1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15
dsos__init(struct dsos * dsos)16 static void dsos__init(struct dsos *dsos)
17 {
18 INIT_LIST_HEAD(&dsos->head);
19 dsos->root = RB_ROOT;
20 }
21
machine__init(struct machine * machine,const char * root_dir,pid_t pid)22 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
23 {
24 map_groups__init(&machine->kmaps);
25 RB_CLEAR_NODE(&machine->rb_node);
26 dsos__init(&machine->user_dsos);
27 dsos__init(&machine->kernel_dsos);
28
29 machine->threads = RB_ROOT;
30 INIT_LIST_HEAD(&machine->dead_threads);
31 machine->last_match = NULL;
32
33 machine->vdso_info = NULL;
34
35 machine->kmaps.machine = machine;
36 machine->pid = pid;
37
38 machine->symbol_filter = NULL;
39 machine->id_hdr_size = 0;
40 machine->comm_exec = false;
41 machine->kernel_start = 0;
42
43 machine->root_dir = strdup(root_dir);
44 if (machine->root_dir == NULL)
45 return -ENOMEM;
46
47 if (pid != HOST_KERNEL_ID) {
48 struct thread *thread = machine__findnew_thread(machine, -1,
49 pid);
50 char comm[64];
51
52 if (thread == NULL)
53 return -ENOMEM;
54
55 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
56 thread__set_comm(thread, comm, 0);
57 }
58
59 machine->current_tid = NULL;
60
61 return 0;
62 }
63
machine__new_host(void)64 struct machine *machine__new_host(void)
65 {
66 struct machine *machine = malloc(sizeof(*machine));
67
68 if (machine != NULL) {
69 machine__init(machine, "", HOST_KERNEL_ID);
70
71 if (machine__create_kernel_maps(machine) < 0)
72 goto out_delete;
73 }
74
75 return machine;
76 out_delete:
77 free(machine);
78 return NULL;
79 }
80
dsos__delete(struct dsos * dsos)81 static void dsos__delete(struct dsos *dsos)
82 {
83 struct dso *pos, *n;
84
85 list_for_each_entry_safe(pos, n, &dsos->head, node) {
86 RB_CLEAR_NODE(&pos->rb_node);
87 list_del(&pos->node);
88 dso__delete(pos);
89 }
90 }
91
machine__delete_dead_threads(struct machine * machine)92 void machine__delete_dead_threads(struct machine *machine)
93 {
94 struct thread *n, *t;
95
96 list_for_each_entry_safe(t, n, &machine->dead_threads, node) {
97 list_del(&t->node);
98 thread__delete(t);
99 }
100 }
101
machine__delete_threads(struct machine * machine)102 void machine__delete_threads(struct machine *machine)
103 {
104 struct rb_node *nd = rb_first(&machine->threads);
105
106 while (nd) {
107 struct thread *t = rb_entry(nd, struct thread, rb_node);
108
109 rb_erase(&t->rb_node, &machine->threads);
110 nd = rb_next(nd);
111 thread__delete(t);
112 }
113 }
114
machine__exit(struct machine * machine)115 void machine__exit(struct machine *machine)
116 {
117 map_groups__exit(&machine->kmaps);
118 dsos__delete(&machine->user_dsos);
119 dsos__delete(&machine->kernel_dsos);
120 vdso__exit(machine);
121 zfree(&machine->root_dir);
122 zfree(&machine->current_tid);
123 }
124
machine__delete(struct machine * machine)125 void machine__delete(struct machine *machine)
126 {
127 machine__exit(machine);
128 free(machine);
129 }
130
machines__init(struct machines * machines)131 void machines__init(struct machines *machines)
132 {
133 machine__init(&machines->host, "", HOST_KERNEL_ID);
134 machines->guests = RB_ROOT;
135 machines->symbol_filter = NULL;
136 }
137
machines__exit(struct machines * machines)138 void machines__exit(struct machines *machines)
139 {
140 machine__exit(&machines->host);
141 /* XXX exit guest */
142 }
143
machines__add(struct machines * machines,pid_t pid,const char * root_dir)144 struct machine *machines__add(struct machines *machines, pid_t pid,
145 const char *root_dir)
146 {
147 struct rb_node **p = &machines->guests.rb_node;
148 struct rb_node *parent = NULL;
149 struct machine *pos, *machine = malloc(sizeof(*machine));
150
151 if (machine == NULL)
152 return NULL;
153
154 if (machine__init(machine, root_dir, pid) != 0) {
155 free(machine);
156 return NULL;
157 }
158
159 machine->symbol_filter = machines->symbol_filter;
160
161 while (*p != NULL) {
162 parent = *p;
163 pos = rb_entry(parent, struct machine, rb_node);
164 if (pid < pos->pid)
165 p = &(*p)->rb_left;
166 else
167 p = &(*p)->rb_right;
168 }
169
170 rb_link_node(&machine->rb_node, parent, p);
171 rb_insert_color(&machine->rb_node, &machines->guests);
172
173 return machine;
174 }
175
machines__set_symbol_filter(struct machines * machines,symbol_filter_t symbol_filter)176 void machines__set_symbol_filter(struct machines *machines,
177 symbol_filter_t symbol_filter)
178 {
179 struct rb_node *nd;
180
181 machines->symbol_filter = symbol_filter;
182 machines->host.symbol_filter = symbol_filter;
183
184 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
185 struct machine *machine = rb_entry(nd, struct machine, rb_node);
186
187 machine->symbol_filter = symbol_filter;
188 }
189 }
190
machines__set_comm_exec(struct machines * machines,bool comm_exec)191 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
192 {
193 struct rb_node *nd;
194
195 machines->host.comm_exec = comm_exec;
196
197 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
198 struct machine *machine = rb_entry(nd, struct machine, rb_node);
199
200 machine->comm_exec = comm_exec;
201 }
202 }
203
machines__find(struct machines * machines,pid_t pid)204 struct machine *machines__find(struct machines *machines, pid_t pid)
