• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 
37 #include "xfs_log_format.h"
38 #include "xfs_trans_resv.h"
39 #include "xfs_sb.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44 
45 static kmem_zone_t *xfs_buf_zone;
46 
47 static struct workqueue_struct *xfslogd_workqueue;
48 
49 #ifdef XFS_BUF_LOCK_TRACKING
50 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
51 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
52 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
53 #else
54 # define XB_SET_OWNER(bp)	do { } while (0)
55 # define XB_CLEAR_OWNER(bp)	do { } while (0)
56 # define XB_GET_OWNER(bp)	do { } while (0)
57 #endif
58 
59 #define xb_to_gfp(flags) \
60 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
61 
62 
63 static inline int
xfs_buf_is_vmapped(struct xfs_buf * bp)64 xfs_buf_is_vmapped(
65 	struct xfs_buf	*bp)
66 {
67 	/*
68 	 * Return true if the buffer is vmapped.
69 	 *
70 	 * b_addr is null if the buffer is not mapped, but the code is clever
71 	 * enough to know it doesn't have to map a single page, so the check has
72 	 * to be both for b_addr and bp->b_page_count > 1.
73 	 */
74 	return bp->b_addr && bp->b_page_count > 1;
75 }
76 
77 static inline int
xfs_buf_vmap_len(struct xfs_buf * bp)78 xfs_buf_vmap_len(
79 	struct xfs_buf	*bp)
80 {
81 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
82 }
83 
84 /*
85  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
86  * b_lru_ref count so that the buffer is freed immediately when the buffer
87  * reference count falls to zero. If the buffer is already on the LRU, we need
88  * to remove the reference that LRU holds on the buffer.
89  *
90  * This prevents build-up of stale buffers on the LRU.
91  */
92 void
xfs_buf_stale(struct xfs_buf * bp)93 xfs_buf_stale(
94 	struct xfs_buf	*bp)
95 {
96 	ASSERT(xfs_buf_islocked(bp));
97 
98 	bp->b_flags |= XBF_STALE;
99 
100 	/*
101 	 * Clear the delwri status so that a delwri queue walker will not
102 	 * flush this buffer to disk now that it is stale. The delwri queue has
103 	 * a reference to the buffer, so this is safe to do.
104 	 */
105 	bp->b_flags &= ~_XBF_DELWRI_Q;
106 
107 	spin_lock(&bp->b_lock);
108 	atomic_set(&bp->b_lru_ref, 0);
109 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
110 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
111 		atomic_dec(&bp->b_hold);
112 
113 	ASSERT(atomic_read(&bp->b_hold) >= 1);
114 	spin_unlock(&bp->b_lock);
115 }
116 
117 static int
xfs_buf_get_maps(struct xfs_buf * bp,int map_count)118 xfs_buf_get_maps(
119 	struct xfs_buf		*bp,
120 	int			map_count)
121 {
122 	ASSERT(bp->b_maps == NULL);
123 	bp->b_map_count = map_count;
124 
125 	if (map_count == 1) {
126 		bp->b_maps = &bp->__b_map;
127 		return 0;
128 	}
129 
130 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
131 				KM_NOFS);
132 	if (!bp->b_maps)
133 		return -ENOMEM;
134 	return 0;
135 }
136 
137 /*
138  *	Frees b_pages if it was allocated.
139  */
140 static void
xfs_buf_free_maps(struct xfs_buf * bp)141 xfs_buf_free_maps(
142 	struct xfs_buf	*bp)
143 {
144 	if (bp->b_maps != &bp->__b_map) {
145 		kmem_free(bp->b_maps);
146 		bp->b_maps = NULL;
147 	}
148 }
149 
150 struct xfs_buf *
_xfs_buf_alloc(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags)151 _xfs_buf_alloc(
152 	struct xfs_buftarg	*target,
153 	struct xfs_buf_map	*map,
154 	int			nmaps,
155 	xfs_buf_flags_t		flags)
156 {
157 	struct xfs_buf		*bp;
158 	int			error;
159 	int			i;
160 
161 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
162 	if (unlikely(!bp))
163 		return NULL;
164 
165 	/*
166 	 * We don't want certain flags to appear in b_flags unless they are
167 	 * specifically set by later operations on the buffer.
168 	 */
169 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
170 
171 	atomic_set(&bp->b_hold, 1);
172 	atomic_set(&bp->b_lru_ref, 1);
173 	init_completion(&bp->b_iowait);
174 	INIT_LIST_HEAD(&bp->b_lru);
175 	INIT_LIST_HEAD(&bp->b_list);
176 	RB_CLEAR_NODE(&bp->b_rbnode);
177 	sema_init(&bp->b_sema, 0); /* held, no waiters */
178 	spin_lock_init(&bp->b_lock);
179 	XB_SET_OWNER(bp);
180 	bp->b_target = target;
181 	bp->b_flags = flags;
182 
183 	/*
184 	 * Set length and io_length to the same value initially.
185 	 * I/O routines should use io_length, which will be the same in
186 	 * most cases but may be reset (e.g. XFS recovery).
187 	 */
188 	error = xfs_buf_get_maps(bp, nmaps);
189 	if (error)  {
190 		kmem_zone_free(xfs_buf_zone, bp);
191 		return NULL;
192 	}
193 
194 	bp->b_bn = map[0].bm_bn;
195 	bp->b_length = 0;
196 	for (i = 0; i < nmaps; i++) {
197 		bp->b_maps[i].bm_bn = map[i].bm_bn;
198 		bp->b_maps[i].bm_len = map[i].bm_len;
199 		bp->b_length += map[i].bm_len;
200 	}
201 	bp->b_io_length = bp->b_length;
202 
203 	atomic_set(&bp->b_pin_count, 0);
204 	init_waitqueue_head(&bp->b_waiters);
205 
206 	XFS_STATS_INC(xb_create);
207 	trace_xfs_buf_init(bp, _RET_IP_);
208 
209 	return bp;
210 }
211 
212 /*
213  *	Allocate a page array capable of holding a specified number
214  *	of pages, and point the page buf at it.
215  */
216 STATIC int
_xfs_buf_get_pages(xfs_buf_t * bp,int page_count)217 _xfs_buf_get_pages(
218 	xfs_buf_t		*bp,
219 	int			page_count)
220 {
221 	/* Make sure that we have a page list */
222 	if (bp->b_pages == NULL) {
223 		bp->b_page_count = page_count;
224 		if (page_count <= XB_PAGES) {
225 			bp->b_pages = bp->b_page_array;
226 		} else {
227 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
228 						 page_count, KM_NOFS);
229 			if (bp->b_pages == NULL)
230 				return -ENOMEM;
231 		}
232 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
233 	}
234 	return 0;
235 }
236 
237 /*
238  *	Frees b_pages if it was allocated.
239  */
240 STATIC void
_xfs_buf_free_pages(xfs_buf_t * bp)241 _xfs_buf_free_pages(
242 	xfs_buf_t	*bp)
243 {
244 	if (bp->b_pages != bp->b_page_array) {
245 		kmem_free(bp->b_pages);
246 		bp->b_pages = NULL;
247 	}
248 }
249 
250 /*
251  *	Releases the specified buffer.
252  *
253  * 	The modification state of any associated pages is left unchanged.
254  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
255  * 	hashed and refcounted buffers
256  */
257 void
xfs_buf_free(xfs_buf_t * bp)258 xfs_buf_free(
259 	xfs_buf_t		*bp)
260 {
261 	trace_xfs_buf_free(bp, _RET_IP_);
262 
263 	ASSERT(list_empty(&bp->b_lru));
264 
265 	if (bp->b_flags & _XBF_PAGES) {
266 		uint		i;
267 
268 		if (xfs_buf_is_vmapped(bp))
269 			vm_unmap_ram(bp->b_addr - bp->b_offset,
270 					bp->b_page_count);
271 
272 		for (i = 0; i < bp->b_page_count; i++) {
273 			struct page	*page = bp->b_pages[i];
274 
275 			__free_page(page);
276 		}
277 	} else if (bp->b_flags & _XBF_KMEM)
278 		kmem_free(bp->b_addr);
279 	_xfs_buf_free_pages(bp);
280 	xfs_buf_free_maps(bp);
281 	kmem_zone_free(xfs_buf_zone, bp);
282 }
283 
284 /*
285  * Allocates all the pages for buffer in question and builds it's page list.
