• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mmzone.h>
18 #include <linux/bootmem.h>
19 #include <linux/module.h>
20 #include <linux/node.h>
21 #include <linux/cpu.h>
22 #include <linux/ioport.h>
23 #include <linux/irq.h>
24 #include <linux/kexec.h>
25 #include <linux/pci.h>
26 #include <linux/swiotlb.h>
27 #include <linux/initrd.h>
28 #include <linux/io.h>
29 #include <linux/highmem.h>
30 #include <linux/smp.h>
31 #include <linux/timex.h>
32 #include <linux/hugetlb.h>
33 #include <linux/start_kernel.h>
34 #include <linux/screen_info.h>
35 #include <asm/setup.h>
36 #include <asm/sections.h>
37 #include <asm/cacheflush.h>
38 #include <asm/pgalloc.h>
39 #include <asm/mmu_context.h>
40 #include <hv/hypervisor.h>
41 #include <arch/interrupts.h>
42 
43 /* <linux/smp.h> doesn't provide this definition. */
44 #ifndef CONFIG_SMP
45 #define setup_max_cpus 1
46 #endif
47 
ABS(int x)48 static inline int ABS(int x) { return x >= 0 ? x : -x; }
49 
50 /* Chip information */
51 char chip_model[64] __write_once;
52 
53 #ifdef CONFIG_VT
54 struct screen_info screen_info;
55 #endif
56 
57 struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
58 EXPORT_SYMBOL(node_data);
59 
60 /* Information on the NUMA nodes that we compute early */
61 unsigned long node_start_pfn[MAX_NUMNODES];
62 unsigned long node_end_pfn[MAX_NUMNODES];
63 unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
64 unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
65 unsigned long __initdata node_free_pfn[MAX_NUMNODES];
66 
67 static unsigned long __initdata node_percpu[MAX_NUMNODES];
68 
69 /*
70  * per-CPU stack and boot info.
71  */
72 DEFINE_PER_CPU(unsigned long, boot_sp) =
73 	(unsigned long)init_stack + THREAD_SIZE;
74 
75 #ifdef CONFIG_SMP
76 DEFINE_PER_CPU(unsigned long, boot_pc) = (unsigned long)start_kernel;
77 #else
78 /*
79  * The variable must be __initdata since it references __init code.
80  * With CONFIG_SMP it is per-cpu data, which is exempt from validation.
81  */
82 unsigned long __initdata boot_pc = (unsigned long)start_kernel;
83 #endif
84 
85 #ifdef CONFIG_HIGHMEM
86 /* Page frame index of end of lowmem on each controller. */
87 unsigned long node_lowmem_end_pfn[MAX_NUMNODES];
88 
89 /* Number of pages that can be mapped into lowmem. */
90 static unsigned long __initdata mappable_physpages;
91 #endif
92 
93 /* Data on which physical memory controller corresponds to which NUMA node */
94 int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
95 
96 #ifdef CONFIG_HIGHMEM
97 /* Map information from VAs to PAs */
98 unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
99   __write_once __attribute__((aligned(L2_CACHE_BYTES)));
100 EXPORT_SYMBOL(pbase_map);
101 
102 /* Map information from PAs to VAs */
103 void *vbase_map[NR_PA_HIGHBIT_VALUES]
104   __write_once __attribute__((aligned(L2_CACHE_BYTES)));
105 EXPORT_SYMBOL(vbase_map);
106 #endif
107 
108 /* Node number as a function of the high PA bits */
109 int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
110 EXPORT_SYMBOL(highbits_to_node);
111 
112 static unsigned int __initdata maxmem_pfn = -1U;
113 static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
114 	[0 ... MAX_NUMNODES-1] = -1U
115 };
116 static nodemask_t __initdata isolnodes;
117 
118 #if defined(CONFIG_PCI) && !defined(__tilegx__)
119 enum { DEFAULT_PCI_RESERVE_MB = 64 };
120 static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
121 unsigned long __initdata pci_reserve_start_pfn = -1U;
122 unsigned long __initdata pci_reserve_end_pfn = -1U;
123 #endif
124 
setup_maxmem(char * str)125 static int __init setup_maxmem(char *str)
126 {
127 	unsigned long long maxmem;
128 	if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
129 		return -EINVAL;
130 
131 	maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
132 	pr_info("Forcing RAM used to no more than %dMB\n",
133 	       maxmem_pfn >> (20 - PAGE_SHIFT));
134 	return 0;
135 }
136 early_param("maxmem", setup_maxmem);
137 
setup_maxnodemem(char * str)138 static int __init setup_maxnodemem(char *str)
139 {
140 	char *endp;
141 	unsigned long long maxnodemem;
142 	long node;
143 
144 	node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
145 	if (node >= MAX_NUMNODES || *endp != ':')
146 		return -EINVAL;
147 
148 	maxnodemem = memparse(endp+1, NULL);
149 	maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
150 		(HPAGE_SHIFT - PAGE_SHIFT);
151 	pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
152 	       node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
153 	return 0;
154 }
155 early_param("maxnodemem", setup_maxnodemem);
156 
157 struct memmap_entry {
158 	u64 addr;	/* start of memory segment */
159 	u64 size;	/* size of memory segment */
160 };
161 static struct memmap_entry memmap_map[64];
162 static int memmap_nr;
163 
add_memmap_region(u64 addr,u64 size)164 static void add_memmap_region(u64 addr, u64 size)
165 {
166 	if (memmap_nr >= ARRAY_SIZE(memmap_map)) {
167 		pr_err("Ooops! Too many entries in the memory map!\n");
168 		return;
169 	}
170 	memmap_map[memmap_nr].addr = addr;
171 	memmap_map[memmap_nr].size = size;
172 	memmap_nr++;
173 }
174 
setup_memmap(char * p)175 static int __init setup_memmap(char *p)
176 {
177 	char *oldp;
178 	u64 start_at, mem_size;
179 
180 	if (!p)
181 		return -EINVAL;
182 
183 	if (!strncmp(p, "exactmap", 8)) {
184 		pr_err("\"memmap=exactmap\" not valid on tile\n");
185 		return 0;
186 	}
187 
188 	oldp = p;
189 	mem_size = memparse(p, &p);
190 	if (p == oldp)
191 		return -EINVAL;
192 
193 	if (*p == '@') {
194 		pr_err("\"memmap=nn@ss\" (force RAM) invalid on tile\n");
195 	} else if (*p == '#') {
196 		pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on tile\n");
197 	} else if (*p == '$') {
198 		start_at = memparse(p+1, &p);
199 		add_memmap_region(start_at, mem_size);
200 	} else {
201 		if (mem_size == 0)
202 			return -EINVAL;
203 		maxmem_pfn = (mem_size >> HPAGE_SHIFT) <<
204 			(HPAGE_SHIFT - PAGE_SHIFT);
205 	}
206 	return *p == '\0' ? 0 : -EINVAL;
207 }
208 early_param("memmap", setup_memmap);
209 
setup_mem(char * str)210 static int __init setup_mem(char *str)
211 {
212 	return setup_maxmem(str);
213 }
214 early_param("mem", setup_mem);  /* compatibility with x86 */
215 
setup_isolnodes(char * str)216 static int __init setup_isolnodes(char *str)
217 {
218 	char buf[MAX_NUMNODES * 5];
219 	if (str == NULL || nodelist_parse(str, isolnodes) != 0)
220 		return -EINVAL;
221 
222 	nodelist_scnprintf(buf, sizeof(buf), isolnodes);
223 	pr_info("Set isolnodes value to '%s'\n", buf);
224 	return 0;
225 }
226 early_param("isolnodes", setup_isolnodes);
227 
228 #if defined(CONFIG_PCI) && !defined(__tilegx__)
setup_pci_reserve(char * str)229 static int __init setup_pci_reserve(char* str)
230 {
231 	if (str == NULL || kstrtouint(str, 0, &pci_reserve_mb) != 0 ||
232 	    pci_reserve_mb > 3 * 1024)
233 		return -EINVAL;
234 
235 	pr_info("Reserving %dMB for PCIE root complex mappings\n",
236 		pci_reserve_mb);
237 	return 0;
238 }
239 early_param("pci_reserve", setup_pci_reserve);
240 #endif
241 
242 #ifndef __tilegx__
243 /*
244  * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
245  * This can be used to increase (or decrease) the vmalloc area.
