1
2 #include <linux/device.h>
3 #include <linux/io.h>
4 #include <linux/ioport.h>
5 #include <linux/module.h>
6 #include <linux/of_address.h>
7 #include <linux/pci_regs.h>
8 #include <linux/sizes.h>
9 #include <linux/slab.h>
10 #include <linux/string.h>
11
12 /* Max address size we deal with */
13 #define OF_MAX_ADDR_CELLS 4
14 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
15 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
16
17 static struct of_bus *of_match_bus(struct device_node *np);
18 static int __of_address_to_resource(struct device_node *dev,
19 const __be32 *addrp, u64 size, unsigned int flags,
20 const char *name, struct resource *r);
21
22 /* Debug utility */
23 #ifdef DEBUG
of_dump_addr(const char * s,const __be32 * addr,int na)24 static void of_dump_addr(const char *s, const __be32 *addr, int na)
25 {
26 printk(KERN_DEBUG "%s", s);
27 while (na--)
28 printk(" %08x", be32_to_cpu(*(addr++)));
29 printk("\n");
30 }
31 #else
of_dump_addr(const char * s,const __be32 * addr,int na)32 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
33 #endif
34
35 /* Callbacks for bus specific translators */
36 struct of_bus {
37 const char *name;
38 const char *addresses;
39 int (*match)(struct device_node *parent);
40 void (*count_cells)(struct device_node *child,
41 int *addrc, int *sizec);
42 u64 (*map)(__be32 *addr, const __be32 *range,
43 int na, int ns, int pna);
44 int (*translate)(__be32 *addr, u64 offset, int na);
45 unsigned int (*get_flags)(const __be32 *addr);
46 };
47
48 /*
49 * Default translator (generic bus)
50 */
51
of_bus_default_count_cells(struct device_node * dev,int * addrc,int * sizec)52 static void of_bus_default_count_cells(struct device_node *dev,
53 int *addrc, int *sizec)
54 {
55 if (addrc)
56 *addrc = of_n_addr_cells(dev);
57 if (sizec)
58 *sizec = of_n_size_cells(dev);
59 }
60
of_bus_default_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)61 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
62 int na, int ns, int pna)
63 {
64 u64 cp, s, da;
65
66 cp = of_read_number(range, na);
67 s = of_read_number(range + na + pna, ns);
68 da = of_read_number(addr, na);
69
70 pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
71 (unsigned long long)cp, (unsigned long long)s,
72 (unsigned long long)da);
73
74 if (da < cp || da >= (cp + s))
75 return OF_BAD_ADDR;
76 return da - cp;
77 }
78
of_bus_default_translate(__be32 * addr,u64 offset,int na)79 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
80 {
81 u64 a = of_read_number(addr, na);
82 memset(addr, 0, na * 4);
83 a += offset;
84 if (na > 1)
85 addr[na - 2] = cpu_to_be32(a >> 32);
86 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
87
88 return 0;
89 }
90
of_bus_default_get_flags(const __be32 * addr)91 static unsigned int of_bus_default_get_flags(const __be32 *addr)
92 {
93 return IORESOURCE_MEM;
94 }
95
96 #ifdef CONFIG_OF_ADDRESS_PCI
97 /*
98 * PCI bus specific translator
99 */
100
of_bus_pci_match(struct device_node * np)101 static int of_bus_pci_match(struct device_node *np)
102 {
103 /*
104 * "pciex" is PCI Express
105 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
106 * "ht" is hypertransport
107 */
108 return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
109 !strcmp(np->type, "vci") || !strcmp(np->type, "ht");
110 }
111
of_bus_pci_count_cells(struct device_node * np,int * addrc,int * sizec)112 static void of_bus_pci_count_cells(struct device_node *np,
113 int *addrc, int *sizec)
114 {
115 if (addrc)
116 *addrc = 3;
117 if (sizec)
118 *sizec = 2;
119 }
120
of_bus_pci_get_flags(const __be32 * addr)121 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
122 {
123 unsigned int flags = 0;
124 u32 w = be32_to_cpup(addr);
125
126 switch((w >> 24) & 0x03) {
127 case 0x01:
128 flags |= IORESOURCE_IO;
129 break;
130 case 0x02: /* 32 bits */
131 case 0x03: /* 64 bits */
132 flags |= IORESOURCE_MEM;
133 break;
134 }
135 if (w & 0x40000000)
136 flags |= IORESOURCE_PREFETCH;
137 return flags;
138 }
139
of_bus_pci_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)140 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
141 int pna)
142 {
143 u64 cp, s, da;
144 unsigned int af, rf;
145
146 af = of_bus_pci_get_flags(addr);
147 rf = of_bus_pci_get_flags(range);
148
149 /* Check address type match */
150 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
151 return OF_BAD_ADDR;
152
153 /* Read address values, skipping high cell */
154 cp = of_read_number(range + 1, na - 1);
155 s = of_read_number(range + na + pna, ns);
156 da = of_read_number(addr + 1, na - 1);