286  */
287 STATIC int
xfs_buf_allocate_memory(xfs_buf_t * bp,uint flags)288 xfs_buf_allocate_memory(
289 	xfs_buf_t		*bp,
290 	uint			flags)
291 {
292 	size_t			size;
293 	size_t			nbytes, offset;
294 	gfp_t			gfp_mask = xb_to_gfp(flags);
295 	unsigned short		page_count, i;
296 	xfs_off_t		start, end;
297 	int			error;
298 
299 	/*
300 	 * for buffers that are contained within a single page, just allocate
301 	 * the memory from the heap - there's no need for the complexity of
302 	 * page arrays to keep allocation down to order 0.
303 	 */
304 	size = BBTOB(bp->b_length);
305 	if (size < PAGE_SIZE) {
306 		bp->b_addr = kmem_alloc(size, KM_NOFS);
307 		if (!bp->b_addr) {
308 			/* low memory - use alloc_page loop instead */
309 			goto use_alloc_page;
310 		}
311 
312 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
313 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
314 			/* b_addr spans two pages - use alloc_page instead */
315 			kmem_free(bp->b_addr);
316 			bp->b_addr = NULL;
317 			goto use_alloc_page;
318 		}
319 		bp->b_offset = offset_in_page(bp->b_addr);
320 		bp->b_pages = bp->b_page_array;
321 		bp->b_pages[0] = virt_to_page(bp->b_addr);
322 		bp->b_page_count = 1;
323 		bp->b_flags |= _XBF_KMEM;
324 		return 0;
325 	}
326 
327 use_alloc_page:
328 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
329 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
330 								>> PAGE_SHIFT;
331 	page_count = end - start;
332 	error = _xfs_buf_get_pages(bp, page_count);
333 	if (unlikely(error))
334 		return error;
335 
336 	offset = bp->b_offset;
337 	bp->b_flags |= _XBF_PAGES;
338 
339 	for (i = 0; i < bp->b_page_count; i++) {
340 		struct page	*page;
341 		uint		retries = 0;
342 retry:
343 		page = alloc_page(gfp_mask);
344 		if (unlikely(page == NULL)) {
345 			if (flags & XBF_READ_AHEAD) {
346 				bp->b_page_count = i;
347 				error = -ENOMEM;
348 				goto out_free_pages;
349 			}
350 
351 			/*
352 			 * This could deadlock.
353 			 *
354 			 * But until all the XFS lowlevel code is revamped to
355 			 * handle buffer allocation failures we can't do much.
356 			 */
357 			if (!(++retries % 100))
358 				xfs_err(NULL,
359 		"possible memory allocation deadlock in %s (mode:0x%x)",
360 					__func__, gfp_mask);
361 
362 			XFS_STATS_INC(xb_page_retries);
363 			congestion_wait(BLK_RW_ASYNC, HZ/50);
364 			goto retry;
365 		}
366 
367 		XFS_STATS_INC(xb_page_found);
368 
369 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
370 		size -= nbytes;
371 		bp->b_pages[i] = page;
372 		offset = 0;
373 	}
374 	return 0;
375 
376 out_free_pages:
377 	for (i = 0; i < bp->b_page_count; i++)
378 		__free_page(bp->b_pages[i]);
379 	bp->b_flags &= ~_XBF_PAGES;
380 	return error;
381 }
382 
383 /*
384  *	Map buffer into kernel address-space if necessary.
385  */
386 STATIC int
_xfs_buf_map_pages(xfs_buf_t * bp,uint flags)387 _xfs_buf_map_pages(
388 	xfs_buf_t		*bp,
389 	uint			flags)
390 {
391 	ASSERT(bp->b_flags & _XBF_PAGES);
392 	if (bp->b_page_count == 1) {
393 		/* A single page buffer is always mappable */
394 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
395 	} else if (flags & XBF_UNMAPPED) {
396 		bp->b_addr = NULL;
397 	} else {
398 		int retried = 0;
399 		unsigned noio_flag;
400 
401 		/*
402 		 * vm_map_ram() will allocate auxillary structures (e.g.
403 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
404 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
405 		 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
406 		 * memory reclaim re-entering the filesystem here and
407 		 * potentially deadlocking.
408 		 */
409 		noio_flag = memalloc_noio_save();
410 		do {
411 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
412 						-1, PAGE_KERNEL);
413 			if (bp->b_addr)
414 				break;
415 			vm_unmap_aliases();
416 		} while (retried++ <= 1);
417 		memalloc_noio_restore(noio_flag);
418 
419 		if (!bp->b_addr)
420 			return -ENOMEM;
421 		bp->b_addr += bp->b_offset;
422 	}
423 
424 	return 0;
425 }
426 
427 /*
428  *	Finding and Reading Buffers
429  */
430 
431 /*
432  *	Look up, and creates if absent, a lockable buffer for
433  *	a given range of an inode.  The buffer is returned
434  *	locked.	No I/O is implied by this call.
435  */
436 xfs_buf_t *
_xfs_buf_find(struct xfs_buftarg * btp,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,xfs_buf_t * new_bp)437 _xfs_buf_find(
438 	struct xfs_buftarg	*btp,
439 	struct xfs_buf_map	*map,
440 	int			nmaps,
441 	xfs_buf_flags_t		flags,
442 	xfs_buf_t		*new_bp)
443 {
444 	size_t			numbytes;
445 	struct xfs_perag	*pag;
446 	struct rb_node		**rbp;
447 	struct rb_node		*parent;
448 	xfs_buf_t		*bp;
449 	xfs_daddr_t		blkno = map[0].bm_bn;
450 	xfs_daddr_t		eofs;
451 	int			numblks = 0;
452 	int			i;
453 
454 	for (i = 0; i < nmaps; i++)
455 		numblks += map[i].bm_len;
456 	numbytes = BBTOB(numblks);
457 
458 	/* Check for IOs smaller than the sector size / not sector aligned */
459 	ASSERT(!(numbytes < btp->bt_meta_sectorsize));
460 	ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
461 
462 	/*
463 	 * Corrupted block numbers can get through to here, unfortunately, so we
464 	 * have to check that the buffer falls within the filesystem bounds.
465 	 */
466 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
467 	if (blkno >= eofs) {
468 		/*
469 		 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
470 		 * but none of the higher level infrastructure supports
471 		 * returning a specific error on buffer lookup failures.
472 		 */
473 		xfs_alert(btp->bt_mount,
474 			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
475 			  __func__, blkno, eofs);
476 		WARN_ON(1);
477 		return NULL;
478 	}
479 
480 	/* get tree root */
481 	pag = xfs_perag_get(btp->bt_mount,
482 				xfs_daddr_to_agno(btp->bt_mount, blkno));
483 
484 	/* walk tree */
485 	spin_lock(&pag->pag_buf_lock);
486 	rbp = &pag->pag_buf_tree.rb_node;
487 	parent = NULL;
488 	bp = NULL;
489 	while (*rbp) {
490 		parent = *rbp;
491 		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
492 
493 		if (blkno < bp->b_bn)
494 			rbp = &(*rbp)->rb_left;
495 		else if (blkno > bp->b_bn)
496 			rbp = &(*rbp)->rb_right;
497 		else {
498 			/*
499 			 * found a block number match. If the range doesn't
500 			 * match, the only way this is allowed is if the buffer
501 			 * in the cache is stale and the transaction that made
502 			 * it stale has not yet committed. i.e. we are
503 			 * reallocating a busy extent. Skip this buffer and
504 			 * continue searching to the right for an exact match.
