1 #include <linux/err.h>
2 #include <linux/slab.h>
3
4 #include <asm/branch.h>
5 #include <asm/cacheflush.h>
6 #include <asm/fpu_emulator.h>
7 #include <asm/inst.h>
8 #include <asm/mipsregs.h>
9 #include <asm/uaccess.h>
10
11 /**
12 * struct emuframe - The 'emulation' frame structure
13 * @emul: The instruction to 'emulate'.
14 * @badinst: A break instruction to cause a return to the kernel.
15 *
16 * This structure defines the frames placed within the delay slot emulation
17 * page in response to a call to mips_dsemul(). Each thread may be allocated
18 * only one frame at any given time. The kernel stores within it the
19 * instruction to be 'emulated' followed by a break instruction, then
20 * executes the frame in user mode. The break causes a trap to the kernel
21 * which leads to do_dsemulret() being called unless the instruction in
22 * @emul causes a trap itself, is a branch, or a signal is delivered to
23 * the thread. In these cases the allocated frame will either be reused by
24 * a subsequent delay slot 'emulation', or be freed during signal delivery or
25 * upon thread exit.
26 *
27 * This approach is used because:
28 *
29 * - Actually emulating all instructions isn't feasible. We would need to
30 * be able to handle instructions from all revisions of the MIPS ISA,
31 * all ASEs & all vendor instruction set extensions. This would be a
32 * whole lot of work & continual maintenance burden as new instructions
33 * are introduced, and in the case of some vendor extensions may not
34 * even be possible. Thus we need to take the approach of actually
35 * executing the instruction.
36 *
37 * - We must execute the instruction within user context. If we were to
38 * execute the instruction in kernel mode then it would have access to
39 * kernel resources without very careful checks, leaving us with a
40 * high potential for security or stability issues to arise.
41 *
42 * - We used to place the frame on the users stack, but this requires
43 * that the stack be executable. This is bad for security so the
44 * per-process page is now used instead.
45 *
46 * - The instruction in @emul may be something entirely invalid for a
47 * delay slot. The user may (intentionally or otherwise) place a branch
48 * in a delay slot, or a kernel mode instruction, or something else
49 * which generates an exception. Thus we can't rely upon the break in
50 * @badinst always being hit. For this reason we track the index of the
51 * frame allocated to each thread, allowing us to clean it up at later
52 * points such as signal delivery or thread exit.
53 *
54 * - The user may generate a fake struct emuframe if they wish, invoking
55 * the BRK_MEMU break instruction themselves. We must therefore not
56 * trust that BRK_MEMU means there's actually a valid frame allocated
57 * to the thread, and must not allow the user to do anything they
58 * couldn't already.
59 */
60 struct emuframe {
61 mips_instruction emul;
62 mips_instruction badinst;
63 };
64
65 static const int emupage_frame_count = PAGE_SIZE / sizeof(struct emuframe);
66
dsemul_page(void)67 static inline __user struct emuframe *dsemul_page(void)
68 {
69 return (__user struct emuframe *)STACK_TOP;
70 }
71
alloc_emuframe(void)72 static int alloc_emuframe(void)
73 {
74 mm_context_t *mm_ctx = ¤t->mm->context;
75 int idx;
76
77 retry:
78 spin_lock(&mm_ctx->bd_emupage_lock);
79
80 /* Ensure we have an allocation bitmap */
81 if (!mm_ctx->bd_emupage_allocmap) {
82 mm_ctx->bd_emupage_allocmap =
83 kcalloc(BITS_TO_LONGS(emupage_frame_count),
84 sizeof(unsigned long),
85 GFP_ATOMIC);
86
87 if (!mm_ctx->bd_emupage_allocmap) {
88 idx = BD_EMUFRAME_NONE;
89 goto out_unlock;
90 }
91 }
92
93 /* Attempt to allocate a single bit/frame */
94 idx = bitmap_find_free_region(mm_ctx->bd_emupage_allocmap,
95 emupage_frame_count, 0);
96 if (idx < 0) {
97 /*
98 * Failed to allocate a frame. We'll wait until one becomes
99 * available. We unlock the page so that other threads actually
100 * get the opportunity to free their frames, which means
101 * technically the result of bitmap_full may be incorrect.
