1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62 /*
63 * Lock ordering:
64 *
65 * ->i_mmap_mutex (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
69 *
70 * ->i_mutex
71 * ->i_mmap_mutex (truncate->unmap_mapping_range)
72 *
73 * ->mmap_sem
74 * ->i_mmap_mutex
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 *
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_mutex
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 *
108 * ->i_mmap_mutex
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
110 */
111
page_cache_tree_delete(struct address_space * mapping,struct page * page,void * shadow)112 static void page_cache_tree_delete(struct address_space *mapping,
113 struct page *page, void *shadow)
114 {
115 struct radix_tree_node *node;
116 unsigned long index;
117 unsigned int offset;
118 unsigned int tag;
119 void **slot;
120
121 VM_BUG_ON(!PageLocked(page));
122
123 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124
125 if (shadow) {
126 mapping->nrshadows++;
127 /*
128 * Make sure the nrshadows update is committed before
129 * the nrpages update so that final truncate racing
130 * with reclaim does not see both counters 0 at the
131 * same time and miss a shadow entry.
132 */
133 smp_wmb();
134 }
135 mapping->nrpages--;
136
137 if (!node) {
138 /* Clear direct pointer tags in root node */
139 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
140 radix_tree_replace_slot(slot, shadow);
141 return;
142 }
143
144 /* Clear tree tags for the removed page */
145 index = page->index;
146 offset = index & RADIX_TREE_MAP_MASK;
147 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
148 if (test_bit(offset, node->tags[tag]))
149 radix_tree_tag_clear(&mapping->page_tree, index, tag);
150 }
151
152 /* Delete page, swap shadow entry */
153 radix_tree_replace_slot(slot, shadow);
154 workingset_node_pages_dec(node);
155 if (shadow)
156 workingset_node_shadows_inc(node);
157 else
158 if (__radix_tree_delete_node(&mapping->page_tree, node))
159 return;
160
161 /*
162 * Track node that only contains shadow entries.
163 *
164 * Avoid acquiring the list_lru lock if already tracked. The
165 * list_empty() test is safe as node->private_list is
166 * protected by mapping->tree_lock.
167 */
168 if (!workingset_node_pages(node) &&
169 list_empty(&node->private_list)) {
170 node->private_data = mapping;
171 list_lru_add(&workingset_shadow_nodes, &node->private_list);
172 }
173 }
174
175 /*
176 * Delete a page from the page cache and free it. Caller has to make
177 * sure the page is locked and that nobody else uses it - or that usage
178 * is safe. The caller must hold the mapping's tree_lock.
179 */
__delete_from_page_cache(struct page * page,void * shadow)180 void __delete_from_page_cache(struct page *page, void *shadow)
181 {
182 struct address_space *mapping = page->mapping;
183
184 trace_mm_filemap_delete_from_page_cache(page);
185 /*
186 * if we're uptodate, flush out into the cleancache, otherwise
187 * invalidate any existing cleancache entries. We can't leave
188 * stale data around in the cleancache once our page is gone
189 */
190 if (PageUptodate(page) && PageMappedToDisk(page))
191 cleancache_put_page(page);
192 else
193 cleancache_invalidate_page(mapping, page);
194
195 page_cache_tree_delete(mapping, page, shadow);
196
197 page->mapping = NULL;
198 /* Leave page->index set: truncation lookup relies upon it */
199
200 __dec_zone_page_state(page, NR_FILE_PAGES);
201 if (PageSwapBacked(page))
202 __dec_zone_page_state(page, NR_SHMEM);
203 BUG_ON(page_mapped(page));
204
205 /*
206 * Some filesystems seem to re-dirty the page even after
207 * the VM has canceled the dirty bit (eg ext3 journaling).
208 *
209 * Fix it up by doing a final dirty accounting check after
210 * having removed the page entirely.
211 */
212 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
213 dec_zone_page_state(page, NR_FILE_DIRTY);
214 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
215 }
216 }
217
218 /**
219 * delete_from_page_cache - delete page from page cache
220 * @page: the page which the kernel is trying to remove from page cache
221 *
222 * This must be called only on pages that have been verified to be in the page
223 * cache and locked. It will never put the page into the free list, the caller
224 * has a reference on the page.
225 */
delete_from_page_cache(struct page * page)226 void delete_from_page_cache(struct page *page)
227 {
228 struct address_space *mapping = page->mapping;
229 void (*freepage)(struct page *);
230
231 BUG_ON(!PageLocked(page));
232
233 freepage = mapping->a_ops->freepage;
234 spin_lock_irq(&mapping->tree_lock);
235 __delete_from_page_cache(page, NULL);
236 spin_unlock_irq(&mapping->tree_lock);
237
238 if (freepage)
239 freepage(page);
240 page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243
filemap_check_errors(struct address_space * mapping)244 static int filemap_check_errors(struct address_space *mapping)
245 {
246 int ret = 0;
247 /* Check for outstanding write errors */
248 if (test_bit(AS_ENOSPC, &mapping->flags) &&
249 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
250 ret = -ENOSPC;
251 if (test_bit(AS_EIO, &mapping->flags) &&
252 test_and_clear_bit(AS_EIO, &mapping->flags))
253 ret = -EIO;
254 return ret;
255 }
256
257 /**
258 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
259 * @mapping: address space structure to write
260 * @start: offset in bytes where the range starts
261 * @end: offset in bytes where the range ends (inclusive)
262 * @sync_mode: enable synchronous operation
263 *
264 * Start writeback against all of a mapping's dirty pages that lie
265 * within the byte offsets <start, end> inclusive.
266 *
267 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
268 * opposed to a regular memory cleansing writeback. The difference between
269 * these two operations is that if a dirty page/buffer is encountered, it must
270 * be waited upon, and not just skipped over.
271 */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)272 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
273 loff_t end, int sync_mode)
274 {
275 int ret;
276 struct writeback_control wbc = {
277 .sync_mode = sync_mode,
278 .nr_to_write = LONG_MAX,
279 .range_start = start,
280 .range_end = end,
281 };
282
283 if (!mapping_cap_writeback_dirty(mapping))
284 return 0;
285
286 ret = do_writepages(mapping, &wbc);
287 return ret;
288 }
289
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)290 static inline int __filemap_fdatawrite(struct address_space *mapping,
291 int sync_mode)
292 {
293 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
294 }
295
filemap_fdatawrite(struct address_space * mapping)296 int filemap_fdatawrite(struct address_space *mapping)
297 {
298 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
299 }
300 EXPORT_SYMBOL(filemap_fdatawrite);
301
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)302 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
303 loff_t end)
304 {
305 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
306 }
307 EXPORT_SYMBOL(filemap_fdatawrite_range);
308
309 /**
310 * filemap_flush - mostly a non-blocking flush
311 * @mapping: target address_space
312 *
313 * This is a mostly non-blocking flush. Not suitable for data-integrity
314 * purposes - I/O may not be started against all dirty pages.
315 */
filemap_flush(struct address_space * mapping)316 int filemap_flush(struct address_space *mapping)
317 {
318 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
319 }
320 EXPORT_SYMBOL(filemap_flush);
321
322 /**
323 * filemap_fdatawait_range - wait for writeback to complete
324 * @mapping: address space structure to wait for
325 * @start_byte: offset in bytes where the range starts
326 * @end_byte: offset in bytes where the range ends (inclusive)
327 *
328 * Walk the list of under-writeback pages of the given address space
329 * in the given range and wait for all of them.
330 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)331 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
332 loff_t end_byte)
333 {
334 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
335 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
336 struct pagevec pvec;
337 int nr_pages;
338 int ret2, ret = 0;
339
340 if (end_byte < start_byte)
341 goto out;
342
343 pagevec_init(&pvec, 0);
344 while ((index <= end) &&
345 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
346 PAGECACHE_TAG_WRITEBACK,
347 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
348 unsigned i;
349
350 for (i = 0; i < nr_pages; i++) {
351 struct page *page = pvec.pages[i];
352
353 /* until radix tree lookup accepts end_index */
354 if (page->index > end)
355 continue;
356
357 wait_on_page_writeback(page);
358 if (TestClearPageError(page))
359 ret = -EIO;
360 }
361 pagevec_release(&pvec);
362 cond_resched();
363 }
364 out:
365 ret2 = filemap_check_errors(mapping);
366 if (!ret)
367 ret = ret2;
368
369 return ret;
370 }
371 EXPORT_SYMBOL(filemap_fdatawait_range);
372
373 /**
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
376 *
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
379 */
filemap_fdatawait(struct address_space * mapping)380 int filemap_fdatawait(struct address_space *mapping)
381 {
382 loff_t i_size = i_size_read(mapping->host);
383
384 if (i_size == 0)
385 return 0;
386
387 return filemap_fdatawait_range(mapping, 0, i_size - 1);
388 }
389 EXPORT_SYMBOL(filemap_fdatawait);
390
filemap_write_and_wait(struct address_space * mapping)391 int filemap_write_and_wait(struct address_space *mapping)
392 {
393 int err = 0;
394
395 if (mapping->nrpages) {
396 err = filemap_fdatawrite(mapping);
397 /*
398 * Even if the above returned error, the pages may be
399 * written partially (e.g. -ENOSPC), so we wait for it.
400 * But the -EIO is special case, it may indicate the worst
401 * thing (e.g. bug) happened, so we avoid waiting for it.
402 */
403 if (err != -EIO) {
404 int err2 = filemap_fdatawait(mapping);
405 if (!err)
406 err = err2;
407 }
408 } else {
409 err = filemap_check_errors(mapping);
410 }
411 return err;
412 }
413 EXPORT_SYMBOL(filemap_write_and_wait);
414
415 /**
416 * filemap_write_and_wait_range - write out & wait on a file range
417 * @mapping: the address_space for the pages
418 * @lstart: offset in bytes where the range starts
419 * @lend: offset in bytes where the range ends (inclusive)
420 *
421 * Write out and wait upon file offsets lstart->lend, inclusive.
422 *
423 * Note that `lend' is inclusive (describes the last byte to be written) so
424 * that this function can be used to write to the very end-of-file (end = -1).
