1 /*
2 * Intel MIC Platform Software Stack (MPSS)
3 *
4 * Copyright(c) 2013 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
14 *
15 * The full GNU General Public License is included in this distribution in
16 * the file called "COPYING".
17 *
18 * Intel MIC Host driver.
19 *
20 */
21 #include <linux/pci.h>
22
23 #include "../common/mic_dev.h"
24 #include "mic_device.h"
25 #include "mic_smpt.h"
26
mic_system_page_mask(struct mic_device * mdev)27 static inline u64 mic_system_page_mask(struct mic_device *mdev)
28 {
29 return (1ULL << mdev->smpt->info.page_shift) - 1ULL;
30 }
31
mic_sys_addr_to_smpt(struct mic_device * mdev,dma_addr_t pa)32 static inline u8 mic_sys_addr_to_smpt(struct mic_device *mdev, dma_addr_t pa)
33 {
34 return (pa - mdev->smpt->info.base) >> mdev->smpt->info.page_shift;
35 }
36
mic_smpt_to_pa(struct mic_device * mdev,u8 index)37 static inline u64 mic_smpt_to_pa(struct mic_device *mdev, u8 index)
38 {
39 return mdev->smpt->info.base + (index * mdev->smpt->info.page_size);
40 }
41
mic_smpt_offset(struct mic_device * mdev,dma_addr_t pa)42 static inline u64 mic_smpt_offset(struct mic_device *mdev, dma_addr_t pa)
43 {
44 return pa & mic_system_page_mask(mdev);
45 }
46
mic_smpt_align_low(struct mic_device * mdev,dma_addr_t pa)47 static inline u64 mic_smpt_align_low(struct mic_device *mdev, dma_addr_t pa)
48 {
49 return ALIGN(pa - mic_system_page_mask(mdev),
50 mdev->smpt->info.page_size);
51 }
52
mic_smpt_align_high(struct mic_device * mdev,dma_addr_t pa)53 static inline u64 mic_smpt_align_high(struct mic_device *mdev, dma_addr_t pa)
54 {
55 return ALIGN(pa, mdev->smpt->info.page_size);
56 }
57
58 /* Total Cumulative system memory accessible by MIC across all SMPT entries */
mic_max_system_memory(struct mic_device * mdev)59 static inline u64 mic_max_system_memory(struct mic_device *mdev)
60 {
61 return mdev->smpt->info.num_reg * mdev->smpt->info.page_size;
62 }
63
64 /* Maximum system memory address accessible by MIC */
mic_max_system_addr(struct mic_device * mdev)65 static inline u64 mic_max_system_addr(struct mic_device *mdev)
66 {
67 return mdev->smpt->info.base + mic_max_system_memory(mdev) - 1ULL;
68 }
69
70 /* Check if the DMA address is a MIC system memory address */
71 static inline bool
mic_is_system_addr(struct mic_device * mdev,dma_addr_t pa)72 mic_is_system_addr(struct mic_device *mdev, dma_addr_t pa)
73 {
74 return pa >= mdev->smpt->info.base && pa <= mic_max_system_addr(mdev);
75 }
76
77 /* Populate an SMPT entry and update the reference counts. */
mic_add_smpt_entry(int spt,s64 * ref,u64 addr,int entries,struct mic_device * mdev)78 static void mic_add_smpt_entry(int spt, s64 *ref, u64 addr,
79 int entries, struct mic_device *mdev)
80 {
81 struct mic_smpt_info *smpt_info = mdev->smpt;
82 int i;
83
84 for (i = spt; i < spt + entries; i++,
85 addr += smpt_info->info.page_size) {
86 if (!smpt_info->entry[i].ref_count &&
87 (smpt_info->entry[i].dma_addr != addr)) {
88 mdev->smpt_ops->set(mdev, addr, i);
89 smpt_info->entry[i].dma_addr = addr;
90 }
91 smpt_info->entry[i].ref_count += ref[i - spt];
92 }
93 }
94
95 /*
96 * Find an available MIC address in MIC SMPT address space
97 * for a given DMA address and size.