102 * However the worst case is that we repeat all this and end up
103 * back here again.
104 */
105 spin_unlock(&mm_ctx->bd_emupage_lock);
106 if (!wait_event_killable(mm_ctx->bd_emupage_queue,
107 !bitmap_full(mm_ctx->bd_emupage_allocmap,
108 emupage_frame_count)))
109 goto retry;
110
111 /* Received a fatal signal - just give in */
112 return BD_EMUFRAME_NONE;
113 }
114
115 /* Success! */
116 pr_debug("allocate emuframe %d to %d\n", idx, current->pid);
117 out_unlock:
118 spin_unlock(&mm_ctx->bd_emupage_lock);
119 return idx;
120 }
121
free_emuframe(int idx,struct mm_struct * mm)122 static void free_emuframe(int idx, struct mm_struct *mm)
123 {
124 mm_context_t *mm_ctx = &mm->context;
125
126 spin_lock(&mm_ctx->bd_emupage_lock);
127
128 pr_debug("free emuframe %d from %d\n", idx, current->pid);
129 bitmap_clear(mm_ctx->bd_emupage_allocmap, idx, 1);
130
131 /* If some thread is waiting for a frame, now's its chance */
132 wake_up(&mm_ctx->bd_emupage_queue);
133
134 spin_unlock(&mm_ctx->bd_emupage_lock);
135 }
136
within_emuframe(struct pt_regs * regs)137 static bool within_emuframe(struct pt_regs *regs)
138 {
139 unsigned long base = (unsigned long)dsemul_page();
140
141 if (regs->cp0_epc < base)
142 return false;
143 if (regs->cp0_epc >= (base + PAGE_SIZE))
144 return false;
145
146 return true;
147 }
148
dsemul_thread_cleanup(struct task_struct * tsk)149 bool dsemul_thread_cleanup(struct task_struct *tsk)
150 {
151 int fr_idx;
152
153 /* Clear any allocated frame, retrieving its index */
154 fr_idx = atomic_xchg(&tsk->thread.bd_emu_frame, BD_EMUFRAME_NONE);
155
156 /* If no frame was allocated, we're done */
157 if (fr_idx == BD_EMUFRAME_NONE)
158 return false;
159
160 task_lock(tsk);
161
162 /* Free the frame that this thread had allocated */
163 if (tsk->mm)
164 free_emuframe(fr_idx, tsk->mm);
165
166 task_unlock(tsk);
167 return true;
168 }
169
dsemul_thread_rollback(struct pt_regs * regs)170 bool dsemul_thread_rollback(struct pt_regs *regs)
171 {
172 struct emuframe __user *fr;
173 int fr_idx;
174
175 /* Do nothing if we're not executing from a frame */
176 if (!within_emuframe(regs))
177 return false;
178
179 /* Find the frame being executed */
180 fr_idx = atomic_read(¤t->thread.bd_emu_frame);
181 if (fr_idx == BD_EMUFRAME_NONE)
182 return false;
183 fr = &dsemul_page()[fr_idx];
184
185 /*
186 * If the PC is at the emul instruction, roll back to the branch. If
187 * PC is at the badinst (break) instruction, we've already emulated the
188 * instruction so progress to the continue PC. If it's anything else
189 * then something is amiss & the user has branched into some other area
190 * of the emupage - we'll free the allocated frame anyway.
