.
670 			 */
671 			if (type == MAP__FUNCTION) {
672 				zfree((char **)&kmap->ref_reloc_sym->name);
673 				zfree(&kmap->ref_reloc_sym);
674 			} else
675 				kmap->ref_reloc_sym = NULL;
676 		}
677 
678 		map__delete(machine->vmlinux_maps[type]);
679 		machine->vmlinux_maps[type] = NULL;
680 	}
681 }
682 
machines__create_guest_kernel_maps(struct machines * machines)683 int machines__create_guest_kernel_maps(struct machines *machines)
684 {
685 	int ret = 0;
686 	struct dirent **namelist = NULL;
687 	int i, items = 0;
688 	char path[PATH_MAX];
689 	pid_t pid;
690 	char *endp;
691 
692 	if (symbol_conf.default_guest_vmlinux_name ||
693 	    symbol_conf.default_guest_modules ||
694 	    symbol_conf.default_guest_kallsyms) {
695 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
696 	}
697 
698 	if (symbol_conf.guestmount) {
699 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
700 		if (items <= 0)
701 			return -ENOENT;
702 		for (i = 0; i < items; i++) {
703 			if (!isdigit(namelist[i]->d_name[0])) {
704 				/* Filter out . and .. */
705 				continue;
706 			}
707 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
708 			if ((*endp != '\0') ||
709 			    (endp == namelist[i]->d_name) ||
710 			    (errno == ERANGE)) {
711 				pr_debug("invalid directory (%s). Skipping.\n",
712 					 namelist[i]->d_name);
713 				continue;
714 			}
715 			sprintf(path, "%s/%s/proc/kallsyms",
716 				symbol_conf.guestmount,
717 				namelist[i]->d_name);
718 			ret = access(path, R_OK);
719 			if (ret) {
720 				pr_debug("Can't access file %s\n", path);
721 				goto failure;
722 			}
723 			machines__create_kernel_maps(machines, pid);
724 		}
725 failure:
726 		free(namelist);
727 	}
728 
729 	return ret;
730 }
731 
machines__destroy_kernel_maps(struct machines * machines)732 void machines__destroy_kernel_maps(struct machines *machines)
733 {
734 	struct rb_node *next = rb_first(&machines->guests);
735 
736 	machine__destroy_kernel_maps(&machines->host);
737 
738 	while (next) {
739 		struct machine *pos = rb_entry(next, struct machine, rb_node);
740 
741 		next = rb_next(&pos->rb_node);
742 		rb_erase(&pos->rb_node, &machines->guests);
743 		machine__delete(pos);
744 	}
745 }
746 
machines__create_kernel_maps(struct machines * machines,pid_t pid)747 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
748 {
749 	struct machine *machine = machines__findnew(machines, pid);
750 
751 	if (machine == NULL)
752 		return -1;
753 
754 	return machine__create_kernel_maps(machine);
755 }
756 
machine__load_kallsyms(struct machine * machine,const char * filename,enum map_type type,symbol_filter_t filter)757 int machine__load_kallsyms(struct machine *machine, const char *filename,
758 			   enum map_type type, symbol_filter_t filter)
759 {
760 	struct map *map = machine->vmlinux_maps[type];
761 	int ret = dso__load_kallsyms(map->dso, filename, map, filter);
762 
763 	if (ret > 0) {
764 		dso__set_loaded(map->dso, type);
765 		/*
766 		 * Since /proc/kallsyms will have multiple sessions for the
767 		 * kernel, with modules between them, fixup the end of all
768 		 * sections.