425 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)426 int filemap_write_and_wait_range(struct address_space *mapping,
427 loff_t lstart, loff_t lend)
428 {
429 int err = 0;
430
431 if (mapping->nrpages) {
432 err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 WB_SYNC_ALL);
434 /* See comment of filemap_write_and_wait() */
435 if (err != -EIO) {
436 int err2 = filemap_fdatawait_range(mapping,
437 lstart, lend);
438 if (!err)
439 err = err2;
440 }
441 } else {
442 err = filemap_check_errors(mapping);
443 }
444 return err;
445 }
446 EXPORT_SYMBOL(filemap_write_and_wait_range);
447
448 /**
449 * replace_page_cache_page - replace a pagecache page with a new one
450 * @old: page to be replaced
451 * @new: page to replace with
452 * @gfp_mask: allocation mode
453 *
454 * This function replaces a page in the pagecache with a new one. On
455 * success it acquires the pagecache reference for the new page and
456 * drops it for the old page. Both the old and new pages must be
457 * locked. This function does not add the new page to the LRU, the
458 * caller must do that.
459 *
460 * The remove + add is atomic. The only way this function can fail is
461 * memory allocation failure.
462 */
replace_page_cache_page(struct page * old,struct page * new,gfp_t gfp_mask)463 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
464 {
465 int error;
466
467 VM_BUG_ON_PAGE(!PageLocked(old), old);
468 VM_BUG_ON_PAGE(!PageLocked(new), new);
469 VM_BUG_ON_PAGE(new->mapping, new);
470
471 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472 if (!error) {
473 struct address_space *mapping = old->mapping;
474 void (*freepage)(struct page *);
475
476 pgoff_t offset = old->index;
477 freepage = mapping->a_ops->freepage;
478
479 page_cache_get(new);
480 new->mapping = mapping;
481 new->index = offset;
482
483 spin_lock_irq(&mapping->tree_lock);
484 __delete_from_page_cache(old, NULL);
485 error = radix_tree_insert(&mapping->page_tree, offset, new);
486 BUG_ON(error);
487 mapping->nrpages++;
488 __inc_zone_page_state(new, NR_FILE_PAGES);
489 if (PageSwapBacked(new))
490 __inc_zone_page_state(new, NR_SHMEM);
491 spin_unlock_irq(&mapping->tree_lock);
492 mem_cgroup_migrate(old, new, true);
493 radix_tree_preload_end();
494 if (freepage)
495 freepage(old);
496 page_cache_release(old);
497 }
498
499 return error;
500 }
501 EXPORT_SYMBOL_GPL(replace_page_cache_page);
502
page_cache_tree_insert(struct address_space * mapping,struct page * page,void ** shadowp)503 static int page_cache_tree_insert(struct address_space *mapping,
504 struct page *page, void **shadowp)
505 {
506 struct radix_tree_node *node;
507 void **slot;
508 int error;
509
510 error = __radix_tree_create(&mapping->page_tree, page->index,
511 &node, &slot);
512 if (error)
513 return error;
514 if (*slot) {
515 void *p;
516
517 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
518 if (!radix_tree_exceptional_entry(p))
519 return -EEXIST;
520 if (shadowp)
521 *shadowp = p;
522 mapping->nrshadows--;
523 if (node)
524 workingset_node_shadows_dec(node);
525 }
526 radix_tree_replace_slot(slot, page);
527 mapping->nrpages++;
528 if (node) {
529 workingset_node_pages_inc(node);
530 /*
531 * Don't track node that contains actual pages.
532 *
533 * Avoid acquiring the list_lru lock if already
534 * untracked. The list_empty() test is safe as
535 * node->private_list is protected by
536 * mapping->tree_lock.
537 */
538 if (!list_empty(&node->private_list))
539 list_lru_del(&workingset_shadow_nodes,
540 &node->private_list);
541 }
542 return 0;
543 }
544
__add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask,void ** shadowp)545 static int __add_to_page_cache_locked(struct page *page,
546 struct address_space *mapping,
547 pgoff_t offset, gfp_t gfp_mask,
548 void **shadowp)
549 {
550 int huge = PageHuge(page);
551 struct mem_cgroup *memcg;
552 int error;
553
554 VM_BUG_ON_PAGE(!PageLocked(page), page);
555 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
556
557 if (!huge) {
558 error = mem_cgroup_try_charge(page, current->mm,
559 gfp_mask, &memcg);
560 if (error)
561 return error;
562 }
563
564 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
565 if (error) {
566 if (!huge)
567 mem_cgroup_cancel_charge(page, memcg);
568 return error;
569 }
570
571 page_cache_get(page);
572 page->mapping = mapping;
573 page->index = offset;
574
575 spin_lock_irq(&mapping->tree_lock);
576 error = page_cache_tree_insert(mapping, page, shadowp);
577 radix_tree_preload_end();
578 if (unlikely(error))
579 goto err_insert;
580 __inc_zone_page_state(page, NR_FILE_PAGES);
581 spin_unlock_irq(&mapping->tree_lock);
582 if (!huge)
583 mem_cgroup_commit_charge(page, memcg, false);
584 trace_mm_filemap_add_to_page_cache(page);
585 return 0;
586 err_insert:
587 page->mapping = NULL;
588 /* Leave page->index set: truncation relies upon it */
589 spin_unlock_irq(&mapping->tree_lock);
590 if (!huge)
591 mem_cgroup_cancel_charge(page, memcg);
592 page_cache_release(page);
593 return error;
594 }
595
596 /**
597 * add_to_page_cache_locked - add a locked page to the pagecache
598 * @page: page to add
599 * @mapping: the page's address_space
600 * @offset: page index
601 * @gfp_mask: page allocation mode
602 *
603 * This function is used to add a page to the pagecache. It must be locked.
604 * This function does not add the page to the LRU. The caller must do that.
605 */
add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)606 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
607 pgoff_t offset, gfp_t gfp_mask)
608 {
609 return __add_to_page_cache_locked(page, mapping, offset,
610 gfp_mask, NULL);
611 }
612 EXPORT_SYMBOL(add_to_page_cache_locked);
613
add_to_page_cache_lru(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)614 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
615 pgoff_t offset, gfp_t gfp_mask)
616 {
617 void *shadow = NULL;
618 int ret;
619
620 __set_page_locked(page);
621 ret = __add_to_page_cache_locked(page, mapping, offset,
622 gfp_mask, &shadow);
623 if (unlikely(ret))
624 __clear_page_locked(page);
625 else {
626 /*
627 * The page might have been evicted from cache only
628 * recently, in which case it should be activated like
629 * any other repeatedly accessed page.
630 */
631 if (shadow && workingset_refault(shadow)) {
632 SetPageActive(page);
633 workingset_activation(page);
634 } else
635 ClearPageActive(page);
636 lru_cache_add(page);
637 }
638 return ret;
639 }
640 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
641
642 #ifdef CONFIG_NUMA
__page_cache_alloc(gfp_t gfp)643 struct page *__page_cache_alloc(gfp_t gfp)
644 {
645 int n;
646 struct page *page;
647
648 if (cpuset_do_page_mem_spread()) {
649 unsigned int cpuset_mems_cookie;
650 do {
651 cpuset_mems_cookie = read_mems_allowed_begin();
652 n = cpuset_mem_spread_node();
653 page = alloc_pages_exact_node(n, gfp, 0);
654 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
655
656 return page;
657 }
658 return alloc_pages(gfp, 0);
659 }
660 EXPORT_SYMBOL(__page_cache_alloc);
661 #endif
662
663 /*
664 * In order to wait for pages to become available there must be
665 * waitqueues associated with pages. By using a hash table of
666 * waitqueues where the bucket discipline is to maintain all
667 * waiters on the same queue and wake all when any of the pages
668 * become available, and for the woken contexts to check to be
669 * sure the appropriate page became available, this saves space
670 * at a cost of "thundering herd" phenomena during rare hash
671 * collisions.
672 */
page_waitqueue(struct page * page)673 wait_queue_head_t *page_waitqueue(struct page *page)
674 {
675 const struct zone *zone = page_zone(page);
676
677 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
678 }
679 EXPORT_SYMBOL(page_waitqueue);
680
wait_on_page_bit(struct page * page,int bit_nr)681 void wait_on_page_bit(struct page *page, int bit_nr)
682 {
683 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
684
685 if (test_bit(bit_nr, &page->flags))
686 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
687 TASK_UNINTERRUPTIBLE);
688 }
689 EXPORT_SYMBOL(wait_on_page_bit);
690
wait_on_page_bit_killable(struct page * page,int bit_nr)691 int wait_on_page_bit_killable(struct page *page, int bit_nr)
692 {
693 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
694
695 if (!test_bit(bit_nr, &page->flags))
696 return 0;
697
698 return __wait_on_bit(page_waitqueue(page), &wait,
699 bit_wait_io, TASK_KILLABLE);
700 }
701
wait_on_page_bit_killable_timeout(struct page * page,int bit_nr,unsigned long timeout)702 int wait_on_page_bit_killable_timeout(struct page *page,
703 int bit_nr, unsigned long timeout)
704 {
705 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
706
707 wait.key.timeout = jiffies + timeout;
708 if (!test_bit(bit_nr, &page->flags))
709 return 0;
710 return __wait_on_bit(page_waitqueue(page), &wait,
711 bit_wait_io_timeout, TASK_KILLABLE);
712 }
713 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
714
715 /**
716 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
717 * @page: Page defining the wait queue of interest
718 * @waiter: Waiter to add to the queue
719 *
720 * Add an arbitrary @waiter to the wait queue for the nominated @page.
721 */
add_page_wait_queue(struct page * page,wait_queue_t * waiter)722 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
723 {
724 wait_queue_head_t *q = page_waitqueue(page);
725 unsigned long flags;
726
727 spin_lock_irqsave(&q->lock, flags);
728 __add_wait_queue(q, waiter);
729 spin_unlock_irqrestore(&q->lock, flags);
730 }
731 EXPORT_SYMBOL_GPL(add_page_wait_queue);
732
733 /**
734 * unlock_page - unlock a locked page
735 * @page: the page
736 *
737 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
738 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
739 * mechanism between PageLocked pages and PageWriteback pages is shared.
740 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
741 *
742 * The mb is necessary to enforce ordering between the clear_bit and the read
743 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
744 */
unlock_page(struct page * page)745 void unlock_page(struct page *page)
746 {
747 VM_BUG_ON_PAGE(!PageLocked(page), page);
748 clear_bit_unlock(PG_locked, &page->flags);
749 smp_mb__after_atomic();
750 wake_up_page(page, PG_locked);
751 }
752 EXPORT_SYMBOL(unlock_page);
753
754 /**
755 * end_page_writeback - end writeback against a page
756 * @page: the page
757 */
end_page_writeback(struct page * page)758 void end_page_writeback(struct page *page)
759 {
760 /*
761 * TestClearPageReclaim could be used here but it is an atomic
762 * operation and overkill in this particular case. Failing to
763 * shuffle a page marked for immediate reclaim is too mild to
764 * justify taking an atomic operation penalty at the end of
765 * ever page writeback.
