1 /*
2 * Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved.
3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/errno.h>
35 #include <linux/slab.h>
36 #include <linux/mm.h>
37 #include <linux/export.h>
38 #include <linux/bitmap.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/vmalloc.h>
41
42 #include "mlx4.h"
43
mlx4_bitmap_alloc(struct mlx4_bitmap * bitmap)44 u32 mlx4_bitmap_alloc(struct mlx4_bitmap *bitmap)
45 {
46 u32 obj;
47
48 spin_lock(&bitmap->lock);
49
50 obj = find_next_zero_bit(bitmap->table, bitmap->max, bitmap->last);
51 if (obj >= bitmap->max) {
52 bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
53 & bitmap->mask;
54 obj = find_first_zero_bit(bitmap->table, bitmap->max);
55 }
56
57 if (obj < bitmap->max) {
58 set_bit(obj, bitmap->table);
59 bitmap->last = (obj + 1);
60 if (bitmap->last == bitmap->max)
61 bitmap->last = 0;
62 obj |= bitmap->top;
63 } else
64 obj = -1;
65
66 if (obj != -1)
67 --bitmap->avail;
68
69 spin_unlock(&bitmap->lock);
70
71 return obj;
72 }
73
mlx4_bitmap_free(struct mlx4_bitmap * bitmap,u32 obj,int use_rr)74 void mlx4_bitmap_free(struct mlx4_bitmap *bitmap, u32 obj, int use_rr)
75 {
76 mlx4_bitmap_free_range(bitmap, obj, 1, use_rr);
77 }
78
mlx4_bitmap_alloc_range(struct mlx4_bitmap * bitmap,int cnt,int align)79 u32 mlx4_bitmap_alloc_range(struct mlx4_bitmap *bitmap, int cnt, int align)
80 {
81 u32 obj;
82
83 if (likely(cnt == 1 && align == 1))
84 return mlx4_bitmap_alloc(bitmap);
85
86 spin_lock(&bitmap->lock);
87
88 obj = bitmap_find_next_zero_area(bitmap->table, bitmap->max,
89 bitmap->last, cnt, align - 1);
90 if (obj >= bitmap->max) {
91 bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
92 & bitmap->mask;
93 obj = bitmap_find_next_zero_area(bitmap->table, bitmap->max,
94 0, cnt, align - 1);
95 }
96
97 if (obj < bitmap->max) {
98 bitmap_set(bitmap->table, obj, cnt);
99 if (obj == bitmap->last) {
100 bitmap->last = (obj + cnt);
101 if (bitmap->last >= bitmap->max)
102 bitmap->last = 0;
103 }
104 obj |= bitmap->top;
105 } else
106 obj = -1;
107
108 if (obj != -1)
109 bitmap->avail -= cnt;
110
111 spin_unlock(&bitmap->lock);
112
113 return obj;
114 }
115
mlx4_bitmap_avail(struct mlx4_bitmap * bitmap)116 u32 mlx4_bitmap_avail(struct mlx4_bitmap *bitmap)
117 {
118 return bitmap->avail;
119 }
120
mlx4_bitmap_free_range(struct mlx4_bitmap * bitmap,u32 obj,int cnt,int use_rr)121 void mlx4_bitmap_free_range(struct mlx4_bitmap *bitmap, u32 obj, int cnt,
122 int use_rr)
123 {
124 obj &= bitmap->max + bitmap->reserved_top - 1;
125
126 spin_lock(&bitmap->lock);
127 if (!use_rr) {
128 bitmap->last = min(bitmap->last, obj);
129 bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
130 & bitmap->mask;
131 }
132 bitmap_clear(bitmap->table, obj, cnt);
133 bitmap->avail += cnt;
134 spin_unlock(&bitmap->lock);
135 }
136
mlx4_bitmap_init(struct mlx4_bitmap * bitmap,u32 num,u32 mask,u32 reserved_bot,u32 reserved_top)137 int mlx4_bitmap_init(struct mlx4_bitmap *bitmap, u32 num, u32 mask,
138 u32 reserved_bot, u32 reserved_top)
139 {
140 /* num must be a power of 2 */
141 if (num != roundup_pow_of_two(num))
142 return -EINVAL;
143
144 bitmap->last = 0;
145 bitmap->top = 0;
146 bitmap->max = num - reserved_top;
147 bitmap->mask = mask;
148 bitmap->reserved_top = reserved_top;
149 bitmap->avail = num - reserved_top - reserved_bot;
150 spin_lock_init(&bitmap->lock);
151 bitmap->table = kzalloc(BITS_TO_LONGS(bitmap->max) *
152 sizeof (long), GFP_KERNEL);
153 if (!bitmap->table)
154 return -ENOMEM;
155
156 bitmap_set(bitmap->table, 0, reserved_bot);
157
158 return 0;
159 }
160
mlx4_bitmap_cleanup(struct mlx4_bitmap * bitmap)161 void mlx4_bitmap_cleanup(struct mlx4_bitmap *bitmap)
162 {
163 kfree(bitmap->table);
164 }
165
166 /*
167 * Handling for queue buffers -- we allocate a bunch of memory and
168 * register it in a memory region at HCA virtual address 0. If the
169 * requested size is > max_direct, we split the allocation into
170 * multiple pages, so we don't require too much contiguous memory.