769 		 */
770 		__map_groups__fixup_end(&machine->kmaps, type);
771 	}
772 
773 	return ret;
774 }
775 
machine__load_vmlinux_path(struct machine * machine,enum map_type type,symbol_filter_t filter)776 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
777 			       symbol_filter_t filter)
778 {
779 	struct map *map = machine->vmlinux_maps[type];
780 	int ret = dso__load_vmlinux_path(map->dso, map, filter);
781 
782 	if (ret > 0)
783 		dso__set_loaded(map->dso, type);
784 
785 	return ret;
786 }
787 
map_groups__fixup_end(struct map_groups * mg)788 static void map_groups__fixup_end(struct map_groups *mg)
789 {
790 	int i;
791 	for (i = 0; i < MAP__NR_TYPES; ++i)
792 		__map_groups__fixup_end(mg, i);
793 }
794 
get_kernel_version(const char * root_dir)795 static char *get_kernel_version(const char *root_dir)
796 {
797 	char version[PATH_MAX];
798 	FILE *file;
799 	char *name, *tmp;
800 	const char *prefix = "Linux version ";
801 
802 	sprintf(version, "%s/proc/version", root_dir);
803 	file = fopen(version, "r");
804 	if (!file)
805 		return NULL;
806 
807 	version[0] = '\0';
808 	tmp = fgets(version, sizeof(version), file);
809 	fclose(file);
810 
811 	name = strstr(version, prefix);
812 	if (!name)
813 		return NULL;
814 	name += strlen(prefix);
815 	tmp = strchr(name, ' ');
816 	if (tmp)
817 		*tmp = '\0';
818 
819 	return strdup(name);
820 }
821 
map_groups__set_modules_path_dir(struct map_groups * mg,const char * dir_name,int depth)822 static int map_groups__set_modules_path_dir(struct map_groups *mg,
823 				const char *dir_name, int depth)
824 {
825 	struct dirent *dent;
826 	DIR *dir = opendir(dir_name);
827 	int ret = 0;
828 
829 	if (!dir) {
830 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
831 		return -1;
832 	}
833 
834 	while ((dent = readdir(dir)) != NULL) {
835 		char path[PATH_MAX];
836 		struct stat st;
837 
838 		/*sshfs might return bad dent->d_type, so we have to stat*/
839 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
840 		if (stat(path, &st))
841 			continue;
842 
843 		if (S_ISDIR(st.st_mode)) {
844 			if (!strcmp(dent->d_name, ".") ||
845 			    !strcmp(dent->d_name, ".."))
846 				continue;
847 
848 			/* Do not follow top-level source and build symlinks */
849 			if (depth == 0) {
850 				if (!strcmp(dent->d_name, "source") ||
851 				    !strcmp(dent->d_name, "build"))
852 					continue;
853 			}
854 
855 			ret = map_groups__set_modules_path_dir(mg, path,
856 							       depth + 1);
857 			if (ret < 0)
858 				goto out;
859 		} else {
860 			char *dot = strrchr(dent->d_name, '.'),
861 			     dso_name[PATH_MAX];
862 			struct map *map;
863 			char *long_name;
864 
865 			if (dot == NULL || strcmp(dot, ".ko"))
866 				continue;
867 			snprintf(dso_name, sizeof(dso_name), "[%.*s]",
868 				 (int)(dot - dent->d_name), dent->d_name);
869 
870 			strxfrchar(dso_name, '-', '_');
871 			map = map_groups__find_by_name(mg, MAP__FUNCTION,
872 						       dso_name);
873 			if (map == NULL)
874 				continue;
875 
876 			long_name = strdup(path);
877 			if (long_name == NULL) {
878 				ret = -1;
879 				goto out;
880 			}
881 			dso__set_long_name(map->dso, long_name, true);
882 			dso__kernel_module_get_build_id(map->dso, "");
883 		}
884 	}
885 
886 out:
887 	closedir(dir);
888 	return ret;
889 }
890 
machine__set_modules_path(struct machine * machine)891 static int machine__set_modules_path(struct machine *machine)
892 {
893 	char *version;
894 	char modules_path[PATH_MAX];
895 
896 	version = get_kernel_version(machine->root_dir);
897 	if (!version)
898 		return -1;
899 
900 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
901 		 machine->root_dir, version);
902 	free(version);
903 
904 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
905 }
906 
machine__create_module(void * arg,const char * name,u64 start)907 static int machine__create_module(void *arg, const char *name, u64 start)
908 {
909 	struct machine *machine = arg;
910 	struct map *map;
911 
912 	map = machine__new_module(machine, start, name);
913 	if (map == NULL)
914 		return -1;
915 