205 {
206 struct rb_node **p = &machines->guests.rb_node;
207 struct rb_node *parent = NULL;
208 struct machine *machine;
209 struct machine *default_machine = NULL;
210
211 if (pid == HOST_KERNEL_ID)
212 return &machines->host;
213
214 while (*p != NULL) {
215 parent = *p;
216 machine = rb_entry(parent, struct machine, rb_node);
217 if (pid < machine->pid)
218 p = &(*p)->rb_left;
219 else if (pid > machine->pid)
220 p = &(*p)->rb_right;
221 else
222 return machine;
223 if (!machine->pid)
224 default_machine = machine;
225 }
226
227 return default_machine;
228 }
229
machines__findnew(struct machines * machines,pid_t pid)230 struct machine *machines__findnew(struct machines *machines, pid_t pid)
231 {
232 char path[PATH_MAX];
233 const char *root_dir = "";
234 struct machine *machine = machines__find(machines, pid);
235
236 if (machine && (machine->pid == pid))
237 goto out;
238
239 if ((pid != HOST_KERNEL_ID) &&
240 (pid != DEFAULT_GUEST_KERNEL_ID) &&
241 (symbol_conf.guestmount)) {
242 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
243 if (access(path, R_OK)) {
244 static struct strlist *seen;
245
246 if (!seen)
247 seen = strlist__new(true, NULL);
248
249 if (!strlist__has_entry(seen, path)) {
250 pr_err("Can't access file %s\n", path);
251 strlist__add(seen, path);
252 }
253 machine = NULL;
254 goto out;
255 }
256 root_dir = path;
257 }
258
259 machine = machines__add(machines, pid, root_dir);
260 out:
261 return machine;
262 }
263
machines__process_guests(struct machines * machines,machine__process_t process,void * data)264 void machines__process_guests(struct machines *machines,
265 machine__process_t process, void *data)
266 {
267 struct rb_node *nd;
268
269 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
270 struct machine *pos = rb_entry(nd, struct machine, rb_node);
271 process(pos, data);
272 }
273 }
274
machine__mmap_name(struct machine * machine,char * bf,size_t size)275 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
276 {
277 if (machine__is_host(machine))
278 snprintf(bf, size, "[%s]", "kernel.kallsyms");
279 else if (machine__is_default_guest(machine))
280 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
281 else {
282 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
283 machine->pid);
284 }
285
286 return bf;
287 }
288
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)289 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
290 {
291 struct rb_node *node;
292 struct machine *machine;
293
294 machines->host.id_hdr_size = id_hdr_size;
295
296 for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
297 machine = rb_entry(node, struct machine, rb_node);
298 machine->id_hdr_size = id_hdr_size;
299 }
300
301 return;
302 }
303
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)304 static void machine__update_thread_pid(struct machine *machine,
305 struct thread *th, pid_t pid)
306 {
307 struct thread *leader;
308
309 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
310 return;
311
312 th->pid_ = pid;
313
314 if (th->pid_ == th->tid)
315 return;
316
317 leader = machine__findnew_thread(machine, th->pid_, th->pid_);
318 if (!leader)
319 goto out_err;
320
321 if (!leader->mg)
322 leader->mg = map_groups__new();
323
324 if (!leader->mg)
325 goto out_err;
326
327 if (th->mg == leader->mg)
328 return;
329
330 if (th->mg) {
331 /*
332 * Maps are created from MMAP events which provide the pid and
333 * tid. Consequently there never should be any maps on a thread
334 * with an unknown pid. Just print an error if there are.
335 */
336 if (!map_groups__empty(th->mg))
337 pr_err("Discarding thread maps for %d:%d\n",
338 th->pid_, th->tid);
339 map_groups__delete(th->mg);
340 }
341
342 th->mg = map_groups__get(leader->mg);
343
344 return;
345
346 out_err:
347 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
348 }
349
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid,bool create)350 static struct thread *__machine__findnew_thread(struct machine *machine,
351 pid_t pid, pid_t tid,
352 bool create)
353 {
354 struct rb_node **p = &machine->threads.rb_node;
355 struct rb_node *parent = NULL;
356 struct thread *th;
357
358 /*
359 * Front-end cache - TID lookups come in blocks,
360 * so most of the time we dont have to look up
361 * the full rbtree:
362 */
363 th = machine->last_match;
364 if (th && th->tid == tid) {
365 machine__update_thread_pid(machine, th, pid);
366 return th;
367 }
368
369 while (*p != NULL) {
370 parent = *p;
371 th = rb_entry(parent, struct thread, rb_node);
372
373 if (th->tid == tid) {
374 machine->last_match = th;
375 machine__update_thread_pid(machine, th, pid);
376 return th;
377 }
378
379 if (tid < th->tid)
380 p = &(*p)->rb_left;
381 else
382 p = &(*p)->rb_right;
383 }
384
385 if (!create)
386 return NULL;
387
388 th = thread__new(pid, tid);
389 if (th != NULL) {
390 rb_link_node(&th->rb_node, parent, p);
391 rb_insert_color(&th->rb_node, &machine->threads);
392 machine->last_match = th;
393
394 /*
395 * We have to initialize map_groups separately
396 * after rb tree is updated.
397 *
398 * The reason is that we call machine__findnew_thread
399 * within thread__init_map_groups to find the thread
400 * leader and that would screwed the rb tree.