246  */
parse_vmalloc(char * arg)247 static int __init parse_vmalloc(char *arg)
248 {
249 	if (!arg)
250 		return -EINVAL;
251 
252 	VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
253 
254 	/* See validate_va() for more on this test. */
255 	if ((long)_VMALLOC_START >= 0)
256 		early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
257 			    VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
258 
259 	return 0;
260 }
261 early_param("vmalloc", parse_vmalloc);
262 #endif
263 
264 #ifdef CONFIG_HIGHMEM
265 /*
266  * Determine for each controller where its lowmem is mapped and how much of
267  * it is mapped there.  On controller zero, the first few megabytes are
268  * already mapped in as code at MEM_SV_START, so in principle we could
269  * start our data mappings higher up, but for now we don't bother, to avoid
270  * additional confusion.
271  *
272  * One question is whether, on systems with more than 768 Mb and
273  * controllers of different sizes, to map in a proportionate amount of
274  * each one, or to try to map the same amount from each controller.
275  * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
276  * respectively, do we map 256MB from each, or do we map 128 MB, 512
277  * MB, and 128 MB respectively?)  For now we use a proportionate
278  * solution like the latter.
279  *
280  * The VA/PA mapping demands that we align our decisions at 16 MB
281  * boundaries so that we can rapidly convert VA to PA.
282  */
setup_pa_va_mapping(void)283 static void *__init setup_pa_va_mapping(void)
284 {
285 	unsigned long curr_pages = 0;
286 	unsigned long vaddr = PAGE_OFFSET;
287 	nodemask_t highonlynodes = isolnodes;
288 	int i, j;
289 
290 	memset(pbase_map, -1, sizeof(pbase_map));
291 	memset(vbase_map, -1, sizeof(vbase_map));
292 
293 	/* Node zero cannot be isolated for LOWMEM purposes. */
294 	node_clear(0, highonlynodes);
295 
296 	/* Count up the number of pages on non-highonlynodes controllers. */
297 	mappable_physpages = 0;
298 	for_each_online_node(i) {
299 		if (!node_isset(i, highonlynodes))
300 			mappable_physpages +=
301 				node_end_pfn[i] - node_start_pfn[i];
302 	}
303 
304 	for_each_online_node(i) {
305 		unsigned long start = node_start_pfn[i];
306 		unsigned long end = node_end_pfn[i];
307 		unsigned long size = end - start;
308 		unsigned long vaddr_end;
309 
310 		if (node_isset(i, highonlynodes)) {
311 			/* Mark this controller as having no lowmem. */
312 			node_lowmem_end_pfn[i] = start;
313 			continue;
314 		}
315 
316 		curr_pages += size;
317 		if (mappable_physpages > MAXMEM_PFN) {
318 			vaddr_end = PAGE_OFFSET +
319 				(((u64)curr_pages * MAXMEM_PFN /
320 				  mappable_physpages)
321 				 << PAGE_SHIFT);
322 		} else {
323 			vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
324 		}
325 		for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
326 			unsigned long this_pfn =
327 				start + (j << HUGETLB_PAGE_ORDER);
328 			pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
329 			if (vbase_map[__pfn_to_highbits(this_pfn)] ==
330 			    (void *)-1)
331 				vbase_map[__pfn_to_highbits(this_pfn)] =
332 					(void *)(vaddr & HPAGE_MASK);
333 		}
334 		node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
335 		BUG_ON(node_lowmem_end_pfn[i] > end);
336 	}
337 
338 	/* Return highest address of any mapped memory. */
339 	return (void *)vaddr;
340 }
341 #endif /* CONFIG_HIGHMEM */
342 
343 /*
344  * Register our most important memory mappings with the debug stub.
345  *
346  * This is up to 4 mappings for lowmem, one mapping per memory
347  * controller, plus one for our text segment.
348  */
store_permanent_mappings(void)349 static void store_permanent_mappings(void)
350 {
351 	int i;
352 
353 	for_each_online_node(i) {
354 		HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
355 #ifdef CONFIG_HIGHMEM
356 		HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
357 #else
358 		HV_PhysAddr high_mapped_pa = node_end_pfn[i];
359 #endif
360 
361 		unsigned long pages = high_mapped_pa - node_start_pfn[i];
362 		HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
363 		hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
364 	}
365 
366 	hv_store_mapping((HV_VirtAddr)_text,
367 			 (uint32_t)(_einittext - _text), 0);
368 }
369 
370 /*
371  * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
372  * and node_online_map, doing suitable sanity-checking.
373  * Also set min_low_pfn, max_low_pfn, and max_pfn.
374  */
setup_memory(void)375 static void __init setup_memory(void)
376 {
377 	int i, j;
378 	int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
379 #ifdef CONFIG_HIGHMEM
380 	long highmem_pages;
381 #endif
382 #ifndef __tilegx__
383 	int cap;
384 #endif
385 #if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
386 	long lowmem_pages;
387 #endif
388 	unsigned long physpages = 0;
389 
390 	/* We are using a char to hold the cpu_2_node[] mapping */
391 	BUILD_BUG_ON(MAX_NUMNODES > 127);
392 
393 	/* Discover the ranges of memory available to us */
394 	for (i = 0; ; ++i) {
395 		unsigned long start, size, end, highbits;
396 		HV_PhysAddrRange range = hv_inquire_physical(i);
397 		if (range.size == 0)
398 			break;
399 #ifdef CONFIG_FLATMEM
400 		if (i > 0) {
401 			pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
402 			       range.size, range.start + range.size);
403 			continue;
404 		}
405 #endif
406 #ifndef __tilegx__
407 		if ((unsigned long)range.start) {
408 			pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
409 			       range.start, range.start + range.size);
410 			continue;
411 		}
412 #endif
413 		if ((range.start & (HPAGE_SIZE-1)) != 0 ||
414 		    (range.size & (HPAGE_SIZE-1)) != 0) {
415 			unsigned long long start_pa = range.start;
416 			unsigned long long orig_size = range.size;
417 			range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
418 			range.size -= (range.start - start_pa);
419 			range.size &= HPAGE_MASK;
420 			pr_err("Range not hugepage-aligned: %#llx..%#llx:"
421 			       " now %#llx-%#llx\n",
422 			       start_pa, start_pa + orig_size,
423 			       range.start, range.start + range.size);
424 		}
425 		highbits = __pa_to_highbits(range.start);
426 		if (highbits >= NR_PA_HIGHBIT_VALUES) {
427 			pr_err("PA high bits too high: %#llx..%#llx\n",
428 			       range.start, range.start + range.size);
429 			continue;
430 		}
431 		if (highbits_seen[highbits]) {
432 			pr_err("Range overlaps in high bits: %#llx..%#llx\n",
433 			       range.start, range.start + range.size);
434 			continue;
435 		}
436 		highbits_seen[highbits] = 1;
437 		if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
438 			int max_size = maxnodemem_pfn[i];
439 			if (max_size > 0) {
440 				pr_err("Maxnodemem reduced node %d to"
441 				       " %d pages\n", i, max_size);
442 				range.size = PFN_PHYS(max_size);
443 			} else {
444 				pr_err("Maxnodemem disabled node %d\n", i);
445 				continue;
446 			}
447 		}
448 		if (physpages + PFN_DOWN(range.size) > maxmem_pfn) {
449 			int max_size = maxmem_pfn - physpages;
450 			if (max_size > 0) {
451 				pr_err("Maxmem reduced node %d to %d pages\n",
452 				       i, max_size);
453 				range.size = PFN_PHYS(max_size);
454 			} else {
455 				pr_err("Maxmem disabled node %d\n", i);
456 				continue;
457 			}
458 		}
459 		if (i >= MAX_NUMNODES) {
460 			pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
461 			       i, range.size, range.size + range.start);
462 			continue;
463 		}
464 
465 		start = range.start >> PAGE_SHIFT;
466 		size = range.size >> PAGE_SHIFT;
467 		end = start + size;
468 
469 #ifndef __tilegx__
470 		if (((HV_PhysAddr)end << PAGE_SHIFT) !=
471 		    (range.start + range.size)) {
472 			pr_err("PAs too high to represent: %#llx..%#llx\n",
473 			       range.start, range.start + range.size);
474 			continue;
475 		}
476 #endif
477 #if defined(CONFIG_PCI) && !defined(__tilegx__)
478 		/*
479 		 * Blocks that overlap the pci reserved region must
480 		 * have enough space to hold the maximum percpu data
481 		 * region at the top of the range.  If there isn't
482 		 * enough space above the reserved region, just
483 		 * truncate the node.