505 			 */
506 			if (bp->b_length != numblks) {
507 				ASSERT(bp->b_flags & XBF_STALE);
508 				rbp = &(*rbp)->rb_right;
509 				continue;
510 			}
511 			atomic_inc(&bp->b_hold);
512 			goto found;
513 		}
514 	}
515 
516 	/* No match found */
517 	if (new_bp) {
518 		rb_link_node(&new_bp->b_rbnode, parent, rbp);
519 		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
520 		/* the buffer keeps the perag reference until it is freed */
521 		new_bp->b_pag = pag;
522 		spin_unlock(&pag->pag_buf_lock);
523 	} else {
524 		XFS_STATS_INC(xb_miss_locked);
525 		spin_unlock(&pag->pag_buf_lock);
526 		xfs_perag_put(pag);
527 	}
528 	return new_bp;
529 
530 found:
531 	spin_unlock(&pag->pag_buf_lock);
532 	xfs_perag_put(pag);
533 
534 	if (!xfs_buf_trylock(bp)) {
535 		if (flags & XBF_TRYLOCK) {
536 			xfs_buf_rele(bp);
537 			XFS_STATS_INC(xb_busy_locked);
538 			return NULL;
539 		}
540 		xfs_buf_lock(bp);
541 		XFS_STATS_INC(xb_get_locked_waited);
542 	}
543 
544 	/*
545 	 * if the buffer is stale, clear all the external state associated with
546 	 * it. We need to keep flags such as how we allocated the buffer memory
547 	 * intact here.
548 	 */
549 	if (bp->b_flags & XBF_STALE) {
550 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
551 		ASSERT(bp->b_iodone == NULL);
552 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
553 		bp->b_ops = NULL;
554 	}
555 
556 	trace_xfs_buf_find(bp, flags, _RET_IP_);
557 	XFS_STATS_INC(xb_get_locked);
558 	return bp;
559 }
560 
561 /*
562  * Assembles a buffer covering the specified range. The code is optimised for
563  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
564  * more hits than misses.
565  */
566 struct xfs_buf *
xfs_buf_get_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags)567 xfs_buf_get_map(
568 	struct xfs_buftarg	*target,
569 	struct xfs_buf_map	*map,
570 	int			nmaps,
571 	xfs_buf_flags_t		flags)
572 {
573 	struct xfs_buf		*bp;
574 	struct xfs_buf		*new_bp;
575 	int			error = 0;
576 
577 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
578 	if (likely(bp))
579 		goto found;
580 
581 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
582 	if (unlikely(!new_bp))
583 		return NULL;
584 
585 	error = xfs_buf_allocate_memory(new_bp, flags);
586 	if (error) {
587 		xfs_buf_free(new_bp);
588 		return NULL;
589 	}
590 
591 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
592 	if (!bp) {
593 		xfs_buf_free(new_bp);
594 		return NULL;
595 	}
596 
597 	if (bp != new_bp)
598 		xfs_buf_free(new_bp);
599 
600 found:
601 	if (!bp->b_addr) {
602 		error = _xfs_buf_map_pages(bp, flags);
603 		if (unlikely(error)) {
604 			xfs_warn(target->bt_mount,
605 				"%s: failed to map pagesn", __func__);
606 			xfs_buf_relse(bp);
607 			return NULL;
608 		}
609 	}
610 
611 	/*
612 	 * Clear b_error if this is a lookup from a caller that doesn't expect
613 	 * valid data to be found in the buffer.
614 	 */
615 	if (!(flags & XBF_READ))
616 		xfs_buf_ioerror(bp, 0);
617 
618 	XFS_STATS_INC(xb_get);
619 	trace_xfs_buf_get(bp, flags, _RET_IP_);
620 	return bp;
621 }
622 
623 STATIC int
_xfs_buf_read(xfs_buf_t * bp,xfs_buf_flags_t flags)624 _xfs_buf_read(
625 	xfs_buf_t		*bp,
626 	xfs_buf_flags_t		flags)
627 {
628 	ASSERT(!(flags & XBF_WRITE));
629 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
630 
631 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
632 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
633 
634 	if (flags & XBF_ASYNC) {
635 		xfs_buf_submit(bp);
636 		return 0;
637 	}
638 	return xfs_buf_submit_wait(bp);
639 }
640 
641 xfs_buf_t *
xfs_buf_read_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,const struct xfs_buf_ops * ops)642 xfs_buf_read_map(
643 	struct xfs_buftarg	*target,
644 	struct xfs_buf_map	*map,
645 	int			nmaps,
646 	xfs_buf_flags_t		flags,
647 	const struct xfs_buf_ops *ops)
648 {
649 	struct xfs_buf		*bp;
650 
651 	flags |= XBF_READ;
652 
653 	bp = xfs_buf_get_map(target, map, nmaps, flags);
654 	if (bp) {
655 		trace_xfs_buf_read(bp, flags, _RET_IP_);
656 
657 		if (!XFS_BUF_ISDONE(bp)) {
658 			XFS_STATS_INC(xb_get_read);
659 			bp->b_ops = ops;
660 			_xfs_buf_read(bp, flags);
661 		} else if (flags & XBF_ASYNC) {
662 			/*
663 			 * Read ahead call which is already satisfied,
664 			 * drop the buffer
665 			 */
666 			xfs_buf_relse(bp);
667 			return NULL;
668 		} else {
669 			/* We do not want read in the flags */
670 			bp->b_flags &= ~XBF_READ;
671 		}
672 	}
673 
674 	return bp;
675 }
676 
677 /*
678  *	If we are not low on memory then do the readahead in a deadlock
679  *	safe manner.
680  */
681 void
xfs_buf_readahead_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,const struct xfs_buf_ops * ops)682 xfs_buf_readahead_map(
683 	struct xfs_buftarg	*target,
684 	struct xfs_buf_map	*map,
685 	int			nmaps,
686 	const struct xfs_buf_ops *ops)
687 {
688 	if (bdi_read_congested(target->bt_bdi))
689 		return;
690 
691 	xfs_buf_read_map(target, map, nmaps,
692 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
693 }
694 
695 /*
696  * Read an uncached buffer from disk. Allocates and returns a locked
697  * buffer containing the disk contents or nothing.
698  */
699 int
xfs_buf_read_uncached(struct xfs_buftarg * target,xfs_daddr_t daddr,size_t numblks,int flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)700 xfs_buf_read_uncached(
701 	struct xfs_buftarg	*target,
702 	xfs_daddr_t		daddr,
703 	size_t			numblks,
704 	int			flags,
705 	struct xfs_buf		**bpp,
706 	const struct xfs_buf_ops *ops)
707 {
708 	struct xfs_buf		*bp;
709 
710 	*bpp = NULL;
711 
712 	bp = xfs_buf_get_uncached(target, numblks, flags);
713 	if (!bp)
714 		return -ENOMEM;
715 
716 	/* set up the buffer for a read IO */
717 	ASSERT(bp->b_map_count == 1);
718 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
719 	bp->b_maps[0].bm_bn = daddr;
720 	bp->b_flags |= XBF_READ;
721 	bp->b_ops = ops;
722 
723 	xfs_buf_submit_wait(bp);
724 	if (bp->b_error) {
725 		int	error = bp->b_error;
726 		xfs_buf_relse(bp);
727 		return error;
728 	}
729 
730 	*bpp = bp;
731 	return 0;
732 }
733 
734 /*
735  * Return a buffer allocated as an empty buffer and associated to external
736  * memory via xfs_buf_associate_memory() back to it's empty state.