401 */
402 if (thread__init_map_groups(th, machine)) {
403 thread__delete(th);
404 return NULL;
405 }
406 }
407
408 return th;
409 }
410
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)411 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
412 pid_t tid)
413 {
414 return __machine__findnew_thread(machine, pid, tid, true);
415 }
416
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)417 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
418 pid_t tid)
419 {
420 return __machine__findnew_thread(machine, pid, tid, false);
421 }
422
machine__thread_exec_comm(struct machine * machine,struct thread * thread)423 struct comm *machine__thread_exec_comm(struct machine *machine,
424 struct thread *thread)
425 {
426 if (machine->comm_exec)
427 return thread__exec_comm(thread);
428 else
429 return thread__comm(thread);
430 }
431
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)432 int machine__process_comm_event(struct machine *machine, union perf_event *event,
433 struct perf_sample *sample)
434 {
435 struct thread *thread = machine__findnew_thread(machine,
436 event->comm.pid,
437 event->comm.tid);
438 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
439
440 if (exec)
441 machine->comm_exec = true;
442
443 if (dump_trace)
444 perf_event__fprintf_comm(event, stdout);
445
446 if (thread == NULL ||
447 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
448 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
449 return -1;
450 }
451
452 return 0;
453 }
454
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)455 int machine__process_lost_event(struct machine *machine __maybe_unused,
456 union perf_event *event, struct perf_sample *sample __maybe_unused)
457 {
458 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
459 event->lost.id, event->lost.lost);
460 return 0;
461 }
462
machine__new_module(struct machine * machine,u64 start,const char * filename)463 struct map *machine__new_module(struct machine *machine, u64 start,
464 const char *filename)
465 {
466 struct map *map;
467 struct dso *dso = __dsos__findnew(&machine->kernel_dsos, filename);
468
469 if (dso == NULL)
470 return NULL;
471
472 map = map__new2(start, dso, MAP__FUNCTION);
473 if (map == NULL)
474 return NULL;
475
476 if (machine__is_host(machine))
477 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
478 else
479 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
480 map_groups__insert(&machine->kmaps, map);
481 return map;
482 }
483
machines__fprintf_dsos(struct machines * machines,FILE * fp)484 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
485 {
486 struct rb_node *nd;
487 size_t ret = __dsos__fprintf(&machines->host.kernel_dsos.head, fp) +
488 __dsos__fprintf(&machines->host.user_dsos.head, fp);
489
490 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
491 struct machine *pos = rb_entry(nd, struct machine, rb_node);
492 ret += __dsos__fprintf(&pos->kernel_dsos.head, fp);
493 ret += __dsos__fprintf(&pos->user_dsos.head, fp);
494 }
495
496 return ret;
497 }
498
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)499 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
500 bool (skip)(struct dso *dso, int parm), int parm)
501 {
502 return __dsos__fprintf_buildid(&m->kernel_dsos.head, fp, skip, parm) +
503 __dsos__fprintf_buildid(&m->user_dsos.head, fp, skip, parm);
504 }
505
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)506 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
507 bool (skip)(struct dso *dso, int parm), int parm)
508 {
509 struct rb_node *nd;
510 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
511
512 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
513 struct machine *pos = rb_entry(nd, struct machine, rb_node);
514 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
515 }
516 return ret;
517 }
518
machine__fprintf_vmlinux_path(struct machine * machine,FILE * fp)519 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
520 {
521 int i;
522 size_t printed = 0;
523 struct dso *kdso = machine->vmlinux_maps[MAP__FUNCTION]->dso;
524
525 if (kdso->has_build_id) {
526 char filename[PATH_MAX];
527 if (dso__build_id_filename(kdso, filename, sizeof(filename)))
528 printed += fprintf(fp, "[0] %s\n", filename);
529 }
530
531 for (i = 0; i < vmlinux_path__nr_entries; ++i)
532 printed += fprintf(fp, "[%d] %s\n",
533 i + kdso->has_build_id, vmlinux_path[i]);
534
535 return printed;
536 }
537
machine__fprintf(struct machine * machine,FILE * fp)538 size_t machine__fprintf(struct machine *machine, FILE *fp)
539 {
540 size_t ret = 0;
541 struct rb_node *nd;
542
543 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
544 struct thread *pos = rb_entry(nd, struct thread, rb_node);
545
546 ret += thread__fprintf(pos, fp);
547 }
548
549 return ret;
550 }
551
machine__get_kernel(struct machine * machine)552 static struct dso *machine__get_kernel(struct machine *machine)
553 {
554 const char *vmlinux_name = NULL;
555 struct dso *kernel;
556
557 if (machine__is_host(machine)) {
558 vmlinux_name = symbol_conf.vmlinux_name;
559 if (!vmlinux_name)
560 vmlinux_name = "[kernel.kallsyms]";
561
562 kernel = dso__kernel_findnew(machine, vmlinux_name,
563 "[kernel]",
564 DSO_TYPE_KERNEL);
565 } else {
566 char bf[PATH_MAX];
567
568 if (machine__is_default_guest(machine))
569 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
570 if (!vmlinux_name)
571 vmlinux_name = machine__mmap_name(machine, bf,
572 sizeof(bf));
573
574 kernel = dso__kernel_findnew(machine, vmlinux_name,
575 "[guest.kernel]",
576 DSO_TYPE_GUEST_KERNEL);
577 }
578
579 if (kernel != NULL && (!kernel->has_build_id))
580 dso__read_running_kernel_build_id(kernel, machine);
581
582 return kernel;
583 }
584
585 struct process_args {
586 u64 start;
587 };
588
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)589 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
590 size_t bufsz)
591 {
592 if (machine__is_default_guest(machine))
593 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
594 else
595 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
596 }
597
598 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
599
600 /* Figure out the start address of kernel map from /proc/kallsyms.
601 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
602 * symbol_name if it's not that important.
603 */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name)604 static u64 machine__get_running_kernel_start(struct machine *machine,
605 const char **symbol_name)
606 {
607 char filename[PATH_MAX];
608 int i;
609 const char *name;
610 u64 addr = 0;
611
612 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
613
614 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
615 return 0;
616
617 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
618 addr = kallsyms__get_function_start(filename, name);
619 if (addr)
620 break;
621 }
622
623 if (symbol_name)
624 *symbol_name = name;
625
626 return addr;
627 }
628
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)629 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
630 {
631 enum map_type type;
632 u64 start = machine__get_running_kernel_start(machine, NULL);
633
634 for (type = 0; type < MAP__NR_TYPES; ++type) {
635 struct kmap *kmap;
636
637 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
638 if (machine->vmlinux_maps[type] == NULL)
639 return -1;
640
641 machine->vmlinux_maps[type]->map_ip =
642 machine->vmlinux_maps[type]->unmap_ip =
643 identity__map_ip;
644 kmap = map__kmap(machine->vmlinux_maps[type]);
645 kmap->kmaps = &machine->kmaps;
646 map_groups__insert(&machine->kmaps,
647 machine->vmlinux_maps[type]);
648 }
649
650 return 0;
651 }
652
machine__destroy_kernel_maps(struct machine * machine)653 void machine__destroy_kernel_maps(struct machine *machine)
654 {
655 enum map_type type;
656
657 for (type = 0; type < MAP__NR_TYPES; ++type) {
658 struct kmap *kmap;
659
660 if (machine->vmlinux_maps[type] == NULL)
661 continue;
662
663 kmap = map__kmap(machine->vmlinux_maps[type]);
664 map_groups__remove(&machine->kmaps,
665 machine->vmlinux_maps[type]);
666 if (kmap->ref_reloc_sym) {
667 /*
668 * ref_reloc_sym is shared among all maps, so free just
669 * on one of them.