766 */
767 if (PageReclaim(page)) {
768 ClearPageReclaim(page);
769 rotate_reclaimable_page(page);
770 }
771
772 if (!test_clear_page_writeback(page))
773 BUG();
774
775 smp_mb__after_atomic();
776 wake_up_page(page, PG_writeback);
777 }
778 EXPORT_SYMBOL(end_page_writeback);
779
780 /*
781 * After completing I/O on a page, call this routine to update the page
782 * flags appropriately
783 */
page_endio(struct page * page,int rw,int err)784 void page_endio(struct page *page, int rw, int err)
785 {
786 if (rw == READ) {
787 if (!err) {
788 SetPageUptodate(page);
789 } else {
790 ClearPageUptodate(page);
791 SetPageError(page);
792 }
793 unlock_page(page);
794 } else { /* rw == WRITE */
795 if (err) {
796 SetPageError(page);
797 if (page->mapping)
798 mapping_set_error(page->mapping, err);
799 }
800 end_page_writeback(page);
801 }
802 }
803 EXPORT_SYMBOL_GPL(page_endio);
804
805 /**
806 * __lock_page - get a lock on the page, assuming we need to sleep to get it
807 * @page: the page to lock
808 */
__lock_page(struct page * page)809 void __lock_page(struct page *page)
810 {
811 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
812
813 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
814 TASK_UNINTERRUPTIBLE);
815 }
816 EXPORT_SYMBOL(__lock_page);
817
__lock_page_killable(struct page * page)818 int __lock_page_killable(struct page *page)
819 {
820 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
821
822 return __wait_on_bit_lock(page_waitqueue(page), &wait,
823 bit_wait_io, TASK_KILLABLE);
824 }
825 EXPORT_SYMBOL_GPL(__lock_page_killable);
826
827 /*
828 * Return values:
829 * 1 - page is locked; mmap_sem is still held.
830 * 0 - page is not locked.
831 * mmap_sem has been released (up_read()), unless flags had both
832 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
833 * which case mmap_sem is still held.
834 *
835 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
836 * with the page locked and the mmap_sem unperturbed.
837 */
__lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)838 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
839 unsigned int flags)
840 {
841 if (flags & FAULT_FLAG_ALLOW_RETRY) {
842 /*
843 * CAUTION! In this case, mmap_sem is not released
844 * even though return 0.
845 */
846 if (flags & FAULT_FLAG_RETRY_NOWAIT)
847 return 0;
848
849 up_read(&mm->mmap_sem);
850 if (flags & FAULT_FLAG_KILLABLE)
851 wait_on_page_locked_killable(page);
852 else
853 wait_on_page_locked(page);
854 return 0;
855 } else {
856 if (flags & FAULT_FLAG_KILLABLE) {
857 int ret;
858
859 ret = __lock_page_killable(page);
860 if (ret) {
861 up_read(&mm->mmap_sem);
862 return 0;
863 }
864 } else
865 __lock_page(page);
866 return 1;
867 }
868 }
869
870 /**
871 * page_cache_next_hole - find the next hole (not-present entry)
872 * @mapping: mapping
873 * @index: index
874 * @max_scan: maximum range to search
875 *
876 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
877 * lowest indexed hole.
878 *
879 * Returns: the index of the hole if found, otherwise returns an index
880 * outside of the set specified (in which case 'return - index >=
881 * max_scan' will be true). In rare cases of index wrap-around, 0 will
882 * be returned.
883 *
884 * page_cache_next_hole may be called under rcu_read_lock. However,
885 * like radix_tree_gang_lookup, this will not atomically search a
886 * snapshot of the tree at a single point in time. For example, if a
887 * hole is created at index 5, then subsequently a hole is created at
888 * index 10, page_cache_next_hole covering both indexes may return 10
889 * if called under rcu_read_lock.
890 */
page_cache_next_hole(struct address_space * mapping,pgoff_t index,unsigned long max_scan)891 pgoff_t page_cache_next_hole(struct address_space *mapping,
892 pgoff_t index, unsigned long max_scan)
893 {
894 unsigned long i;
895
896 for (i = 0; i < max_scan; i++) {
897 struct page *page;
898
899 page = radix_tree_lookup(&mapping->page_tree, index);
900 if (!page || radix_tree_exceptional_entry(page))
901 break;
902 index++;
903 if (index == 0)
904 break;
905 }
906
907 return index;
908 }
909 EXPORT_SYMBOL(page_cache_next_hole);
910
911 /**
912 * page_cache_prev_hole - find the prev hole (not-present entry)
913 * @mapping: mapping
914 * @index: index
915 * @max_scan: maximum range to search
916 *
917 * Search backwards in the range [max(index-max_scan+1, 0), index] for
918 * the first hole.
919 *
920 * Returns: the index of the hole if found, otherwise returns an index
921 * outside of the set specified (in which case 'index - return >=
922 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
923 * will be returned.
924 *
925 * page_cache_prev_hole may be called under rcu_read_lock. However,
926 * like radix_tree_gang_lookup, this will not atomically search a
927 * snapshot of the tree at a single point in time. For example, if a
928 * hole is created at index 10, then subsequently a hole is created at
929 * index 5, page_cache_prev_hole covering both indexes may return 5 if
930 * called under rcu_read_lock.
931 */
page_cache_prev_hole(struct address_space * mapping,pgoff_t index,unsigned long max_scan)932 pgoff_t page_cache_prev_hole(struct address_space *mapping,
933 pgoff_t index, unsigned long max_scan)
934 {
935 unsigned long i;
936
937 for (i = 0; i < max_scan; i++) {
938 struct page *page;
939
940 page = radix_tree_lookup(&mapping->page_tree, index);
941 if (!page || radix_tree_exceptional_entry(page))
942 break;
943 index--;
944 if (index == ULONG_MAX)
945 break;
946 }
947
948 return index;
949 }
950 EXPORT_SYMBOL(page_cache_prev_hole);
951
952 /**
953 * find_get_entry - find and get a page cache entry
954 * @mapping: the address_space to search
955 * @offset: the page cache index
956 *
957 * Looks up the page cache slot at @mapping & @offset. If there is a
958 * page cache page, it is returned with an increased refcount.
959 *
960 * If the slot holds a shadow entry of a previously evicted page, or a
961 * swap entry from shmem/tmpfs, it is returned.
962 *
963 * Otherwise, %NULL is returned.
964 */
find_get_entry(struct address_space * mapping,pgoff_t offset)965 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
966 {
967 void **pagep;
968 struct page *page;
969
970 rcu_read_lock();
971 repeat:
972 page = NULL;
973 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
974 if (pagep) {
975 page = radix_tree_deref_slot(pagep);
976 if (unlikely(!page))
977 goto out;
978 if (radix_tree_exception(page)) {
979 if (radix_tree_deref_retry(page))
980 goto repeat;
981 /*
982 * A shadow entry of a recently evicted page,
983 * or a swap entry from shmem/tmpfs. Return
984 * it without attempting to raise page count.
985 */
986 goto out;
987 }
988 if (!page_cache_get_speculative(page))
989 goto repeat;
990
991 /*
992 * Has the page moved?
993 * This is part of the lockless pagecache protocol. See
994 * include/linux/pagemap.h for details.
995 */
996 if (unlikely(page != *pagep)) {
997 page_cache_release(page);
998 goto repeat;
999 }
1000 }
1001 out:
1002 rcu_read_unlock();
1003
1004 return page;
1005 }
1006 EXPORT_SYMBOL(find_get_entry);
1007
1008 /**
1009 * find_lock_entry - locate, pin and lock a page cache entry
1010 * @mapping: the address_space to search
1011 * @offset: the page cache index
1012 *
1013 * Looks up the page cache slot at @mapping & @offset. If there is a
1014 * page cache page, it is returned locked and with an increased
1015 * refcount.
1016 *
1017 * If the slot holds a shadow entry of a previously evicted page, or a
1018 * swap entry from shmem/tmpfs, it is returned.
1019 *
1020 * Otherwise, %NULL is returned.
1021 *
1022 * find_lock_entry() may sleep.
1023 */
find_lock_entry(struct address_space * mapping,pgoff_t offset)1024 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1025 {
1026 struct page *page;
1027
1028 repeat:
1029 page = find_get_entry(mapping, offset);
1030 if (page && !radix_tree_exception(page)) {
1031 lock_page(page);
1032 /* Has the page been truncated? */
1033 if (unlikely(page->mapping != mapping)) {
1034 unlock_page(page);
1035 page_cache_release(page);
1036 goto repeat;
1037 }
1038 VM_BUG_ON_PAGE(page->index != offset, page);
1039 }
1040 return page;
1041 }
1042 EXPORT_SYMBOL(find_lock_entry);
1043
1044 /**
1045 * pagecache_get_page - find and get a page reference
1046 * @mapping: the address_space to search
1047 * @offset: the page index
1048 * @fgp_flags: PCG flags
1049 * @gfp_mask: gfp mask to use for the page cache data page allocation
1050 *
1051 * Looks up the page cache slot at @mapping & @offset.
1052 *
1053 * PCG flags modify how the page is returned.
1054 *
1055 * FGP_ACCESSED: the page will be marked accessed
1056 * FGP_LOCK: Page is return locked
1057 * FGP_CREAT: If page is not present then a new page is allocated using
1058 * @gfp_mask and added to the page cache and the VM's LRU
1059 * list. The page is returned locked and with an increased
1060 * refcount. Otherwise, %NULL is returned.
1061 *
1062 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1063 * if the GFP flags specified for FGP_CREAT are atomic.
1064 *
1065 * If there is a page cache page, it is returned with an increased refcount.