98 */
mic_smpt_op(struct mic_device * mdev,u64 dma_addr,int entries,s64 * ref,size_t size)99 static dma_addr_t mic_smpt_op(struct mic_device *mdev, u64 dma_addr,
100 int entries, s64 *ref, size_t size)
101 {
102 int spt;
103 int ae = 0;
104 int i;
105 unsigned long flags;
106 dma_addr_t mic_addr = 0;
107 dma_addr_t addr = dma_addr;
108 struct mic_smpt_info *smpt_info = mdev->smpt;
109
110 spin_lock_irqsave(&smpt_info->smpt_lock, flags);
111
112 /* find existing entries */
113 for (i = 0; i < smpt_info->info.num_reg; i++) {
114 if (smpt_info->entry[i].dma_addr == addr) {
115 ae++;
116 addr += smpt_info->info.page_size;
117 } else if (ae) /* cannot find contiguous entries */
118 goto not_found;
119
120 if (ae == entries)
121 goto found;
122 }
123
124 /* find free entry */
125 for (ae = 0, i = 0; i < smpt_info->info.num_reg; i++) {
126 ae = (smpt_info->entry[i].ref_count == 0) ? ae + 1 : 0;
127 if (ae == entries)
128 goto found;
129 }
130
131 not_found:
132 spin_unlock_irqrestore(&smpt_info->smpt_lock, flags);
133 return mic_addr;
134
135 found:
136 spt = i - entries + 1;
137 mic_addr = mic_smpt_to_pa(mdev, spt);
138 mic_add_smpt_entry(spt, ref, dma_addr, entries, mdev);
139 smpt_info->map_count++;
140 smpt_info->ref_count += (s64)size;
141 spin_unlock_irqrestore(&smpt_info->smpt_lock, flags);
142 return mic_addr;
143 }
144
145 /*
146 * Returns number of smpt entries needed for dma_addr to dma_addr + size
147 * also returns the reference count array for each of those entries
148 * and the starting smpt address
149 */
mic_get_smpt_ref_count(struct mic_device * mdev,dma_addr_t dma_addr,size_t size,s64 * ref,u64 * smpt_start)150 static int mic_get_smpt_ref_count(struct mic_device *mdev, dma_addr_t dma_addr,
151 size_t size, s64 *ref, u64 *smpt_start)
152 {
153 u64 start = dma_addr;
154 u64 end = dma_addr + size;
155 int i = 0;
156
157 while (start < end) {
158 ref[i++] = min(mic_smpt_align_high(mdev, start + 1),
159 end) - start;
160 start = mic_smpt_align_high(mdev, start + 1);
161 }
162
163 if (smpt_start)
164 *smpt_start = mic_smpt_align_low(mdev, dma_addr);
165
166 return i;
167 }
168
169 /*
170 * mic_to_dma_addr - Converts a MIC address to a DMA address.
171 *
172 * @mdev: pointer to mic_device instance.
173 * @mic_addr: MIC address.
174 *
175 * returns a DMA address.
176 */
177 static dma_addr_t
mic_to_dma_addr(struct mic_device * mdev,dma_addr_t mic_addr)178 mic_to_dma_addr(struct mic_device *mdev, dma_addr_t mic_addr)
179 {
180 struct mic_smpt_info *smpt_info = mdev->smpt;
181 int spt;
182 dma_addr_t dma_addr;
183
184 if (!mic_is_system_addr(mdev, mic_addr)) {
185 dev_err(mdev->sdev->parent,
186 "mic_addr is invalid. mic_addr = 0x%llx\n", mic_addr);
187 return -EINVAL;
188 }
189 spt = mic_sys_addr_to_smpt(mdev, mic_addr);
190 dma_addr = smpt_info->entry[spt].dma_addr +
191 mic_smpt_offset(mdev, mic_addr);
192 return dma_addr;
193 }
194
195 /**
196 * mic_map - Maps a DMA address to a MIC physical address.
197 *
198 * @mdev: pointer to mic_device instance.
199 * @dma_addr: DMA address.
200 * @size: Size of the region to be mapped.
201 *
202 * This API converts the DMA address provided to a DMA address understood
203 * by MIC. Caller should check for errors by calling mic_map_error(..).
204 *
205 * returns DMA address as required by MIC.
206 */
mic_map(struct mic_device * mdev,dma_addr_t dma_addr,size_t size)207 dma_addr_t mic_map(struct mic_device *mdev, dma_addr_t dma_addr, size_t size)
208 {
209 dma_addr_t mic_addr = 0;
210 int num_entries;
211 s64 *ref;
212 u64 smpt_start;
213
214 if (!size || size > mic_max_system_memory(mdev))
215 return mic_addr;
216
217 ref = kmalloc(mdev->smpt->info.num_reg * sizeof(s64), GFP_KERNEL);
218 if (!ref)
219 return mic_addr;
220
221 num_entries = mic_get_smpt_ref_count(mdev, dma_addr, size,
222 ref, &smpt_start);
223
224 /* Set the smpt table appropriately and get 16G aligned mic address */
225 mic_addr = mic_smpt_op(mdev, smpt_start, num_entries, ref, size);
226
227 kfree(ref);
228
229 /*
230 * If mic_addr is zero then its an error case
231 * since mic_addr can never be zero.