670 */
671 if (type == MAP__FUNCTION) {
672 zfree((char **)&kmap->ref_reloc_sym->name);
673 zfree(&kmap->ref_reloc_sym);
674 } else
675 kmap->ref_reloc_sym = NULL;
676 }
677
678 map__delete(machine->vmlinux_maps[type]);
679 machine->vmlinux_maps[type] = NULL;
680 }
681 }
682
machines__create_guest_kernel_maps(struct machines * machines)683 int machines__create_guest_kernel_maps(struct machines *machines)
684 {
685 int ret = 0;
686 struct dirent **namelist = NULL;
687 int i, items = 0;
688 char path[PATH_MAX];
689 pid_t pid;
690 char *endp;
691
692 if (symbol_conf.default_guest_vmlinux_name ||
693 symbol_conf.default_guest_modules ||
694 symbol_conf.default_guest_kallsyms) {
695 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
696 }
697
698 if (symbol_conf.guestmount) {
699 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
700 if (items <= 0)
701 return -ENOENT;
702 for (i = 0; i < items; i++) {
703 if (!isdigit(namelist[i]->d_name[0])) {
704 /* Filter out . and .. */
705 continue;
706 }
707 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
708 if ((*endp != '\0') ||
709 (endp == namelist[i]->d_name) ||
710 (errno == ERANGE)) {
711 pr_debug("invalid directory (%s). Skipping.\n",
712 namelist[i]->d_name);
713 continue;
714 }
715 sprintf(path, "%s/%s/proc/kallsyms",
716 symbol_conf.guestmount,
717 namelist[i]->d_name);
718 ret = access(path, R_OK);
719 if (ret) {
720 pr_debug("Can't access file %s\n", path);
721 goto failure;
722 }
723 machines__create_kernel_maps(machines, pid);
724 }
725 failure:
726 free(namelist);
727 }
728
729 return ret;
730 }
731
machines__destroy_kernel_maps(struct machines * machines)732 void machines__destroy_kernel_maps(struct machines *machines)
733 {
734 struct rb_node *next = rb_first(&machines->guests);
735
736 machine__destroy_kernel_maps(&machines->host);
737
738 while (next) {
739 struct machine *pos = rb_entry(next, struct machine, rb_node);
740
741 next = rb_next(&pos->rb_node);
742 rb_erase(&pos->rb_node, &machines->guests);
743 machine__delete(pos);
744 }
745 }
746
machines__create_kernel_maps(struct machines * machines,pid_t pid)747 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
748 {
749 struct machine *machine = machines__findnew(machines, pid);
750
751 if (machine == NULL)
752 return -1;
753
754 return machine__create_kernel_maps(machine);
755 }
756
machine__load_kallsyms(struct machine * machine,const char * filename,enum map_type type,symbol_filter_t filter)757 int machine__load_kallsyms(struct machine *machine, const char *filename,
758 enum map_type type, symbol_filter_t filter)
759 {
760 struct map *map = machine->vmlinux_maps[type];
761 int ret = dso__load_kallsyms(map->dso, filename, map, filter);
762
763 if (ret > 0) {
764 dso__set_loaded(map->dso, type);
765 /*
766 * Since /proc/kallsyms will have multiple sessions for the
767 * kernel, with modules between them, fixup the end of all
768 * sections.
769 */
770 __map_groups__fixup_end(&machine->kmaps, type);
771 }
772
773 return ret;
774 }
775
machine__load_vmlinux_path(struct machine * machine,enum map_type type,symbol_filter_t filter)776 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
777 symbol_filter_t filter)
778 {
779 struct map *map = machine->vmlinux_maps[type];
780 int ret = dso__load_vmlinux_path(map->dso, map, filter);
781
782 if (ret > 0)
783 dso__set_loaded(map->dso, type);
784
785 return ret;
786 }
787
map_groups__fixup_end(struct map_groups * mg)788 static void map_groups__fixup_end(struct map_groups *mg)
789 {
790 int i;
791 for (i = 0; i < MAP__NR_TYPES; ++i)
792 __map_groups__fixup_end(mg, i);
793 }
794
get_kernel_version(const char * root_dir)795 static char *get_kernel_version(const char *root_dir)
796 {
797 char version[PATH_MAX];
798 FILE *file;
799 char *name, *tmp;
800 const char *prefix = "Linux version ";
801
802 sprintf(version, "%s/proc/version", root_dir);
803 file = fopen(version, "r");
804 if (!file)
805 return NULL;
806
807 version[0] = '\0';
808 tmp = fgets(version, sizeof(version), file);
809 fclose(file);
810
811 name = strstr(version, prefix);
812 if (!name)
813 return NULL;
814 name += strlen(prefix);
815 tmp = strchr(name, ' ');
816 if (tmp)
817 *tmp = '\0';
818
819 return strdup(name);
820 }
821
map_groups__set_modules_path_dir(struct map_groups * mg,const char * dir_name,int depth)822 static int map_groups__set_modules_path_dir(struct map_groups *mg,
823 const char *dir_name, int depth)
824 {
825 struct dirent *dent;
826 DIR *dir = opendir(dir_name);
827 int ret = 0;
828
829 if (!dir) {
830 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
831 return -1;
832 }
833
834 while ((dent = readdir(dir)) != NULL) {
835 char path[PATH_MAX];
836 struct stat st;
837
838 /*sshfs might return bad dent->d_type, so we have to stat*/
839 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
840 if (stat(path, &st))
841 continue;
842
843 if (S_ISDIR(st.st_mode)) {
844 if (!strcmp(dent->d_name, ".") ||
845 !strcmp(dent->d_name, ".."))