484 		 */
485 		if (start <= pci_reserve_start_pfn &&
486 		    end > pci_reserve_start_pfn) {
487 			unsigned int per_cpu_size =
488 				__per_cpu_end - __per_cpu_start;
489 			unsigned int percpu_pages =
490 				NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
491 			if (end < pci_reserve_end_pfn + percpu_pages) {
492 				end = pci_reserve_start_pfn;
493 				pr_err("PCI mapping region reduced node %d to"
494 				       " %ld pages\n", i, end - start);
495 			}
496 		}
497 #endif
498 
499 		for (j = __pfn_to_highbits(start);
500 		     j <= __pfn_to_highbits(end - 1); j++)
501 			highbits_to_node[j] = i;
502 
503 		node_start_pfn[i] = start;
504 		node_end_pfn[i] = end;
505 		node_controller[i] = range.controller;
506 		physpages += size;
507 		max_pfn = end;
508 
509 		/* Mark node as online */
510 		node_set(i, node_online_map);
511 		node_set(i, node_possible_map);
512 	}
513 
514 #ifndef __tilegx__
515 	/*
516 	 * For 4KB pages, mem_map "struct page" data is 1% of the size
517 	 * of the physical memory, so can be quite big (640 MB for
518 	 * four 16G zones).  These structures must be mapped in
519 	 * lowmem, and since we currently cap out at about 768 MB,
520 	 * it's impractical to try to use this much address space.
521 	 * For now, arbitrarily cap the amount of physical memory
522 	 * we're willing to use at 8 million pages (32GB of 4KB pages).
523 	 */
524 	cap = 8 * 1024 * 1024;  /* 8 million pages */
525 	if (physpages > cap) {
526 		int num_nodes = num_online_nodes();
527 		int cap_each = cap / num_nodes;
528 		unsigned long dropped_pages = 0;
529 		for (i = 0; i < num_nodes; ++i) {
530 			int size = node_end_pfn[i] - node_start_pfn[i];
531 			if (size > cap_each) {
532 				dropped_pages += (size - cap_each);
533 				node_end_pfn[i] = node_start_pfn[i] + cap_each;
534 			}
535 		}
536 		physpages -= dropped_pages;
537 		pr_warning("Only using %ldMB memory;"
538 		       " ignoring %ldMB.\n",
539 		       physpages >> (20 - PAGE_SHIFT),
540 		       dropped_pages >> (20 - PAGE_SHIFT));
541 		pr_warning("Consider using a larger page size.\n");
542 	}
543 #endif
544 
545 	/* Heap starts just above the last loaded address. */
546 	min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
547 
548 #ifdef CONFIG_HIGHMEM
549 	/* Find where we map lowmem from each controller. */
550 	high_memory = setup_pa_va_mapping();
551 
552 	/* Set max_low_pfn based on what node 0 can directly address. */
553 	max_low_pfn = node_lowmem_end_pfn[0];
554 
555 	lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
556 		MAXMEM_PFN : mappable_physpages;
557 	highmem_pages = (long) (physpages - lowmem_pages);
558 
559 	pr_notice("%ldMB HIGHMEM available.\n",
560 	       pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
561 	pr_notice("%ldMB LOWMEM available.\n",
562 			pages_to_mb(lowmem_pages));
563 #else
564 	/* Set max_low_pfn based on what node 0 can directly address. */
565 	max_low_pfn = node_end_pfn[0];
566 
567 #ifndef __tilegx__
568 	if (node_end_pfn[0] > MAXMEM_PFN) {
569 		pr_warning("Only using %ldMB LOWMEM.\n",
570 		       MAXMEM>>20);
571 		pr_warning("Use a HIGHMEM enabled kernel.\n");
572 		max_low_pfn = MAXMEM_PFN;
573 		max_pfn = MAXMEM_PFN;
574 		node_end_pfn[0] = MAXMEM_PFN;
575 	} else {
576 		pr_notice("%ldMB memory available.\n",
577 		       pages_to_mb(node_end_pfn[0]));
578 	}
579 	for (i = 1; i < MAX_NUMNODES; ++i) {
580 		node_start_pfn[i] = 0;
581 		node_end_pfn[i] = 0;
582 	}
583 	high_memory = __va(node_end_pfn[0]);
584 #else
585 	lowmem_pages = 0;
586 	for (i = 0; i < MAX_NUMNODES; ++i) {
587 		int pages = node_end_pfn[i] - node_start_pfn[i];
588 		lowmem_pages += pages;
589 		if (pages)
590 			high_memory = pfn_to_kaddr(node_end_pfn[i]);
591 	}
592 	pr_notice("%ldMB memory available.\n",
593 	       pages_to_mb(lowmem_pages));
594 #endif
595 #endif
596 }
597 
598 /*
599  * On 32-bit machines, we only put bootmem on the low controller,
600  * since PAs > 4GB can't be used in bootmem.  In principle one could
601  * imagine, e.g., multiple 1 GB controllers all of which could support
602  * bootmem, but in practice using controllers this small isn't a
603  * particularly interesting scenario, so we just keep it simple and
604  * use only the first controller for bootmem on 32-bit machines.
605  */
node_has_bootmem(int nid)606 static inline int node_has_bootmem(int nid)
607 {
608 #ifdef CONFIG_64BIT
609 	return 1;
610 #else
611 	return nid == 0;
612 #endif
613 }
614 
alloc_bootmem_pfn(int nid,unsigned long size,unsigned long goal)615 static inline unsigned long alloc_bootmem_pfn(int nid,
616 					      unsigned long size,
617 					      unsigned long goal)
618 {
619 	void *kva = __alloc_bootmem_node(NODE_DATA(nid), size,
620 					 PAGE_SIZE, goal);
621 	unsigned long pfn = kaddr_to_pfn(kva);
622 	BUG_ON(goal && PFN_PHYS(pfn) != goal);
623 	return pfn;
624 }
625 
setup_bootmem_allocator_node(int i)626 static void __init setup_bootmem_allocator_node(int i)
627 {
628 	unsigned long start, end, mapsize, mapstart;
629 
630 	if (node_has_bootmem(i)) {
631 		NODE_DATA(i)->bdata = &bootmem_node_data[i];
632 	} else {
633 		/* Share controller zero's bdata for now. */
634 		NODE_DATA(i)->bdata = &bootmem_node_data[0];
635 		return;
636 	}
637 
638 	/* Skip up to after the bss in node 0. */
639 	start = (i == 0) ? min_low_pfn : node_start_pfn[i];
640 
641 	/* Only lowmem, if we're a HIGHMEM build. */
642 #ifdef CONFIG_HIGHMEM
643 	end = node_lowmem_end_pfn[i];
644 #else
645 	end = node_end_pfn[i];
646 #endif
647 
648 	/* No memory here. */
649 	if (end == start)
650 		return;
651 
652 	/* Figure out where the bootmem bitmap is located. */
653 	mapsize = bootmem_bootmap_pages(end - start);
654 	if (i == 0) {
655 		/* Use some space right before the heap on node 0. */
656 		mapstart = start;
657 		start += mapsize;
658 	} else {
659 		/* Allocate bitmap on node 0 to avoid page table issues. */
660 		mapstart = alloc_bootmem_pfn(0, PFN_PHYS(mapsize), 0);
661 	}
662 
663 	/* Initialize a node. */
664 	init_bootmem_node(NODE_DATA(i), mapstart, start, end);
665 
666 	/* Free all the space back into the allocator. */
667 	free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start));
668 
669 #if defined(CONFIG_PCI) && !defined(__tilegx__)
670 	/*
671 	 * Throw away any memory aliased by the PCI region.