916 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
917 
918 	return 0;
919 }
920 
machine__create_modules(struct machine * machine)921 static int machine__create_modules(struct machine *machine)
922 {
923 	const char *modules;
924 	char path[PATH_MAX];
925 
926 	if (machine__is_default_guest(machine)) {
927 		modules = symbol_conf.default_guest_modules;
928 	} else {
929 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
930 		modules = path;
931 	}
932 
933 	if (symbol__restricted_filename(modules, "/proc/modules"))
934 		return -1;
935 
936 	if (modules__parse(modules, machine, machine__create_module))
937 		return -1;
938 
939 	if (!machine__set_modules_path(machine))
940 		return 0;
941 
942 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
943 
944 	return 0;
945 }
946 
machine__create_kernel_maps(struct machine * machine)947 int machine__create_kernel_maps(struct machine *machine)
948 {
949 	struct dso *kernel = machine__get_kernel(machine);
950 	const char *name;
951 	u64 addr = machine__get_running_kernel_start(machine, &name);
952 	if (!addr)
953 		return -1;
954 
955 	if (kernel == NULL ||
956 	    __machine__create_kernel_maps(machine, kernel) < 0)
957 		return -1;
958 
959 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
960 		if (machine__is_host(machine))
961 			pr_debug("Problems creating module maps, "
962 				 "continuing anyway...\n");
963 		else
964 			pr_debug("Problems creating module maps for guest %d, "
965 				 "continuing anyway...\n", machine->pid);
966 	}
967 
968 	/*
969 	 * Now that we have all the maps created, just set the ->end of them:
970 	 */
971 	map_groups__fixup_end(&machine->kmaps);
972 
973 	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
974 					     addr)) {
975 		machine__destroy_kernel_maps(machine);
976 		return -1;
977 	}
978 
979 	return 0;
980 }
981 
machine__set_kernel_mmap_len(struct machine * machine,union perf_event * event)982 static void machine__set_kernel_mmap_len(struct machine *machine,
983 					 union perf_event *event)
984 {
985 	int i;
986 
987 	for (i = 0; i < MAP__NR_TYPES; i++) {
988 		machine->vmlinux_maps[i]->start = event->mmap.start;
989 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
990 						   event->mmap.len);
991 		/*
992 		 * Be a bit paranoid here, some perf.data file came with
993 		 * a zero sized synthesized MMAP event for the kernel.
994 		 */
995 		if (machine->vmlinux_maps[i]->end == 0)
996 			machine->vmlinux_maps[i]->end = ~0ULL;
997 	}
998 }
999 
machine__uses_kcore(struct machine * machine)1000 static bool machine__uses_kcore(struct machine *machine)
1001 {
1002 	struct dso *dso;
1003 
1004 	list_for_each_entry(dso, &machine->kernel_dsos.head, node) {
1005 		if (dso__is_kcore(dso))
1006 			return true;
1007 	}
1008 
1009 	return false;
1010 }
1011 
machine__process_kernel_mmap_event(struct machine * machine,union perf_event * event)1012 static int machine__process_kernel_mmap_event(struct machine *machine,
1013 					      union perf_event *event)
1014 {
1015 	struct map *map;
1016 	char kmmap_prefix[PATH_MAX];
1017 	enum dso_kernel_type kernel_type;
1018 	bool is_kernel_mmap;
1019 
1020 	/* If we have maps from kcore then we do not need or want any others */
1021 	if (machine__uses_kcore(machine))
1022 		return 0;
1023 
1024 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1025 	if (machine__is_host(machine))
1026 		kernel_type = DSO_TYPE_KERNEL;
1027 	else
1028 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1029 
1030 	is_kernel_mmap = memcmp(event->mmap.filename,
1031 				kmmap_prefix,
1032 				strlen(kmmap_prefix) - 1) == 0;
1033 	if (event->mmap.filename[0] == '/' ||
1034 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1035 
1036 		char short_module_name[1024];
1037 		char *name, *dot;
1038 
1039 		if (event->mmap.filename[0] == '/') {
1040 			name = strrchr(event->mmap.filename, '/');
1041 			if (name == NULL)
1042 				goto out_problem;
1043 
1044 			++name; /* skip / */
1045 			dot = strrchr(name, '.');
1046 			if (dot == NULL)
1047 				goto out_problem;
1048 			snprintf(short_module_name, sizeof(short_module_name),
