1 /*
2 * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
3 *
4 * Created by: Nicolas Pitre, March 2012
5 * Copyright: (C) 2012-2013 Linaro Limited
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/irqflags.h>
15 #include <linux/cpu_pm.h>
16
17 #include <asm/mcpm.h>
18 #include <asm/cacheflush.h>
19 #include <asm/idmap.h>
20 #include <asm/cputype.h>
21 #include <asm/suspend.h>
22
23 extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
24
mcpm_set_entry_vector(unsigned cpu,unsigned cluster,void * ptr)25 void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
26 {
27 unsigned long val = ptr ? virt_to_phys(ptr) : 0;
28 mcpm_entry_vectors[cluster][cpu] = val;
29 sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
30 }
31
32 extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
33
mcpm_set_early_poke(unsigned cpu,unsigned cluster,unsigned long poke_phys_addr,unsigned long poke_val)34 void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
35 unsigned long poke_phys_addr, unsigned long poke_val)
36 {
37 unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
38 poke[0] = poke_phys_addr;
39 poke[1] = poke_val;
40 __sync_cache_range_w(poke, 2 * sizeof(*poke));
41 }
42
43 static const struct mcpm_platform_ops *platform_ops;
44
mcpm_platform_register(const struct mcpm_platform_ops * ops)45 int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
46 {
47 if (platform_ops)
48 return -EBUSY;
49 platform_ops = ops;
50 return 0;
51 }
52
mcpm_is_available(void)53 bool mcpm_is_available(void)
54 {
55 return (platform_ops) ? true : false;
56 }
57
mcpm_cpu_power_up(unsigned int cpu,unsigned int cluster)58 int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
59 {
60 if (!platform_ops)
61 return -EUNATCH; /* try not to shadow power_up errors */
62 might_sleep();
63 return platform_ops->power_up(cpu, cluster);
64 }
65
66 typedef void (*phys_reset_t)(unsigned long);
67
mcpm_cpu_power_down(void)68 void mcpm_cpu_power_down(void)
69 {
70 phys_reset_t phys_reset;
71
72 if (WARN_ON_ONCE(!platform_ops || !platform_ops->power_down))
73 return;
74 BUG_ON(!irqs_disabled());
75
76 /*
77 * Do this before calling into the power_down method,
78 * as it might not always be safe to do afterwards.
79 */
80 setup_mm_for_reboot();
81
82 platform_ops->power_down();
83
84 /*
85 * It is possible for a power_up request to happen concurrently
86 * with a power_down request for the same CPU. In this case the
87 * power_down method might not be able to actually enter a
88 * powered down state with the WFI instruction if the power_up
89 * method has removed the required reset condition. The
90 * power_down method is then allowed to return. We must perform
91 * a re-entry in the kernel as if the power_up method just had
92 * deasserted reset on the CPU.
93 *
94 * To simplify race issues, the platform specific implementation
95 * must accommodate for the possibility of unordered calls to
96 * power_down and power_up with a usage count. Therefore, if a
97 * call to power_up is issued for a CPU that is not down, then
98 * the next call to power_down must not attempt a full shutdown
99 * but only do the minimum (normally disabling L1 cache and CPU
100 * coherency) and return just as if a concurrent power_up request
101 * had happened as described above.
102 */
103
104 phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
105 phys_reset(virt_to_phys(mcpm_entry_point));
106
107 /* should never get here */
108 BUG();
109 }
110
mcpm_wait_for_cpu_powerdown(unsigned int cpu,unsigned int cluster)111 int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster)
112 {
113 int ret;
114
115 if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown))
116 return -EUNATCH;
117
118 ret = platform_ops->wait_for_powerdown(cpu, cluster);
119 if (ret)
120 pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
121 __func__, cpu, cluster, ret);
122
123 return ret;
124 }
125
mcpm_cpu_suspend(u64 expected_residency)126 void mcpm_cpu_suspend(u64 expected_residency)
127 {
128 phys_reset_t phys_reset;
129
130 if (WARN_ON_ONCE(!platform_ops || !platform_ops->suspend))
131 return;
132 BUG_ON(!irqs_disabled());
133
134 /* Very similar to mcpm_cpu_power_down() */
135 setup_mm_for_reboot();
136 platform_ops->suspend(expected_residency);
137 phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
138 phys_reset(virt_to_phys(mcpm_entry_point));
139 BUG();
140 }
141
mcpm_cpu_powered_up(void)142 int mcpm_cpu_powered_up(void)
143 {
144 if (!platform_ops)
145 return -EUNATCH;
146 if (platform_ops->powered_up)
147 platform_ops->powered_up();
148 return 0;
149 }
150
151 #ifdef CONFIG_ARM_CPU_SUSPEND
152
nocache_trampoline(unsigned long _arg)153 static int __init nocache_trampoline(unsigned long _arg)
154 {
155 void (*cache_disable)(void) = (void *)_arg;
156 unsigned int mpidr = read_cpuid_mpidr();
157 unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
158 unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
159 phys_reset_t phys_reset;
160
161 mcpm_set_entry_vector(cpu, cluster, cpu_resume);
162 setup_mm_for_reboot();
163
164 __mcpm_cpu_going_down(cpu, cluster);
165 BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster));
166 cache_disable();
167 __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
168 __mcpm_cpu_down(cpu, cluster);
169
170 phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
171 phys_reset(virt_to_phys(mcpm_entry_point));
172 BUG();
173 }
174
mcpm_loopback(void (* cache_disable)(void))175 int __init mcpm_loopback(void (*cache_disable)(void))
176 {
177 int ret;
178
179 /*
180 * We're going to soft-restart the current CPU through the
181 * low-level MCPM code by leveraging the suspend/resume
182 * infrastructure. Let's play it safe by using cpu_pm_enter()
183 * in case the CPU init code path resets the VFP or similar.