672 	 */
673 	if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start) {
674 		start = max(pci_reserve_start_pfn, start);
675 		end = min(pci_reserve_end_pfn, end);
676 		reserve_bootmem(PFN_PHYS(start), PFN_PHYS(end - start),
677 				BOOTMEM_EXCLUSIVE);
678 	}
679 #endif
680 }
681 
setup_bootmem_allocator(void)682 static void __init setup_bootmem_allocator(void)
683 {
684 	int i;
685 	for (i = 0; i < MAX_NUMNODES; ++i)
686 		setup_bootmem_allocator_node(i);
687 
688 	/* Reserve any memory excluded by "memmap" arguments. */
689 	for (i = 0; i < memmap_nr; ++i) {
690 		struct memmap_entry *m = &memmap_map[i];
691 		reserve_bootmem(m->addr, m->size, BOOTMEM_DEFAULT);
692 	}
693 
694 #ifdef CONFIG_BLK_DEV_INITRD
695 	if (initrd_start) {
696 		/* Make sure the initrd memory region is not modified. */
697 		if (reserve_bootmem(initrd_start, initrd_end - initrd_start,
698 				    BOOTMEM_EXCLUSIVE)) {
699 			pr_crit("The initrd memory region has been polluted. Disabling it.\n");
700 			initrd_start = 0;
701 			initrd_end = 0;
702 		} else {
703 			/*
704 			 * Translate initrd_start & initrd_end from PA to VA for
705 			 * future access.
706 			 */
707 			initrd_start += PAGE_OFFSET;
708 			initrd_end += PAGE_OFFSET;
709 		}
710 	}
711 #endif
712 
713 #ifdef CONFIG_KEXEC
714 	if (crashk_res.start != crashk_res.end)
715 		reserve_bootmem(crashk_res.start, resource_size(&crashk_res),
716 				BOOTMEM_DEFAULT);
717 #endif
718 }
719 
alloc_remap(int nid,unsigned long size)720 void *__init alloc_remap(int nid, unsigned long size)
721 {
722 	int pages = node_end_pfn[nid] - node_start_pfn[nid];
723 	void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
724 	BUG_ON(size != pages * sizeof(struct page));
725 	memset(map, 0, size);
726 	return map;
727 }
728 
percpu_size(void)729 static int __init percpu_size(void)
730 {
731 	int size = __per_cpu_end - __per_cpu_start;
732 	size += PERCPU_MODULE_RESERVE;
733 	size += PERCPU_DYNAMIC_EARLY_SIZE;
734 	if (size < PCPU_MIN_UNIT_SIZE)
735 		size = PCPU_MIN_UNIT_SIZE;
736 	size = roundup(size, PAGE_SIZE);
737 
738 	/* In several places we assume the per-cpu data fits on a huge page. */
739 	BUG_ON(kdata_huge && size > HPAGE_SIZE);
740 	return size;
741 }
742 
zone_sizes_init(void)743 static void __init zone_sizes_init(void)
744 {
745 	unsigned long zones_size[MAX_NR_ZONES] = { 0 };
746 	int size = percpu_size();
747 	int num_cpus = smp_height * smp_width;
748 	const unsigned long dma_end = (1UL << (32 - PAGE_SHIFT));
749 
750 	int i;
751 
752 	for (i = 0; i < num_cpus; ++i)
753 		node_percpu[cpu_to_node(i)] += size;
754 
755 	for_each_online_node(i) {
756 		unsigned long start = node_start_pfn[i];
757 		unsigned long end = node_end_pfn[i];
758 #ifdef CONFIG_HIGHMEM
759 		unsigned long lowmem_end = node_lowmem_end_pfn[i];
760 #else
761 		unsigned long lowmem_end = end;
762 #endif
763 		int memmap_size = (end - start) * sizeof(struct page);
764 		node_free_pfn[i] = start;
765 
766 		/*
767 		 * Set aside pages for per-cpu data and the mem_map array.
768 		 *
769 		 * Since the per-cpu data requires special homecaching,
770 		 * if we are in kdata_huge mode, we put it at the end of
771 		 * the lowmem region.  If we're not in kdata_huge mode,
772 		 * we take the per-cpu pages from the bottom of the
773 		 * controller, since that avoids fragmenting a huge page
774 		 * that users might want.  We always take the memmap
775 		 * from the bottom of the controller, since with
776 		 * kdata_huge that lets it be under a huge TLB entry.
777 		 *
778 		 * If the user has requested isolnodes for a controller,
779 		 * though, there'll be no lowmem, so we just alloc_bootmem
780 		 * the memmap.  There will be no percpu memory either.
781 		 */
782 		if (i != 0 && cpu_isset(i, isolnodes)) {
783 			node_memmap_pfn[i] =
784 				alloc_bootmem_pfn(0, memmap_size, 0);
785 			BUG_ON(node_percpu[i] != 0);
786 		} else if (node_has_bootmem(start)) {
787 			unsigned long goal = 0;
788 			node_memmap_pfn[i] =
789 				alloc_bootmem_pfn(i, memmap_size, 0);
790 			if (kdata_huge)
791 				goal = PFN_PHYS(lowmem_end) - node_percpu[i];
792 			if (node_percpu[i])
793 				node_percpu_pfn[i] =
794 					alloc_bootmem_pfn(i, node_percpu[i],
795 							  goal);
796 		} else {
797 			/* In non-bootmem zones, just reserve some pages. */
798 			node_memmap_pfn[i] = node_free_pfn[i];
799 			node_free_pfn[i] += PFN_UP(memmap_size);
800 			if (!kdata_huge) {
801 				node_percpu_pfn[i] = node_free_pfn[i];
802 				node_free_pfn[i] += PFN_UP(node_percpu[i]);
803 			} else {
804 				node_percpu_pfn[i] =
805 					lowmem_end - PFN_UP(node_percpu[i]);
806 			}
807 		}
808 
809 #ifdef CONFIG_HIGHMEM
810 		if (start > lowmem_end) {
811 			zones_size[ZONE_NORMAL] = 0;
812 			zones_size[ZONE_HIGHMEM] = end - start;
813 		} else {
814 			zones_size[ZONE_NORMAL] = lowmem_end - start;
815 			zones_size[ZONE_HIGHMEM] = end - lowmem_end;
816 		}
817 #else
818 		zones_size[ZONE_NORMAL] = end - start;
819 #endif
820 
821 		if (start < dma_end) {
822 			zones_size[ZONE_DMA] = min(zones_size[ZONE_NORMAL],
823 						   dma_end - start);
824 			zones_size[ZONE_NORMAL] -= zones_size[ZONE_DMA];
825 		} else {
826 			zones_size[ZONE_DMA] = 0;
827 		}
828 
829 		/* Take zone metadata from controller 0 if we're isolnode. */
830 		if (node_isset(i, isolnodes))
831 			NODE_DATA(i)->bdata = &bootmem_node_data[0];
832 
833 		free_area_init_node(i, zones_size, start, NULL);
834 		printk(KERN_DEBUG "  Normal zone: %ld per-cpu pages\n",
835 		       PFN_UP(node_percpu[i]));
836 
837 		/* Track the type of memory on each node */
838 		if (zones_size[ZONE_NORMAL] || zones_size[ZONE_DMA])
839 			node_set_state(i, N_NORMAL_MEMORY);
840 #ifdef CONFIG_HIGHMEM
841 		if (end != start)
842 			node_set_state(i, N_HIGH_MEMORY);
843 #endif
844 
845 		node_set_online(i);
846 	}
847 }
848 
849 #ifdef CONFIG_NUMA
850 
851 /* which logical CPUs are on which nodes */
852 struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
853 EXPORT_SYMBOL(node_2_cpu_mask);
854 
855 /* which node each logical CPU is on */
856 char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
857 EXPORT_SYMBOL(cpu_2_node);
858 
859 /* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
cpu_to_bound_node(int cpu,struct cpumask * unbound_cpus)860 static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
861 {
862 	if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
863 		return -1;
864 	else
865 		return cpu_to_node(cpu);
866 }
867 
868 /* Return number of immediately-adjacent tiles sharing the same NUMA node. */
node_neighbors(int node,int cpu,struct cpumask * unbound_cpus)869 static int __init node_neighbors(int node, int cpu,
870 				 struct cpumask *unbound_cpus)
871 {
872 	int neighbors = 0;
873 	int w = smp_width;
874 	int h = smp_height;
875 	int x = cpu % w;
876 	int y = cpu / w;
877 	if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
878 		++neighbors;
879 	if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