1066 */
pagecache_get_page(struct address_space * mapping,pgoff_t offset,int fgp_flags,gfp_t gfp_mask)1067 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1068 int fgp_flags, gfp_t gfp_mask)
1069 {
1070 struct page *page;
1071
1072 repeat:
1073 page = find_get_entry(mapping, offset);
1074 if (radix_tree_exceptional_entry(page))
1075 page = NULL;
1076 if (!page)
1077 goto no_page;
1078
1079 if (fgp_flags & FGP_LOCK) {
1080 if (fgp_flags & FGP_NOWAIT) {
1081 if (!trylock_page(page)) {
1082 page_cache_release(page);
1083 return NULL;
1084 }
1085 } else {
1086 lock_page(page);
1087 }
1088
1089 /* Has the page been truncated? */
1090 if (unlikely(page->mapping != mapping)) {
1091 unlock_page(page);
1092 page_cache_release(page);
1093 goto repeat;
1094 }
1095 VM_BUG_ON_PAGE(page->index != offset, page);
1096 }
1097
1098 if (page && (fgp_flags & FGP_ACCESSED))
1099 mark_page_accessed(page);
1100
1101 no_page:
1102 if (!page && (fgp_flags & FGP_CREAT)) {
1103 int err;
1104 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1105 gfp_mask |= __GFP_WRITE;
1106 if (fgp_flags & FGP_NOFS)
1107 gfp_mask &= ~__GFP_FS;
1108
1109 page = __page_cache_alloc(gfp_mask);
1110 if (!page)
1111 return NULL;
1112
1113 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1114 fgp_flags |= FGP_LOCK;
1115
1116 /* Init accessed so avoid atomic mark_page_accessed later */
1117 if (fgp_flags & FGP_ACCESSED)
1118 __SetPageReferenced(page);
1119
1120 err = add_to_page_cache_lru(page, mapping, offset,
1121 gfp_mask & GFP_RECLAIM_MASK);
1122 if (unlikely(err)) {
1123 page_cache_release(page);
1124 page = NULL;
1125 if (err == -EEXIST)
1126 goto repeat;
1127 }
1128 }
1129
1130 return page;
1131 }
1132 EXPORT_SYMBOL(pagecache_get_page);
1133
1134 /**
1135 * find_get_entries - gang pagecache lookup
1136 * @mapping: The address_space to search
1137 * @start: The starting page cache index
1138 * @nr_entries: The maximum number of entries
1139 * @entries: Where the resulting entries are placed
1140 * @indices: The cache indices corresponding to the entries in @entries
1141 *
1142 * find_get_entries() will search for and return a group of up to
1143 * @nr_entries entries in the mapping. The entries are placed at
1144 * @entries. find_get_entries() takes a reference against any actual
1145 * pages it returns.
1146 *
1147 * The search returns a group of mapping-contiguous page cache entries
1148 * with ascending indexes. There may be holes in the indices due to
1149 * not-present pages.
1150 *
1151 * Any shadow entries of evicted pages, or swap entries from
1152 * shmem/tmpfs, are included in the returned array.
1153 *
1154 * find_get_entries() returns the number of pages and shadow entries
1155 * which were found.
1156 */
find_get_entries(struct address_space * mapping,pgoff_t start,unsigned int nr_entries,struct page ** entries,pgoff_t * indices)1157 unsigned find_get_entries(struct address_space *mapping,
1158 pgoff_t start, unsigned int nr_entries,
1159 struct page **entries, pgoff_t *indices)
1160 {
1161 void **slot;
1162 unsigned int ret = 0;
1163 struct radix_tree_iter iter;
1164
1165 if (!nr_entries)
1166 return 0;
1167
1168 rcu_read_lock();
1169 restart:
1170 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1171 struct page *page;
1172 repeat:
1173 page = radix_tree_deref_slot(slot);
1174 if (unlikely(!page))
1175 continue;
1176 if (radix_tree_exception(page)) {
1177 if (radix_tree_deref_retry(page))
1178 goto restart;
1179 /*
1180 * A shadow entry of a recently evicted page,
1181 * or a swap entry from shmem/tmpfs. Return
1182 * it without attempting to raise page count.
1183 */
1184 goto export;
1185 }
1186 if (!page_cache_get_speculative(page))
1187 goto repeat;
1188
1189 /* Has the page moved? */
1190 if (unlikely(page != *slot)) {
1191 page_cache_release(page);
1192 goto repeat;
1193 }
1194 export:
1195 indices[ret] = iter.index;
1196 entries[ret] = page;
1197 if (++ret == nr_entries)
1198 break;
1199 }
1200 rcu_read_unlock();
1201 return ret;
1202 }
1203
1204 /**
1205 * find_get_pages - gang pagecache lookup
1206 * @mapping: The address_space to search
1207 * @start: The starting page index
1208 * @nr_pages: The maximum number of pages
1209 * @pages: Where the resulting pages are placed
1210 *
1211 * find_get_pages() will search for and return a group of up to
1212 * @nr_pages pages in the mapping. The pages are placed at @pages.
1213 * find_get_pages() takes a reference against the returned pages.
1214 *
1215 * The search returns a group of mapping-contiguous pages with ascending
1216 * indexes. There may be holes in the indices due to not-present pages.
1217 *
1218 * find_get_pages() returns the number of pages which were found.
1219 */
find_get_pages(struct address_space * mapping,pgoff_t start,unsigned int nr_pages,struct page ** pages)1220 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1221 unsigned int nr_pages, struct page **pages)
1222 {
1223 struct radix_tree_iter iter;
1224 void **slot;
1225 unsigned ret = 0;
1226
1227 if (unlikely(!nr_pages))
1228 return 0;
1229
1230 rcu_read_lock();
1231 restart:
1232 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1233 struct page *page;
1234 repeat:
1235 page = radix_tree_deref_slot(slot);
1236 if (unlikely(!page))
1237 continue;
1238
1239 if (radix_tree_exception(page)) {
1240 if (radix_tree_deref_retry(page)) {
1241 /*
1242 * Transient condition which can only trigger
1243 * when entry at index 0 moves out of or back
1244 * to root: none yet gotten, safe to restart.
1245 */
1246 WARN_ON(iter.index);
1247 goto restart;
1248 }
1249 /*
1250 * A shadow entry of a recently evicted page,
1251 * or a swap entry from shmem/tmpfs. Skip
1252 * over it.
1253 */
1254 continue;
1255 }
1256
1257 if (!page_cache_get_speculative(page))
1258 goto repeat;
1259
1260 /* Has the page moved? */
1261 if (unlikely(page != *slot)) {
1262 page_cache_release(page);
1263 goto repeat;
1264 }
1265
1266 pages[ret] = page;
1267 if (++ret == nr_pages)
1268 break;
1269 }
1270
1271 rcu_read_unlock();
1272 return ret;
1273 }
1274
1275 /**
1276 * find_get_pages_contig - gang contiguous pagecache lookup
1277 * @mapping: The address_space to search
1278 * @index: The starting page index
1279 * @nr_pages: The maximum number of pages
1280 * @pages: Where the resulting pages are placed
1281 *
1282 * find_get_pages_contig() works exactly like find_get_pages(), except
1283 * that the returned number of pages are guaranteed to be contiguous.
1284 *
1285 * find_get_pages_contig() returns the number of pages which were found.
1286 */
find_get_pages_contig(struct address_space * mapping,pgoff_t index,unsigned int nr_pages,struct page ** pages)1287 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1288 unsigned int nr_pages, struct page **pages)
1289 {
1290 struct radix_tree_iter iter;
1291 void **slot;
1292 unsigned int ret = 0;
1293
1294 if (unlikely(!nr_pages))
1295 return 0;
1296
1297 rcu_read_lock();
1298 restart:
1299 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1300 struct page *page;
1301 repeat:
1302 page = radix_tree_deref_slot(slot);
1303 /* The hole, there no reason to continue */
1304 if (unlikely(!page))
1305 break;
1306
1307 if (radix_tree_exception(page)) {
1308 if (radix_tree_deref_retry(page)) {
1309 /*
1310 * Transient condition which can only trigger
1311 * when entry at index 0 moves out of or back
1312 * to root: none yet gotten, safe to restart.
1313 */
1314 goto restart;
1315 }
1316 /*
1317 * A shadow entry of a recently evicted page,
1318 * or a swap entry from shmem/tmpfs. Stop
1319 * looking for contiguous pages.
1320 */
1321 break;
1322 }
1323
1324 if (!page_cache_get_speculative(page))
1325 goto repeat;
1326
1327 /* Has the page moved? */
1328 if (unlikely(page != *slot)) {
1329 page_cache_release(page);
1330 goto repeat;
1331 }
1332
1333 /*
1334 * must check mapping and index after taking the ref.
1335 * otherwise we can get both false positives and false
1336 * negatives, which is just confusing to the caller.
1337 */
1338 if (page->mapping == NULL || page->index != iter.index) {
1339 page_cache_release(page);
1340 break;
1341 }
1342
1343 pages[ret] = page;
1344 if (++ret == nr_pages)
1345 break;
1346 }
1347 rcu_read_unlock();
1348 return ret;
1349 }
1350 EXPORT_SYMBOL(find_get_pages_contig);
1351
1352 /**
1353 * find_get_pages_tag - find and return pages that match @tag
1354 * @mapping: the address_space to search
1355 * @index: the starting page index
1356 * @tag: the tag index
1357 * @nr_pages: the maximum number of pages
1358 * @pages: where the resulting pages are placed
1359 *
1360 * Like find_get_pages, except we only return pages which are tagged with
1361 * @tag. We update @index to index the next page for the traversal.
1362 */
find_get_pages_tag(struct address_space * mapping,pgoff_t * index,int tag,unsigned int nr_pages,struct page ** pages)1363 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1364 int tag, unsigned int nr_pages, struct page **pages)
1365 {
1366 struct radix_tree_iter iter;
1367 void **slot;
1368 unsigned ret = 0;
1369
1370 if (unlikely(!nr_pages))
1371 return 0;
1372
1373 rcu_read_lock();
1374 restart:
1375 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1376 &iter, *index, tag) {
1377 struct page *page;
1378 repeat:
1379 page = radix_tree_deref_slot(slot);
1380 if (unlikely(!page))
1381 continue;
1382
1383 if (radix_tree_exception(page)) {
1384 if (radix_tree_deref_retry(page)) {
1385 /*
1386 * Transient condition which can only trigger
1387 * when entry at index 0 moves out of or back
1388 * to root: none yet gotten, safe to restart.
1389 */
1390 goto restart;
1391 }
1392 /*
1393 * A shadow entry of a recently evicted page.