184 */
185 local_irq_disable();
186 local_fiq_disable();
187 ret = cpu_pm_enter();
188 if (!ret) {
189 ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline);
190 cpu_pm_exit();
191 }
192 local_fiq_enable();
193 local_irq_enable();
194 if (ret)
195 pr_err("%s returned %d\n", __func__, ret);
196 return ret;
197 }
198
199 #endif
200
201 struct sync_struct mcpm_sync;
202
203 /*
204 * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
205 * This must be called at the point of committing to teardown of a CPU.
206 * The CPU cache (SCTRL.C bit) is expected to still be active.
207 */
__mcpm_cpu_going_down(unsigned int cpu,unsigned int cluster)208 void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
209 {
210 mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
211 sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
212 }
213
214 /*
215 * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
216 * cluster can be torn down without disrupting this CPU.
217 * To avoid deadlocks, this must be called before a CPU is powered down.
218 * The CPU cache (SCTRL.C bit) is expected to be off.
219 * However L2 cache might or might not be active.
220 */
__mcpm_cpu_down(unsigned int cpu,unsigned int cluster)221 void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
222 {
223 dmb();
224 mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
225 sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
226 sev();
227 }
228
229 /*
230 * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
231 * @state: the final state of the cluster:
232 * CLUSTER_UP: no destructive teardown was done and the cluster has been
233 * restored to the previous state (CPU cache still active); or
234 * CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
235 * (CPU cache disabled, L2 cache either enabled or disabled).
236 */
__mcpm_outbound_leave_critical(unsigned int cluster,int state)237 void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
238 {
239 dmb();
240 mcpm_sync.clusters[cluster].cluster = state;
241 sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
242 sev();
243 }
244
245 /*
246 * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
247 * This function should be called by the last man, after local CPU teardown
248 * is complete. CPU cache expected to be active.
249 *
250 * Returns:
251 * false: the critical section was not entered because an inbound CPU was
252 * observed, or the cluster is already being set up;
253 * true: the critical section was entered: it is now safe to tear down the
254 * cluster.
255 */
__mcpm_outbound_enter_critical(unsigned int cpu,unsigned int cluster)256 bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
257 {
258 unsigned int i;
259 struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
260
261 /* Warn inbound CPUs that the cluster is being torn down: */
262 c->cluster = CLUSTER_GOING_DOWN;
263 sync_cache_w(&c->cluster);
264
265 /* Back out if the inbound cluster is already in the critical region: */
266 sync_cache_r(&c->inbound);
267 if (c->inbound == INBOUND_COMING_UP)
268 goto abort;
269
270 /*
271 * Wait for all CPUs to get out of the GOING_DOWN state, so that local
272 * teardown is complete on each CPU before tearing down the cluster.
273 *
274 * If any CPU has been woken up again from the DOWN state, then we
275 * shouldn't be taking the cluster down at all: abort in that case.
276 */
277 sync_cache_r(&c->cpus);
278 for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
279 int cpustate;
280
281 if (i == cpu)
282 continue;
283
284 while (1) {
285 cpustate = c->cpus[i].cpu;
286 if (cpustate != CPU_GOING_DOWN)
287 break;
288
289 wfe();
290 sync_cache_r(&c->cpus[i].cpu);
291 }
292
293 switch (cpustate) {
294 case CPU_DOWN:
295 continue;
296
297 default:
298 goto abort;
299 }
300 }
301
302 return true;
303
304 abort:
305 __mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
306 return false;
307 }
308
__mcpm_cluster_state(unsigned int cluster)309 int __mcpm_cluster_state(unsigned int cluster)
310 {
311 sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
312 return mcpm_sync.clusters[cluster].cluster;
313 }
314
315 extern unsigned long mcpm_power_up_setup_phys;
316
mcpm_sync_init(void (* power_up_setup)(unsigned int affinity_level))317 int __init mcpm_sync_init(
318 void (*power_up_setup)(unsigned int affinity_level))
319 {
320 unsigned int i, j, mpidr, this_cluster;
321
322 BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
323 BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
324
325 /*
326 * Set initial CPU and cluster states.
327 * Only one cluster is assumed to be active at this point.
328 */
329 for (i = 0; i < MAX_NR_CLUSTERS; i++) {
330 mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
331 mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
332 for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
333 mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
334 }
335 mpidr = read_cpuid_mpidr();
336 this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
337 for_each_online_cpu(i)
338 mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
339 mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
340 sync_cache_w(&mcpm_sync);
341
342 if (power_up_setup) {
343 mcpm_power_up_setup_phys = virt_to_phys(power_up_setup);
344 sync_cache_w(&mcpm_power_up_setup_phys);
345 }
346
347 return 0;
348 }
349