880 		++neighbors;
881 	if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
882 		++neighbors;
883 	if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
884 		++neighbors;
885 	return neighbors;
886 }
887 
setup_numa_mapping(void)888 static void __init setup_numa_mapping(void)
889 {
890 	int distance[MAX_NUMNODES][NR_CPUS];
891 	HV_Coord coord;
892 	int cpu, node, cpus, i, x, y;
893 	int num_nodes = num_online_nodes();
894 	struct cpumask unbound_cpus;
895 	nodemask_t default_nodes;
896 
897 	cpumask_clear(&unbound_cpus);
898 
899 	/* Get set of nodes we will use for defaults */
900 	nodes_andnot(default_nodes, node_online_map, isolnodes);
901 	if (nodes_empty(default_nodes)) {
902 		BUG_ON(!node_isset(0, node_online_map));
903 		pr_err("Forcing NUMA node zero available as a default node\n");
904 		node_set(0, default_nodes);
905 	}
906 
907 	/* Populate the distance[] array */
908 	memset(distance, -1, sizeof(distance));
909 	cpu = 0;
910 	for (coord.y = 0; coord.y < smp_height; ++coord.y) {
911 		for (coord.x = 0; coord.x < smp_width;
912 		     ++coord.x, ++cpu) {
913 			BUG_ON(cpu >= nr_cpu_ids);
914 			if (!cpu_possible(cpu)) {
915 				cpu_2_node[cpu] = -1;
916 				continue;
917 			}
918 			for_each_node_mask(node, default_nodes) {
919 				HV_MemoryControllerInfo info =
920 					hv_inquire_memory_controller(
921 						coord, node_controller[node]);
922 				distance[node][cpu] =
923 					ABS(info.coord.x) + ABS(info.coord.y);
924 			}
925 			cpumask_set_cpu(cpu, &unbound_cpus);
926 		}
927 	}
928 	cpus = cpu;
929 
930 	/*
931 	 * Round-robin through the NUMA nodes until all the cpus are
932 	 * assigned.  We could be more clever here (e.g. create four
933 	 * sorted linked lists on the same set of cpu nodes, and pull
934 	 * off them in round-robin sequence, removing from all four
935 	 * lists each time) but given the relatively small numbers
936 	 * involved, O(n^2) seem OK for a one-time cost.
937 	 */
938 	node = first_node(default_nodes);
939 	while (!cpumask_empty(&unbound_cpus)) {
940 		int best_cpu = -1;
941 		int best_distance = INT_MAX;
942 		for (cpu = 0; cpu < cpus; ++cpu) {
943 			if (cpumask_test_cpu(cpu, &unbound_cpus)) {
944 				/*
945 				 * Compute metric, which is how much
946 				 * closer the cpu is to this memory
947 				 * controller than the others, shifted
948 				 * up, and then the number of
949 				 * neighbors already in the node as an
950 				 * epsilon adjustment to try to keep
951 				 * the nodes compact.
952 				 */
953 				int d = distance[node][cpu] * num_nodes;
954 				for_each_node_mask(i, default_nodes) {
955 					if (i != node)
956 						d -= distance[i][cpu];
957 				}
958 				d *= 8;  /* allow space for epsilon */
959 				d -= node_neighbors(node, cpu, &unbound_cpus);
960 				if (d < best_distance) {
961 					best_cpu = cpu;
962 					best_distance = d;
963 				}
964 			}
965 		}
966 		BUG_ON(best_cpu < 0);
967 		cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
968 		cpu_2_node[best_cpu] = node;
969 		cpumask_clear_cpu(best_cpu, &unbound_cpus);
970 		node = next_node(node, default_nodes);
971 		if (node == MAX_NUMNODES)
972 			node = first_node(default_nodes);
973 	}
974 
975 	/* Print out node assignments and set defaults for disabled cpus */
976 	cpu = 0;
977 	for (y = 0; y < smp_height; ++y) {
978 		printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
979 		for (x = 0; x < smp_width; ++x, ++cpu) {
980 			if (cpu_to_node(cpu) < 0) {
981 				pr_cont(" -");
982 				cpu_2_node[cpu] = first_node(default_nodes);
983 			} else {
984 				pr_cont(" %d", cpu_to_node(cpu));
985 			}
986 		}
987 		pr_cont("\n");
988 	}
989 }
990 
991 static struct cpu cpu_devices[NR_CPUS];
992 
topology_init(void)993 static int __init topology_init(void)
994 {
995 	int i;
996 
997 	for_each_online_node(i)
998 		register_one_node(i);
999 
1000 	for (i = 0; i < smp_height * smp_width; ++i)
1001 		register_cpu(&cpu_devices[i], i);
1002 
1003 	return 0;
1004 }
1005 
1006 subsys_initcall(topology_init);
1007 
1008 #else /* !CONFIG_NUMA */
1009 
1010 #define setup_numa_mapping() do { } while (0)
1011 
1012 #endif /* CONFIG_NUMA */
1013 
1014 /*
1015  * Initialize hugepage support on this cpu.  We do this on all cores
1016  * early in boot: before argument parsing for the boot cpu, and after
1017  * argument parsing but before the init functions run on the secondaries.
1018  * So the values we set up here in the hypervisor may be overridden on
1019  * the boot cpu as arguments are parsed.
1020  */
init_super_pages(void)1021 static void init_super_pages(void)
1022 {
1023 #ifdef CONFIG_HUGETLB_SUPER_PAGES
1024 	int i;
1025 	for (i = 0; i < HUGE_SHIFT_ENTRIES; ++i)
1026 		hv_set_pte_super_shift(i, huge_shift[i]);
1027 #endif
1028 }
1029 
1030 /**
1031  * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
1032  * @boot: Is this the boot cpu?
1033  *
1034  * Called from setup_arch() on the boot cpu, or online_secondary().
1035  */
setup_cpu(int boot)1036 void setup_cpu(int boot)
1037 {
1038 	/* The boot cpu sets up its permanent mappings much earlier. */
1039 	if (!boot)
1040 		store_permanent_mappings();
1041 
1042 	/* Allow asynchronous TLB interrupts. */
1043 #if CHIP_HAS_TILE_DMA()
1044 	arch_local_irq_unmask(INT_DMATLB_MISS);
1045 	arch_local_irq_unmask(INT_DMATLB_ACCESS);
1046 #endif
1047 #ifdef __tilegx__
1048 	arch_local_irq_unmask(INT_SINGLE_STEP_K);
1049 #endif
1050 
1051 	/*
1052 	 * Allow user access to many generic SPRs, like the cycle
1053 	 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
1054 	 */
1055 	__insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
1056 
1057 #if CHIP_HAS_SN()
1058 	/* Static network is not restricted. */
1059 	__insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
1060 #endif
1061 
1062 	/*
1063 	 * Set the MPL for interrupt control 0 & 1 to the corresponding
1064 	 * values.  This includes access to the SYSTEM_SAVE and EX_CONTEXT
1065 	 * SPRs, as well as the interrupt mask.
1066 	 */
1067 	__insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
1068 	__insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
1069 
1070 	/* Initialize IRQ support for this cpu. */
1071 	setup_irq_regs();
1072 
1073 #ifdef CONFIG_HARDWALL
1074 	/* Reset the network state on this cpu. */
1075 	reset_network_state();
1076 #endif
1077 
1078 	init_super_pages();
1079 }
1080 
1081 #ifdef CONFIG_BLK_DEV_INITRD
1082 
1083 static int __initdata set_initramfs_file;
1084 static char __initdata initramfs_file[128] = "initramfs";
1085 
setup_initramfs_file(char * str)1086 static int __init setup_initramfs_file(char *str)
1087 {
1088 	if (str == NULL)
1089 		return -EINVAL;
1090 	strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
1091 	set_initramfs_file = 1;
1092 
1093 	return 0;
1094 }
1095 early_param("initramfs_file", setup_initramfs_file);
1096 
1097 /*
1098  * We look for a file called "initramfs" in the hvfs.  If there is one, we
1099  * allocate some memory for it and it will be unpacked to the initramfs.