846 continue;
847
848 /* Do not follow top-level source and build symlinks */
849 if (depth == 0) {
850 if (!strcmp(dent->d_name, "source") ||
851 !strcmp(dent->d_name, "build"))
852 continue;
853 }
854
855 ret = map_groups__set_modules_path_dir(mg, path,
856 depth + 1);
857 if (ret < 0)
858 goto out;
859 } else {
860 char *dot = strrchr(dent->d_name, '.'),
861 dso_name[PATH_MAX];
862 struct map *map;
863 char *long_name;
864
865 if (dot == NULL || strcmp(dot, ".ko"))
866 continue;
867 snprintf(dso_name, sizeof(dso_name), "[%.*s]",
868 (int)(dot - dent->d_name), dent->d_name);
869
870 strxfrchar(dso_name, '-', '_');
871 map = map_groups__find_by_name(mg, MAP__FUNCTION,
872 dso_name);
873 if (map == NULL)
874 continue;
875
876 long_name = strdup(path);
877 if (long_name == NULL) {
878 ret = -1;
879 goto out;
880 }
881 dso__set_long_name(map->dso, long_name, true);
882 dso__kernel_module_get_build_id(map->dso, "");
883 }
884 }
885
886 out:
887 closedir(dir);
888 return ret;
889 }
890
machine__set_modules_path(struct machine * machine)891 static int machine__set_modules_path(struct machine *machine)
892 {
893 char *version;
894 char modules_path[PATH_MAX];
895
896 version = get_kernel_version(machine->root_dir);
897 if (!version)
898 return -1;
899
900 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
901 machine->root_dir, version);
902 free(version);
903
904 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
905 }
906
machine__create_module(void * arg,const char * name,u64 start)907 static int machine__create_module(void *arg, const char *name, u64 start)
908 {
909 struct machine *machine = arg;
910 struct map *map;
911
912 map = machine__new_module(machine, start, name);
913 if (map == NULL)
914 return -1;
915
916 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
917
918 return 0;
919 }
920
machine__create_modules(struct machine * machine)921 static int machine__create_modules(struct machine *machine)
922 {
923 const char *modules;
924 char path[PATH_MAX];
925
926 if (machine__is_default_guest(machine)) {
927 modules = symbol_conf.default_guest_modules;
928 } else {
929 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
930 modules = path;
931 }
932
933 if (symbol__restricted_filename(modules, "/proc/modules"))
934 return -1;
935
936 if (modules__parse(modules, machine, machine__create_module))
937 return -1;
938
939 if (!machine__set_modules_path(machine))
940 return 0;
941
942 pr_debug("Problems setting modules path maps, continuing anyway...\n");
943
944 return 0;
945 }
946
machine__create_kernel_maps(struct machine * machine)947 int machine__create_kernel_maps(struct machine *machine)
948 {
949 struct dso *kernel = machine__get_kernel(machine);
950 const char *name;
951 u64 addr = machine__get_running_kernel_start(machine, &name);
952 if (!addr)
953 return -1;
954
955 if (kernel == NULL ||
956 __machine__create_kernel_maps(machine, kernel) < 0)
957 return -1;
958
959 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
960 if (machine__is_host(machine))
961 pr_debug("Problems creating module maps, "
962 "continuing anyway...\n");
963 else
964 pr_debug("Problems creating module maps for guest %d, "
965 "continuing anyway...\n", machine->pid);
966 }
967
968 /*
969 * Now that we have all the maps created, just set the ->end of them:
970 */
971 map_groups__fixup_end(&machine->kmaps);
972
973 if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
974 addr)) {
975 machine__destroy_kernel_maps(machine);
976 return -1;
977 }
978
979 return 0;
980 }
981
machine__set_kernel_mmap_len(struct machine * machine,union perf_event * event)982 static void machine__set_kernel_mmap_len(struct machine *machine,
983 union perf_event *event)
984 {
985 int i;
986
987 for (i = 0; i < MAP__NR_TYPES; i++) {
988 machine->vmlinux_maps[i]->start = event->mmap.start;
989 machine->vmlinux_maps[i]->end = (event->mmap.start +
990 event->mmap.len);
991 /*
992 * Be a bit paranoid here, some perf.data file came with
993 * a zero sized synthesized MMAP event for the kernel.
994 */
995 if (machine->vmlinux_maps[i]->end == 0)
996 machine->vmlinux_maps[i]->end = ~0ULL;
997 }
998 }
999
machine__uses_kcore(struct machine * machine)1000 static bool machine__uses_kcore(struct machine *machine)
1001 {
1002 struct dso *dso;
1003
1004 list_for_each_entry(dso, &machine->kernel_dsos.head, node) {
1005 if (dso__is_kcore(dso))
1006 return true;
1007 }
1008
1009 return false;
1010 }
1011
machine__process_kernel_mmap_event(struct machine * machine,union perf_event * event)1012 static int machine__process_kernel_mmap_event(struct machine *machine,
1013 union perf_event *event)
1014 {
1015 struct map *map;
1016 char kmmap_prefix[PATH_MAX];
1017 enum dso_kernel_type kernel_type;
1018 bool is_kernel_mmap;
1019
1020 /* If we have maps from kcore then we do not need or want any others */
1021 if (machine__uses_kcore(machine))
1022 return 0;
1023
1024 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1025 if (machine__is_host(machine))
1026 kernel_type = DSO_TYPE_KERNEL;
1027 else
1028 kernel_type = DSO_TYPE_GUEST_KERNEL;
1029
1030 is_kernel_mmap = memcmp(event->mmap.filename,
1031 kmmap_prefix,
1032 strlen(kmmap_prefix) - 1) == 0;
1033 if (event->mmap.filename[0] == '/' ||
1034 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1035
1036 char short_module_name[1024];
1037 char *name, *dot;
1038
1039 if (event->mmap.filename[0] == '/') {
1040 name = strrchr(event->mmap.filename, '/');
1041 if (name == NULL)
1042 goto out_problem;
1043
1044 ++name; /* skip / */
1045 dot = strrchr(name, '.');
1046 if (dot == NULL)
1047 goto out_problem;
1048 snprintf(short_module_name, sizeof(short_module_name),
1049 "[%.*s]", (int)(dot - name), name);
1050 strxfrchar(short_module_name, '-', '_');
1051 } else
1052 strcpy(short_module_name, event->mmap.filename);
1053
1054 map = machine__new_module(machine, event->mmap.start,
1055 event->mmap.filename);
1056 if (map == NULL)
1057 goto out_problem;
1058
1059 name = strdup(short_module_name);
1060 if (name == NULL)
1061 goto out_problem;
1062
1063 dso__set_short_name(map->dso, name, true);
1064 map->end = map->start + event->mmap.len;
1065 } else if (is_kernel_mmap) {
1066 const char *symbol_name = (event->mmap.filename +
1067 strlen(kmmap_prefix));
1068 /*
1069 * Should be there already, from the build-id table in
1070 * the header.
