• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * kernel/locking/mutex.c
3  *
4  * Mutexes: blocking mutual exclusion locks
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *
10  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11  * David Howells for suggestions and improvements.
12  *
13  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14  *    from the -rt tree, where it was originally implemented for rtmutexes
15  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16  *    and Sven Dietrich.
17  *
18  * Also see Documentation/locking/mutex-design.txt.
19  */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include "mcs_spinlock.h"
29 
30 /*
31  * In the DEBUG case we are using the "NULL fastpath" for mutexes,
32  * which forces all calls into the slowpath:
33  */
34 #ifdef CONFIG_DEBUG_MUTEXES
35 # include "mutex-debug.h"
36 # include <asm-generic/mutex-null.h>
37 /*
38  * Must be 0 for the debug case so we do not do the unlock outside of the
39  * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
40  * case.
41  */
42 # undef __mutex_slowpath_needs_to_unlock
43 # define  __mutex_slowpath_needs_to_unlock()	0
44 #else
45 # include "mutex.h"
46 # include <asm/mutex.h>
47 #endif
48 
49 void
__mutex_init(struct mutex * lock,const char * name,struct lock_class_key * key)50 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
51 {
52 	atomic_set(&lock->count, 1);
53 	spin_lock_init(&lock->wait_lock);
54 	INIT_LIST_HEAD(&lock->wait_list);
55 	mutex_clear_owner(lock);
56 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
57 	osq_lock_init(&lock->osq);
58 #endif
59 
60 	debug_mutex_init(lock, name, key);
61 }
62 
63 EXPORT_SYMBOL(__mutex_init);
64 
65 #ifndef CONFIG_DEBUG_LOCK_ALLOC
66 /*
67  * We split the mutex lock/unlock logic into separate fastpath and
68  * slowpath functions, to reduce the register pressure on the fastpath.
69  * We also put the fastpath first in the kernel image, to make sure the
70  * branch is predicted by the CPU as default-untaken.
71  */
72 __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
73 
74 /**
75  * mutex_lock - acquire the mutex
76  * @lock: the mutex to be acquired
77  *
78  * Lock the mutex exclusively for this task. If the mutex is not
79  * available right now, it will sleep until it can get it.
80  *
81  * The mutex must later on be released by the same task that
82  * acquired it. Recursive locking is not allowed. The task
83  * may not exit without first unlocking the mutex. Also, kernel
84  * memory where the mutex resides mutex must not be freed with
85  * the mutex still locked. The mutex must first be initialized
86  * (or statically defined) before it can be locked. memset()-ing
87  * the mutex to 0 is not allowed.
88  *
89  * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
90  *   checks that will enforce the restrictions and will also do
91  *   deadlock debugging. )
92  *
93  * This function is similar to (but not equivalent to) down().
94  */
mutex_lock(struct mutex * lock)95 void __sched mutex_lock(struct mutex *lock)
96 {
97 	might_sleep();
98 	/*
99 	 * The locking fastpath is the 1->0 transition from
100 	 * 'unlocked' into 'locked' state.
101 	 */
102 	__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
103 	mutex_set_owner(lock);
104 }
105 
106 EXPORT_SYMBOL(mutex_lock);
107 #endif
108 
ww_mutex_lock_acquired(struct ww_mutex * ww,struct ww_acquire_ctx * ww_ctx)109 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
110 						   struct ww_acquire_ctx *ww_ctx)
111 {
112 #ifdef CONFIG_DEBUG_MUTEXES
113 	/*
114 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
115 	 * but released with a normal mutex_unlock in this call.
116 	 *
117 	 * This should never happen, always use ww_mutex_unlock.
118 	 */
119 	DEBUG_LOCKS_WARN_ON(ww->ctx);
120 
121 	/*
122 	 * Not quite done after calling ww_acquire_done() ?
123 	 */
124 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
125 
126 	if (ww_ctx->contending_lock) {
127 		/*
128 		 * After -EDEADLK you tried to
129 		 * acquire a different ww_mutex? Bad!