1049 					"[%.*s]", (int)(dot - name), name);
1050 			strxfrchar(short_module_name, '-', '_');
1051 		} else
1052 			strcpy(short_module_name, event->mmap.filename);
1053 
1054 		map = machine__new_module(machine, event->mmap.start,
1055 					  event->mmap.filename);
1056 		if (map == NULL)
1057 			goto out_problem;
1058 
1059 		name = strdup(short_module_name);
1060 		if (name == NULL)
1061 			goto out_problem;
1062 
1063 		dso__set_short_name(map->dso, name, true);
1064 		map->end = map->start + event->mmap.len;
1065 	} else if (is_kernel_mmap) {
1066 		const char *symbol_name = (event->mmap.filename +
1067 				strlen(kmmap_prefix));
1068 		/*
1069 		 * Should be there already, from the build-id table in
1070 		 * the header.
1071 		 */
1072 		struct dso *kernel = __dsos__findnew(&machine->kernel_dsos,
1073 						     kmmap_prefix);
1074 		if (kernel == NULL)
1075 			goto out_problem;
1076 
1077 		kernel->kernel = kernel_type;
1078 		if (__machine__create_kernel_maps(machine, kernel) < 0)
1079 			goto out_problem;
1080 
1081 		machine__set_kernel_mmap_len(machine, event);
1082 
1083 		/*
1084 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1085 		 * symbol. Effectively having zero here means that at record
1086 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1087 		 */
1088 		if (event->mmap.pgoff != 0) {
1089 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1090 							 symbol_name,
1091 							 event->mmap.pgoff);
1092 		}
1093 
1094 		if (machine__is_default_guest(machine)) {
1095 			/*
1096 			 * preload dso of guest kernel and modules
1097 			 */
1098 			dso__load(kernel, machine->vmlinux_maps[MAP__FUNCTION],
1099 				  NULL);
1100 		}
1101 	}
1102 	return 0;
1103 out_problem:
1104 	return -1;
1105 }
1106 
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1107 int machine__process_mmap2_event(struct machine *machine,
1108 				 union perf_event *event,
1109 				 struct perf_sample *sample __maybe_unused)
1110 {
1111 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1112 	struct thread *thread;
1113 	struct map *map;
1114 	enum map_type type;
1115 	int ret = 0;
1116 
1117 	if (dump_trace)
1118 		perf_event__fprintf_mmap2(event, stdout);
1119 
1120 	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1121 	    cpumode == PERF_RECORD_MISC_KERNEL) {
1122 		ret = machine__process_kernel_mmap_event(machine, event);
1123 		if (ret < 0)
1124 			goto out_problem;
1125 		return 0;
1126 	}
1127 
1128 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1129 					event->mmap2.tid);
1130 	if (thread == NULL)
1131 		goto out_problem;
1132 
1133 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1134 		type = MAP__VARIABLE;
1135 	else
1136 		type = MAP__FUNCTION;
1137 
1138 	map = map__new(machine, event->mmap2.start,
1139 			event->mmap2.len, event->mmap2.pgoff,
1140 			event->mmap2.pid, event->mmap2.maj,
1141 			event->mmap2.min, event->mmap2.ino,
1142 			event->mmap2.ino_generation,
1143 			event->mmap2.prot,
1144 			event->mmap2.flags,
1145 			event->mmap2.filename, type, thread);
1146 
1147 	if (map == NULL)
1148 		goto out_problem;
1149 
1150 	thread__insert_map(thread, map);
1151 	return 0;
1152 
1153 out_problem:
1154 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1155 	return 0;
1156 }
1157 
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1158 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1159 				struct perf_sample *sample __maybe_unused)
1160 {
1161 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1162 	struct thread *thread;
1163 	struct map *map;
1164 	enum map_type type;
1165 	int ret = 0;
1166 
1167 	if (dump_trace)
1168 		perf_event__fprintf_mmap(event, stdout);
1169 
1170 	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1171 	    cpumode == PERF_RECORD_MISC_KERNEL) {
1172 		ret = machine__process_kernel_mmap_event(machine, event);
1173 		if (ret < 0)
1174 			goto out_problem;
1175 		return 0;
1176 	}
1177 
1178 	thread = machine__findnew_thread(machine, event->mmap.pid,
1179 					 event->mmap.tid);
1180 	if (thread == NULL)
1181 		goto out_problem;