737  */
738 void
xfs_buf_set_empty(struct xfs_buf * bp,size_t numblks)739 xfs_buf_set_empty(
740 	struct xfs_buf		*bp,
741 	size_t			numblks)
742 {
743 	if (bp->b_pages)
744 		_xfs_buf_free_pages(bp);
745 
746 	bp->b_pages = NULL;
747 	bp->b_page_count = 0;
748 	bp->b_addr = NULL;
749 	bp->b_length = numblks;
750 	bp->b_io_length = numblks;
751 
752 	ASSERT(bp->b_map_count == 1);
753 	bp->b_bn = XFS_BUF_DADDR_NULL;
754 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
755 	bp->b_maps[0].bm_len = bp->b_length;
756 }
757 
758 static inline struct page *
mem_to_page(void * addr)759 mem_to_page(
760 	void			*addr)
761 {
762 	if ((!is_vmalloc_addr(addr))) {
763 		return virt_to_page(addr);
764 	} else {
765 		return vmalloc_to_page(addr);
766 	}
767 }
768 
769 int
xfs_buf_associate_memory(xfs_buf_t * bp,void * mem,size_t len)770 xfs_buf_associate_memory(
771 	xfs_buf_t		*bp,
772 	void			*mem,
773 	size_t			len)
774 {
775 	int			rval;
776 	int			i = 0;
777 	unsigned long		pageaddr;
778 	unsigned long		offset;
779 	size_t			buflen;
780 	int			page_count;
781 
782 	pageaddr = (unsigned long)mem & PAGE_MASK;
783 	offset = (unsigned long)mem - pageaddr;
784 	buflen = PAGE_ALIGN(len + offset);
785 	page_count = buflen >> PAGE_SHIFT;
786 
787 	/* Free any previous set of page pointers */
788 	if (bp->b_pages)
789 		_xfs_buf_free_pages(bp);
790 
791 	bp->b_pages = NULL;
792 	bp->b_addr = mem;
793 
794 	rval = _xfs_buf_get_pages(bp, page_count);
795 	if (rval)
796 		return rval;
797 
798 	bp->b_offset = offset;
799 
800 	for (i = 0; i < bp->b_page_count; i++) {
801 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
802 		pageaddr += PAGE_SIZE;
803 	}
804 
805 	bp->b_io_length = BTOBB(len);
806 	bp->b_length = BTOBB(buflen);
807 
808 	return 0;
809 }
810 
811 xfs_buf_t *
xfs_buf_get_uncached(struct xfs_buftarg * target,size_t numblks,int flags)812 xfs_buf_get_uncached(
813 	struct xfs_buftarg	*target,
814 	size_t			numblks,
815 	int			flags)
816 {
817 	unsigned long		page_count;
818 	int			error, i;
819 	struct xfs_buf		*bp;
820 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
821 
822 	bp = _xfs_buf_alloc(target, &map, 1, 0);
823 	if (unlikely(bp == NULL))
824 		goto fail;
825 
826 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
827 	error = _xfs_buf_get_pages(bp, page_count);
828 	if (error)
829 		goto fail_free_buf;
830 
831 	for (i = 0; i < page_count; i++) {
832 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
833 		if (!bp->b_pages[i])
834 			goto fail_free_mem;
835 	}
836 	bp->b_flags |= _XBF_PAGES;
837 
838 	error = _xfs_buf_map_pages(bp, 0);
839 	if (unlikely(error)) {
840 		xfs_warn(target->bt_mount,
841 			"%s: failed to map pages", __func__);
842 		goto fail_free_mem;
843 	}
844 
845 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
846 	return bp;
847 
848  fail_free_mem:
849 	while (--i >= 0)
850 		__free_page(bp->b_pages[i]);
851 	_xfs_buf_free_pages(bp);
852  fail_free_buf:
853 	xfs_buf_free_maps(bp);
854 	kmem_zone_free(xfs_buf_zone, bp);
855  fail:
856 	return NULL;
857 }
858 
859 /*
860  *	Increment reference count on buffer, to hold the buffer concurrently
861  *	with another thread which may release (free) the buffer asynchronously.
862  *	Must hold the buffer already to call this function.
863  */
864 void
xfs_buf_hold(xfs_buf_t * bp)865 xfs_buf_hold(
866 	xfs_buf_t		*bp)
867 {
868 	trace_xfs_buf_hold(bp, _RET_IP_);
869 	atomic_inc(&bp->b_hold);
870 }
871 
872 /*
873  *	Releases a hold on the specified buffer.  If the
874  *	the hold count is 1, calls xfs_buf_free.
875  */
876 void
xfs_buf_rele(xfs_buf_t * bp)877 xfs_buf_rele(
878 	xfs_buf_t		*bp)
879 {
880 	struct xfs_perag	*pag = bp->b_pag;
881 
882 	trace_xfs_buf_rele(bp, _RET_IP_);
883 
884 	if (!pag) {
885 		ASSERT(list_empty(&bp->b_lru));
886 		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
887 		if (atomic_dec_and_test(&bp->b_hold))
888 			xfs_buf_free(bp);
889 		return;
890 	}
891 
892 	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
893 
894 	ASSERT(atomic_read(&bp->b_hold) > 0);
895 	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
896 		spin_lock(&bp->b_lock);
897 		if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
898 			/*
899 			 * If the buffer is added to the LRU take a new
900 			 * reference to the buffer for the LRU and clear the
901 			 * (now stale) dispose list state flag
902 			 */
903 			if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
904 				bp->b_state &= ~XFS_BSTATE_DISPOSE;
905 				atomic_inc(&bp->b_hold);
906 			}
907 			spin_unlock(&bp->b_lock);
908 			spin_unlock(&pag->pag_buf_lock);
909 		} else {
910 			/*
911 			 * most of the time buffers will already be removed from
912 			 * the LRU, so optimise that case by checking for the
913 			 * XFS_BSTATE_DISPOSE flag indicating the last list the
914 			 * buffer was on was the disposal list
915 			 */
916 			if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
917 				list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
918 			} else {
919 				ASSERT(list_empty(&bp->b_lru));
920 			}
921 			spin_unlock(&bp->b_lock);
922 
923 			ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
924 			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
925 			spin_unlock(&pag->pag_buf_lock);
926 			xfs_perag_put(pag);
927 			xfs_buf_free(bp);
928 		}
929 	}
930 }
931 
932 
933 /*
934  *	Lock a buffer object, if it is not already locked.
935  *
936  *	If we come across a stale, pinned, locked buffer, we know that we are
937  *	being asked to lock a buffer that has been reallocated. Because it is
938  *	pinned, we know that the log has not been pushed to disk and hence it
939  *	will still be locked.  Rather than continuing to have trylock attempts
940  *	fail until someone else pushes the log, push it ourselves before
941  *	returning.  This means that the xfsaild will not get stuck trying
942  *	to push on stale inode buffers.
943  */
944 int
xfs_buf_trylock(struct xfs_buf * bp)945 xfs_buf_trylock(
946 	struct xfs_buf		*bp)
947 {
948 	int			locked;
949 
950 	locked = down_trylock(&bp->b_sema) == 0;
951 	if (locked)
952 		XB_SET_OWNER(bp);
953 
954 	trace_xfs_buf_trylock(bp, _RET_IP_);
955 	return locked;
956 }
957 
958 /*
959  *	Lock a buffer object.
960  *
961  *	If we come across a stale, pinned, locked buffer, we know that we
962  *	are being asked to lock a buffer that has been reallocated. Because
963  *	it is pinned, we know that the log has not been pushed to disk and
964  *	hence it will still be locked. Rather than sleeping until someone
965  *	else pushes the log, push it ourselves before trying to get the lock.
966  */
967 void
xfs_buf_lock(struct xfs_buf * bp)968 xfs_buf_lock(
969 	struct xfs_buf		*bp)
970 {
971 	trace_xfs_buf_lock(bp, _RET_IP_);
972 
973 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
974 		xfs_log_force(bp->b_target->bt_mount, 0);
975 	down(&bp->b_sema);
976 	XB_SET_OWNER(bp);
977 
978 	trace_xfs_buf_lock_done(bp, _RET_IP_);
979 }
980 
981 void
xfs_buf_unlock(struct xfs_buf * bp)982 xfs_buf_unlock(
983 	struct xfs_buf		*bp)
984 {
985 	ASSERT(xfs_buf_islocked(bp));
986 
987 	XB_CLEAR_OWNER(bp);
988 	up(&bp->b_sema);
989 
990 	trace_xfs_buf_unlock(bp, _RET_IP_);
991 }
992 
993 STATIC void
xfs_buf_wait_unpin(xfs_buf_t * bp)994 xfs_buf_wait_unpin(
995 	xfs_buf_t		*bp)
996 {
997 	DECLARE_WAITQUEUE	(wait, current);
998 
999 	if (atomic_read(&bp->b_pin_count) == 0)
1000 		return;
1001 
1002 	add_wait_queue(&bp->b_waiters, &wait);
1003 	for (;;) {
1004 		set_current_state(TASK_UNINTERRUPTIBLE);
1005 		if (atomic_read(&bp->b_pin_count) == 0)
1006 			break;
1007 		io_schedule();
1008 	}
1009 	remove_wait_queue(&bp->b_waiters, &wait);
1010 	set_current_state(TASK_RUNNING);
1011 }
1012 
1013 /*
1014  *	Buffer Utility Routines
1015  */
1016 
1017 void
xfs_buf_ioend(struct xfs_buf * bp)1018 xfs_buf_ioend(
1019 	struct xfs_buf	*bp)
1020 {
1021 	bool		read = bp->b_flags & XBF_READ;
1022 
1023 	trace_xfs_buf_iodone(bp, _RET_IP_);
1024 
1025 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1026 
1027 	/*
1028 	 * Pull in IO completion errors now. We are guaranteed to be running
1029 	 * single threaded, so we don't need the lock to read b_io_error.