232 * else generate mic_addr by adding the 16G offset in dma_addr
233 */
234 if (!mic_addr && MIC_FAMILY_X100 == mdev->family) {
235 dev_err(mdev->sdev->parent,
236 "mic_map failed dma_addr 0x%llx size 0x%lx\n",
237 dma_addr, size);
238 return mic_addr;
239 } else {
240 return mic_addr + mic_smpt_offset(mdev, dma_addr);
241 }
242 }
243
244 /**
245 * mic_unmap - Unmaps a MIC physical address.
246 *
247 * @mdev: pointer to mic_device instance.
248 * @mic_addr: MIC physical address.
249 * @size: Size of the region to be unmapped.
250 *
251 * This API unmaps the mappings created by mic_map(..).
252 *
253 * returns None.
254 */
mic_unmap(struct mic_device * mdev,dma_addr_t mic_addr,size_t size)255 void mic_unmap(struct mic_device *mdev, dma_addr_t mic_addr, size_t size)
256 {
257 struct mic_smpt_info *smpt_info = mdev->smpt;
258 s64 *ref;
259 int num_smpt;
260 int spt;
261 int i;
262 unsigned long flags;
263
264 if (!size)
265 return;
266
267 if (!mic_is_system_addr(mdev, mic_addr)) {
268 dev_err(mdev->sdev->parent,
269 "invalid address: 0x%llx\n", mic_addr);
270 return;
271 }
272
273 spt = mic_sys_addr_to_smpt(mdev, mic_addr);
274 ref = kmalloc(mdev->smpt->info.num_reg * sizeof(s64), GFP_KERNEL);
275 if (!ref)
276 return;
277
278 /* Get number of smpt entries to be mapped, ref count array */
279 num_smpt = mic_get_smpt_ref_count(mdev, mic_addr, size, ref, NULL);
280
281 spin_lock_irqsave(&smpt_info->smpt_lock, flags);
282 smpt_info->unmap_count++;
283 smpt_info->ref_count -= (s64)size;
284
285 for (i = spt; i < spt + num_smpt; i++) {
286 smpt_info->entry[i].ref_count -= ref[i - spt];
287 if (smpt_info->entry[i].ref_count < 0)
288 dev_warn(mdev->sdev->parent,
289 "ref count for entry %d is negative\n", i);
290 }
291 spin_unlock_irqrestore(&smpt_info->smpt_lock, flags);
292 kfree(ref);
293 }
294
295 /**
296 * mic_map_single - Maps a virtual address to a MIC physical address.
297 *
298 * @mdev: pointer to mic_device instance.
299 * @va: Kernel direct mapped virtual address.
300 * @size: Size of the region to be mapped.
301 *
302 * This API calls pci_map_single(..) for the direct mapped virtual address
303 * and then converts the DMA address provided to a DMA address understood
304 * by MIC. Caller should check for errors by calling mic_map_error(..).
305 *
306 * returns DMA address as required by MIC.
307 */
mic_map_single(struct mic_device * mdev,void * va,size_t size)308 dma_addr_t mic_map_single(struct mic_device *mdev, void *va, size_t size)
309 {
310 dma_addr_t mic_addr = 0;
311 struct pci_dev *pdev = container_of(mdev->sdev->parent,
312 struct pci_dev, dev);
313 dma_addr_t dma_addr =
314 pci_map_single(pdev, va, size, PCI_DMA_BIDIRECTIONAL);
315
316 if (!pci_dma_mapping_error(pdev, dma_addr)) {
317 mic_addr = mic_map(mdev, dma_addr, size);
318 if (!mic_addr) {
319 dev_err(mdev->sdev->parent,
320 "mic_map failed dma_addr 0x%llx size 0x%lx\n",
321 dma_addr, size);
322 pci_unmap_single(pdev, dma_addr,
323 size, PCI_DMA_BIDIRECTIONAL);
324 }
325 }
326 return mic_addr;
327 }
328
329 /**
330 * mic_unmap_single - Unmaps a MIC physical address.
331 *
332 * @mdev: pointer to mic_device instance.