130 		 */
131 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
132 
133 		/*
134 		 * You called ww_mutex_lock after receiving -EDEADLK,
135 		 * but 'forgot' to unlock everything else first?
136 		 */
137 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
138 		ww_ctx->contending_lock = NULL;
139 	}
140 
141 	/*
142 	 * Naughty, using a different class will lead to undefined behavior!
143 	 */
144 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
145 #endif
146 	ww_ctx->acquired++;
147 }
148 
149 /*
150  * after acquiring lock with fastpath or when we lost out in contested
151  * slowpath, set ctx and wake up any waiters so they can recheck.
152  *
153  * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
154  * as the fastpath and opportunistic spinning are disabled in that case.
155  */
156 static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)157 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
158 			       struct ww_acquire_ctx *ctx)
159 {
160 	unsigned long flags;
161 	struct mutex_waiter *cur;
162 
163 	ww_mutex_lock_acquired(lock, ctx);
164 
165 	lock->ctx = ctx;
166 
167 	/*
168 	 * The lock->ctx update should be visible on all cores before
169 	 * the atomic read is done, otherwise contended waiters might be
170 	 * missed. The contended waiters will either see ww_ctx == NULL
171 	 * and keep spinning, or it will acquire wait_lock, add itself
172 	 * to waiter list and sleep.
173 	 */
174 	smp_mb(); /* ^^^ */
175 
176 	/*
177 	 * Check if lock is contended, if not there is nobody to wake up
178 	 */
179 	if (likely(atomic_read(&lock->base.count) == 0))
180 		return;
181 
182 	/*
183 	 * Uh oh, we raced in fastpath, wake up everyone in this case,
184 	 * so they can see the new lock->ctx.
185 	 */
186 	spin_lock_mutex(&lock->base.wait_lock, flags);
187 	list_for_each_entry(cur, &lock->base.wait_list, list) {
188 		debug_mutex_wake_waiter(&lock->base, cur);
189 		wake_up_process(cur->task);
190 	}
191 	spin_unlock_mutex(&lock->base.wait_lock, flags);
192 }
193 
194 
195 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
196 /*
197  * In order to avoid a stampede of mutex spinners from acquiring the mutex
198  * more or less simultaneously, the spinners need to acquire a MCS lock
199  * first before spinning on the owner field.
200  *
201  */
202 
203 /*
204  * Mutex spinning code migrated from kernel/sched/core.c
205  */
206 
owner_running(struct mutex * lock,struct task_struct * owner)207 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
208 {
209 	if (lock->owner != owner)
210 		return false;
211 
212 	/*
213 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
214 	 * lock->owner still matches owner, if that fails, owner might
215 	 * point to free()d memory, if it still matches, the rcu_read_lock()
216 	 * ensures the memory stays valid.
217 	 */
218 	barrier();
219 
220 	return owner->on_cpu;
221 }
222 
223 /*
224  * Look out! "owner" is an entirely speculative pointer
225  * access and not reliable.
226  */
227 static noinline
mutex_spin_on_owner(struct mutex * lock,struct task_struct * owner)228 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
229 {
230 	rcu_read_lock();
231 	while (owner_running(lock, owner)) {
232 		if (need_resched())
233 			break;
234 
235 		cpu_relax_lowlatency();
236 	}
237 	rcu_read_unlock();
238 
239 	/*
240 	 * We break out the loop above on need_resched() and when the
241 	 * owner changed, which is a sign for heavy contention. Return
242 	 * success only when lock->owner is NULL.
243 	 */
244 	return lock->owner == NULL;
245 }
246 
247 /*
248  * Initial check for entering the mutex spinning loop
249  */
mutex_can_spin_on_owner(struct mutex * lock)250 static inline int mutex_can_spin_on_owner(struct mutex *lock)
251 {
252 	struct task_struct *owner;
253 	int retval = 1;
254 
255 	if (need_resched())
256 		return 0;
257 
258 	rcu_read_lock();
259 	owner = ACCESS_ONCE(lock->owner);
260 	if (owner)
261 		retval = owner->on_cpu;
262 	rcu_read_unlock();
263 	/*
264 	 * if lock->owner is not set, the mutex owner may have just acquired
265 	 * it and not set the owner yet or the mutex has been released.