1394 *
1395 * Those entries should never be tagged, but
1396 * this tree walk is lockless and the tags are
1397 * looked up in bulk, one radix tree node at a
1398 * time, so there is a sizable window for page
1399 * reclaim to evict a page we saw tagged.
1400 *
1401 * Skip over it.
1402 */
1403 continue;
1404 }
1405
1406 if (!page_cache_get_speculative(page))
1407 goto repeat;
1408
1409 /* Has the page moved? */
1410 if (unlikely(page != *slot)) {
1411 page_cache_release(page);
1412 goto repeat;
1413 }
1414
1415 pages[ret] = page;
1416 if (++ret == nr_pages)
1417 break;
1418 }
1419
1420 rcu_read_unlock();
1421
1422 if (ret)
1423 *index = pages[ret - 1]->index + 1;
1424
1425 return ret;
1426 }
1427 EXPORT_SYMBOL(find_get_pages_tag);
1428
1429 /*
1430 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1431 * a _large_ part of the i/o request. Imagine the worst scenario:
1432 *
1433 * ---R__________________________________________B__________
1434 * ^ reading here ^ bad block(assume 4k)
1435 *
1436 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1437 * => failing the whole request => read(R) => read(R+1) =>
1438 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1439 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1440 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1441 *
1442 * It is going insane. Fix it by quickly scaling down the readahead size.
1443 */
shrink_readahead_size_eio(struct file * filp,struct file_ra_state * ra)1444 static void shrink_readahead_size_eio(struct file *filp,
1445 struct file_ra_state *ra)
1446 {
1447 ra->ra_pages /= 4;
1448 }
1449
1450 /**
1451 * do_generic_file_read - generic file read routine
1452 * @filp: the file to read
1453 * @ppos: current file position
1454 * @iter: data destination
1455 * @written: already copied
1456 *
1457 * This is a generic file read routine, and uses the
1458 * mapping->a_ops->readpage() function for the actual low-level stuff.
1459 *
1460 * This is really ugly. But the goto's actually try to clarify some
1461 * of the logic when it comes to error handling etc.
1462 */
do_generic_file_read(struct file * filp,loff_t * ppos,struct iov_iter * iter,ssize_t written)1463 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1464 struct iov_iter *iter, ssize_t written)
1465 {
1466 struct address_space *mapping = filp->f_mapping;
1467 struct inode *inode = mapping->host;
1468 struct file_ra_state *ra = &filp->f_ra;
1469 pgoff_t index;
1470 pgoff_t last_index;
1471 pgoff_t prev_index;
1472 unsigned long offset; /* offset into pagecache page */
1473 unsigned int prev_offset;
1474 int error = 0;
1475
1476 index = *ppos >> PAGE_CACHE_SHIFT;
1477 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1478 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1479 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1480 offset = *ppos & ~PAGE_CACHE_MASK;
1481
1482 for (;;) {
1483 struct page *page;
1484 pgoff_t end_index;
1485 loff_t isize;
1486 unsigned long nr, ret;
1487
1488 cond_resched();
1489 find_page:
1490 page = find_get_page(mapping, index);
1491 if (!page) {
1492 page_cache_sync_readahead(mapping,
1493 ra, filp,
1494 index, last_index - index);
1495 page = find_get_page(mapping, index);
1496 if (unlikely(page == NULL))
1497 goto no_cached_page;
1498 }
1499 if (PageReadahead(page)) {
1500 page_cache_async_readahead(mapping,
1501 ra, filp, page,
1502 index, last_index - index);
1503 }
1504 if (!PageUptodate(page)) {
1505 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1506 !mapping->a_ops->is_partially_uptodate)
1507 goto page_not_up_to_date;
1508 if (!trylock_page(page))
1509 goto page_not_up_to_date;
1510 /* Did it get truncated before we got the lock? */
1511 if (!page->mapping)
1512 goto page_not_up_to_date_locked;
1513 if (!mapping->a_ops->is_partially_uptodate(page,
1514 offset, iter->count))
1515 goto page_not_up_to_date_locked;
1516 unlock_page(page);
1517 }
1518 page_ok:
1519 /*
1520 * i_size must be checked after we know the page is Uptodate.
1521 *
1522 * Checking i_size after the check allows us to calculate
1523 * the correct value for "nr", which means the zero-filled
1524 * part of the page is not copied back to userspace (unless
1525 * another truncate extends the file - this is desired though).
1526 */
1527
1528 isize = i_size_read(inode);
1529 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1530 if (unlikely(!isize || index > end_index)) {
1531 page_cache_release(page);
1532 goto out;
1533 }
1534
1535 /* nr is the maximum number of bytes to copy from this page */
1536 nr = PAGE_CACHE_SIZE;
1537 if (index == end_index) {
1538 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1539 if (nr <= offset) {
1540 page_cache_release(page);
1541 goto out;
1542 }
1543 }
1544 nr = nr - offset;
1545
1546 /* If users can be writing to this page using arbitrary
1547 * virtual addresses, take care about potential aliasing
1548 * before reading the page on the kernel side.
1549 */
1550 if (mapping_writably_mapped(mapping))
1551 flush_dcache_page(page);
1552
1553 /*
1554 * When a sequential read accesses a page several times,
1555 * only mark it as accessed the first time.
1556 */
1557 if (prev_index != index || offset != prev_offset)
1558 mark_page_accessed(page);
1559 prev_index = index;
1560
1561 /*
1562 * Ok, we have the page, and it's up-to-date, so
1563 * now we can copy it to user space...
1564 */
1565
1566 ret = copy_page_to_iter(page, offset, nr, iter);
1567 offset += ret;
1568 index += offset >> PAGE_CACHE_SHIFT;
1569 offset &= ~PAGE_CACHE_MASK;
1570 prev_offset = offset;
1571
1572 page_cache_release(page);
1573 written += ret;
1574 if (!iov_iter_count(iter))
1575 goto out;
1576 if (ret < nr) {
1577 error = -EFAULT;
1578 goto out;
1579 }
1580 continue;
1581
1582 page_not_up_to_date:
1583 /* Get exclusive access to the page ... */
1584 error = lock_page_killable(page);
1585 if (unlikely(error))
1586 goto readpage_error;
1587
1588 page_not_up_to_date_locked:
1589 /* Did it get truncated before we got the lock? */
1590 if (!page->mapping) {
1591 unlock_page(page);
1592 page_cache_release(page);
1593 continue;
1594 }
1595
1596 /* Did somebody else fill it already? */
1597 if (PageUptodate(page)) {
1598 unlock_page(page);
1599 goto page_ok;
1600 }
1601
1602 readpage:
1603 /*
1604 * A previous I/O error may have been due to temporary
1605 * failures, eg. multipath errors.
1606 * PG_error will be set again if readpage fails.
1607 */
1608 ClearPageError(page);
1609 /* Start the actual read. The read will unlock the page. */
1610 error = mapping->a_ops->readpage(filp, page);
1611
1612 if (unlikely(error)) {
1613 if (error == AOP_TRUNCATED_PAGE) {
1614 page_cache_release(page);
1615 error = 0;
1616 goto find_page;
1617 }
1618 goto readpage_error;
1619 }
1620
1621 if (!PageUptodate(page)) {
1622 error = lock_page_killable(page);
1623 if (unlikely(error))
1624 goto readpage_error;
1625 if (!PageUptodate(page)) {
1626 if (page->mapping == NULL) {
1627 /*
1628 * invalidate_mapping_pages got it
1629 */
1630 unlock_page(page);
1631 page_cache_release(page);
1632 goto find_page;
1633 }
1634 unlock_page(page);
1635 shrink_readahead_size_eio(filp, ra);
1636 error = -EIO;
1637 goto readpage_error;
1638 }
1639 unlock_page(page);
1640 }
1641
1642 goto page_ok;
1643
1644 readpage_error:
1645 /* UHHUH! A synchronous read error occurred. Report it */
1646 page_cache_release(page);
1647 goto out;
1648
1649 no_cached_page:
1650 /*
1651 * Ok, it wasn't cached, so we need to create a new
1652 * page..
1653 */
1654 page = page_cache_alloc_cold(mapping);
1655 if (!page) {
1656 error = -ENOMEM;
1657 goto out;
1658 }
1659 error = add_to_page_cache_lru(page, mapping,
1660 index, GFP_KERNEL);
1661 if (error) {
1662 page_cache_release(page);
1663 if (error == -EEXIST) {
1664 error = 0;
1665 goto find_page;
1666 }
1667 goto out;
1668 }
1669 goto readpage;
1670 }
1671
1672 out:
1673 ra->prev_pos = prev_index;
1674 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1675 ra->prev_pos |= prev_offset;
1676
1677 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1678 file_accessed(filp);
1679 return written ? written : error;
1680 }
1681
1682 /**
1683 * generic_file_read_iter - generic filesystem read routine
1684 * @iocb: kernel I/O control block
1685 * @iter: destination for the data read
1686 *
1687 * This is the "read_iter()" routine for all filesystems
1688 * that can use the page cache directly.
1689 */
1690 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)1691 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1692 {
1693 struct file *file = iocb->ki_filp;
1694 ssize_t retval = 0;
1695 loff_t *ppos = &iocb->ki_pos;
1696 loff_t pos = *ppos;
1697
1698 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1699 if (file->f_flags & O_DIRECT) {
1700 struct address_space *mapping = file->f_mapping;
1701 struct inode *inode = mapping->host;
1702 size_t count = iov_iter_count(iter);
1703 loff_t size;
1704
1705 if (!count)
1706 goto out; /* skip atime */
1707 size = i_size_read(inode);
1708 retval = filemap_write_and_wait_range(mapping, pos,
1709 pos + count - 1);
1710 if (!retval) {
1711 struct iov_iter data = *iter;
1712 retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1713 }
1714
1715 if (retval > 0) {
1716 *ppos = pos + retval;
1717 iov_iter_advance(iter, retval);
1718 }
1719
1720 /*
1721 * Btrfs can have a short DIO read if we encounter
1722 * compressed extents, so if there was an error, or if
1723 * we've already read everything we wanted to, or if
1724 * there was a short read because we hit EOF, go ahead
1725 * and return. Otherwise fallthrough to buffered io for
1726 * the rest of the read.