1071 */
1072 struct dso *kernel = __dsos__findnew(&machine->kernel_dsos,
1073 kmmap_prefix);
1074 if (kernel == NULL)
1075 goto out_problem;
1076
1077 kernel->kernel = kernel_type;
1078 if (__machine__create_kernel_maps(machine, kernel) < 0)
1079 goto out_problem;
1080
1081 machine__set_kernel_mmap_len(machine, event);
1082
1083 /*
1084 * Avoid using a zero address (kptr_restrict) for the ref reloc
1085 * symbol. Effectively having zero here means that at record
1086 * time /proc/sys/kernel/kptr_restrict was non zero.
1087 */
1088 if (event->mmap.pgoff != 0) {
1089 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1090 symbol_name,
1091 event->mmap.pgoff);
1092 }
1093
1094 if (machine__is_default_guest(machine)) {
1095 /*
1096 * preload dso of guest kernel and modules
1097 */
1098 dso__load(kernel, machine->vmlinux_maps[MAP__FUNCTION],
1099 NULL);
1100 }
1101 }
1102 return 0;
1103 out_problem:
1104 return -1;
1105 }
1106
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1107 int machine__process_mmap2_event(struct machine *machine,
1108 union perf_event *event,
1109 struct perf_sample *sample __maybe_unused)
1110 {
1111 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1112 struct thread *thread;
1113 struct map *map;
1114 enum map_type type;
1115 int ret = 0;
1116
1117 if (dump_trace)
1118 perf_event__fprintf_mmap2(event, stdout);
1119
1120 if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1121 cpumode == PERF_RECORD_MISC_KERNEL) {
1122 ret = machine__process_kernel_mmap_event(machine, event);
1123 if (ret < 0)
1124 goto out_problem;
1125 return 0;
1126 }
1127
1128 thread = machine__findnew_thread(machine, event->mmap2.pid,
1129 event->mmap2.tid);
1130 if (thread == NULL)
1131 goto out_problem;
1132
1133 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1134 type = MAP__VARIABLE;
1135 else
1136 type = MAP__FUNCTION;
1137
1138 map = map__new(machine, event->mmap2.start,
1139 event->mmap2.len, event->mmap2.pgoff,
1140 event->mmap2.pid, event->mmap2.maj,
1141 event->mmap2.min, event->mmap2.ino,
1142 event->mmap2.ino_generation,
1143 event->mmap2.prot,
1144 event->mmap2.flags,
1145 event->mmap2.filename, type, thread);
1146
1147 if (map == NULL)
1148 goto out_problem;
1149
1150 thread__insert_map(thread, map);
1151 return 0;
1152
1153 out_problem:
1154 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1155 return 0;
1156 }
1157
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1158 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1159 struct perf_sample *sample __maybe_unused)
1160 {
1161 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1162 struct thread *thread;
1163 struct map *map;
1164 enum map_type type;
1165 int ret = 0;
1166
1167 if (dump_trace)
1168 perf_event__fprintf_mmap(event, stdout);
1169
1170 if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1171 cpumode == PERF_RECORD_MISC_KERNEL) {
1172 ret = machine__process_kernel_mmap_event(machine, event);
1173 if (ret < 0)
1174 goto out_problem;
1175 return 0;
1176 }
1177
1178 thread = machine__findnew_thread(machine, event->mmap.pid,
1179 event->mmap.tid);
1180 if (thread == NULL)
1181 goto out_problem;
1182
1183 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1184 type = MAP__VARIABLE;
1185 else
1186 type = MAP__FUNCTION;
1187
1188 map = map__new(machine, event->mmap.start,
1189 event->mmap.len, event->mmap.pgoff,
1190 event->mmap.pid, 0, 0, 0, 0, 0, 0,
1191 event->mmap.filename,
1192 type, thread);
1193
1194 if (map == NULL)
1195 goto out_problem;
1196
1197 thread__insert_map(thread, map);
1198 return 0;
1199
1200 out_problem:
1201 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1202 return 0;
1203 }
1204
machine__remove_thread(struct machine * machine,struct thread * th)1205 static void machine__remove_thread(struct machine *machine, struct thread *th)
1206 {
1207 machine->last_match = NULL;
1208 rb_erase(&th->rb_node, &machine->threads);
1209 /*
1210 * We may have references to this thread, for instance in some hist_entry
1211 * instances, so just move them to a separate list.