266 	 */
267 	return retval;
268 }
269 
270 /*
271  * Atomically try to take the lock when it is available
272  */
mutex_try_to_acquire(struct mutex * lock)273 static inline bool mutex_try_to_acquire(struct mutex *lock)
274 {
275 	return !mutex_is_locked(lock) &&
276 		(atomic_cmpxchg(&lock->count, 1, 0) == 1);
277 }
278 
279 /*
280  * Optimistic spinning.
281  *
282  * We try to spin for acquisition when we find that the lock owner
283  * is currently running on a (different) CPU and while we don't
284  * need to reschedule. The rationale is that if the lock owner is
285  * running, it is likely to release the lock soon.
286  *
287  * Since this needs the lock owner, and this mutex implementation
288  * doesn't track the owner atomically in the lock field, we need to
289  * track it non-atomically.
290  *
291  * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
292  * to serialize everything.
293  *
294  * The mutex spinners are queued up using MCS lock so that only one
295  * spinner can compete for the mutex. However, if mutex spinning isn't
296  * going to happen, there is no point in going through the lock/unlock
297  * overhead.
298  *
299  * Returns true when the lock was taken, otherwise false, indicating
300  * that we need to jump to the slowpath and sleep.
301  */
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)302 static bool mutex_optimistic_spin(struct mutex *lock,
303 				  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
304 {
305 	struct task_struct *task = current;
306 
307 	if (!mutex_can_spin_on_owner(lock))
308 		goto done;
309 
310 	if (!osq_lock(&lock->osq))
311 		goto done;
312 
313 	while (true) {
314 		struct task_struct *owner;
315 
316 		if (use_ww_ctx && ww_ctx->acquired > 0) {
317 			struct ww_mutex *ww;
318 
319 			ww = container_of(lock, struct ww_mutex, base);
320 			/*
321 			 * If ww->ctx is set the contents are undefined, only
322 			 * by acquiring wait_lock there is a guarantee that
323 			 * they are not invalid when reading.
324 			 *
325 			 * As such, when deadlock detection needs to be
326 			 * performed the optimistic spinning cannot be done.
327 			 */
328 			if (ACCESS_ONCE(ww->ctx))
329 				break;
330 		}
331 
332 		/*
333 		 * If there's an owner, wait for it to either
334 		 * release the lock or go to sleep.
335 		 */
336 		owner = ACCESS_ONCE(lock->owner);
337 		if (owner && !mutex_spin_on_owner(lock, owner))
338 			break;
339 
340 		/* Try to acquire the mutex if it is unlocked. */
341 		if (mutex_try_to_acquire(lock)) {
342 			lock_acquired(&lock->dep_map, ip);
343 
344 			if (use_ww_ctx) {
345 				struct ww_mutex *ww;
346 				ww = container_of(lock, struct ww_mutex, base);
347 
348 				ww_mutex_set_context_fastpath(ww, ww_ctx);
349 			}
350 
351 			mutex_set_owner(lock);
352 			osq_unlock(&lock->osq);
353 			return true;
354 		}
355 
356 		/*
357 		 * When there's no owner, we might have preempted between the
358 		 * owner acquiring the lock and setting the owner field. If
359 		 * we're an RT task that will live-lock because we won't let
360 		 * the owner complete.
361 		 */
362 		if (!owner && (need_resched() || rt_task(task)))
363 			break;
364 
365 		/*
366 		 * The cpu_relax() call is a compiler barrier which forces
367 		 * everything in this loop to be re-loaded. We don't need
368 		 * memory barriers as we'll eventually observe the right
369 		 * values at the cost of a few extra spins.