1030 	 */
1031 	if (!bp->b_error && bp->b_io_error)
1032 		xfs_buf_ioerror(bp, bp->b_io_error);
1033 
1034 	/* Only validate buffers that were read without errors */
1035 	if (read && !bp->b_error && bp->b_ops) {
1036 		ASSERT(!bp->b_iodone);
1037 		bp->b_ops->verify_read(bp);
1038 	}
1039 
1040 	if (!bp->b_error)
1041 		bp->b_flags |= XBF_DONE;
1042 
1043 	if (bp->b_iodone)
1044 		(*(bp->b_iodone))(bp);
1045 	else if (bp->b_flags & XBF_ASYNC)
1046 		xfs_buf_relse(bp);
1047 	else
1048 		complete(&bp->b_iowait);
1049 }
1050 
1051 static void
xfs_buf_ioend_work(struct work_struct * work)1052 xfs_buf_ioend_work(
1053 	struct work_struct	*work)
1054 {
1055 	struct xfs_buf		*bp =
1056 		container_of(work, xfs_buf_t, b_iodone_work);
1057 
1058 	xfs_buf_ioend(bp);
1059 }
1060 
1061 void
xfs_buf_ioend_async(struct xfs_buf * bp)1062 xfs_buf_ioend_async(
1063 	struct xfs_buf	*bp)
1064 {
1065 	INIT_WORK(&bp->b_iodone_work, xfs_buf_ioend_work);
1066 	queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1067 }
1068 
1069 void
xfs_buf_ioerror(xfs_buf_t * bp,int error)1070 xfs_buf_ioerror(
1071 	xfs_buf_t		*bp,
1072 	int			error)
1073 {
1074 	ASSERT(error <= 0 && error >= -1000);
1075 	bp->b_error = error;
1076 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1077 }
1078 
1079 void
xfs_buf_ioerror_alert(struct xfs_buf * bp,const char * func)1080 xfs_buf_ioerror_alert(
1081 	struct xfs_buf		*bp,
1082 	const char		*func)
1083 {
1084 	xfs_alert(bp->b_target->bt_mount,
1085 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1086 		(__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1087 }
1088 
1089 int
xfs_bwrite(struct xfs_buf * bp)1090 xfs_bwrite(
1091 	struct xfs_buf		*bp)
1092 {
1093 	int			error;
1094 
1095 	ASSERT(xfs_buf_islocked(bp));
1096 
1097 	bp->b_flags |= XBF_WRITE;
1098 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1099 			 XBF_WRITE_FAIL | XBF_DONE);
1100 
1101 	error = xfs_buf_submit_wait(bp);
1102 	if (error) {
1103 		xfs_force_shutdown(bp->b_target->bt_mount,
1104 				   SHUTDOWN_META_IO_ERROR);
1105 	}
1106 	return error;
1107 }
1108 
1109 STATIC void
xfs_buf_bio_end_io(struct bio * bio,int error)1110 xfs_buf_bio_end_io(
1111 	struct bio		*bio,
1112 	int			error)
1113 {
1114 	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
1115 
1116 	/*
1117 	 * don't overwrite existing errors - otherwise we can lose errors on
1118 	 * buffers that require multiple bios to complete.
1119 	 */
1120 	if (error) {
1121 		spin_lock(&bp->b_lock);
1122 		if (!bp->b_io_error)
1123 			bp->b_io_error = error;
1124 		spin_unlock(&bp->b_lock);
1125 	}
1126 
1127 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1128 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1129 
1130 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1131 		xfs_buf_ioend_async(bp);
1132 	bio_put(bio);
1133 }
1134 
1135 static void
xfs_buf_ioapply_map(struct xfs_buf * bp,int map,int * buf_offset,int * count,int rw)1136 xfs_buf_ioapply_map(
1137 	struct xfs_buf	*bp,
1138 	int		map,
1139 	int		*buf_offset,
1140 	int		*count,
1141 	int		rw)
1142 {
1143 	int		page_index;
1144 	int		total_nr_pages = bp->b_page_count;
1145 	int		nr_pages;
1146 	struct bio	*bio;
1147 	sector_t	sector =  bp->b_maps[map].bm_bn;
1148 	int		size;
1149 	int		offset;
1150 
1151 	total_nr_pages = bp->b_page_count;
1152 
1153 	/* skip the pages in the buffer before the start offset */
1154 	page_index = 0;
1155 	offset = *buf_offset;
1156 	while (offset >= PAGE_SIZE) {
1157 		page_index++;
1158 		offset -= PAGE_SIZE;
1159 	}
1160 
1161 	/*
1162 	 * Limit the IO size to the length of the current vector, and update the
1163 	 * remaining IO count for the next time around.
1164 	 */
1165 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1166 	*count -= size;
1167 	*buf_offset += size;
1168 
1169 next_chunk:
1170 	atomic_inc(&bp->b_io_remaining);
1171 	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1172 	if (nr_pages > total_nr_pages)
1173 		nr_pages = total_nr_pages;
1174 
1175 	bio = bio_alloc(GFP_NOIO, nr_pages);
1176 	bio->bi_bdev = bp->b_target->bt_bdev;
1177 	bio->bi_iter.bi_sector = sector;
1178 	bio->bi_end_io = xfs_buf_bio_end_io;
1179 	bio->bi_private = bp;
1180 
1181 
1182 	for (; size && nr_pages; nr_pages--, page_index++) {
1183 		int	rbytes, nbytes = PAGE_SIZE - offset;
1184 
1185 		if (nbytes > size)
1186 			nbytes = size;
1187 
1188 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1189 				      offset);
1190 		if (rbytes < nbytes)
1191 			break;
1192 
1193 		offset = 0;
1194 		sector += BTOBB(nbytes);
1195 		size -= nbytes;
1196 		total_nr_pages--;
1197 	}
1198 
1199 	if (likely(bio->bi_iter.bi_size)) {
1200 		if (xfs_buf_is_vmapped(bp)) {
1201 			flush_kernel_vmap_range(bp->b_addr,
1202 						xfs_buf_vmap_len(bp));
1203 		}
1204 		submit_bio(rw, bio);
1205 		if (size)
1206 			goto next_chunk;
1207 	} else {
1208 		/*
1209 		 * This is guaranteed not to be the last io reference count
1210 		 * because the caller (xfs_buf_submit) holds a count itself.
1211 		 */
1212 		atomic_dec(&bp->b_io_remaining);
1213 		xfs_buf_ioerror(bp, -EIO);
1214 		bio_put(bio);
1215 	}
1216 
1217 }
1218 
1219 STATIC void
_xfs_buf_ioapply(struct xfs_buf * bp)1220 _xfs_buf_ioapply(
1221 	struct xfs_buf	*bp)
1222 {
1223 	struct blk_plug	plug;
1224 	int		rw;
1225 	int		offset;
1226 	int		size;
1227 	int		i;
1228 
1229 	/*
1230 	 * Make sure we capture only current IO errors rather than stale errors
1231 	 * left over from previous use of the buffer (e.g. failed readahead).