157
158 pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
159 (unsigned long long)cp, (unsigned long long)s,
160 (unsigned long long)da);
161
162 if (da < cp || da >= (cp + s))
163 return OF_BAD_ADDR;
164 return da - cp;
165 }
166
of_bus_pci_translate(__be32 * addr,u64 offset,int na)167 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
168 {
169 return of_bus_default_translate(addr + 1, offset, na - 1);
170 }
171 #endif /* CONFIG_OF_ADDRESS_PCI */
172
173 #ifdef CONFIG_PCI
of_get_pci_address(struct device_node * dev,int bar_no,u64 * size,unsigned int * flags)174 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
175 unsigned int *flags)
176 {
177 const __be32 *prop;
178 unsigned int psize;
179 struct device_node *parent;
180 struct of_bus *bus;
181 int onesize, i, na, ns;
182
183 /* Get parent & match bus type */
184 parent = of_get_parent(dev);
185 if (parent == NULL)
186 return NULL;
187 bus = of_match_bus(parent);
188 if (strcmp(bus->name, "pci")) {
189 of_node_put(parent);
190 return NULL;
191 }
192 bus->count_cells(dev, &na, &ns);
193 of_node_put(parent);
194 if (!OF_CHECK_ADDR_COUNT(na))
195 return NULL;
196
197 /* Get "reg" or "assigned-addresses" property */
198 prop = of_get_property(dev, bus->addresses, &psize);
199 if (prop == NULL)
200 return NULL;
201 psize /= 4;
202
203 onesize = na + ns;
204 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
205 u32 val = be32_to_cpu(prop[0]);
206 if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
207 if (size)
208 *size = of_read_number(prop + na, ns);
209 if (flags)
210 *flags = bus->get_flags(prop);
211 return prop;
212 }
213 }
214 return NULL;
215 }
216 EXPORT_SYMBOL(of_get_pci_address);
217
of_pci_address_to_resource(struct device_node * dev,int bar,struct resource * r)218 int of_pci_address_to_resource(struct device_node *dev, int bar,
219 struct resource *r)
220 {
221 const __be32 *addrp;
222 u64 size;
223 unsigned int flags;
224
225 addrp = of_get_pci_address(dev, bar, &size, &flags);
226 if (addrp == NULL)
227 return -EINVAL;
228 return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
229 }
230 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
231
of_pci_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)232 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
233 struct device_node *node)
234 {
235 const int na = 3, ns = 2;
236 int rlen;
237
238 parser->node = node;
239 parser->pna = of_n_addr_cells(node);
240 parser->np = parser->pna + na + ns;
241
242 parser->range = of_get_property(node, "ranges", &rlen);
243 if (parser->range == NULL)
244 return -ENOENT;
245
246 parser->end = parser->range + rlen / sizeof(__be32);
247
248 return 0;
249 }
250 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
251
of_pci_range_parser_one(struct of_pci_range_parser * parser,struct of_pci_range * range)252 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
253 struct of_pci_range *range)
254 {
255 const int na = 3, ns = 2;
256
257 if (!range)
258 return NULL;
259
260 if (!parser->range || parser->range + parser->np > parser->end)
261 return NULL;
262
263 range->pci_space = be32_to_cpup(parser->range);
264 range->flags = of_bus_pci_get_flags(parser->range);
265 range->pci_addr = of_read_number(parser->range + 1, ns);
266 range->cpu_addr = of_translate_address(parser->node,
267 parser->range + na);
268 range->size = of_read_number(parser->range + parser->pna + na, ns);
269
270 parser->range += parser->np;
271
272 /* Now consume following elements while they are contiguous */
273 while (parser->range + parser->np <= parser->end) {
274 u32 flags, pci_space;
275 u64 pci_addr, cpu_addr, size;
276
277 pci_space = be32_to_cpup(parser->range);
278 flags = of_bus_pci_get_flags(parser->range);
279 pci_addr = of_read_number(parser->range + 1, ns);
280 cpu_addr = of_translate_address(parser->node,
281 parser->range + na);
282 size = of_read_number(parser->range + parser->pna + na, ns);
283
284 if (flags != range->flags)
285 break;
286 if (pci_addr != range->pci_addr + range->size ||
287 cpu_addr != range->cpu_addr + range->size)
288 break;
289
290 range->size += size;
291 parser->range += parser->np;
292 }
293
294 return range;
295 }
296 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
297
298 /*
299 * of_pci_range_to_resource - Create a resource from an of_pci_range
300 * @range: the PCI range that describes the resource
301 * @np: device node where the range belongs to
302 * @res: pointer to a valid resource that will be updated to
303 * reflect the values contained in the range.