370 		 */
371 		cpu_relax_lowlatency();
372 	}
373 
374 	osq_unlock(&lock->osq);
375 done:
376 	/*
377 	 * If we fell out of the spin path because of need_resched(),
378 	 * reschedule now, before we try-lock the mutex. This avoids getting
379 	 * scheduled out right after we obtained the mutex.
380 	 */
381 	if (need_resched())
382 		schedule_preempt_disabled();
383 
384 	return false;
385 }
386 #else
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)387 static bool mutex_optimistic_spin(struct mutex *lock,
388 				  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
389 {
390 	return false;
391 }
392 #endif
393 
394 __visible __used noinline
395 void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
396 
397 /**
398  * mutex_unlock - release the mutex
399  * @lock: the mutex to be released
400  *
401  * Unlock a mutex that has been locked by this task previously.
402  *
403  * This function must not be used in interrupt context. Unlocking
404  * of a not locked mutex is not allowed.
405  *
406  * This function is similar to (but not equivalent to) up().
407  */
mutex_unlock(struct mutex * lock)408 void __sched mutex_unlock(struct mutex *lock)
409 {
410 	/*
411 	 * The unlocking fastpath is the 0->1 transition from 'locked'
412 	 * into 'unlocked' state:
413 	 */
414 #ifndef CONFIG_DEBUG_MUTEXES
415 	/*
416 	 * When debugging is enabled we must not clear the owner before time,
417 	 * the slow path will always be taken, and that clears the owner field
418 	 * after verifying that it was indeed current.
419 	 */
420 	mutex_clear_owner(lock);
421 #endif
422 	__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
423 }
424 
425 EXPORT_SYMBOL(mutex_unlock);
426 
427 /**
428  * ww_mutex_unlock - release the w/w mutex
429  * @lock: the mutex to be released
430  *
431  * Unlock a mutex that has been locked by this task previously with any of the
432  * ww_mutex_lock* functions (with or without an acquire context). It is
433  * forbidden to release the locks after releasing the acquire context.
434  *
435  * This function must not be used in interrupt context. Unlocking
436  * of a unlocked mutex is not allowed.
437  */
ww_mutex_unlock(struct ww_mutex * lock)438 void __sched ww_mutex_unlock(struct ww_mutex *lock)
439 {
440 	/*
441 	 * The unlocking fastpath is the 0->1 transition from 'locked'
442 	 * into 'unlocked' state:
443 	 */
444 	if (lock->ctx) {
445 #ifdef CONFIG_DEBUG_MUTEXES
446 		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
447 #endif
448 		if (lock->ctx->acquired > 0)
449 			lock->ctx->acquired--;
450 		lock->ctx = NULL;
451 	}
452 
453 #ifndef CONFIG_DEBUG_MUTEXES
454 	/*
455 	 * When debugging is enabled we must not clear the owner before time,
456 	 * the slow path will always be taken, and that clears the owner field
457 	 * after verifying that it was indeed current.
458 	 */
459 	mutex_clear_owner(&lock->base);
460 #endif
461 	__mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
462 }
463 EXPORT_SYMBOL(ww_mutex_unlock);
464 
465 static inline int __sched
__mutex_lock_check_stamp(struct mutex * lock,struct ww_acquire_ctx * ctx)466 __mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
467 {
468 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
469 	struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
470 
471 	if (!hold_ctx)
472 		return 0;
473 
474 	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
475 	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
476 #ifdef CONFIG_DEBUG_MUTEXES
477 		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
478 		ctx->contending_lock = ww;
479 #endif
480 		return -EDEADLK;
481 	}
482 
483 	return 0;
484 }
485 
486 /*
487  * Lock a mutex (possibly interruptible), slowpath:
488  */
489 static __always_inline int __sched
__mutex_lock_common(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)490 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
491 		    struct lockdep_map *nest_lock, unsigned long ip,
492 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
493 {
494 	struct task_struct *task = current;
495 	struct mutex_waiter waiter;
496 	unsigned long flags;
497 	int ret;
498 
499 	if (use_ww_ctx) {
500 		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
501 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
502 			return -EALREADY;
503 	}
504 
505 	preempt_disable();
506 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
507 
508 	if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
509 		/* got the lock, yay! */
510 		preempt_enable();
511 		return 0;
512 	}
513 
514 	spin_lock_mutex(&lock->wait_lock, flags);
515 
516 	/*
517 	 * Once more, try to acquire the lock. Only try-lock the mutex if
518 	 * it is unlocked to reduce unnecessary xchg() operations.