333 * @mic_addr: MIC physical address.
334 * @size: Size of the region to be unmapped.
335 *
336 * This API unmaps the mappings created by mic_map_single(..).
337 *
338 * returns None.
339 */
340 void
mic_unmap_single(struct mic_device * mdev,dma_addr_t mic_addr,size_t size)341 mic_unmap_single(struct mic_device *mdev, dma_addr_t mic_addr, size_t size)
342 {
343 struct pci_dev *pdev = container_of(mdev->sdev->parent,
344 struct pci_dev, dev);
345 dma_addr_t dma_addr = mic_to_dma_addr(mdev, mic_addr);
346 mic_unmap(mdev, mic_addr, size);
347 pci_unmap_single(pdev, dma_addr, size, PCI_DMA_BIDIRECTIONAL);
348 }
349
350 /**
351 * mic_smpt_init - Initialize MIC System Memory Page Tables.
352 *
353 * @mdev: pointer to mic_device instance.
354 *
355 * returns 0 for success and -errno for error.
356 */
mic_smpt_init(struct mic_device * mdev)357 int mic_smpt_init(struct mic_device *mdev)
358 {
359 int i, err = 0;
360 dma_addr_t dma_addr;
361 struct mic_smpt_info *smpt_info;
362
363 mdev->smpt = kmalloc(sizeof(*mdev->smpt), GFP_KERNEL);
364 if (!mdev->smpt)
365 return -ENOMEM;
366
367 smpt_info = mdev->smpt;
368 mdev->smpt_ops->init(mdev);
369 smpt_info->entry = kmalloc_array(smpt_info->info.num_reg,
370 sizeof(*smpt_info->entry), GFP_KERNEL);
371 if (!smpt_info->entry) {
372 err = -ENOMEM;
373 goto free_smpt;
374 }
375 spin_lock_init(&smpt_info->smpt_lock);
376 for (i = 0; i < smpt_info->info.num_reg; i++) {
377 dma_addr = i * smpt_info->info.page_size;
378 smpt_info->entry[i].dma_addr = dma_addr;
379 smpt_info->entry[i].ref_count = 0;
380 mdev->smpt_ops->set(mdev, dma_addr, i);
381 }
382 smpt_info->ref_count = 0;
383 smpt_info->map_count = 0;
384 smpt_info->unmap_count = 0;
385 return 0;
386 free_smpt:
387 kfree(smpt_info);
388 return err;
389 }
390
391 /**
392 * mic_smpt_uninit - UnInitialize MIC System Memory Page Tables.
393 *
394 * @mdev: pointer to mic_device instance.
395 *
396 * returns None.
397 */
mic_smpt_uninit(struct mic_device * mdev)398 void mic_smpt_uninit(struct mic_device *mdev)
399 {
400 struct mic_smpt_info *smpt_info = mdev->smpt;
401 int i;
402
403 dev_dbg(mdev->sdev->parent,
404 "nodeid %d SMPT ref count %lld map %lld unmap %lld\n",
405 mdev->id, smpt_info->ref_count,
406 smpt_info->map_count, smpt_info->unmap_count);
407
408 for (i = 0; i < smpt_info->info.num_reg; i++) {
409 dev_dbg(mdev->sdev->parent,
410 "SMPT entry[%d] dma_addr = 0x%llx ref_count = %lld\n",
411 i, smpt_info->entry[i].dma_addr,
412 smpt_info->entry[i].ref_count);
413 if (smpt_info->entry[i].ref_count)
414 dev_warn(mdev->sdev->parent,
415 "ref count for entry %d is not zero\n", i);
416 }
417 kfree(smpt_info->entry);
418 kfree(smpt_info);
419 }
420
421 /**
422 * mic_smpt_restore - Restore MIC System Memory Page Tables.
423 *
424 * @mdev: pointer to mic_device instance.
425 *
426 * Restore the SMPT registers to values previously stored in the
427 * SW data structures. Some MIC steppings lose register state
428 * across resets and this API should be called for performing
429 * a restore operation if required.
430 *
431 * returns None.
432 */
mic_smpt_restore(struct mic_device * mdev)433 void mic_smpt_restore(struct mic_device *mdev)
434 {
435 int i;
436 dma_addr_t dma_addr;
437
438 for (i = 0; i < mdev->smpt->info.num_reg; i++) {
439 dma_addr = mdev->smpt->entry[i].dma_addr;
440 mdev->smpt_ops->set(mdev, dma_addr, i);
441 }
442 }
443