304 *
305 * Returns EINVAL if the range cannot be converted to resource.
306 *
307 * Note that if the range is an IO range, the resource will be converted
308 * using pci_address_to_pio() which can fail if it is called too early or
309 * if the range cannot be matched to any host bridge IO space (our case here).
310 * To guard against that we try to register the IO range first.
311 * If that fails we know that pci_address_to_pio() will do too.
312 */
of_pci_range_to_resource(struct of_pci_range * range,struct device_node * np,struct resource * res)313 int of_pci_range_to_resource(struct of_pci_range *range,
314 struct device_node *np, struct resource *res)
315 {
316 int err;
317 res->flags = range->flags;
318 res->parent = res->child = res->sibling = NULL;
319 res->name = np->full_name;
320
321 if (res->flags & IORESOURCE_IO) {
322 unsigned long port;
323 err = pci_register_io_range(range->cpu_addr, range->size);
324 if (err)
325 goto invalid_range;
326 port = pci_address_to_pio(range->cpu_addr);
327 if (port == (unsigned long)-1) {
328 err = -EINVAL;
329 goto invalid_range;
330 }
331 res->start = port;
332 } else {
333 res->start = range->cpu_addr;
334 }
335 res->end = res->start + range->size - 1;
336 return 0;
337
338 invalid_range:
339 res->start = (resource_size_t)OF_BAD_ADDR;
340 res->end = (resource_size_t)OF_BAD_ADDR;
341 return err;
342 }
343 #endif /* CONFIG_PCI */
344
345 /*
346 * ISA bus specific translator
347 */
348
of_bus_isa_match(struct device_node * np)349 static int of_bus_isa_match(struct device_node *np)
350 {
351 return !strcmp(np->name, "isa");
352 }
353
of_bus_isa_count_cells(struct device_node * child,int * addrc,int * sizec)354 static void of_bus_isa_count_cells(struct device_node *child,
355 int *addrc, int *sizec)
356 {
357 if (addrc)
358 *addrc = 2;
359 if (sizec)
360 *sizec = 1;
361 }
362
of_bus_isa_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)363 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
364 int pna)
365 {
366 u64 cp, s, da;
367
368 /* Check address type match */
369 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
370 return OF_BAD_ADDR;
371
372 /* Read address values, skipping high cell */
373 cp = of_read_number(range + 1, na - 1);
374 s = of_read_number(range + na + pna, ns);
375 da = of_read_number(addr + 1, na - 1);
376
377 pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
378 (unsigned long long)cp, (unsigned long long)s,
379 (unsigned long long)da);
380
381 if (da < cp || da >= (cp + s))
382 return OF_BAD_ADDR;
383 return da - cp;
384 }
385
of_bus_isa_translate(__be32 * addr,u64 offset,int na)386 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
387 {
388 return of_bus_default_translate(addr + 1, offset, na - 1);
389 }
390
of_bus_isa_get_flags(const __be32 * addr)391 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
392 {
393 unsigned int flags = 0;
394 u32 w = be32_to_cpup(addr);
395
396 if (w & 1)
397 flags |= IORESOURCE_IO;
398 else
399 flags |= IORESOURCE_MEM;
400 return flags;
401 }
402
403 /*
404 * Array of bus specific translators
405 */
406
407 static struct of_bus of_busses[] = {
408 #ifdef CONFIG_OF_ADDRESS_PCI
409 /* PCI */
410 {
411 .name = "pci",
412 .addresses = "assigned-addresses",
413 .match = of_bus_pci_match,
414 .count_cells = of_bus_pci_count_cells,
415 .map = of_bus_pci_map,
416 .translate = of_bus_pci_translate,
417 .get_flags = of_bus_pci_get_flags,
418 },
419 #endif /* CONFIG_OF_ADDRESS_PCI */
420 /* ISA */
421 {
422 .name = "isa",
423 .addresses = "reg",
424 .match = of_bus_isa_match,
425 .count_cells = of_bus_isa_count_cells,
426 .map = of_bus_isa_map,