1727 */
1728 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1729 file_accessed(file);
1730 goto out;
1731 }
1732 }
1733
1734 retval = do_generic_file_read(file, ppos, iter, retval);
1735 out:
1736 return retval;
1737 }
1738 EXPORT_SYMBOL(generic_file_read_iter);
1739
1740 #ifdef CONFIG_MMU
1741 /**
1742 * page_cache_read - adds requested page to the page cache if not already there
1743 * @file: file to read
1744 * @offset: page index
1745 *
1746 * This adds the requested page to the page cache if it isn't already there,
1747 * and schedules an I/O to read in its contents from disk.
1748 */
page_cache_read(struct file * file,pgoff_t offset)1749 static int page_cache_read(struct file *file, pgoff_t offset)
1750 {
1751 struct address_space *mapping = file->f_mapping;
1752 struct page *page;
1753 int ret;
1754
1755 do {
1756 page = page_cache_alloc_cold(mapping);
1757 if (!page)
1758 return -ENOMEM;
1759
1760 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1761 if (ret == 0)
1762 ret = mapping->a_ops->readpage(file, page);
1763 else if (ret == -EEXIST)
1764 ret = 0; /* losing race to add is OK */
1765
1766 page_cache_release(page);
1767
1768 } while (ret == AOP_TRUNCATED_PAGE);
1769
1770 return ret;
1771 }
1772
1773 #define MMAP_LOTSAMISS (100)
1774
1775 /*
1776 * Synchronous readahead happens when we don't even find
1777 * a page in the page cache at all.
1778 */
do_sync_mmap_readahead(struct vm_area_struct * vma,struct file_ra_state * ra,struct file * file,pgoff_t offset)1779 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1780 struct file_ra_state *ra,
1781 struct file *file,
1782 pgoff_t offset)
1783 {
1784 unsigned long ra_pages;
1785 struct address_space *mapping = file->f_mapping;
1786
1787 /* If we don't want any read-ahead, don't bother */
1788 if (vma->vm_flags & VM_RAND_READ)
1789 return;
1790 if (!ra->ra_pages)
1791 return;
1792
1793 if (vma->vm_flags & VM_SEQ_READ) {
1794 page_cache_sync_readahead(mapping, ra, file, offset,
1795 ra->ra_pages);
1796 return;
1797 }
1798
1799 /* Avoid banging the cache line if not needed */
1800 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1801 ra->mmap_miss++;
1802
1803 /*
1804 * Do we miss much more than hit in this file? If so,
1805 * stop bothering with read-ahead. It will only hurt.
1806 */
1807 if (ra->mmap_miss > MMAP_LOTSAMISS)
1808 return;
1809
1810 /*
1811 * mmap read-around
1812 */
1813 ra_pages = max_sane_readahead(ra->ra_pages);
1814 ra->start = max_t(long, 0, offset - ra_pages / 2);
1815 ra->size = ra_pages;
1816 ra->async_size = ra_pages / 4;
1817 ra_submit(ra, mapping, file);
1818 }
1819
1820 /*
1821 * Asynchronous readahead happens when we find the page and PG_readahead,
1822 * so we want to possibly extend the readahead further..
1823 */
do_async_mmap_readahead(struct vm_area_struct * vma,struct file_ra_state * ra,struct file * file,struct page * page,pgoff_t offset)1824 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1825 struct file_ra_state *ra,
1826 struct file *file,
1827 struct page *page,
1828 pgoff_t offset)
1829 {
1830 struct address_space *mapping = file->f_mapping;
1831
1832 /* If we don't want any read-ahead, don't bother */
1833 if (vma->vm_flags & VM_RAND_READ)
1834 return;
1835 if (ra->mmap_miss > 0)
1836 ra->mmap_miss--;
1837 if (PageReadahead(page))
1838 page_cache_async_readahead(mapping, ra, file,
1839 page, offset, ra->ra_pages);
1840 }
1841
1842 /**
1843 * filemap_fault - read in file data for page fault handling
1844 * @vma: vma in which the fault was taken
1845 * @vmf: struct vm_fault containing details of the fault
1846 *
1847 * filemap_fault() is invoked via the vma operations vector for a
1848 * mapped memory region to read in file data during a page fault.
1849 *
1850 * The goto's are kind of ugly, but this streamlines the normal case of having
1851 * it in the page cache, and handles the special cases reasonably without
1852 * having a lot of duplicated code.
1853 *
1854 * vma->vm_mm->mmap_sem must be held on entry.
1855 *
1856 * If our return value has VM_FAULT_RETRY set, it's because
1857 * lock_page_or_retry() returned 0.
1858 * The mmap_sem has usually been released in this case.
1859 * See __lock_page_or_retry() for the exception.
1860 *
1861 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1862 * has not been released.
1863 *
1864 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1865 */
filemap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1866 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1867 {
1868 int error;
1869 struct file *file = vma->vm_file;
1870 struct address_space *mapping = file->f_mapping;
1871 struct file_ra_state *ra = &file->f_ra;
1872 struct inode *inode = mapping->host;
1873 pgoff_t offset = vmf->pgoff;
1874 struct page *page;
1875 loff_t size;
1876 int ret = 0;
1877
1878 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1879 if (offset >= size >> PAGE_CACHE_SHIFT)
1880 return VM_FAULT_SIGBUS;
1881
1882 /*
1883 * Do we have something in the page cache already?
1884 */
1885 page = find_get_page(mapping, offset);
1886 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1887 /*
1888 * We found the page, so try async readahead before
1889 * waiting for the lock.
1890 */
1891 do_async_mmap_readahead(vma, ra, file, page, offset);
1892 } else if (!page) {
1893 /* No page in the page cache at all */
1894 do_sync_mmap_readahead(vma, ra, file, offset);
1895 count_vm_event(PGMAJFAULT);
1896 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1897 ret = VM_FAULT_MAJOR;
1898 retry_find:
1899 page = find_get_page(mapping, offset);
1900 if (!page)
1901 goto no_cached_page;
1902 }
1903
1904 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1905 page_cache_release(page);
1906 return ret | VM_FAULT_RETRY;
1907 }
1908
1909 /* Did it get truncated? */
1910 if (unlikely(page->mapping != mapping)) {
1911 unlock_page(page);
1912 put_page(page);
1913 goto retry_find;
1914 }
1915 VM_BUG_ON_PAGE(page->index != offset, page);
1916
1917 /*
1918 * We have a locked page in the page cache, now we need to check
1919 * that it's up-to-date. If not, it is going to be due to an error.
1920 */
1921 if (unlikely(!PageUptodate(page)))
1922 goto page_not_uptodate;
1923
1924 /*
1925 * Found the page and have a reference on it.
1926 * We must recheck i_size under page lock.
1927 */
1928 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1929 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1930 unlock_page(page);
1931 page_cache_release(page);
1932 return VM_FAULT_SIGBUS;
1933 }
1934
1935 vmf->page = page;
1936 return ret | VM_FAULT_LOCKED;
1937
1938 no_cached_page:
1939 /*
1940 * We're only likely to ever get here if MADV_RANDOM is in
1941 * effect.
1942 */
1943 error = page_cache_read(file, offset);
1944
1945 /*
1946 * The page we want has now been added to the page cache.
1947 * In the unlikely event that someone removed it in the
1948 * meantime, we'll just come back here and read it again.
1949 */
1950 if (error >= 0)
1951 goto retry_find;
1952
1953 /*
1954 * An error return from page_cache_read can result if the
1955 * system is low on memory, or a problem occurs while trying
1956 * to schedule I/O.
1957 */
1958 if (error == -ENOMEM)
1959 return VM_FAULT_OOM;
1960 return VM_FAULT_SIGBUS;
1961
1962 page_not_uptodate:
1963 /*
1964 * Umm, take care of errors if the page isn't up-to-date.
1965 * Try to re-read it _once_. We do this synchronously,
1966 * because there really aren't any performance issues here
1967 * and we need to check for errors.
1968 */
1969 ClearPageError(page);
1970 error = mapping->a_ops->readpage(file, page);
1971 if (!error) {
1972 wait_on_page_locked(page);
1973 if (!PageUptodate(page))
1974 error = -EIO;
1975 }
1976 page_cache_release(page);
1977
1978 if (!error || error == AOP_TRUNCATED_PAGE)
1979 goto retry_find;
1980
1981 /* Things didn't work out. Return zero to tell the mm layer so. */
1982 shrink_readahead_size_eio(file, ra);
1983 return VM_FAULT_SIGBUS;
1984 }
1985 EXPORT_SYMBOL(filemap_fault);
1986
filemap_map_pages(struct vm_area_struct * vma,struct vm_fault * vmf)1987 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1988 {
1989 struct radix_tree_iter iter;
1990 void **slot;
1991 struct file *file = vma->vm_file;
1992 struct address_space *mapping = file->f_mapping;
1993 loff_t size;
1994 struct page *page;
1995 unsigned long address = (unsigned long) vmf->virtual_address;
1996 unsigned long addr;
1997 pte_t *pte;
1998
1999 rcu_read_lock();
2000 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2001 if (iter.index > vmf->max_pgoff)
2002 break;
2003 repeat:
2004 page = radix_tree_deref_slot(slot);
2005 if (unlikely(!page))
2006 goto next;
2007 if (radix_tree_exception(page)) {
2008 if (radix_tree_deref_retry(page))
2009 break;
2010 else
2011 goto next;
2012 }
2013
2014 if (!page_cache_get_speculative(page))
2015 goto repeat;
2016
2017 /* Has the page moved? */
2018 if (unlikely(page != *slot)) {
2019 page_cache_release(page);
2020 goto repeat;
2021 }
2022
2023 if (!PageUptodate(page) ||
2024 PageReadahead(page) ||
2025 PageHWPoison(page))
2026 goto skip;
2027 if (!trylock_page(page))
2028 goto skip;
2029
2030 if (page->mapping != mapping || !PageUptodate(page))
2031 goto unlock;
2032
2033 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2034 if (page->index >= size >> PAGE_CACHE_SHIFT)
2035 goto unlock;
2036
2037 pte = vmf->pte + page->index - vmf->pgoff;
2038 if (!pte_none(*pte))
2039 goto unlock;
2040
2041 if (file->f_ra.mmap_miss > 0)
2042 file->f_ra.mmap_miss--;
2043 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2044 do_set_pte(vma, addr, page, pte, false, false);
2045 unlock_page(page);
2046 goto next;
2047 unlock:
2048 unlock_page(page);
2049 skip:
2050 page_cache_release(page);
2051 next:
2052 if (iter.index == vmf->max_pgoff)
2053 break;
2054 }
2055 rcu_read_unlock();
2056 }
2057 EXPORT_SYMBOL(filemap_map_pages);
2058
filemap_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)2059 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2060 {
2061 struct page *page = vmf->page;
2062 struct inode *inode = file_inode(vma->vm_file);
2063 int ret = VM_FAULT_LOCKED;
2064
2065 sb_start_pagefault(inode->i_sb);
2066 file_update_time(vma->vm_file);
2067 lock_page(page);
2068 if (page->mapping != inode->i_mapping) {
2069 unlock_page(page);
2070 ret = VM_FAULT_NOPAGE;
2071 goto out;
2072 }
2073 /*
2074 * We mark the page dirty already here so that when freeze is in
2075 * progress, we are guaranteed that writeback during freezing will
2076 * see the dirty page and writeprotect it again.