1100  * If it's compressed, the initd code will uncompress it first.
1101  */
load_hv_initrd(void)1102 static void __init load_hv_initrd(void)
1103 {
1104 	HV_FS_StatInfo stat;
1105 	int fd, rc;
1106 	void *initrd;
1107 
1108 	/* If initrd has already been set, skip initramfs file in hvfs. */
1109 	if (initrd_start)
1110 		return;
1111 
1112 	fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
1113 	if (fd == HV_ENOENT) {
1114 		if (set_initramfs_file) {
1115 			pr_warning("No such hvfs initramfs file '%s'\n",
1116 				   initramfs_file);
1117 			return;
1118 		} else {
1119 			/* Try old backwards-compatible name. */
1120 			fd = hv_fs_findfile((HV_VirtAddr)"initramfs.cpio.gz");
1121 			if (fd == HV_ENOENT)
1122 				return;
1123 		}
1124 	}
1125 	BUG_ON(fd < 0);
1126 	stat = hv_fs_fstat(fd);
1127 	BUG_ON(stat.size < 0);
1128 	if (stat.flags & HV_FS_ISDIR) {
1129 		pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
1130 			   initramfs_file);
1131 		return;
1132 	}
1133 	initrd = alloc_bootmem_pages(stat.size);
1134 	rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
1135 	if (rc != stat.size) {
1136 		pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
1137 		       stat.size, initramfs_file, rc);
1138 		free_initrd_mem((unsigned long) initrd, stat.size);
1139 		return;
1140 	}
1141 	initrd_start = (unsigned long) initrd;
1142 	initrd_end = initrd_start + stat.size;
1143 }
1144 
free_initrd_mem(unsigned long begin,unsigned long end)1145 void __init free_initrd_mem(unsigned long begin, unsigned long end)
1146 {
1147 	free_bootmem_late(__pa(begin), end - begin);
1148 }
1149 
setup_initrd(char * str)1150 static int __init setup_initrd(char *str)
1151 {
1152 	char *endp;
1153 	unsigned long initrd_size;
1154 
1155 	initrd_size = str ? simple_strtoul(str, &endp, 0) : 0;
1156 	if (initrd_size == 0 || *endp != '@')
1157 		return -EINVAL;
1158 
1159 	initrd_start = simple_strtoul(endp+1, &endp, 0);
1160 	if (initrd_start == 0)
1161 		return -EINVAL;
1162 
1163 	initrd_end = initrd_start + initrd_size;
1164 
1165 	return 0;
1166 }
1167 early_param("initrd", setup_initrd);
1168 
1169 #else
load_hv_initrd(void)1170 static inline void load_hv_initrd(void) {}
1171 #endif /* CONFIG_BLK_DEV_INITRD */
1172 
validate_hv(void)1173 static void __init validate_hv(void)
1174 {
1175 	/*
1176 	 * It may already be too late, but let's check our built-in
1177 	 * configuration against what the hypervisor is providing.
1178 	 */
1179 	unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
1180 	int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
1181 	int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
1182 	HV_ASIDRange asid_range;
1183 
1184 #ifndef CONFIG_SMP
1185 	HV_Topology topology = hv_inquire_topology();
1186 	BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
1187 	if (topology.width != 1 || topology.height != 1) {
1188 		pr_warning("Warning: booting UP kernel on %dx%d grid;"
1189 			   " will ignore all but first tile.\n",
1190 			   topology.width, topology.height);
1191 	}
1192 #endif
1193 
1194 	if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
1195 		early_panic("Hypervisor glue size %ld is too big!\n",
1196 			    glue_size);
1197 	if (hv_page_size != PAGE_SIZE)
1198 		early_panic("Hypervisor page size %#x != our %#lx\n",
1199 			    hv_page_size, PAGE_SIZE);
1200 	if (hv_hpage_size != HPAGE_SIZE)
1201 		early_panic("Hypervisor huge page size %#x != our %#lx\n",
1202 			    hv_hpage_size, HPAGE_SIZE);
1203 
1204 #ifdef CONFIG_SMP
1205 	/*
1206 	 * Some hypervisor APIs take a pointer to a bitmap array
1207 	 * whose size is at least the number of cpus on the chip.
1208 	 * We use a struct cpumask for this, so it must be big enough.
1209 	 */
1210 	if ((smp_height * smp_width) > nr_cpu_ids)
1211 		early_panic("Hypervisor %d x %d grid too big for Linux"
1212 			    " NR_CPUS %d\n", smp_height, smp_width,
1213 			    nr_cpu_ids);
1214 #endif
1215 
1216 	/*
1217 	 * Check that we're using allowed ASIDs, and initialize the
1218 	 * various asid variables to their appropriate initial states.
1219 	 */
1220 	asid_range = hv_inquire_asid(0);
1221 	min_asid = asid_range.start;
1222 	__this_cpu_write(current_asid, min_asid);
1223 	max_asid = asid_range.start + asid_range.size - 1;
1224 
1225 	if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1226 		       sizeof(chip_model)) < 0) {
1227 		pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1228 		strlcpy(chip_model, "unknown", sizeof(chip_model));
1229 	}
1230 }
1231 
validate_va(void)1232 static void __init validate_va(void)
1233 {
1234 #ifndef __tilegx__   /* FIXME: GX: probably some validation relevant here */
1235 	/*
1236 	 * Similarly, make sure we're only using allowed VAs.
1237 	 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_START,
1238 	 * and 0 .. KERNEL_HIGH_VADDR.
1239 	 * In addition, make sure we CAN'T use the end of memory, since
1240 	 * we use the last chunk of each pgd for the pgd_list.
1241 	 */
1242 	int i, user_kernel_ok = 0;
1243 	unsigned long max_va = 0;
1244 	unsigned long list_va =
1245 		((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1246 
1247 	for (i = 0; ; ++i) {
1248 		HV_VirtAddrRange range = hv_inquire_virtual(i);
1249 		if (range.size == 0)
1250 			break;
1251 		if (range.start <= MEM_USER_INTRPT &&
1252 		    range.start + range.size >= MEM_HV_START)
1253 			user_kernel_ok = 1;
1254 		if (range.start == 0)
1255 			max_va = range.size;
1256 		BUG_ON(range.start + range.size > list_va);
1257 	}
1258 	if (!user_kernel_ok)
1259 		early_panic("Hypervisor not configured for user/kernel VAs\n");
1260 	if (max_va == 0)
1261 		early_panic("Hypervisor not configured for low VAs\n");
1262 	if (max_va < KERNEL_HIGH_VADDR)
1263 		early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1264 			    max_va, KERNEL_HIGH_VADDR);
1265 
1266 	/* Kernel PCs must have their high bit set; see intvec.S. */
1267 	if ((long)VMALLOC_START >= 0)
1268 		early_panic(
1269 			"Linux VMALLOC region below the 2GB line (%#lx)!\n"
1270 			"Reconfigure the kernel with smaller VMALLOC_RESERVE.\n",
1271 			VMALLOC_START);
1272 #endif
1273 }
1274 
1275 /*
1276  * cpu_lotar_map lists all the cpus that are valid for the supervisor
1277  * to cache data on at a page level, i.e. what cpus can be placed in
1278  * the LOTAR field of a PTE.  It is equivalent to the set of possible
1279  * cpus plus any other cpus that are willing to share their cache.
1280  * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1281  */
1282 struct cpumask __write_once cpu_lotar_map;
1283 EXPORT_SYMBOL(cpu_lotar_map);
1284 
1285 /*
1286  * hash_for_home_map lists all the tiles that hash-for-home data
1287  * will be cached on.  Note that this may includes tiles that are not
1288  * valid for this supervisor to use otherwise (e.g. if a hypervisor
1289  * device is being shared between multiple supervisors).