427 .translate = of_bus_isa_translate,
428 .get_flags = of_bus_isa_get_flags,
429 },
430 /* Default */
431 {
432 .name = "default",
433 .addresses = "reg",
434 .match = NULL,
435 .count_cells = of_bus_default_count_cells,
436 .map = of_bus_default_map,
437 .translate = of_bus_default_translate,
438 .get_flags = of_bus_default_get_flags,
439 },
440 };
441
of_match_bus(struct device_node * np)442 static struct of_bus *of_match_bus(struct device_node *np)
443 {
444 int i;
445
446 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
447 if (!of_busses[i].match || of_busses[i].match(np))
448 return &of_busses[i];
449 BUG();
450 return NULL;
451 }
452
of_empty_ranges_quirk(struct device_node * np)453 static int of_empty_ranges_quirk(struct device_node *np)
454 {
455 if (IS_ENABLED(CONFIG_PPC)) {
456 /* To save cycles, we cache the result for global "Mac" setting */
457 static int quirk_state = -1;
458
459 /* PA-SEMI sdc DT bug */
460 if (of_device_is_compatible(np, "1682m-sdc"))
461 return true;
462
463 /* Make quirk cached */
464 if (quirk_state < 0)
465 quirk_state =
466 of_machine_is_compatible("Power Macintosh") ||
467 of_machine_is_compatible("MacRISC");
468 return quirk_state;
469 }
470 return false;
471 }
472
of_translate_one(struct device_node * parent,struct of_bus * bus,struct of_bus * pbus,__be32 * addr,int na,int ns,int pna,const char * rprop)473 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
474 struct of_bus *pbus, __be32 *addr,
475 int na, int ns, int pna, const char *rprop)
476 {
477 const __be32 *ranges;
478 unsigned int rlen;
479 int rone;
480 u64 offset = OF_BAD_ADDR;
481
482 /* Normally, an absence of a "ranges" property means we are
483 * crossing a non-translatable boundary, and thus the addresses
484 * below the current not cannot be converted to CPU physical ones.
485 * Unfortunately, while this is very clear in the spec, it's not
486 * what Apple understood, and they do have things like /uni-n or
487 * /ht nodes with no "ranges" property and a lot of perfectly
488 * useable mapped devices below them. Thus we treat the absence of
489 * "ranges" as equivalent to an empty "ranges" property which means
490 * a 1:1 translation at that level. It's up to the caller not to try
491 * to translate addresses that aren't supposed to be translated in
492 * the first place. --BenH.
493 *
494 * As far as we know, this damage only exists on Apple machines, so
495 * This code is only enabled on powerpc. --gcl
496 */
497 ranges = of_get_property(parent, rprop, &rlen);
498 if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
499 pr_err("OF: no ranges; cannot translate\n");
500 return 1;
501 }
502 if (ranges == NULL || rlen == 0) {
503 offset = of_read_number(addr, na);
504 memset(addr, 0, pna * 4);
505 pr_debug("OF: empty ranges; 1:1 translation\n");
506 goto finish;
507 }
508
509 pr_debug("OF: walking ranges...\n");
510
511 /* Now walk through the ranges */
512 rlen /= 4;
513 rone = na + pna + ns;
514 for (; rlen >= rone; rlen -= rone, ranges += rone) {
515 offset = bus->map(addr, ranges, na, ns, pna);
516 if (offset != OF_BAD_ADDR)
517 break;
518 }
519 if (offset == OF_BAD_ADDR) {
520 pr_debug("OF: not found !\n");
521 return 1;
522 }
523 memcpy(addr, ranges + na, 4 * pna);
524
525 finish:
526 of_dump_addr("OF: parent translation for:", addr, pna);
527 pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
528
529 /* Translate it into parent bus space */
530 return pbus->translate(addr, offset, pna);
531 }
532
533 /*
534 * Translate an address from the device-tree into a CPU physical address,
535 * this walks up the tree and applies the various bus mappings on the
536 * way.