519 	 */
520 	if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
521 		goto skip_wait;
522 
523 	debug_mutex_lock_common(lock, &waiter);
524 	debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
525 
526 	/* add waiting tasks to the end of the waitqueue (FIFO): */
527 	list_add_tail(&waiter.list, &lock->wait_list);
528 	waiter.task = task;
529 
530 	lock_contended(&lock->dep_map, ip);
531 
532 	for (;;) {
533 		/*
534 		 * Lets try to take the lock again - this is needed even if
535 		 * we get here for the first time (shortly after failing to
536 		 * acquire the lock), to make sure that we get a wakeup once
537 		 * it's unlocked. Later on, if we sleep, this is the
538 		 * operation that gives us the lock. We xchg it to -1, so
539 		 * that when we release the lock, we properly wake up the
540 		 * other waiters. We only attempt the xchg if the count is
541 		 * non-negative in order to avoid unnecessary xchg operations:
542 		 */
543 		if (atomic_read(&lock->count) >= 0 &&
544 		    (atomic_xchg(&lock->count, -1) == 1))
545 			break;
546 
547 		/*
548 		 * got a signal? (This code gets eliminated in the
549 		 * TASK_UNINTERRUPTIBLE case.)
550 		 */
551 		if (unlikely(signal_pending_state(state, task))) {
552 			ret = -EINTR;
553 			goto err;
554 		}
555 
556 		if (use_ww_ctx && ww_ctx->acquired > 0) {
557 			ret = __mutex_lock_check_stamp(lock, ww_ctx);
558 			if (ret)
559 				goto err;
560 		}
561 
562 		__set_task_state(task, state);
563 
564 		/* didn't get the lock, go to sleep: */
565 		spin_unlock_mutex(&lock->wait_lock, flags);
566 		schedule_preempt_disabled();
567 		spin_lock_mutex(&lock->wait_lock, flags);
568 	}
569 	mutex_remove_waiter(lock, &waiter, current_thread_info());
570 	/* set it to 0 if there are no waiters left: */
571 	if (likely(list_empty(&lock->wait_list)))
572 		atomic_set(&lock->count, 0);
573 	debug_mutex_free_waiter(&waiter);
574 
575 skip_wait:
576 	/* got the lock - cleanup and rejoice! */
577 	lock_acquired(&lock->dep_map, ip);
578 	mutex_set_owner(lock);
579 
580 	if (use_ww_ctx) {
581 		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
582 		struct mutex_waiter *cur;
583 
584 		/*
585 		 * This branch gets optimized out for the common case,
586 		 * and is only important for ww_mutex_lock.
587 		 */
588 		ww_mutex_lock_acquired(ww, ww_ctx);
589 		ww->ctx = ww_ctx;
590 
591 		/*
592 		 * Give any possible sleeping processes the chance to wake up,
593 		 * so they can recheck if they have to back off.