1290  * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1291  */
1292 struct cpumask hash_for_home_map;
1293 EXPORT_SYMBOL(hash_for_home_map);
1294 
1295 /*
1296  * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1297  * flush on our behalf.  It is set to cpu_possible_mask OR'ed with
1298  * hash_for_home_map, and it is what should be passed to
1299  * hv_flush_remote() to flush all caches.  Note that if there are
1300  * dedicated hypervisor driver tiles that have authorized use of their
1301  * cache, those tiles will only appear in cpu_lotar_map, NOT in
1302  * cpu_cacheable_map, as they are a special case.
1303  */
1304 struct cpumask __write_once cpu_cacheable_map;
1305 EXPORT_SYMBOL(cpu_cacheable_map);
1306 
1307 static __initdata struct cpumask disabled_map;
1308 
disabled_cpus(char * str)1309 static int __init disabled_cpus(char *str)
1310 {
1311 	int boot_cpu = smp_processor_id();
1312 
1313 	if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1314 		return -EINVAL;
1315 	if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1316 		pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1317 		cpumask_clear_cpu(boot_cpu, &disabled_map);
1318 	}
1319 	return 0;
1320 }
1321 
1322 early_param("disabled_cpus", disabled_cpus);
1323 
print_disabled_cpus(void)1324 void __init print_disabled_cpus(void)
1325 {
1326 	if (!cpumask_empty(&disabled_map)) {
1327 		char buf[100];
1328 		cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1329 		pr_info("CPUs not available for Linux: %s\n", buf);
1330 	}
1331 }
1332 
setup_cpu_maps(void)1333 static void __init setup_cpu_maps(void)
1334 {
1335 	struct cpumask hv_disabled_map, cpu_possible_init;
1336 	int boot_cpu = smp_processor_id();
1337 	int cpus, i, rc;
1338 
1339 	/* Learn which cpus are allowed by the hypervisor. */
1340 	rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1341 			      (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1342 			      sizeof(cpu_cacheable_map));
1343 	if (rc < 0)
1344 		early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1345 	if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1346 		early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1347 
1348 	/* Compute the cpus disabled by the hvconfig file. */
1349 	cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1350 
1351 	/* Include them with the cpus disabled by "disabled_cpus". */
1352 	cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1353 
1354 	/*
1355 	 * Disable every cpu after "setup_max_cpus".  But don't mark
1356 	 * as disabled the cpus that are outside of our initial rectangle,
1357 	 * since that turns out to be confusing.
1358 	 */
1359 	cpus = 1;                          /* this cpu */
1360 	cpumask_set_cpu(boot_cpu, &disabled_map);   /* ignore this cpu */
1361 	for (i = 0; cpus < setup_max_cpus; ++i)
1362 		if (!cpumask_test_cpu(i, &disabled_map))
1363 			++cpus;
1364 	for (; i < smp_height * smp_width; ++i)
1365 		cpumask_set_cpu(i, &disabled_map);
1366 	cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1367 	for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1368 		cpumask_clear_cpu(i, &disabled_map);
1369 
1370 	/*
1371 	 * Setup cpu_possible map as every cpu allocated to us, minus
1372 	 * the results of any "disabled_cpus" settings.
1373 	 */
1374 	cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1375 	init_cpu_possible(&cpu_possible_init);
1376 
1377 	/* Learn which cpus are valid for LOTAR caching. */
1378 	rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1379 			      (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1380 			      sizeof(cpu_lotar_map));
1381 	if (rc < 0) {
1382 		pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1383 		cpu_lotar_map = *cpu_possible_mask;
1384 	}
1385 
1386 	/* Retrieve set of CPUs used for hash-for-home caching */
1387 	rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1388 			      (HV_VirtAddr) hash_for_home_map.bits,
1389 			      sizeof(hash_for_home_map));
1390 	if (rc < 0)
1391 		early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1392 	cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
1393 }
1394 
1395 
dataplane(char * str)1396 static int __init dataplane(char *str)
1397 {
1398 	pr_warning("WARNING: dataplane support disabled in this kernel\n");
1399 	return 0;
1400 }
1401 
1402 early_param("dataplane", dataplane);
1403 
1404 #ifdef CONFIG_CMDLINE_BOOL
1405 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1406 #endif
1407 
setup_arch(char ** cmdline_p)1408 void __init setup_arch(char **cmdline_p)
1409 {
1410 	int len;
1411 
1412 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1413 	len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1414 				  COMMAND_LINE_SIZE);
1415 	if (boot_command_line[0])
1416 		pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1417 			   boot_command_line);
1418 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1419 #else
1420 	char *hv_cmdline;
1421 #if defined(CONFIG_CMDLINE_BOOL)
1422 	if (builtin_cmdline[0]) {
1423 		int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1424 					  COMMAND_LINE_SIZE);
1425 		if (builtin_len < COMMAND_LINE_SIZE-1)
1426 			boot_command_line[builtin_len++] = ' ';
1427 		hv_cmdline = &boot_command_line[builtin_len];
1428 		len = COMMAND_LINE_SIZE - builtin_len;
1429 	} else
1430 #endif
1431 	{
1432 		hv_cmdline = boot_command_line;
1433 		len = COMMAND_LINE_SIZE;
1434 	}
1435 	len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1436 	if (len < 0 || len > COMMAND_LINE_SIZE)
1437 		early_panic("hv_get_command_line failed: %d\n", len);
1438 #endif
1439 
1440 	*cmdline_p = boot_command_line;
1441 
1442 	/* Set disabled_map and setup_max_cpus very early */
1443 	parse_early_param();
1444 
1445 	/* Make sure the kernel is compatible with the hypervisor. */
1446 	validate_hv();
1447 	validate_va();
1448 
1449 	setup_cpu_maps();
1450 
1451 
1452 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1453 	/*
1454 	 * Initialize the PCI structures.  This is done before memory
1455 	 * setup so that we know whether or not a pci_reserve region
1456 	 * is necessary.
1457 	 */
1458 	if (tile_pci_init() == 0)
1459 		pci_reserve_mb = 0;
1460 
1461 	/* PCI systems reserve a region just below 4GB for mapping iomem. */
1462 	pci_reserve_end_pfn  = (1 << (32 - PAGE_SHIFT));
1463 	pci_reserve_start_pfn = pci_reserve_end_pfn -
1464 		(pci_reserve_mb << (20 - PAGE_SHIFT));
1465 #endif
1466 
1467 	init_mm.start_code = (unsigned long) _text;
1468 	init_mm.end_code = (unsigned long) _etext;
1469 	init_mm.end_data = (unsigned long) _edata;
1470 	init_mm.brk = (unsigned long) _end;
1471 
1472 	setup_memory();
1473 	store_permanent_mappings();
1474 	setup_bootmem_allocator();
1475 
1476 	/*
1477 	 * NOTE: before this point _nobody_ is allowed to allocate
1478 	 * any memory using the bootmem allocator.
1479 	 */
1480 
1481 #ifdef CONFIG_SWIOTLB
1482 	swiotlb_init(0);
1483 #endif
1484 
1485 	paging_init();
1486 	setup_numa_mapping();
1487 	zone_sizes_init();
1488 	set_page_homes();
1489 	setup_cpu(1);
1490 	setup_clock();
1491 	load_hv_initrd();
1492 }
1493 
1494 
1495 /*
1496  * Set up per-cpu memory.
1497  */
1498 
1499 unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1500 EXPORT_SYMBOL(__per_cpu_offset);
1501 
1502 static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1503 static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1504 
1505 /*
1506  * As the percpu code allocates pages, we return the pages from the
1507  * end of the node for the specified cpu.