1232 	 */
1233 	bp->b_error = 0;
1234 
1235 	if (bp->b_flags & XBF_WRITE) {
1236 		if (bp->b_flags & XBF_SYNCIO)
1237 			rw = WRITE_SYNC;
1238 		else
1239 			rw = WRITE;
1240 		if (bp->b_flags & XBF_FUA)
1241 			rw |= REQ_FUA;
1242 		if (bp->b_flags & XBF_FLUSH)
1243 			rw |= REQ_FLUSH;
1244 
1245 		/*
1246 		 * Run the write verifier callback function if it exists. If
1247 		 * this function fails it will mark the buffer with an error and
1248 		 * the IO should not be dispatched.
1249 		 */
1250 		if (bp->b_ops) {
1251 			bp->b_ops->verify_write(bp);
1252 			if (bp->b_error) {
1253 				xfs_force_shutdown(bp->b_target->bt_mount,
1254 						   SHUTDOWN_CORRUPT_INCORE);
1255 				return;
1256 			}
1257 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1258 			struct xfs_mount *mp = bp->b_target->bt_mount;
1259 
1260 			/*
1261 			 * non-crc filesystems don't attach verifiers during
1262 			 * log recovery, so don't warn for such filesystems.
1263 			 */
1264 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1265 				xfs_warn(mp,
1266 					"%s: no ops on block 0x%llx/0x%x",
1267 					__func__, bp->b_bn, bp->b_length);
1268 				xfs_hex_dump(bp->b_addr, 64);
1269 				dump_stack();
1270 			}
1271 		}
1272 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1273 		rw = READA;
1274 	} else {
1275 		rw = READ;
1276 	}
1277 
1278 	/* we only use the buffer cache for meta-data */
1279 	rw |= REQ_META;
1280 
1281 	/*
1282 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1283 	 * into the buffer and the desired IO size before we start -
1284 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1285 	 * subsequent call.
1286 	 */
1287 	offset = bp->b_offset;
1288 	size = BBTOB(bp->b_io_length);
1289 	blk_start_plug(&plug);
1290 	for (i = 0; i < bp->b_map_count; i++) {
1291 		xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1292 		if (bp->b_error)
1293 			break;
1294 		if (size <= 0)
1295 			break;	/* all done */
1296 	}
1297 	blk_finish_plug(&plug);
1298 }
1299 
1300 /*
1301  * Asynchronous IO submission path. This transfers the buffer lock ownership and
1302  * the current reference to the IO. It is not safe to reference the buffer after
1303  * a call to this function unless the caller holds an additional reference
1304  * itself.
1305  */
1306 void
xfs_buf_submit(struct xfs_buf * bp)1307 xfs_buf_submit(
1308 	struct xfs_buf	*bp)
1309 {
1310 	trace_xfs_buf_submit(bp, _RET_IP_);
1311 
1312 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1313 	ASSERT(bp->b_flags & XBF_ASYNC);
1314 
1315 	/* on shutdown we stale and complete the buffer immediately */
1316 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1317 		xfs_buf_ioerror(bp, -EIO);
1318 		bp->b_flags &= ~XBF_DONE;
1319 		xfs_buf_stale(bp);
1320 		xfs_buf_ioend(bp);
1321 		return;
1322 	}
1323 
1324 	if (bp->b_flags & XBF_WRITE)
1325 		xfs_buf_wait_unpin(bp);
1326 
1327 	/* clear the internal error state to avoid spurious errors */
1328 	bp->b_io_error = 0;
1329 
1330 	/*
1331 	 * The caller's reference is released during I/O completion.
1332 	 * This occurs some time after the last b_io_remaining reference is
1333 	 * released, so after we drop our Io reference we have to have some
1334 	 * other reference to ensure the buffer doesn't go away from underneath
1335 	 * us. Take a direct reference to ensure we have safe access to the
1336 	 * buffer until we are finished with it.
1337 	 */
1338 	xfs_buf_hold(bp);
1339 
1340 	/*
1341 	 * Set the count to 1 initially, this will stop an I/O completion
1342 	 * callout which happens before we have started all the I/O from calling
1343 	 * xfs_buf_ioend too early.
1344 	 */
1345 	atomic_set(&bp->b_io_remaining, 1);
1346 	_xfs_buf_ioapply(bp);
1347 
1348 	/*
1349 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1350 	 * reference we took above. If we drop it to zero, run completion so
1351 	 * that we don't return to the caller with completion still pending.
1352 	 */
1353 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1354 		if (bp->b_error)
1355 			xfs_buf_ioend(bp);
1356 		else
1357 			xfs_buf_ioend_async(bp);
1358 	}
1359 
1360 	xfs_buf_rele(bp);
1361 	/* Note: it is not safe to reference bp now we've dropped our ref */
1362 }
1363 
1364 /*
1365  * Synchronous buffer IO submission path, read or write.
1366  */
1367 int
xfs_buf_submit_wait(struct xfs_buf * bp)1368 xfs_buf_submit_wait(
1369 	struct xfs_buf	*bp)
1370 {
1371 	int		error;
1372 
1373 	trace_xfs_buf_submit_wait(bp, _RET_IP_);
1374 
1375 	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1376 
1377 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1378 		xfs_buf_ioerror(bp, -EIO);
1379 		xfs_buf_stale(bp);
1380 		bp->b_flags &= ~XBF_DONE;
1381 		return -EIO;
1382 	}
1383 
1384 	if (bp->b_flags & XBF_WRITE)
1385 		xfs_buf_wait_unpin(bp);
1386 
1387 	/* clear the internal error state to avoid spurious errors */
1388 	bp->b_io_error = 0;
1389 
1390 	/*
1391 	 * For synchronous IO, the IO does not inherit the submitters reference
1392 	 * count, nor the buffer lock. Hence we cannot release the reference we
1393 	 * are about to take until we've waited for all IO completion to occur,
1394 	 * including any xfs_buf_ioend_async() work that may be pending.
1395 	 */
1396 	xfs_buf_hold(bp);
1397 
1398 	/*
1399 	 * Set the count to 1 initially, this will stop an I/O completion
1400 	 * callout which happens before we have started all the I/O from calling
1401 	 * xfs_buf_ioend too early.
1402 	 */
1403 	atomic_set(&bp->b_io_remaining, 1);
1404 	_xfs_buf_ioapply(bp);
1405 
1406 	/*
1407 	 * make sure we run completion synchronously if it raced with us and is
1408 	 * already complete.
1409 	 */
1410 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1411 		xfs_buf_ioend(bp);
1412 
1413 	/* wait for completion before gathering the error from the buffer */
1414 	trace_xfs_buf_iowait(bp, _RET_IP_);
1415 	wait_for_completion(&bp->b_iowait);
1416 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1417 	error = bp->b_error;
1418 
1419 	/*
1420 	 * all done now, we can release the hold that keeps the buffer
1421 	 * referenced for the entire IO.
1422 	 */
1423 	xfs_buf_rele(bp);
1424 	return error;
1425 }
1426 
1427 xfs_caddr_t
xfs_buf_offset(xfs_buf_t * bp,size_t offset)1428 xfs_buf_offset(
1429 	xfs_buf_t		*bp,
1430 	size_t			offset)
1431 {
1432 	struct page		*page;
1433 
1434 	if (bp->b_addr)
1435 		return bp->b_addr + offset;
1436 
1437 	offset += bp->b_offset;
1438 	page = bp->b_pages[offset >> PAGE_SHIFT];
1439 	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1440 }
1441 
1442 /*
1443  *	Move data into or out of a buffer.