191 */
192 if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->emul)
193 regs->cp0_epc = current->thread.bd_emu_branch_pc;
194 else if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->badinst)
195 regs->cp0_epc = current->thread.bd_emu_cont_pc;
196
197 atomic_set(¤t->thread.bd_emu_frame, BD_EMUFRAME_NONE);
198 free_emuframe(fr_idx, current->mm);
199 return true;
200 }
201
dsemul_mm_cleanup(struct mm_struct * mm)202 void dsemul_mm_cleanup(struct mm_struct *mm)
203 {
204 mm_context_t *mm_ctx = &mm->context;
205
206 kfree(mm_ctx->bd_emupage_allocmap);
207 }
208
mips_dsemul(struct pt_regs * regs,mips_instruction ir,unsigned long branch_pc,unsigned long cont_pc)209 int mips_dsemul(struct pt_regs *regs, mips_instruction ir,
210 unsigned long branch_pc, unsigned long cont_pc)
211 {
212 struct emuframe __user *fr;
213 int err, fr_idx;
214
215 /* NOP is easy */
216 if (ir == 0)
217 return -1;
218
219 /* microMIPS instructions */
220 if (get_isa16_mode(regs->cp0_epc)) {
221 union mips_instruction insn = { .word = ir };
222
223 /* NOP16 aka MOVE16 $0, $0 */
224 if ((ir >> 16) == MM_NOP16)
225 return -1;
226
227 /* ADDIUPC */
228 if (insn.mm_a_format.opcode == mm_addiupc_op) {
229 unsigned int rs;
230 s32 v;
231
232 rs = (((insn.mm_a_format.rs + 0xe) & 0xf) + 2);
233 v = regs->cp0_epc & ~3;
234 v += insn.mm_a_format.simmediate << 2;
235 regs->regs[rs] = (long)v;
236 return -1;
237 }
238 }
239
240 pr_debug("dsemul 0x%08lx cont at 0x%08lx\n", regs->cp0_epc, cont_pc);
241
242 /* Allocate a frame if we don't already have one */
243 fr_idx = atomic_read(¤t->thread.bd_emu_frame);
244 if (fr_idx == BD_EMUFRAME_NONE)
245 fr_idx = alloc_emuframe();
246 if (fr_idx == BD_EMUFRAME_NONE)
247 return SIGBUS;
248 fr = &dsemul_page()[fr_idx];
249
250 /* Write the instructions to the frame */
251 if (get_isa16_mode(regs->cp0_epc)) {
252 err = __put_user(ir >> 16, (u16 __user *)(&fr->emul));
253 err |= __put_user(ir & 0xffff, (u16 __user *)((long)(&fr->emul) + 2));
254 err |= __put_user(BREAK_MATH >> 16, (u16 __user *)(&fr->badinst));
255 err |= __put_user(BREAK_MATH & 0xffff, (u16 __user *)((long)(&fr->badinst) + 2));
256 } else {
257 err = __put_user(ir, &fr->emul);
258 err |= __put_user((mips_instruction)BREAK_MATH, &fr->badinst);
259 }
260
261 if (unlikely(err)) {
262 MIPS_FPU_EMU_INC_STATS(errors);
263 free_emuframe(fr_idx, current->mm);
264 return SIGBUS;
265 }
266
267 /* Record the PC of the branch, PC to continue from & frame index */
268 current->thread.bd_emu_branch_pc = branch_pc;
269 current->thread.bd_emu_cont_pc = cont_pc;
270 atomic_set(¤t->thread.bd_emu_frame, fr_idx);
271
272 /* Change user register context to execute the frame */
273 regs->cp0_epc = ((unsigned long) &fr->emul) |
274 get_isa16_mode(regs->cp0_epc);
275
276 /* Ensure the icache observes our newly written frame */
277 flush_cache_sigtramp((unsigned long)&fr->emul);
278
279 return 0;
280 }
281
do_dsemulret(struct pt_regs * xcp)282 bool do_dsemulret(struct pt_regs *xcp)
283 {
284 /* Cleanup the allocated frame, returning if there wasn't one */
285 if (!dsemul_thread_cleanup(current)) {
286 MIPS_FPU_EMU_INC_STATS(errors);
287 return false;
288 }
289
290 /* Set EPC to return to post-branch instruction */
291 xcp->cp0_epc = current->thread.bd_emu_cont_pc;
292 pr_debug("dsemulret to 0x%08lx\n", xcp->cp0_epc);
293 MIPS_FPU_EMU_INC_STATS(ds_emul);
294 return true;
295 }
296