1508  */
pcpu_fc_alloc(unsigned int cpu,size_t size,size_t align)1509 static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1510 {
1511 	int nid = cpu_to_node(cpu);
1512 	unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1513 
1514 	BUG_ON(size % PAGE_SIZE != 0);
1515 	pfn_offset[nid] += size / PAGE_SIZE;
1516 	BUG_ON(node_percpu[nid] < size);
1517 	node_percpu[nid] -= size;
1518 	if (percpu_pfn[cpu] == 0)
1519 		percpu_pfn[cpu] = pfn;
1520 	return pfn_to_kaddr(pfn);
1521 }
1522 
1523 /*
1524  * Pages reserved for percpu memory are not freeable, and in any case we are
1525  * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1526  */
pcpu_fc_free(void * ptr,size_t size)1527 static void __init pcpu_fc_free(void *ptr, size_t size)
1528 {
1529 }
1530 
1531 /*
1532  * Set up vmalloc page tables using bootmem for the percpu code.
1533  */
pcpu_fc_populate_pte(unsigned long addr)1534 static void __init pcpu_fc_populate_pte(unsigned long addr)
1535 {
1536 	pgd_t *pgd;
1537 	pud_t *pud;
1538 	pmd_t *pmd;
1539 	pte_t *pte;
1540 
1541 	BUG_ON(pgd_addr_invalid(addr));
1542 	if (addr < VMALLOC_START || addr >= VMALLOC_END)
1543 		panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
1544 		      " try increasing CONFIG_VMALLOC_RESERVE\n",
1545 		      addr, VMALLOC_START, VMALLOC_END);
1546 
1547 	pgd = swapper_pg_dir + pgd_index(addr);
1548 	pud = pud_offset(pgd, addr);
1549 	BUG_ON(!pud_present(*pud));
1550 	pmd = pmd_offset(pud, addr);
1551 	if (pmd_present(*pmd)) {
1552 		BUG_ON(pmd_huge_page(*pmd));
1553 	} else {
1554 		pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1555 				      HV_PAGE_TABLE_ALIGN, 0);
1556 		pmd_populate_kernel(&init_mm, pmd, pte);
1557 	}
1558 }
1559 
setup_per_cpu_areas(void)1560 void __init setup_per_cpu_areas(void)
1561 {
1562 	struct page *pg;
1563 	unsigned long delta, pfn, lowmem_va;
1564 	unsigned long size = percpu_size();
1565 	char *ptr;
1566 	int rc, cpu, i;
1567 
1568 	rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1569 				   pcpu_fc_free, pcpu_fc_populate_pte);
1570 	if (rc < 0)
1571 		panic("Cannot initialize percpu area (err=%d)", rc);
1572 
1573 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1574 	for_each_possible_cpu(cpu) {
1575 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1576 
1577 		/* finv the copy out of cache so we can change homecache */
1578 		ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1579 		__finv_buffer(ptr, size);
1580 		pfn = percpu_pfn[cpu];
1581 
1582 		/* Rewrite the page tables to cache on that cpu */
1583 		pg = pfn_to_page(pfn);
1584 		for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1585 
1586 			/* Update the vmalloc mapping and page home. */
1587 			unsigned long addr = (unsigned long)ptr + i;
1588 			pte_t *ptep = virt_to_kpte(addr);
1589 			pte_t pte = *ptep;
1590 			BUG_ON(pfn != pte_pfn(pte));
1591 			pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1592 			pte = set_remote_cache_cpu(pte, cpu);
1593 			set_pte_at(&init_mm, addr, ptep, pte);
1594 
1595 			/* Update the lowmem mapping for consistency. */
1596 			lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1597 			ptep = virt_to_kpte(lowmem_va);
1598 			if (pte_huge(*ptep)) {
1599 				printk(KERN_DEBUG "early shatter of huge page"
1600 				       " at %#lx\n", lowmem_va);
1601 				shatter_pmd((pmd_t *)ptep);
1602 				ptep = virt_to_kpte(lowmem_va);
1603 				BUG_ON(pte_huge(*ptep));
1604 			}
1605 			BUG_ON(pfn != pte_pfn(*ptep));
1606 			set_pte_at(&init_mm, lowmem_va, ptep, pte);
1607 		}
1608 	}
1609 
1610 	/* Set our thread pointer appropriately. */
1611 	set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1612 
1613 	/* Make sure the finv's have completed. */
1614 	mb_incoherent();
1615 
1616 	/* Flush the TLB so we reference it properly from here on out. */
1617 	local_flush_tlb_all();
1618 }
1619 
1620 static struct resource data_resource = {
1621 	.name	= "Kernel data",
1622 	.start	= 0,
1623 	.end	= 0,
1624 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1625 };
1626 
1627 static struct resource code_resource = {
1628 	.name	= "Kernel code",
1629 	.start	= 0,
1630 	.end	= 0,
1631 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1632 };
1633 
1634 /*
1635  * On Pro, we reserve all resources above 4GB so that PCI won't try to put
1636  * mappings above 4GB.
1637  */
1638 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1639 static struct resource* __init
insert_non_bus_resource(void)1640 insert_non_bus_resource(void)
1641 {
1642 	struct resource *res =
1643 		kzalloc(sizeof(struct resource), GFP_ATOMIC);
1644 	if (!res)
1645 		return NULL;
1646 	res->name = "Non-Bus Physical Address Space";
1647 	res->start = (1ULL << 32);
1648 	res->end = -1LL;
1649 	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1650 	if (insert_resource(&iomem_resource, res)) {
1651 		kfree(res);
1652 		return NULL;
1653 	}
1654 	return res;
1655 }
1656 #endif
1657 
1658 static struct resource* __init
insert_ram_resource(u64 start_pfn,u64 end_pfn,bool reserved)1659 insert_ram_resource(u64 start_pfn, u64 end_pfn, bool reserved)
1660 {
1661 	struct resource *res =
1662 		kzalloc(sizeof(struct resource), GFP_ATOMIC);
1663 	if (!res)
1664 		return NULL;
1665 	res->name = reserved ? "Reserved" : "System RAM";
1666 	res->start = start_pfn << PAGE_SHIFT;
1667 	res->end = (end_pfn << PAGE_SHIFT) - 1;
1668 	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1669 	if (insert_resource(&iomem_resource, res)) {
1670 		kfree(res);
1671 		return NULL;
1672 	}
1673 	return res;
1674 }
1675 
1676 /*
1677  * Request address space for all standard resources
1678  *
1679  * If the system includes PCI root complex drivers, we need to create
1680  * a window just below 4GB where PCI BARs can be mapped.
1681  */
request_standard_resources(void)1682 static int __init request_standard_resources(void)
1683 {
1684 	int i;
1685 	enum { CODE_DELTA = MEM_SV_START - PAGE_OFFSET };
1686 
1687 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1688 	insert_non_bus_resource();
1689 #endif
1690 
1691 	for_each_online_node(i) {
1692 		u64 start_pfn = node_start_pfn[i];
1693 		u64 end_pfn = node_end_pfn[i];
1694 
1695 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1696 		if (start_pfn <= pci_reserve_start_pfn &&
1697 		    end_pfn > pci_reserve_start_pfn) {
1698 			if (end_pfn > pci_reserve_end_pfn)
1699 				insert_ram_resource(pci_reserve_end_pfn,
1700 						    end_pfn, 0);
1701 			end_pfn = pci_reserve_start_pfn;
1702 		}
1703 #endif
1704 		insert_ram_resource(start_pfn, end_pfn, 0);
1705 	}
1706 
1707 	code_resource.start = __pa(_text - CODE_DELTA);
1708 	code_resource.end = __pa(_etext - CODE_DELTA)-1;
1709 	data_resource.start = __pa(_sdata);
1710 	data_resource.end = __pa(_end)-1;
1711 
1712 	insert_resource(&iomem_resource, &code_resource);
1713 	insert_resource(&iomem_resource, &data_resource);
1714 
1715 	/* Mark any "memmap" regions busy for the resource manager. */
1716 	for (i = 0; i < memmap_nr; ++i) {
1717 		struct memmap_entry *m = &memmap_map[i];
1718 		insert_ram_resource(PFN_DOWN(m->addr),
1719 				    PFN_UP(m->addr + m->size - 1), 1);
1720 	}
1721 
1722 #ifdef CONFIG_KEXEC
1723 	insert_resource(&iomem_resource, &crashk_res);
1724 #endif
1725 
1726 	return 0;
1727 }
1728 
1729 subsys_initcall(request_standard_resources);
1730