171 */
172
mlx4_buf_alloc(struct mlx4_dev * dev,int size,int max_direct,struct mlx4_buf * buf,gfp_t gfp)173 int mlx4_buf_alloc(struct mlx4_dev *dev, int size, int max_direct,
174 struct mlx4_buf *buf, gfp_t gfp)
175 {
176 dma_addr_t t;
177
178 if (size <= max_direct) {
179 buf->nbufs = 1;
180 buf->npages = 1;
181 buf->page_shift = get_order(size) + PAGE_SHIFT;
182 buf->direct.buf = dma_alloc_coherent(&dev->pdev->dev,
183 size, &t, gfp);
184 if (!buf->direct.buf)
185 return -ENOMEM;
186
187 buf->direct.map = t;
188
189 while (t & ((1 << buf->page_shift) - 1)) {
190 --buf->page_shift;
191 buf->npages *= 2;
192 }
193
194 memset(buf->direct.buf, 0, size);
195 } else {
196 int i;
197
198 buf->direct.buf = NULL;
199 buf->nbufs = (size + PAGE_SIZE - 1) / PAGE_SIZE;
200 buf->npages = buf->nbufs;
201 buf->page_shift = PAGE_SHIFT;
202 buf->page_list = kcalloc(buf->nbufs, sizeof(*buf->page_list),
203 gfp);
204 if (!buf->page_list)
205 return -ENOMEM;
206
207 for (i = 0; i < buf->nbufs; ++i) {
208 buf->page_list[i].buf =
209 dma_alloc_coherent(&dev->pdev->dev, PAGE_SIZE,
210 &t, gfp);
211 if (!buf->page_list[i].buf)
212 goto err_free;
213
214 buf->page_list[i].map = t;
215
216 memset(buf->page_list[i].buf, 0, PAGE_SIZE);
217 }
218
219 if (BITS_PER_LONG == 64) {
220 struct page **pages;
221 pages = kmalloc(sizeof *pages * buf->nbufs, gfp);
222 if (!pages)
223 goto err_free;
224 for (i = 0; i < buf->nbufs; ++i)
225 pages[i] = virt_to_page(buf->page_list[i].buf);
226 buf->direct.buf = vmap(pages, buf->nbufs, VM_MAP, PAGE_KERNEL);
227 kfree(pages);
228 if (!buf->direct.buf)
229 goto err_free;
230 }
231 }
232
233 return 0;
234
235 err_free:
236 mlx4_buf_free(dev, size, buf);
237
238 return -ENOMEM;
239 }
240 EXPORT_SYMBOL_GPL(mlx4_buf_alloc);
241
mlx4_buf_free(struct mlx4_dev * dev,int size,struct mlx4_buf * buf)242 void mlx4_buf_free(struct mlx4_dev *dev, int size, struct mlx4_buf *buf)
243 {
244 int i;
245
246 if (buf->nbufs == 1)
247 dma_free_coherent(&dev->pdev->dev, size, buf->direct.buf,
248 buf->direct.map);
249 else {
250 if (BITS_PER_LONG == 64 && buf->direct.buf)
251 vunmap(buf->direct.buf);
252
253 for (i = 0; i < buf->nbufs; ++i)
254 if (buf->page_list[i].buf)
255 dma_free_coherent(&dev->pdev->dev, PAGE_SIZE,
256 buf->page_list[i].buf,
257 buf->page_list[i].map);
258 kfree(buf->page_list);
259 }
260 }
261 EXPORT_SYMBOL_GPL(mlx4_buf_free);
262
mlx4_alloc_db_pgdir(struct device * dma_device,gfp_t gfp)263 static struct mlx4_db_pgdir *mlx4_alloc_db_pgdir(struct device *dma_device,
264 gfp_t gfp)
265 {
266 struct mlx4_db_pgdir *pgdir;
267
268 pgdir = kzalloc(sizeof *pgdir, gfp);
269 if (!pgdir)
270 return NULL;
271
272 bitmap_fill(pgdir->order1, MLX4_DB_PER_PAGE / 2);
273 pgdir->bits[0] = pgdir->order0;
274 pgdir->bits[1] = pgdir->order1;
275 pgdir->db_page = dma_alloc_coherent(dma_device, PAGE_SIZE,
276 &pgdir->db_dma, gfp);
277 if (!pgdir->db_page) {
278 kfree(pgdir);
279 return NULL;
280 }
281
282 return pgdir;
283 }
284
mlx4_alloc_db_from_pgdir(struct mlx4_db_pgdir * pgdir,struct mlx4_db * db,int order)285 static int mlx4_alloc_db_from_pgdir(struct mlx4_db_pgdir *pgdir,
286 struct mlx4_db *db, int order)
287 {
288 int o;
289 int i;
290
291 for (o = order; o <= 1; ++o) {
292 i = find_first_bit(pgdir->bits[o], MLX4_DB_PER_PAGE >> o);