1212 */
1213 list_add_tail(&th->node, &machine->dead_threads);
1214 }
1215
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1216 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1217 struct perf_sample *sample)
1218 {
1219 struct thread *thread = machine__find_thread(machine,
1220 event->fork.pid,
1221 event->fork.tid);
1222 struct thread *parent = machine__findnew_thread(machine,
1223 event->fork.ppid,
1224 event->fork.ptid);
1225
1226 /* if a thread currently exists for the thread id remove it */
1227 if (thread != NULL)
1228 machine__remove_thread(machine, thread);
1229
1230 thread = machine__findnew_thread(machine, event->fork.pid,
1231 event->fork.tid);
1232 if (dump_trace)
1233 perf_event__fprintf_task(event, stdout);
1234
1235 if (thread == NULL || parent == NULL ||
1236 thread__fork(thread, parent, sample->time) < 0) {
1237 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1238 return -1;
1239 }
1240
1241 return 0;
1242 }
1243
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1244 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1245 struct perf_sample *sample __maybe_unused)
1246 {
1247 struct thread *thread = machine__find_thread(machine,
1248 event->fork.pid,
1249 event->fork.tid);
1250
1251 if (dump_trace)
1252 perf_event__fprintf_task(event, stdout);
1253
1254 if (thread != NULL)
1255 thread__exited(thread);
1256
1257 return 0;
1258 }
1259
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1260 int machine__process_event(struct machine *machine, union perf_event *event,
1261 struct perf_sample *sample)
1262 {
1263 int ret;
1264
1265 switch (event->header.type) {
1266 case PERF_RECORD_COMM:
1267 ret = machine__process_comm_event(machine, event, sample); break;
1268 case PERF_RECORD_MMAP:
1269 ret = machine__process_mmap_event(machine, event, sample); break;
1270 case PERF_RECORD_MMAP2:
1271 ret = machine__process_mmap2_event(machine, event, sample); break;
1272 case PERF_RECORD_FORK:
1273 ret = machine__process_fork_event(machine, event, sample); break;
1274 case PERF_RECORD_EXIT:
1275 ret = machine__process_exit_event(machine, event, sample); break;
1276 case PERF_RECORD_LOST:
1277 ret = machine__process_lost_event(machine, event, sample); break;
1278 default:
1279 ret = -1;
1280 break;
1281 }
1282
1283 return ret;
1284 }
1285
symbol__match_regex(struct symbol * sym,regex_t * regex)1286 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1287 {
1288 if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1289 return 1;
1290 return 0;
1291 }
1292
ip__resolve_ams(struct machine * machine,struct thread * thread,struct addr_map_symbol * ams,u64 ip)1293 static void ip__resolve_ams(struct machine *machine, struct thread *thread,
1294 struct addr_map_symbol *ams,
1295 u64 ip)
1296 {
1297 struct addr_location al;
1298
1299 memset(&al, 0, sizeof(al));
1300 /*
1301 * We cannot use the header.misc hint to determine whether a
1302 * branch stack address is user, kernel, guest, hypervisor.
1303 * Branches may straddle the kernel/user/hypervisor boundaries.
1304 * Thus, we have to try consecutively until we find a match
1305 * or else, the symbol is unknown
1306 */
1307 thread__find_cpumode_addr_location(thread, machine, MAP__FUNCTION, ip, &al);
1308
1309 ams->addr = ip;
1310 ams->al_addr = al.addr;
1311 ams->sym = al.sym;
1312 ams->map = al.map;
1313 }
1314
ip__resolve_data(struct machine * machine,struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr)1315 static void ip__resolve_data(struct machine *machine, struct thread *thread,
1316 u8 m, struct addr_map_symbol *ams, u64 addr)
1317 {
1318 struct addr_location al;
1319
1320 memset(&al, 0, sizeof(al));
1321
1322 thread__find_addr_location(thread, machine, m, MAP__VARIABLE, addr,
1323 &al);
1324 if (al.map == NULL) {
1325 /*
1326 * some shared data regions have execute bit set which puts
1327 * their mapping in the MAP__FUNCTION type array.
1328 * Check there as a fallback option before dropping the sample.
1329 */
1330 thread__find_addr_location(thread, machine, m, MAP__FUNCTION, addr,
1331 &al);
1332 }
1333
1334 ams->addr = addr;
1335 ams->al_addr = al.addr;
1336 ams->sym = al.sym;
1337 ams->map = al.map;
1338 }
1339
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)1340 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1341 struct addr_location *al)
1342 {
1343 struct mem_info *mi = zalloc(sizeof(*mi));
1344
1345 if (!mi)
1346 return NULL;
1347
1348 ip__resolve_ams(al->machine, al->thread, &mi->iaddr, sample->ip);
1349 ip__resolve_data(al->machine, al->thread, al->cpumode,
1350 &mi->daddr, sample->addr);
1351 mi->data_src.val = sample->data_src;
1352
1353 return mi;
1354 }
1355
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)1356 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1357 struct addr_location *al)
1358 {
1359 unsigned int i;
1360 const struct branch_stack *bs = sample->branch_stack;
1361 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1362
1363 if (!bi)
1364 return NULL;
1365
1366 for (i = 0; i < bs->nr; i++) {
1367 ip__resolve_ams(al->machine, al->thread, &bi[i].to, bs->entries[i].to);
1368 ip__resolve_ams(al->machine, al->thread, &bi[i].from, bs->entries[i].from);
1369 bi[i].flags = bs->entries[i].flags;
1370 }
1371 return bi;
1372 }
1373
machine__resolve_callchain_sample(struct machine * machine,struct thread * thread,struct ip_callchain * chain,struct symbol ** parent,struct addr_location * root_al,int max_stack)1374 static int machine__resolve_callchain_sample(struct machine *machine,
1375 struct thread *thread,
1376 struct ip_callchain *chain,
1377 struct symbol **parent,
1378 struct addr_location *root_al,
1379 int max_stack)
1380 {
1381 u8 cpumode = PERF_RECORD_MISC_USER;
1382 int chain_nr = min(max_stack, (int)chain->nr);
1383 int i;
1384 int j;
1385 int err;
1386 int skip_idx __maybe_unused;
1387
1388 callchain_cursor_reset(&callchain_cursor);
1389
1390 if (chain->nr > PERF_MAX_STACK_DEPTH) {
1391 pr_warning("corrupted callchain. skipping...\n");
1392 return 0;
1393 }
1394
1395 /*
1396 * Based on DWARF debug information, some architectures skip
1397 * a callchain entry saved by the kernel.
1398 */
1399 skip_idx = arch_skip_callchain_idx(machine, thread, chain);
1400
1401 for (i = 0; i < chain_nr; i++) {
1402 u64 ip;
1403 struct addr_location al;
1404
1405 if (callchain_param.order == ORDER_CALLEE)
1406 j = i;
1407 else
1408 j = chain->nr - i - 1;
1409
1410 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1411 if (j == skip_idx)
1412 continue;
1413 #endif
1414 ip = chain->ips[j];
1415
1416 if (ip >= PERF_CONTEXT_MAX) {
1417 switch (ip) {
1418 case PERF_CONTEXT_HV:
1419 cpumode = PERF_RECORD_MISC_HYPERVISOR;
1420 break;
1421 case PERF_CONTEXT_KERNEL:
1422 cpumode = PERF_RECORD_MISC_KERNEL;
1423 break;
1424 case PERF_CONTEXT_USER:
1425 cpumode = PERF_RECORD_MISC_USER;
1426 break;
1427 default:
1428 pr_debug("invalid callchain context: "
1429 "%"PRId64"\n", (s64) ip);
1430 /*
1431 * It seems the callchain is corrupted.