2077 */
2078 set_page_dirty(page);
2079 wait_for_stable_page(page);
2080 out:
2081 sb_end_pagefault(inode->i_sb);
2082 return ret;
2083 }
2084 EXPORT_SYMBOL(filemap_page_mkwrite);
2085
2086 const struct vm_operations_struct generic_file_vm_ops = {
2087 .fault = filemap_fault,
2088 .map_pages = filemap_map_pages,
2089 .page_mkwrite = filemap_page_mkwrite,
2090 .remap_pages = generic_file_remap_pages,
2091 };
2092
2093 /* This is used for a general mmap of a disk file */
2094
generic_file_mmap(struct file * file,struct vm_area_struct * vma)2095 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2096 {
2097 struct address_space *mapping = file->f_mapping;
2098
2099 if (!mapping->a_ops->readpage)
2100 return -ENOEXEC;
2101 file_accessed(file);
2102 vma->vm_ops = &generic_file_vm_ops;
2103 return 0;
2104 }
2105
2106 /*
2107 * This is for filesystems which do not implement ->writepage.
2108 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)2109 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2110 {
2111 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2112 return -EINVAL;
2113 return generic_file_mmap(file, vma);
2114 }
2115 #else
generic_file_mmap(struct file * file,struct vm_area_struct * vma)2116 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2117 {
2118 return -ENOSYS;
2119 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)2120 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2121 {
2122 return -ENOSYS;
2123 }
2124 #endif /* CONFIG_MMU */
2125
2126 EXPORT_SYMBOL(generic_file_mmap);
2127 EXPORT_SYMBOL(generic_file_readonly_mmap);
2128
wait_on_page_read(struct page * page)2129 static struct page *wait_on_page_read(struct page *page)
2130 {
2131 if (!IS_ERR(page)) {
2132 wait_on_page_locked(page);
2133 if (!PageUptodate(page)) {
2134 page_cache_release(page);
2135 page = ERR_PTR(-EIO);
2136 }
2137 }
2138 return page;
2139 }
2140
__read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data,gfp_t gfp)2141 static struct page *__read_cache_page(struct address_space *mapping,
2142 pgoff_t index,
2143 int (*filler)(void *, struct page *),
2144 void *data,
2145 gfp_t gfp)
2146 {
2147 struct page *page;
2148 int err;
2149 repeat:
2150 page = find_get_page(mapping, index);
2151 if (!page) {
2152 page = __page_cache_alloc(gfp | __GFP_COLD);
2153 if (!page)
2154 return ERR_PTR(-ENOMEM);
2155 err = add_to_page_cache_lru(page, mapping, index, gfp);
2156 if (unlikely(err)) {
2157 page_cache_release(page);
2158 if (err == -EEXIST)
2159 goto repeat;
2160 /* Presumably ENOMEM for radix tree node */
2161 return ERR_PTR(err);
2162 }
2163 err = filler(data, page);
2164 if (err < 0) {
2165 page_cache_release(page);
2166 page = ERR_PTR(err);
2167 } else {
2168 page = wait_on_page_read(page);
2169 }
2170 }
2171 return page;
2172 }
2173
do_read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data,gfp_t gfp)2174 static struct page *do_read_cache_page(struct address_space *mapping,
2175 pgoff_t index,
2176 int (*filler)(void *, struct page *),
2177 void *data,
2178 gfp_t gfp)
2179
2180 {
2181 struct page *page;
2182 int err;
2183
2184 retry:
2185 page = __read_cache_page(mapping, index, filler, data, gfp);
2186 if (IS_ERR(page))
2187 return page;
2188 if (PageUptodate(page))
2189 goto out;
2190
2191 lock_page(page);
2192 if (!page->mapping) {
2193 unlock_page(page);
2194 page_cache_release(page);
2195 goto retry;
2196 }
2197 if (PageUptodate(page)) {
2198 unlock_page(page);
2199 goto out;
2200 }
2201 err = filler(data, page);
2202 if (err < 0) {
2203 page_cache_release(page);
2204 return ERR_PTR(err);
2205 } else {
2206 page = wait_on_page_read(page);
2207 if (IS_ERR(page))
2208 return page;
2209 }
2210 out:
2211 mark_page_accessed(page);
2212 return page;
2213 }
2214
2215 /**
2216 * read_cache_page - read into page cache, fill it if needed
2217 * @mapping: the page's address_space
2218 * @index: the page index
2219 * @filler: function to perform the read
2220 * @data: first arg to filler(data, page) function, often left as NULL
2221 *
2222 * Read into the page cache. If a page already exists, and PageUptodate() is
2223 * not set, try to fill the page and wait for it to become unlocked.
2224 *
2225 * If the page does not get brought uptodate, return -EIO.
2226 */
read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data)2227 struct page *read_cache_page(struct address_space *mapping,
2228 pgoff_t index,
2229 int (*filler)(void *, struct page *),
2230 void *data)
2231 {
2232 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2233 }
2234 EXPORT_SYMBOL(read_cache_page);
2235
2236 /**
2237 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2238 * @mapping: the page's address_space
2239 * @index: the page index
2240 * @gfp: the page allocator flags to use if allocating
2241 *
2242 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2243 * any new page allocations done using the specified allocation flags.
2244 *
2245 * If the page does not get brought uptodate, return -EIO.
2246 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)2247 struct page *read_cache_page_gfp(struct address_space *mapping,
2248 pgoff_t index,
2249 gfp_t gfp)
2250 {
2251 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2252
2253 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2254 }
2255 EXPORT_SYMBOL(read_cache_page_gfp);
2256
2257 /*
2258 * Performs necessary checks before doing a write
2259 *
2260 * Can adjust writing position or amount of bytes to write.
2261 * Returns appropriate error code that caller should return or
2262 * zero in case that write should be allowed.
2263 */
generic_write_checks(struct file * file,loff_t * pos,size_t * count,int isblk)2264 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2265 {
2266 struct inode *inode = file->f_mapping->host;
2267 unsigned long limit = rlimit(RLIMIT_FSIZE);
2268
2269 if (unlikely(*pos < 0))
2270 return -EINVAL;
2271
2272 if (!isblk) {
2273 /* FIXME: this is for backwards compatibility with 2.4 */
2274 if (file->f_flags & O_APPEND)
2275 *pos = i_size_read(inode);
2276
2277 if (limit != RLIM_INFINITY) {
2278 if (*pos >= limit) {
2279 send_sig(SIGXFSZ, current, 0);
2280 return -EFBIG;
2281 }
2282 if (*count > limit - (typeof(limit))*pos) {
2283 *count = limit - (typeof(limit))*pos;
2284 }
2285 }
2286 }
2287
2288 /*
2289 * LFS rule
2290 */
2291 if (unlikely(*pos + *count > MAX_NON_LFS &&
2292 !(file->f_flags & O_LARGEFILE))) {
2293 if (*pos >= MAX_NON_LFS) {
2294 return -EFBIG;
2295 }
2296 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2297 *count = MAX_NON_LFS - (unsigned long)*pos;
2298 }
2299 }
2300
2301 /*
2302 * Are we about to exceed the fs block limit ?
2303 *
2304 * If we have written data it becomes a short write. If we have
2305 * exceeded without writing data we send a signal and return EFBIG.
2306 * Linus frestrict idea will clean these up nicely..
2307 */
2308 if (likely(!isblk)) {
2309 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2310 if (*count || *pos > inode->i_sb->s_maxbytes) {
2311 return -EFBIG;
2312 }
2313 /* zero-length writes at ->s_maxbytes are OK */
2314 }
2315
2316 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2317 *count = inode->i_sb->s_maxbytes - *pos;
2318 } else {
2319 #ifdef CONFIG_BLOCK
2320 loff_t isize;
2321 if (bdev_read_only(I_BDEV(inode)))
2322 return -EPERM;
2323 isize = i_size_read(inode);
2324 if (*pos >= isize) {
2325 if (*count || *pos > isize)
2326 return -ENOSPC;
2327 }
2328
2329 if (*pos + *count > isize)
2330 *count = isize - *pos;
2331 #else
2332 return -EPERM;
2333 #endif
2334 }
2335 return 0;
2336 }
2337 EXPORT_SYMBOL(generic_write_checks);
2338
pagecache_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2339 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2340 loff_t pos, unsigned len, unsigned flags,
2341 struct page **pagep, void **fsdata)
2342 {
2343 const struct address_space_operations *aops = mapping->a_ops;
2344
2345 return aops->write_begin(file, mapping, pos, len, flags,
2346 pagep, fsdata);
2347 }
2348 EXPORT_SYMBOL(pagecache_write_begin);
2349
pagecache_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2350 int pagecache_write_end(struct file *file, struct address_space *mapping,
2351 loff_t pos, unsigned len, unsigned copied,
2352 struct page *page, void *fsdata)
2353 {
2354 const struct address_space_operations *aops = mapping->a_ops;
2355
2356 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2357 }
2358 EXPORT_SYMBOL(pagecache_write_end);
2359
2360 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from,loff_t pos)2361 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2362 {
2363 struct file *file = iocb->ki_filp;
2364 struct address_space *mapping = file->f_mapping;
2365 struct inode *inode = mapping->host;
2366 ssize_t written;
2367 size_t write_len;
2368 pgoff_t end;
2369 struct iov_iter data;
2370
2371 write_len = iov_iter_count(from);
2372 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2373
2374 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2375 if (written)
2376 goto out;
2377
2378 /*
2379 * After a write we want buffered reads to be sure to go to disk to get
2380 * the new data. We invalidate clean cached page from the region we're
2381 * about to write. We do this *before* the write so that we can return
2382 * without clobbering -EIOCBQUEUED from ->direct_IO().