1182 
1183 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1184 		type = MAP__VARIABLE;
1185 	else
1186 		type = MAP__FUNCTION;
1187 
1188 	map = map__new(machine, event->mmap.start,
1189 			event->mmap.len, event->mmap.pgoff,
1190 			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1191 			event->mmap.filename,
1192 			type, thread);
1193 
1194 	if (map == NULL)
1195 		goto out_problem;
1196 
1197 	thread__insert_map(thread, map);
1198 	return 0;
1199 
1200 out_problem:
1201 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1202 	return 0;
1203 }
1204 
machine__remove_thread(struct machine * machine,struct thread * th)1205 static void machine__remove_thread(struct machine *machine, struct thread *th)
1206 {
1207 	machine->last_match = NULL;
1208 	rb_erase(&th->rb_node, &machine->threads);
1209 	/*
1210 	 * We may have references to this thread, for instance in some hist_entry
1211 	 * instances, so just move them to a separate list.
1212 	 */
1213 	list_add_tail(&th->node, &machine->dead_threads);
1214 }
1215 
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1216 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1217 				struct perf_sample *sample)
1218 {
1219 	struct thread *thread = machine__find_thread(machine,
1220 						     event->fork.pid,
1221 						     event->fork.tid);
1222 	struct thread *parent = machine__findnew_thread(machine,
1223 							event->fork.ppid,
1224 							event->fork.ptid);
1225 
1226 	/* if a thread currently exists for the thread id remove it */
1227 	if (thread != NULL)
1228 		machine__remove_thread(machine, thread);
1229 
1230 	thread = machine__findnew_thread(machine, event->fork.pid,
1231 					 event->fork.tid);
1232 	if (dump_trace)
1233 		perf_event__fprintf_task(event, stdout);
1234 
1235 	if (thread == NULL || parent == NULL ||
1236 	    thread__fork(thread, parent, sample->time) < 0) {
1237 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1238 		return -1;
1239 	}
1240 
1241 	return 0;
1242 }
1243 
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1244 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1245 				struct perf_sample *sample __maybe_unused)
1246 {
1247 	struct thread *thread = machine__find_thread(machine,
1248 						     event->fork.pid,
1249 						     event->fork.tid);
1250 
1251 	if (dump_trace)
1252 		perf_event__fprintf_task(event, stdout);
1253 
1254 	if (thread != NULL)
1255 		thread__exited(thread);
1256 
1257 	return 0;
1258 }
1259 
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1260 int machine__process_event(struct machine *machine, union perf_event *event,
1261 			   struct perf_sample *sample)
1262 {
1263 	int ret;
1264 
1265 	switch (event->header.type) {
1266 	case PERF_RECORD_COMM:
1267 		ret = machine__process_comm_event(machine, event, sample); break;
1268 	case PERF_RECORD_MMAP:
1269 		ret = machine__process_mmap_event(machine, event, sample); break;
1270 	case PERF_RECORD_MMAP2:
1271 		ret = machine__process_mmap2_event(machine, event, sample); break;
1272 	case PERF_RECORD_FORK:
1273 		ret = machine__process_fork_event(machine, event, sample); break;
1274 	case PERF_RECORD_EXIT:
1275 		ret = machine__process_exit_event(machine, event, sample); break;
1276 	case PERF_RECORD_LOST:
1277 		ret = machine__process_lost_event(machine, event, sample); break;
1278 	default:
1279 		ret = -1;
1280 		break;
1281 	}
1282 
1283 	return ret;
1284 }
1285 
symbol__match_regex(struct symbol * sym,regex_t * regex)1286 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1287 {
1288 	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1289 		return 1;
1290 	return 0;
1291 }
1292 
ip__resolve_ams(struct machine * machine,struct thread * thread,struct addr_map_symbol * ams,u64 ip)1293 static void ip__resolve_ams(struct machine *machine, struct thread *thread,
1294 			    struct addr_map_symbol *ams,
1295 			    u64 ip)
1296 {
1297 	struct addr_location al;
1298 
1299 	memset(&al, 0, sizeof(al));
1300 	/*
1301 	 * We cannot use the header.misc hint to determine whether a
1302 	 * branch stack address is user, kernel, guest, hypervisor.