594 		 */
595 		list_for_each_entry(cur, &lock->wait_list, list) {
596 			debug_mutex_wake_waiter(lock, cur);
597 			wake_up_process(cur->task);
598 		}
599 	}
600 
601 	spin_unlock_mutex(&lock->wait_lock, flags);
602 	preempt_enable();
603 	return 0;
604 
605 err:
606 	mutex_remove_waiter(lock, &waiter, task_thread_info(task));
607 	spin_unlock_mutex(&lock->wait_lock, flags);
608 	debug_mutex_free_waiter(&waiter);
609 	mutex_release(&lock->dep_map, 1, ip);
610 	preempt_enable();
611 	return ret;
612 }
613 
614 #ifdef CONFIG_DEBUG_LOCK_ALLOC
615 void __sched
mutex_lock_nested(struct mutex * lock,unsigned int subclass)616 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
617 {
618 	might_sleep();
619 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
620 			    subclass, NULL, _RET_IP_, NULL, 0);
621 }
622 
623 EXPORT_SYMBOL_GPL(mutex_lock_nested);
624 
625 void __sched
_mutex_lock_nest_lock(struct mutex * lock,struct lockdep_map * nest)626 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
627 {
628 	might_sleep();
629 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
630 			    0, nest, _RET_IP_, NULL, 0);
631 }
632 
633 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
634 
635 int __sched
mutex_lock_killable_nested(struct mutex * lock,unsigned int subclass)636 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
637 {
638 	might_sleep();
639 	return __mutex_lock_common(lock, TASK_KILLABLE,
640 				   subclass, NULL, _RET_IP_, NULL, 0);
641 }
642 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
643 
644 int __sched
mutex_lock_interruptible_nested(struct mutex * lock,unsigned int subclass)645 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
646 {
647 	might_sleep();
648 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
649 				   subclass, NULL, _RET_IP_, NULL, 0);
650 }
651 
652 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
653 
654 static inline int
ww_mutex_deadlock_injection(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)655 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
656 {
657 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
658 	unsigned tmp;
659 
660 	if (ctx->deadlock_inject_countdown-- == 0) {
661 		tmp = ctx->deadlock_inject_interval;
662 		if (tmp > UINT_MAX/4)
663 			tmp = UINT_MAX;
664 		else
665 			tmp = tmp*2 + tmp + tmp/2;
666 
667 		ctx->deadlock_inject_interval = tmp;
668 		ctx->deadlock_inject_countdown = tmp;
669 		ctx->contending_lock = lock;
670 
671 		ww_mutex_unlock(lock);
672 
673 		return -EDEADLK;
674 	}
675 #endif
676 
677 	return 0;
678 }
679 
680 int __sched
__ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)681 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
682 {
683 	int ret;
684 
685 	might_sleep();
686 	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
687 				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
688 	if (!ret && ctx->acquired > 1)
689 		return ww_mutex_deadlock_injection(lock, ctx);
690 
691 	return ret;
692 }
693 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
694 
695 int __sched
__ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)696 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
697 {
698 	int ret;
699 
700 	might_sleep();
701 	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
702 				  0, &ctx->dep_map, _RET_IP_, ctx, 1);
703 
704 	if (!ret && ctx->acquired > 1)
705 		return ww_mutex_deadlock_injection(lock, ctx);
706 
707 	return ret;
708 }
709 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
710 
711 #endif
712 
713 /*
714  * Release the lock, slowpath:
715  */
716 static inline void
__mutex_unlock_common_slowpath(struct mutex * lock,int nested)717 __mutex_unlock_common_slowpath(struct mutex *lock, int nested)
718 {
719 	unsigned long flags;
720 
721 	/*
722 	 * As a performance measurement, release the lock before doing other
723 	 * wakeup related duties to follow. This allows other tasks to acquire
724 	 * the lock sooner, while still handling cleanups in past unlock calls.
725 	 * This can be done as we do not enforce strict equivalence between the
726 	 * mutex counter and wait_list.
727 	 *
728 	 *
729 	 * Some architectures leave the lock unlocked in the fastpath failure
730 	 * case, others need to leave it locked. In the later case we have to
731 	 * unlock it here - as the lock counter is currently 0 or negative.