1432 * Discard all.
1433 */
1434 callchain_cursor_reset(&callchain_cursor);
1435 return 0;
1436 }
1437 continue;
1438 }
1439
1440 al.filtered = 0;
1441 thread__find_addr_location(thread, machine, cpumode,
1442 MAP__FUNCTION, ip, &al);
1443 if (al.sym != NULL) {
1444 if (sort__has_parent && !*parent &&
1445 symbol__match_regex(al.sym, &parent_regex))
1446 *parent = al.sym;
1447 else if (have_ignore_callees && root_al &&
1448 symbol__match_regex(al.sym, &ignore_callees_regex)) {
1449 /* Treat this symbol as the root,
1450 forgetting its callees. */
1451 *root_al = al;
1452 callchain_cursor_reset(&callchain_cursor);
1453 }
1454 }
1455
1456 err = callchain_cursor_append(&callchain_cursor,
1457 ip, al.map, al.sym);
1458 if (err)
1459 return err;
1460 }
1461
1462 return 0;
1463 }
1464
unwind_entry(struct unwind_entry * entry,void * arg)1465 static int unwind_entry(struct unwind_entry *entry, void *arg)
1466 {
1467 struct callchain_cursor *cursor = arg;
1468 return callchain_cursor_append(cursor, entry->ip,
1469 entry->map, entry->sym);
1470 }
1471
machine__resolve_callchain(struct machine * machine,struct perf_evsel * evsel,struct thread * thread,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)1472 int machine__resolve_callchain(struct machine *machine,
1473 struct perf_evsel *evsel,
1474 struct thread *thread,
1475 struct perf_sample *sample,
1476 struct symbol **parent,
1477 struct addr_location *root_al,
1478 int max_stack)
1479 {
1480 int ret;
1481
1482 ret = machine__resolve_callchain_sample(machine, thread,
1483 sample->callchain, parent,
1484 root_al, max_stack);
1485 if (ret)
1486 return ret;
1487
1488 /* Can we do dwarf post unwind? */
1489 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1490 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1491 return 0;
1492
1493 /* Bail out if nothing was captured. */
1494 if ((!sample->user_regs.regs) ||
1495 (!sample->user_stack.size))
1496 return 0;
1497
1498 return unwind__get_entries(unwind_entry, &callchain_cursor, machine,
1499 thread, sample, max_stack);
1500
1501 }
1502
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)1503 int machine__for_each_thread(struct machine *machine,
1504 int (*fn)(struct thread *thread, void *p),
1505 void *priv)
1506 {
1507 struct rb_node *nd;
1508 struct thread *thread;
1509 int rc = 0;
1510
1511 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1512 thread = rb_entry(nd, struct thread, rb_node);
1513 rc = fn(thread, priv);
1514 if (rc != 0)
1515 return rc;
1516 }
1517
1518 list_for_each_entry(thread, &machine->dead_threads, node) {
1519 rc = fn(thread, priv);
1520 if (rc != 0)
1521 return rc;
1522 }
1523 return rc;
1524 }
1525
__machine__synthesize_threads(struct machine * machine,struct perf_tool * tool,struct target * target,struct thread_map * threads,perf_event__handler_t process,bool data_mmap)1526 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1527 struct target *target, struct thread_map *threads,
1528 perf_event__handler_t process, bool data_mmap)
1529 {
1530 if (target__has_task(target))
1531 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
1532 else if (target__has_cpu(target))
1533 return perf_event__synthesize_threads(tool, process, machine, data_mmap);
1534 /* command specified */
1535 return 0;
1536 }
1537
machine__get_current_tid(struct machine * machine,int cpu)1538 pid_t machine__get_current_tid(struct machine *machine, int cpu)
1539 {
1540 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
1541 return -1;
1542
1543 return machine->current_tid[cpu];
1544 }
1545
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)1546 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
1547 pid_t tid)
1548 {
1549 struct thread *thread;
1550
1551 if (cpu < 0)
1552 return -EINVAL;
1553
1554 if (!machine->current_tid) {
1555 int i;
1556
1557 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
1558 if (!machine->current_tid)
1559 return -ENOMEM;
1560 for (i = 0; i < MAX_NR_CPUS; i++)
1561 machine->current_tid[i] = -1;
1562 }
1563
1564 if (cpu >= MAX_NR_CPUS) {
1565 pr_err("Requested CPU %d too large. ", cpu);
1566 pr_err("Consider raising MAX_NR_CPUS\n");
1567 return -EINVAL;
1568 }
1569
1570 machine->current_tid[cpu] = tid;
1571
1572 thread = machine__findnew_thread(machine, pid, tid);
1573 if (!thread)
1574 return -ENOMEM;
1575
1576 thread->cpu = cpu;
1577
1578 return 0;
1579 }
1580
machine__get_kernel_start(struct machine * machine)1581 int machine__get_kernel_start(struct machine *machine)
1582 {
1583 struct map *map = machine__kernel_map(machine, MAP__FUNCTION);
1584 int err = 0;
1585
1586 /*
1587 * The only addresses above 2^63 are kernel addresses of a 64-bit
1588 * kernel. Note that addresses are unsigned so that on a 32-bit system
1589 * all addresses including kernel addresses are less than 2^32. In
1590 * that case (32-bit system), if the kernel mapping is unknown, all
1591 * addresses will be assumed to be in user space - see
1592 * machine__kernel_ip().
1593 */
1594 machine->kernel_start = 1ULL << 63;
1595 if (map) {
1596 err = map__load(map, machine->symbol_filter);
1597 if (map->start)
1598 machine->kernel_start = map->start;
1599 }
1600 return err;
1601 }
1602