293 if (i < MLX4_DB_PER_PAGE >> o)
294 goto found;
295 }
296
297 return -ENOMEM;
298
299 found:
300 clear_bit(i, pgdir->bits[o]);
301
302 i <<= o;
303
304 if (o > order)
305 set_bit(i ^ 1, pgdir->bits[order]);
306
307 db->u.pgdir = pgdir;
308 db->index = i;
309 db->db = pgdir->db_page + db->index;
310 db->dma = pgdir->db_dma + db->index * 4;
311 db->order = order;
312
313 return 0;
314 }
315
mlx4_db_alloc(struct mlx4_dev * dev,struct mlx4_db * db,int order,gfp_t gfp)316 int mlx4_db_alloc(struct mlx4_dev *dev, struct mlx4_db *db, int order, gfp_t gfp)
317 {
318 struct mlx4_priv *priv = mlx4_priv(dev);
319 struct mlx4_db_pgdir *pgdir;
320 int ret = 0;
321
322 mutex_lock(&priv->pgdir_mutex);
323
324 list_for_each_entry(pgdir, &priv->pgdir_list, list)
325 if (!mlx4_alloc_db_from_pgdir(pgdir, db, order))
326 goto out;
327
328 pgdir = mlx4_alloc_db_pgdir(&(dev->pdev->dev), gfp);
329 if (!pgdir) {
330 ret = -ENOMEM;
331 goto out;
332 }
333
334 list_add(&pgdir->list, &priv->pgdir_list);
335
336 /* This should never fail -- we just allocated an empty page: */
337 WARN_ON(mlx4_alloc_db_from_pgdir(pgdir, db, order));
338
339 out:
340 mutex_unlock(&priv->pgdir_mutex);
341
342 return ret;
343 }
344 EXPORT_SYMBOL_GPL(mlx4_db_alloc);
345
mlx4_db_free(struct mlx4_dev * dev,struct mlx4_db * db)346 void mlx4_db_free(struct mlx4_dev *dev, struct mlx4_db *db)
347 {
348 struct mlx4_priv *priv = mlx4_priv(dev);
349 int o;
350 int i;
351
352 mutex_lock(&priv->pgdir_mutex);
353
354 o = db->order;
355 i = db->index;
356
357 if (db->order == 0 && test_bit(i ^ 1, db->u.pgdir->order0)) {
358 clear_bit(i ^ 1, db->u.pgdir->order0);
359 ++o;
360 }
361 i >>= o;
362 set_bit(i, db->u.pgdir->bits[o]);
363
364 if (bitmap_full(db->u.pgdir->order1, MLX4_DB_PER_PAGE / 2)) {
365 dma_free_coherent(&(dev->pdev->dev), PAGE_SIZE,
366 db->u.pgdir->db_page, db->u.pgdir->db_dma);
367 list_del(&db->u.pgdir->list);
368 kfree(db->u.pgdir);
369 }
370
371 mutex_unlock(&priv->pgdir_mutex);
372 }
373 EXPORT_SYMBOL_GPL(mlx4_db_free);
374
mlx4_alloc_hwq_res(struct mlx4_dev * dev,struct mlx4_hwq_resources * wqres,int size,int max_direct)375 int mlx4_alloc_hwq_res(struct mlx4_dev *dev, struct mlx4_hwq_resources *wqres,
376 int size, int max_direct)
377 {
378 int err;
379
380 err = mlx4_db_alloc(dev, &wqres->db, 1, GFP_KERNEL);
381 if (err)
382 return err;
383
384 *wqres->db.db = 0;
385
386 err = mlx4_buf_alloc(dev, size, max_direct, &wqres->buf, GFP_KERNEL);
387 if (err)
388 goto err_db;
389
390 err = mlx4_mtt_init(dev, wqres->buf.npages, wqres->buf.page_shift,
391 &wqres->mtt);
392 if (err)
393 goto err_buf;
394
395 err = mlx4_buf_write_mtt(dev, &wqres->mtt, &wqres->buf, GFP_KERNEL);
396 if (err)
397 goto err_mtt;
398
399 return 0;
400
401 err_mtt:
402 mlx4_mtt_cleanup(dev, &wqres->mtt);
403 err_buf:
404 mlx4_buf_free(dev, size, &wqres->buf);
405 err_db:
406 mlx4_db_free(dev, &wqres->db);
407
408 return err;
409 }
410 EXPORT_SYMBOL_GPL(mlx4_alloc_hwq_res);
411
mlx4_free_hwq_res(struct mlx4_dev * dev,struct mlx4_hwq_resources * wqres,int size)412 void mlx4_free_hwq_res(struct mlx4_dev *dev, struct mlx4_hwq_resources *wqres,
413 int size)
414 {
415 mlx4_mtt_cleanup(dev, &wqres->mtt);
416 mlx4_buf_free(dev, size, &wqres->buf);
417 mlx4_db_free(dev, &wqres->db);
418 }
419 EXPORT_SYMBOL_GPL(mlx4_free_hwq_res);
420