732 	 */
733 	if (__mutex_slowpath_needs_to_unlock())
734 		atomic_set(&lock->count, 1);
735 
736 	spin_lock_mutex(&lock->wait_lock, flags);
737 	mutex_release(&lock->dep_map, nested, _RET_IP_);
738 	debug_mutex_unlock(lock);
739 
740 	if (!list_empty(&lock->wait_list)) {
741 		/* get the first entry from the wait-list: */
742 		struct mutex_waiter *waiter =
743 				list_entry(lock->wait_list.next,
744 					   struct mutex_waiter, list);
745 
746 		debug_mutex_wake_waiter(lock, waiter);
747 
748 		wake_up_process(waiter->task);
749 	}
750 
751 	spin_unlock_mutex(&lock->wait_lock, flags);
752 }
753 
754 /*
755  * Release the lock, slowpath:
756  */
757 __visible void
__mutex_unlock_slowpath(atomic_t * lock_count)758 __mutex_unlock_slowpath(atomic_t *lock_count)
759 {
760 	struct mutex *lock = container_of(lock_count, struct mutex, count);
761 
762 	__mutex_unlock_common_slowpath(lock, 1);
763 }
764 
765 #ifndef CONFIG_DEBUG_LOCK_ALLOC
766 /*
767  * Here come the less common (and hence less performance-critical) APIs:
768  * mutex_lock_interruptible() and mutex_trylock().
769  */
770 static noinline int __sched
771 __mutex_lock_killable_slowpath(struct mutex *lock);
772 
773 static noinline int __sched
774 __mutex_lock_interruptible_slowpath(struct mutex *lock);
775 
776 /**
777  * mutex_lock_interruptible - acquire the mutex, interruptible
778  * @lock: the mutex to be acquired
779  *
780  * Lock the mutex like mutex_lock(), and return 0 if the mutex has
781  * been acquired or sleep until the mutex becomes available. If a
782  * signal arrives while waiting for the lock then this function
783  * returns -EINTR.
784  *
785  * This function is similar to (but not equivalent to) down_interruptible().
786  */
mutex_lock_interruptible(struct mutex * lock)787 int __sched mutex_lock_interruptible(struct mutex *lock)
788 {
789 	int ret;
790 
791 	might_sleep();
792 	ret =  __mutex_fastpath_lock_retval(&lock->count);
793 	if (likely(!ret)) {
794 		mutex_set_owner(lock);
795 		return 0;
796 	} else
797 		return __mutex_lock_interruptible_slowpath(lock);
798 }
799 
800 EXPORT_SYMBOL(mutex_lock_interruptible);
801 
mutex_lock_killable(struct mutex * lock)802 int __sched mutex_lock_killable(struct mutex *lock)
803 {
804 	int ret;
805 
806 	might_sleep();
807 	ret = __mutex_fastpath_lock_retval(&lock->count);
808 	if (likely(!ret)) {
809 		mutex_set_owner(lock);
810 		return 0;
811 	} else
812 		return __mutex_lock_killable_slowpath(lock);
813 }
814 EXPORT_SYMBOL(mutex_lock_killable);
815 
816 __visible void __sched
__mutex_lock_slowpath(atomic_t * lock_count)817 __mutex_lock_slowpath(atomic_t *lock_count)
818 {
819 	struct mutex *lock = container_of(lock_count, struct mutex, count);
820 
821 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
822 			    NULL, _RET_IP_, NULL, 0);
823 }
824 
825 static noinline int __sched
__mutex_lock_killable_slowpath(struct mutex * lock)826 __mutex_lock_killable_slowpath(struct mutex *lock)
827 {
828 	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
829 				   NULL, _RET_IP_, NULL, 0);
830 }
831 
832 static noinline int __sched
__mutex_lock_interruptible_slowpath(struct mutex * lock)833 __mutex_lock_interruptible_slowpath(struct mutex *lock)
834 {
835 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
836 				   NULL, _RET_IP_, NULL, 0);
837 }
838 
839 static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)840 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
841 {
842 	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
843 				   NULL, _RET_IP_, ctx, 1);
844 }
845 
846 static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)847 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
848 					    struct ww_acquire_ctx *ctx)
849 {