1303 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1304 	 * Thus, we have to try consecutively until we find a match
1305 	 * or else, the symbol is unknown
1306 	 */
1307 	thread__find_cpumode_addr_location(thread, machine, MAP__FUNCTION, ip, &al);
1308 
1309 	ams->addr = ip;
1310 	ams->al_addr = al.addr;
1311 	ams->sym = al.sym;
1312 	ams->map = al.map;
1313 }
1314 
ip__resolve_data(struct machine * machine,struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr)1315 static void ip__resolve_data(struct machine *machine, struct thread *thread,
1316 			     u8 m, struct addr_map_symbol *ams, u64 addr)
1317 {
1318 	struct addr_location al;
1319 
1320 	memset(&al, 0, sizeof(al));
1321 
1322 	thread__find_addr_location(thread, machine, m, MAP__VARIABLE, addr,
1323 				   &al);
1324 	if (al.map == NULL) {
1325 		/*
1326 		 * some shared data regions have execute bit set which puts
1327 		 * their mapping in the MAP__FUNCTION type array.
1328 		 * Check there as a fallback option before dropping the sample.
1329 		 */
1330 		thread__find_addr_location(thread, machine, m, MAP__FUNCTION, addr,
1331 					   &al);
1332 	}
1333 
1334 	ams->addr = addr;
1335 	ams->al_addr = al.addr;
1336 	ams->sym = al.sym;
1337 	ams->map = al.map;
1338 }
1339 
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)1340 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1341 				     struct addr_location *al)
1342 {
1343 	struct mem_info *mi = zalloc(sizeof(*mi));
1344 
1345 	if (!mi)
1346 		return NULL;
1347 
1348 	ip__resolve_ams(al->machine, al->thread, &mi->iaddr, sample->ip);
1349 	ip__resolve_data(al->machine, al->thread, al->cpumode,
1350 			 &mi->daddr, sample->addr);
1351 	mi->data_src.val = sample->data_src;
1352 
1353 	return mi;
1354 }
1355 
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)1356 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1357 					   struct addr_location *al)
1358 {
1359 	unsigned int i;
1360 	const struct branch_stack *bs = sample->branch_stack;
1361 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1362 
1363 	if (!bi)
1364 		return NULL;
1365 
1366 	for (i = 0; i < bs->nr; i++) {
1367 		ip__resolve_ams(al->machine, al->thread, &bi[i].to, bs->entries[i].to);
1368 		ip__resolve_ams(al->machine, al->thread, &bi[i].from, bs->entries[i].from);
1369 		bi[i].flags = bs->entries[i].flags;
1370 	}
1371 	return bi;
1372 }
1373 
machine__resolve_callchain_sample(struct machine * machine,struct thread * thread,struct ip_callchain * chain,struct symbol ** parent,struct addr_location * root_al,int max_stack)1374 static int machine__resolve_callchain_sample(struct machine *machine,
1375 					     struct thread *thread,
1376 					     struct ip_callchain *chain,
1377 					     struct symbol **parent,
1378 					     struct addr_location *root_al,
1379 					     int max_stack)
1380 {
1381 	u8 cpumode = PERF_RECORD_MISC_USER;
1382 	int chain_nr = min(max_stack, (int)chain->nr);
1383 	int i;
1384 	int j;
1385 	int err;
1386 	int skip_idx __maybe_unused;
1387 
1388 	callchain_cursor_reset(&callchain_cursor);
1389 
1390 	if (chain->nr > PERF_MAX_STACK_DEPTH) {
1391 		pr_warning("corrupted callchain. skipping...\n");
1392 		return 0;
1393 	}
1394 
1395 	/*
1396 	 * Based on DWARF debug information, some architectures skip
1397 	 * a callchain entry saved by the kernel.