2383 */
2384 if (mapping->nrpages) {
2385 written = invalidate_inode_pages2_range(mapping,
2386 pos >> PAGE_CACHE_SHIFT, end);
2387 /*
2388 * If a page can not be invalidated, return 0 to fall back
2389 * to buffered write.
2390 */
2391 if (written) {
2392 if (written == -EBUSY)
2393 return 0;
2394 goto out;
2395 }
2396 }
2397
2398 data = *from;
2399 written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2400
2401 /*
2402 * Finally, try again to invalidate clean pages which might have been
2403 * cached by non-direct readahead, or faulted in by get_user_pages()
2404 * if the source of the write was an mmap'ed region of the file
2405 * we're writing. Either one is a pretty crazy thing to do,
2406 * so we don't support it 100%. If this invalidation
2407 * fails, tough, the write still worked...
2408 */
2409 if (mapping->nrpages) {
2410 invalidate_inode_pages2_range(mapping,
2411 pos >> PAGE_CACHE_SHIFT, end);
2412 }
2413
2414 if (written > 0) {
2415 pos += written;
2416 iov_iter_advance(from, written);
2417 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2418 i_size_write(inode, pos);
2419 mark_inode_dirty(inode);
2420 }
2421 iocb->ki_pos = pos;
2422 }
2423 out:
2424 return written;
2425 }
2426 EXPORT_SYMBOL(generic_file_direct_write);
2427
2428 /*
2429 * Find or create a page at the given pagecache position. Return the locked
2430 * page. This function is specifically for buffered writes.
2431 */
grab_cache_page_write_begin(struct address_space * mapping,pgoff_t index,unsigned flags)2432 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2433 pgoff_t index, unsigned flags)
2434 {
2435 struct page *page;
2436 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2437
2438 if (flags & AOP_FLAG_NOFS)
2439 fgp_flags |= FGP_NOFS;
2440
2441 page = pagecache_get_page(mapping, index, fgp_flags,
2442 mapping_gfp_mask(mapping));
2443 if (page)
2444 wait_for_stable_page(page);
2445
2446 return page;
2447 }
2448 EXPORT_SYMBOL(grab_cache_page_write_begin);
2449
generic_perform_write(struct file * file,struct iov_iter * i,loff_t pos)2450 ssize_t generic_perform_write(struct file *file,
2451 struct iov_iter *i, loff_t pos)
2452 {
2453 struct address_space *mapping = file->f_mapping;
2454 const struct address_space_operations *a_ops = mapping->a_ops;
2455 long status = 0;
2456 ssize_t written = 0;
2457 unsigned int flags = 0;
2458
2459 /*
2460 * Copies from kernel address space cannot fail (NFSD is a big user).
2461 */
2462 if (segment_eq(get_fs(), KERNEL_DS))
2463 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2464
2465 do {
2466 struct page *page;
2467 unsigned long offset; /* Offset into pagecache page */
2468 unsigned long bytes; /* Bytes to write to page */
2469 size_t copied; /* Bytes copied from user */
2470 void *fsdata;
2471
2472 offset = (pos & (PAGE_CACHE_SIZE - 1));
2473 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2474 iov_iter_count(i));
2475
2476 again:
2477 /*
2478 * Bring in the user page that we will copy from _first_.
2479 * Otherwise there's a nasty deadlock on copying from the
2480 * same page as we're writing to, without it being marked
2481 * up-to-date.
2482 *
2483 * Not only is this an optimisation, but it is also required
2484 * to check that the address is actually valid, when atomic
2485 * usercopies are used, below.
2486 */
2487 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2488 status = -EFAULT;
2489 break;
2490 }
2491
2492 if (fatal_signal_pending(current)) {
2493 status = -EINTR;
2494 break;
2495 }
2496
2497 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2498 &page, &fsdata);
2499 if (unlikely(status < 0))
2500 break;
2501
2502 if (mapping_writably_mapped(mapping))
2503 flush_dcache_page(page);
2504
2505 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2506 flush_dcache_page(page);
2507
2508 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2509 page, fsdata);
2510 if (unlikely(status < 0))
2511 break;
2512 copied = status;
2513
2514 cond_resched();
2515
2516 iov_iter_advance(i, copied);
2517 if (unlikely(copied == 0)) {
2518 /*
2519 * If we were unable to copy any data at all, we must
2520 * fall back to a single segment length write.
2521 *
2522 * If we didn't fallback here, we could livelock
2523 * because not all segments in the iov can be copied at
2524 * once without a pagefault.
2525 */
2526 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2527 iov_iter_single_seg_count(i));
2528 goto again;
2529 }
2530 pos += copied;
2531 written += copied;
2532
2533 balance_dirty_pages_ratelimited(mapping);
2534 } while (iov_iter_count(i));
2535
2536 return written ? written : status;
2537 }
2538 EXPORT_SYMBOL(generic_perform_write);
2539
2540 /**
2541 * __generic_file_write_iter - write data to a file
2542 * @iocb: IO state structure (file, offset, etc.)
2543 * @from: iov_iter with data to write
2544 *
2545 * This function does all the work needed for actually writing data to a
2546 * file. It does all basic checks, removes SUID from the file, updates
2547 * modification times and calls proper subroutines depending on whether we
2548 * do direct IO or a standard buffered write.
2549 *
2550 * It expects i_mutex to be grabbed unless we work on a block device or similar
2551 * object which does not need locking at all.
2552 *
2553 * This function does *not* take care of syncing data in case of O_SYNC write.
2554 * A caller has to handle it. This is mainly due to the fact that we want to
2555 * avoid syncing under i_mutex.
2556 */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2557 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2558 {
2559 struct file *file = iocb->ki_filp;
2560 struct address_space * mapping = file->f_mapping;
2561 struct inode *inode = mapping->host;
2562 loff_t pos = iocb->ki_pos;
2563 ssize_t written = 0;
2564 ssize_t err;
2565 ssize_t status;
2566 size_t count = iov_iter_count(from);
2567
2568 /* We can write back this queue in page reclaim */
2569 current->backing_dev_info = mapping->backing_dev_info;
2570 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2571 if (err)
2572 goto out;
2573
2574 if (count == 0)
2575 goto out;
2576
2577 iov_iter_truncate(from, count);
2578
2579 err = file_remove_suid(file);
2580 if (err)
2581 goto out;
2582
2583 err = file_update_time(file);
2584 if (err)
2585 goto out;
2586
2587 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2588 if (unlikely(file->f_flags & O_DIRECT)) {
2589 loff_t endbyte;
2590
2591 written = generic_file_direct_write(iocb, from, pos);
2592 if (written < 0 || written == count)
2593 goto out;
2594
2595 /*
2596 * direct-io write to a hole: fall through to buffered I/O
2597 * for completing the rest of the request.
2598 */
2599 pos += written;
2600 count -= written;
2601
2602 status = generic_perform_write(file, from, pos);
2603 /*
2604 * If generic_perform_write() returned a synchronous error
2605 * then we want to return the number of bytes which were
2606 * direct-written, or the error code if that was zero. Note
2607 * that this differs from normal direct-io semantics, which
2608 * will return -EFOO even if some bytes were written.
2609 */
2610 if (unlikely(status < 0)) {
2611 err = status;
2612 goto out;
2613 }
2614 iocb->ki_pos = pos + status;
2615 /*
2616 * We need to ensure that the page cache pages are written to
2617 * disk and invalidated to preserve the expected O_DIRECT
2618 * semantics.
2619 */
2620 endbyte = pos + status - 1;
2621 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2622 if (err == 0) {
2623 written += status;
2624 invalidate_mapping_pages(mapping,
2625 pos >> PAGE_CACHE_SHIFT,
2626 endbyte >> PAGE_CACHE_SHIFT);
2627 } else {
2628 /*
2629 * We don't know how much we wrote, so just return
2630 * the number of bytes which were direct-written
2631 */
2632 }
2633 } else {
2634 written = generic_perform_write(file, from, pos);
2635 if (likely(written >= 0))
2636 iocb->ki_pos = pos + written;
2637 }
2638 out:
2639 current->backing_dev_info = NULL;
2640 return written ? written : err;
2641 }
2642 EXPORT_SYMBOL(__generic_file_write_iter);
2643
2644 /**
2645 * generic_file_write_iter - write data to a file
2646 * @iocb: IO state structure
2647 * @from: iov_iter with data to write
2648 *
2649 * This is a wrapper around __generic_file_write_iter() to be used by most
2650 * filesystems. It takes care of syncing the file in case of O_SYNC file
2651 * and acquires i_mutex as needed.
2652 */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2653 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2654 {
2655 struct file *file = iocb->ki_filp;
2656 struct inode *inode = file->f_mapping->host;
2657 ssize_t ret;
2658
2659 mutex_lock(&inode->i_mutex);
2660 ret = __generic_file_write_iter(iocb, from);
2661 mutex_unlock(&inode->i_mutex);
2662
2663 if (ret > 0) {
2664 ssize_t err;
2665
2666 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2667 if (err < 0)
2668 ret = err;
2669 }
2670 return ret;
2671 }
2672 EXPORT_SYMBOL(generic_file_write_iter);
2673
2674 /**
2675 * try_to_release_page() - release old fs-specific metadata on a page
2676 *
2677 * @page: the page which the kernel is trying to free
2678 * @gfp_mask: memory allocation flags (and I/O mode)
2679 *
2680 * The address_space is to try to release any data against the page
2681 * (presumably at page->private). If the release was successful, return `1'.
2682 * Otherwise return zero.
2683 *
2684 * This may also be called if PG_fscache is set on a page, indicating that the
2685 * page is known to the local caching routines.
2686 *
2687 * The @gfp_mask argument specifies whether I/O may be performed to release
2688 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2689 *
2690 */
try_to_release_page(struct page * page,gfp_t gfp_mask)2691 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2692 {
2693 struct address_space * const mapping = page->mapping;
2694
2695 BUG_ON(!PageLocked(page));
2696 if (PageWriteback(page))
2697 return 0;
2698
2699 if (mapping && mapping->a_ops->releasepage)
2700 return mapping->a_ops->releasepage(page, gfp_mask);
2701 return try_to_free_buffers(page);
2702 }
2703
2704 EXPORT_SYMBOL(try_to_release_page);
2705