1444  */
1445 void
xfs_buf_iomove(xfs_buf_t * bp,size_t boff,size_t bsize,void * data,xfs_buf_rw_t mode)1446 xfs_buf_iomove(
1447 	xfs_buf_t		*bp,	/* buffer to process		*/
1448 	size_t			boff,	/* starting buffer offset	*/
1449 	size_t			bsize,	/* length to copy		*/
1450 	void			*data,	/* data address			*/
1451 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1452 {
1453 	size_t			bend;
1454 
1455 	bend = boff + bsize;
1456 	while (boff < bend) {
1457 		struct page	*page;
1458 		int		page_index, page_offset, csize;
1459 
1460 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1461 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1462 		page = bp->b_pages[page_index];
1463 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1464 				      BBTOB(bp->b_io_length) - boff);
1465 
1466 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1467 
1468 		switch (mode) {
1469 		case XBRW_ZERO:
1470 			memset(page_address(page) + page_offset, 0, csize);
1471 			break;
1472 		case XBRW_READ:
1473 			memcpy(data, page_address(page) + page_offset, csize);
1474 			break;
1475 		case XBRW_WRITE:
1476 			memcpy(page_address(page) + page_offset, data, csize);
1477 		}
1478 
1479 		boff += csize;
1480 		data += csize;
1481 	}
1482 }
1483 
1484 /*
1485  *	Handling of buffer targets (buftargs).
1486  */
1487 
1488 /*
1489  * Wait for any bufs with callbacks that have been submitted but have not yet
1490  * returned. These buffers will have an elevated hold count, so wait on those
1491  * while freeing all the buffers only held by the LRU.
1492  */
1493 static enum lru_status
xfs_buftarg_wait_rele(struct list_head * item,spinlock_t * lru_lock,void * arg)1494 xfs_buftarg_wait_rele(
1495 	struct list_head	*item,
1496 	spinlock_t		*lru_lock,
1497 	void			*arg)
1498 
1499 {
1500 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1501 	struct list_head	*dispose = arg;
1502 
1503 	if (atomic_read(&bp->b_hold) > 1) {
1504 		/* need to wait, so skip it this pass */
1505 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1506 		return LRU_SKIP;
1507 	}
1508 	if (!spin_trylock(&bp->b_lock))
1509 		return LRU_SKIP;
1510 
1511 	/*
1512 	 * clear the LRU reference count so the buffer doesn't get
1513 	 * ignored in xfs_buf_rele().
1514 	 */
1515 	atomic_set(&bp->b_lru_ref, 0);
1516 	bp->b_state |= XFS_BSTATE_DISPOSE;
1517 	list_move(item, dispose);
1518 	spin_unlock(&bp->b_lock);
1519 	return LRU_REMOVED;
1520 }
1521 
1522 void
xfs_wait_buftarg(struct xfs_buftarg * btp)1523 xfs_wait_buftarg(
1524 	struct xfs_buftarg	*btp)
1525 {
1526 	LIST_HEAD(dispose);
1527 	int loop = 0;
1528 
1529 	/* loop until there is nothing left on the lru list. */
1530 	while (list_lru_count(&btp->bt_lru)) {
1531 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1532 			      &dispose, LONG_MAX);
1533 
1534 		while (!list_empty(&dispose)) {
1535 			struct xfs_buf *bp;
1536 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1537 			list_del_init(&bp->b_lru);
1538 			if (bp->b_flags & XBF_WRITE_FAIL) {
1539 				xfs_alert(btp->bt_mount,
1540 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
1541 "Please run xfs_repair to determine the extent of the problem.",
1542 					(long long)bp->b_bn);
1543 			}
1544 			xfs_buf_rele(bp);
1545 		}
1546 		if (loop++ != 0)
1547 			delay(100);
1548 	}
1549 }
1550 
1551 static enum lru_status
xfs_buftarg_isolate(struct list_head * item,spinlock_t * lru_lock,void * arg)1552 xfs_buftarg_isolate(
1553 	struct list_head	*item,
1554 	spinlock_t		*lru_lock,
1555 	void			*arg)
1556 {
1557 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1558 	struct list_head	*dispose = arg;
1559 
1560 	/*
1561 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1562 	 * If we fail to get the lock, just skip it.
1563 	 */
1564 	if (!spin_trylock(&bp->b_lock))
1565 		return LRU_SKIP;
1566 	/*
1567 	 * Decrement the b_lru_ref count unless the value is already
1568 	 * zero. If the value is already zero, we need to reclaim the
1569 	 * buffer, otherwise it gets another trip through the LRU.
1570 	 */
1571 	if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1572 		spin_unlock(&bp->b_lock);
1573 		return LRU_ROTATE;
1574 	}
1575 
1576 	bp->b_state |= XFS_BSTATE_DISPOSE;
1577 	list_move(item, dispose);
1578 	spin_unlock(&bp->b_lock);
1579 	return LRU_REMOVED;
1580 }
1581 
1582 static unsigned long
xfs_buftarg_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1583 xfs_buftarg_shrink_scan(
1584 	struct shrinker		*shrink,
1585 	struct shrink_control	*sc)
1586 {
1587 	struct xfs_buftarg	*btp = container_of(shrink,
1588 					struct xfs_buftarg, bt_shrinker);
1589 	LIST_HEAD(dispose);
1590 	unsigned long		freed;
1591 	unsigned long		nr_to_scan = sc->nr_to_scan;
1592 
1593 	freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
1594 				       &dispose, &nr_to_scan);
1595 
1596 	while (!list_empty(&dispose)) {
1597 		struct xfs_buf *bp;
1598 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1599 		list_del_init(&bp->b_lru);
1600 		xfs_buf_rele(bp);
1601 	}
1602 
1603 	return freed;
1604 }
1605 
1606 static unsigned long
xfs_buftarg_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1607 xfs_buftarg_shrink_count(
1608 	struct shrinker		*shrink,
1609 	struct shrink_control	*sc)
1610 {
1611 	struct xfs_buftarg	*btp = container_of(shrink,
1612 					struct xfs_buftarg, bt_shrinker);
1613 	return list_lru_count_node(&btp->bt_lru, sc->nid);
1614 }
1615 
1616 void
xfs_free_buftarg(struct xfs_mount * mp,struct xfs_buftarg * btp)1617 xfs_free_buftarg(
1618 	struct xfs_mount	*mp,
1619 	struct xfs_buftarg	*btp)
1620 {
1621 	unregister_shrinker(&btp->bt_shrinker);
1622 	list_lru_destroy(&btp->bt_lru);
1623 
1624 	if (mp->m_flags & XFS_MOUNT_BARRIER)
1625 		xfs_blkdev_issue_flush(btp);
1626 
1627 	kmem_free(btp);
1628 }
1629 
1630 int
xfs_setsize_buftarg(xfs_buftarg_t * btp,unsigned int sectorsize)1631 xfs_setsize_buftarg(
1632 	xfs_buftarg_t		*btp,
1633 	unsigned int		sectorsize)
1634 {
1635 	/* Set up metadata sector size info */
1636 	btp->bt_meta_sectorsize = sectorsize;
1637 	btp->bt_meta_sectormask = sectorsize - 1;
1638 
1639 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1640 		char name[BDEVNAME_SIZE];
1641 
1642 		bdevname(btp->bt_bdev, name);
1643 
1644 		xfs_warn(btp->bt_mount,
1645 			"Cannot set_blocksize to %u on device %s",
1646 			sectorsize, name);
1647 		return -EINVAL;
1648 	}
1649 
1650 	/* Set up device logical sector size mask */
1651 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1652 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1653 
1654 	return 0;
1655 }
1656 
1657 /*
1658  * When allocating the initial buffer target we have not yet
1659  * read in the superblock, so don't know what sized sectors
1660  * are being used at this early stage.  Play safe.
1661  */
1662 STATIC int
xfs_setsize_buftarg_early(xfs_buftarg_t * btp,struct block_device * bdev)1663 xfs_setsize_buftarg_early(
1664 	xfs_buftarg_t		*btp,
1665 	struct block_device	*bdev)
1666 {
1667 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1668 }
1669 
1670 xfs_buftarg_t *
xfs_alloc_buftarg(struct xfs_mount * mp,struct block_device * bdev)1671 xfs_alloc_buftarg(
1672 	struct xfs_mount	*mp,
1673 	struct block_device	*bdev)
1674 {
1675 	xfs_buftarg_t		*btp;
1676 
1677 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1678 
1679 	btp->bt_mount = mp;
1680 	btp->bt_dev =  bdev->bd_dev;
1681 	btp->bt_bdev = bdev;
1682 	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1683 
1684 	if (xfs_setsize_buftarg_early(btp, bdev))
1685 		goto error;
1686 
1687 	if (list_lru_init(&btp->bt_lru))
1688 		goto error;
1689 
1690 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1691 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1692 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1693 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1694 	register_shrinker(&btp->bt_shrinker);
1695 	return btp;
1696 
1697 error:
1698 	kmem_free(btp);
1699 	return NULL;
1700 }
1701 
1702 /*
1703  * Cancel a delayed write list.