1398 	 */
1399 	skip_idx = arch_skip_callchain_idx(machine, thread, chain);
1400 
1401 	for (i = 0; i < chain_nr; i++) {
1402 		u64 ip;
1403 		struct addr_location al;
1404 
1405 		if (callchain_param.order == ORDER_CALLEE)
1406 			j = i;
1407 		else
1408 			j = chain->nr - i - 1;
1409 
1410 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1411 		if (j == skip_idx)
1412 			continue;
1413 #endif
1414 		ip = chain->ips[j];
1415 
1416 		if (ip >= PERF_CONTEXT_MAX) {
1417 			switch (ip) {
1418 			case PERF_CONTEXT_HV:
1419 				cpumode = PERF_RECORD_MISC_HYPERVISOR;
1420 				break;
1421 			case PERF_CONTEXT_KERNEL:
1422 				cpumode = PERF_RECORD_MISC_KERNEL;
1423 				break;
1424 			case PERF_CONTEXT_USER:
1425 				cpumode = PERF_RECORD_MISC_USER;
1426 				break;
1427 			default:
1428 				pr_debug("invalid callchain context: "
1429 					 "%"PRId64"\n", (s64) ip);
1430 				/*
1431 				 * It seems the callchain is corrupted.
1432 				 * Discard all.
1433 				 */
1434 				callchain_cursor_reset(&callchain_cursor);
1435 				return 0;
1436 			}
1437 			continue;
1438 		}
1439 
1440 		al.filtered = 0;
1441 		thread__find_addr_location(thread, machine, cpumode,
1442 					   MAP__FUNCTION, ip, &al);
1443 		if (al.sym != NULL) {
1444 			if (sort__has_parent && !*parent &&
1445 			    symbol__match_regex(al.sym, &parent_regex))
1446 				*parent = al.sym;
1447 			else if (have_ignore_callees && root_al &&
1448 			  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1449 				/* Treat this symbol as the root,
1450 				   forgetting its callees. */
1451 				*root_al = al;
1452 				callchain_cursor_reset(&callchain_cursor);
1453 			}
1454 		}
1455 
1456 		err = callchain_cursor_append(&callchain_cursor,
1457 					      ip, al.map, al.sym);
1458 		if (err)
1459 			return err;
1460 	}
1461 
1462 	return 0;
1463 }
1464 
unwind_entry(struct unwind_entry * entry,void * arg)1465 static int unwind_entry(struct unwind_entry *entry, void *arg)
1466 {
1467 	struct callchain_cursor *cursor = arg;
1468 	return callchain_cursor_append(cursor, entry->ip,
1469 				       entry->map, entry->sym);
1470 }
1471 
machine__resolve_callchain(struct machine * machine,struct perf_evsel * evsel,struct thread * thread,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)1472 int machine__resolve_callchain(struct machine *machine,
1473 			       struct perf_evsel *evsel,
1474 			       struct thread *thread,
1475 			       struct perf_sample *sample,
1476 			       struct symbol **parent,
1477 			       struct addr_location *root_al,
1478 			       int max_stack)
1479 {
1480 	int ret;
1481 
1482 	ret = machine__resolve_callchain_sample(machine, thread,
1483 						sample->callchain, parent,
1484 						root_al, max_stack);
1485 	if (ret)
1486 		return ret;
1487 
1488 	/* Can we do dwarf post unwind? */
1489 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1490 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1491 		return 0;
1492 
1493 	/* Bail out if nothing was captured. */
1494 	if ((!sample->user_regs.regs) ||
1495 	    (!sample->user_stack.size))
1496 		return 0;
1497 
1498 	return unwind__get_entries(unwind_entry, &callchain_cursor, machine,
1499 				   thread, sample, max_stack);
1500 
1501 }
1502 