850 	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
851 				   NULL, _RET_IP_, ctx, 1);
852 }
853 
854 #endif
855 
856 /*
857  * Spinlock based trylock, we take the spinlock and check whether we
858  * can get the lock:
859  */
__mutex_trylock_slowpath(atomic_t * lock_count)860 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
861 {
862 	struct mutex *lock = container_of(lock_count, struct mutex, count);
863 	unsigned long flags;
864 	int prev;
865 
866 	/* No need to trylock if the mutex is locked. */
867 	if (mutex_is_locked(lock))
868 		return 0;
869 
870 	spin_lock_mutex(&lock->wait_lock, flags);
871 
872 	prev = atomic_xchg(&lock->count, -1);
873 	if (likely(prev == 1)) {
874 		mutex_set_owner(lock);
875 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
876 	}
877 
878 	/* Set it back to 0 if there are no waiters: */
879 	if (likely(list_empty(&lock->wait_list)))
880 		atomic_set(&lock->count, 0);
881 
882 	spin_unlock_mutex(&lock->wait_lock, flags);
883 
884 	return prev == 1;
885 }
886 
887 /**
888  * mutex_trylock - try to acquire the mutex, without waiting
889  * @lock: the mutex to be acquired
890  *
891  * Try to acquire the mutex atomically. Returns 1 if the mutex
892  * has been acquired successfully, and 0 on contention.
893  *
894  * NOTE: this function follows the spin_trylock() convention, so
895  * it is negated from the down_trylock() return values! Be careful
896  * about this when converting semaphore users to mutexes.
897  *
898  * This function must not be used in interrupt context. The
899  * mutex must be released by the same task that acquired it.
900  */
mutex_trylock(struct mutex * lock)901 int __sched mutex_trylock(struct mutex *lock)
902 {
903 	int ret;
904 
905 	ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
906 	if (ret)
907 		mutex_set_owner(lock);
908 
909 	return ret;
910 }
911 EXPORT_SYMBOL(mutex_trylock);
912 
913 #ifndef CONFIG_DEBUG_LOCK_ALLOC
914 int __sched
__ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)915 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
916 {
917 	int ret;
918 
919 	might_sleep();
920 
921 	ret = __mutex_fastpath_lock_retval(&lock->base.count);
922 
923 	if (likely(!ret)) {
924 		ww_mutex_set_context_fastpath(lock, ctx);
925 		mutex_set_owner(&lock->base);
926 	} else
927 		ret = __ww_mutex_lock_slowpath(lock, ctx);
928 	return ret;
929 }
930 EXPORT_SYMBOL(__ww_mutex_lock);
931 
932 int __sched
__ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)933 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
934 {
935 	int ret;
936 
937 	might_sleep();
938 
939 	ret = __mutex_fastpath_lock_retval(&lock->base.count);
940 
941 	if (likely(!ret)) {
942 		ww_mutex_set_context_fastpath(lock, ctx);
943 		mutex_set_owner(&lock->base);
944 	} else
945 		ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
946 	return ret;
947 }
948 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
949 
950 #endif
951 
952 /**
953  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
954  * @cnt: the atomic which we are to dec
955  * @lock: the mutex to return holding if we dec to 0
956  *
957  * return true and hold lock if we dec to 0, return false otherwise
958  */
atomic_dec_and_mutex_lock(atomic_t * cnt,struct mutex * lock)959 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
960 {
961 	/* dec if we can't possibly hit 0 */
962 	if (atomic_add_unless(cnt, -1, 1))
963 		return 0;
964 	/* we might hit 0, so take the lock */
965 	mutex_lock(lock);
966 	if (!atomic_dec_and_test(cnt)) {
967 		/* when we actually did the dec, we didn't hit 0 */
968 		mutex_unlock(lock);
969 		return 0;
970 	}
971 	/* we hit 0, and we hold the lock */
972 	return 1;
973 }
974 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
975