1704  *
1705  * Remove each buffer from the list, clear the delwri queue flag and drop the
1706  * associated buffer reference.
1707  */
1708 void
xfs_buf_delwri_cancel(struct list_head * list)1709 xfs_buf_delwri_cancel(
1710 	struct list_head	*list)
1711 {
1712 	struct xfs_buf		*bp;
1713 
1714 	while (!list_empty(list)) {
1715 		bp = list_first_entry(list, struct xfs_buf, b_list);
1716 
1717 		xfs_buf_lock(bp);
1718 		bp->b_flags &= ~_XBF_DELWRI_Q;
1719 		list_del_init(&bp->b_list);
1720 		xfs_buf_relse(bp);
1721 	}
1722 }
1723 
1724 /*
1725  * Add a buffer to the delayed write list.
1726  *
1727  * This queues a buffer for writeout if it hasn't already been.  Note that
1728  * neither this routine nor the buffer list submission functions perform
1729  * any internal synchronization.  It is expected that the lists are thread-local
1730  * to the callers.
1731  *
1732  * Returns true if we queued up the buffer, or false if it already had
1733  * been on the buffer list.
1734  */
1735 bool
xfs_buf_delwri_queue(struct xfs_buf * bp,struct list_head * list)1736 xfs_buf_delwri_queue(
1737 	struct xfs_buf		*bp,
1738 	struct list_head	*list)
1739 {
1740 	ASSERT(xfs_buf_islocked(bp));
1741 	ASSERT(!(bp->b_flags & XBF_READ));
1742 
1743 	/*
1744 	 * If the buffer is already marked delwri it already is queued up
1745 	 * by someone else for imediate writeout.  Just ignore it in that
1746 	 * case.
1747 	 */
1748 	if (bp->b_flags & _XBF_DELWRI_Q) {
1749 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1750 		return false;
1751 	}
1752 
1753 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1754 
1755 	/*
1756 	 * If a buffer gets written out synchronously or marked stale while it
1757 	 * is on a delwri list we lazily remove it. To do this, the other party
1758 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1759 	 * It remains referenced and on the list.  In a rare corner case it
1760 	 * might get readded to a delwri list after the synchronous writeout, in
1761 	 * which case we need just need to re-add the flag here.
1762 	 */
1763 	bp->b_flags |= _XBF_DELWRI_Q;
1764 	if (list_empty(&bp->b_list)) {
1765 		atomic_inc(&bp->b_hold);
1766 		list_add_tail(&bp->b_list, list);
1767 	}
1768 
1769 	return true;
1770 }
1771 
1772 /*
1773  * Compare function is more complex than it needs to be because
1774  * the return value is only 32 bits and we are doing comparisons
1775  * on 64 bit values
1776  */
1777 static int
xfs_buf_cmp(void * priv,struct list_head * a,struct list_head * b)1778 xfs_buf_cmp(
1779 	void		*priv,
1780 	struct list_head *a,
1781 	struct list_head *b)
1782 {
1783 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1784 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1785 	xfs_daddr_t		diff;
1786 
1787 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1788 	if (diff < 0)
1789 		return -1;
1790 	if (diff > 0)
1791 		return 1;
1792 	return 0;
1793 }
1794 
1795 static int
__xfs_buf_delwri_submit(struct list_head * buffer_list,struct list_head * io_list,bool wait)1796 __xfs_buf_delwri_submit(
1797 	struct list_head	*buffer_list,
1798 	struct list_head	*io_list,
1799 	bool			wait)
1800 {
1801 	struct blk_plug		plug;
1802 	struct xfs_buf		*bp, *n;
1803 	int			pinned = 0;
1804 
1805 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1806 		if (!wait) {
1807 			if (xfs_buf_ispinned(bp)) {
1808 				pinned++;
1809 				continue;
1810 			}
1811 			if (!xfs_buf_trylock(bp))
1812 				continue;
1813 		} else {
1814 			xfs_buf_lock(bp);
1815 		}
1816 
1817 		/*
1818 		 * Someone else might have written the buffer synchronously or
1819 		 * marked it stale in the meantime.  In that case only the
1820 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1821 		 * reference and remove it from the list here.
1822 		 */
1823 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1824 			list_del_init(&bp->b_list);
1825 			xfs_buf_relse(bp);
1826 			continue;
1827 		}
1828 
1829 		list_move_tail(&bp->b_list, io_list);
1830 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1831 	}
1832 
1833 	list_sort(NULL, io_list, xfs_buf_cmp);
1834 
1835 	blk_start_plug(&plug);
1836 	list_for_each_entry_safe(bp, n, io_list, b_list) {
1837 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1838 		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1839 
1840 		/*
1841 		 * we do all Io submission async. This means if we need to wait
1842 		 * for IO completion we need to take an extra reference so the
1843 		 * buffer is still valid on the other side.
1844 		 */
1845 		if (wait)
1846 			xfs_buf_hold(bp);
1847 		else
1848 			list_del_init(&bp->b_list);
1849 
1850 		xfs_buf_submit(bp);
1851 	}
1852 	blk_finish_plug(&plug);
1853 
1854 	return pinned;
1855 }
1856 
1857 /*
1858  * Write out a buffer list asynchronously.
1859  *
1860  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1861  * out and not wait for I/O completion on any of the buffers.  This interface
1862  * is only safely useable for callers that can track I/O completion by higher
1863  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1864  * function.
1865  */
1866 int
xfs_buf_delwri_submit_nowait(struct list_head * buffer_list)1867 xfs_buf_delwri_submit_nowait(
1868 	struct list_head	*buffer_list)
1869 {
1870 	LIST_HEAD		(io_list);
1871 	return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1872 }
1873 
1874 /*
1875  * Write out a buffer list synchronously.
1876  *
1877  * This will take the @buffer_list, write all buffers out and wait for I/O
1878  * completion on all of the buffers. @buffer_list is consumed by the function,
1879  * so callers must have some other way of tracking buffers if they require such
1880  * functionality.
1881  */
1882 int
xfs_buf_delwri_submit(struct list_head * buffer_list)1883 xfs_buf_delwri_submit(
1884 	struct list_head	*buffer_list)
1885 {
1886 	LIST_HEAD		(io_list);
1887 	int			error = 0, error2;
1888 	struct xfs_buf		*bp;
1889 
1890 	__xfs_buf_delwri_submit(buffer_list, &io_list, true);
1891 
1892 	/* Wait for IO to complete. */
1893 	while (!list_empty(&io_list)) {
1894 		bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1895 
1896 		list_del_init(&bp->b_list);
1897 
1898 		/* locking the buffer will wait for async IO completion. */
1899 		xfs_buf_lock(bp);
1900 		error2 = bp->b_error;
1901 		xfs_buf_relse(bp);
1902 		if (!error)
1903 			error = error2;
1904 	}
1905 
1906 	return error;
1907 }
1908 
1909 int __init
xfs_buf_init(void)1910 xfs_buf_init(void)
1911 {
1912 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1913 						KM_ZONE_HWALIGN, NULL);
1914 	if (!xfs_buf_zone)
1915 		goto out;
1916 
1917 	xfslogd_workqueue = alloc_workqueue("xfslogd",
1918 				WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_FREEZABLE, 1);
1919 	if (!xfslogd_workqueue)
1920 		goto out_free_buf_zone;
1921 
1922 	return 0;
1923 
1924  out_free_buf_zone:
1925 	kmem_zone_destroy(xfs_buf_zone);
1926  out:
1927 	return -ENOMEM;
1928 }
1929 
1930 void
xfs_buf_terminate(void)1931 xfs_buf_terminate(void)
1932 {
1933 	destroy_workqueue(xfslogd_workqueue);
1934 	kmem_zone_destroy(xfs_buf_zone);
1935 }
1936