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)1503 int machine__for_each_thread(struct machine *machine,
1504 			     int (*fn)(struct thread *thread, void *p),
1505 			     void *priv)
1506 {
1507 	struct rb_node *nd;
1508 	struct thread *thread;
1509 	int rc = 0;
1510 
1511 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1512 		thread = rb_entry(nd, struct thread, rb_node);
1513 		rc = fn(thread, priv);
1514 		if (rc != 0)
1515 			return rc;
1516 	}
1517 
1518 	list_for_each_entry(thread, &machine->dead_threads, node) {
1519 		rc = fn(thread, priv);
1520 		if (rc != 0)
1521 			return rc;
1522 	}
1523 	return rc;
1524 }
1525 
__machine__synthesize_threads(struct machine * machine,struct perf_tool * tool,struct target * target,struct thread_map * threads,perf_event__handler_t process,bool data_mmap)1526 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1527 				  struct target *target, struct thread_map *threads,
1528 				  perf_event__handler_t process, bool data_mmap)
1529 {
1530 	if (target__has_task(target))
1531 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
1532 	else if (target__has_cpu(target))
1533 		return perf_event__synthesize_threads(tool, process, machine, data_mmap);
1534 	/* command specified */
1535 	return 0;
1536 }
1537 
machine__get_current_tid(struct machine * machine,int cpu)1538 pid_t machine__get_current_tid(struct machine *machine, int cpu)
1539 {
1540 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
1541 		return -1;
1542 
1543 	return machine->current_tid[cpu];
1544 }
1545 
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)1546 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
1547 			     pid_t tid)
1548 {
1549 	struct thread *thread;
1550 
1551 	if (cpu < 0)
1552 		return -EINVAL;
1553 
1554 	if (!machine->current_tid) {
1555 		int i;
1556 
1557 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
1558 		if (!machine->current_tid)
1559 			return -ENOMEM;
1560 		for (i = 0; i < MAX_NR_CPUS; i++)
1561 			machine->current_tid[i] = -1;
1562 	}
1563 
1564 	if (cpu >= MAX_NR_CPUS) {
1565 		pr_err("Requested CPU %d too large. ", cpu);
1566 		pr_err("Consider raising MAX_NR_CPUS\n");
1567 		return -EINVAL;
1568 	}
1569 
1570 	machine->current_tid[cpu] = tid;
1571 
1572 	thread = machine__findnew_thread(machine, pid, tid);
1573 	if (!thread)
1574 		return -ENOMEM;
1575 
1576 	thread->cpu = cpu;
1577 
1578 	return 0;
1579 }
1580 
machine__get_kernel_start(struct machine * machine)1581 int machine__get_kernel_start(struct machine *machine)
1582 {
1583 	struct map *map = machine__kernel_map(machine, MAP__FUNCTION);
1584 	int err = 0;
1585 
1586 	/*
1587 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
1588 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
1589 	 * all addresses including kernel addresses are less than 2^32.  In
1590 	 * that case (32-bit system), if the kernel mapping is unknown, all
1591 	 * addresses will be assumed to be in user space - see
1592 	 * machine__kernel_ip().
1593 	 */
1594 	machine->kernel_start = 1ULL << 63;
1595 	if (map) {
1596 		err = map__load(map, machine->symbol_filter);
1597 		if (map->start)
1598 			machine->kernel_start = map->start;
1599 	}
1600 	return err;
1601 }
1602