537 *
538 * Note: We consider that crossing any level with #size-cells == 0 to mean
539 * that translation is impossible (that is we are not dealing with a value
540 * that can be mapped to a cpu physical address). This is not really specified
541 * that way, but this is traditionally the way IBM at least do things
542 */
__of_translate_address(struct device_node * dev,const __be32 * in_addr,const char * rprop)543 static u64 __of_translate_address(struct device_node *dev,
544 const __be32 *in_addr, const char *rprop)
545 {
546 struct device_node *parent = NULL;
547 struct of_bus *bus, *pbus;
548 __be32 addr[OF_MAX_ADDR_CELLS];
549 int na, ns, pna, pns;
550 u64 result = OF_BAD_ADDR;
551
552 pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev));
553
554 /* Increase refcount at current level */
555 of_node_get(dev);
556
557 /* Get parent & match bus type */
558 parent = of_get_parent(dev);
559 if (parent == NULL)
560 goto bail;
561 bus = of_match_bus(parent);
562
563 /* Count address cells & copy address locally */
564 bus->count_cells(dev, &na, &ns);
565 if (!OF_CHECK_COUNTS(na, ns)) {
566 pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev));
567 goto bail;
568 }
569 memcpy(addr, in_addr, na * 4);
570
571 pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
572 bus->name, na, ns, of_node_full_name(parent));
573 of_dump_addr("OF: translating address:", addr, na);
574
575 /* Translate */
576 for (;;) {
577 /* Switch to parent bus */
578 of_node_put(dev);
579 dev = parent;
580 parent = of_get_parent(dev);
581
582 /* If root, we have finished */
583 if (parent == NULL) {
584 pr_debug("OF: reached root node\n");
585 result = of_read_number(addr, na);
586 break;
587 }
588
589 /* Get new parent bus and counts */
590 pbus = of_match_bus(parent);
591 pbus->count_cells(dev, &pna, &pns);
592 if (!OF_CHECK_COUNTS(pna, pns)) {
593 printk(KERN_ERR "prom_parse: Bad cell count for %s\n",
594 of_node_full_name(dev));
595 break;
596 }
597
598 pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
599 pbus->name, pna, pns, of_node_full_name(parent));
600
601 /* Apply bus translation */
602 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
603 break;
604
605 /* Complete the move up one level */
606 na = pna;
607 ns = pns;
608 bus = pbus;
609
610 of_dump_addr("OF: one level translation:", addr, na);
611 }
612 bail:
613 of_node_put(parent);
614 of_node_put(dev);
615
616 return result;
617 }
618
of_translate_address(struct device_node * dev,const __be32 * in_addr)619 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
620 {
621 return __of_translate_address(dev, in_addr, "ranges");
622 }
623 EXPORT_SYMBOL(of_translate_address);
624
of_translate_dma_address(struct device_node * dev,const __be32 * in_addr)625 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
626 {
627 return __of_translate_address(dev, in_addr, "dma-ranges");
628 }
629 EXPORT_SYMBOL(of_translate_dma_address);
630
of_get_address(struct device_node * dev,int index,u64 * size,unsigned int * flags)631 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
632 unsigned int *flags)
633 {
634 const __be32 *prop;
635 unsigned int psize;
636 struct device_node *parent;
637 struct of_bus *bus;
638 int onesize, i, na, ns;
639
640 /* Get parent & match bus type */
641 parent = of_get_parent(dev);
642 if (parent == NULL)
643 return NULL;
644 bus = of_match_bus(parent);
645 bus->count_cells(dev, &na, &ns);
646 of_node_put(parent);
647 if (!OF_CHECK_ADDR_COUNT(na))
648 return NULL;
649
650 /* Get "reg" or "assigned-addresses" property */
651 prop = of_get_property(dev, bus->addresses, &psize);
652 if (prop == NULL)
653 return NULL;
654 psize /= 4;
655
656 onesize = na + ns;
657 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
658 if (i == index) {
659 if (size)
660 *size = of_read_number(prop + na, ns);
661 if (flags)
662 *flags = bus->get_flags(prop);
663 return prop;
664 }
665 return NULL;
666 }
667 EXPORT_SYMBOL(of_get_address);
668
669 #ifdef PCI_IOBASE
670 struct io_range {
671 struct list_head list;
672 phys_addr_t start;
673 resource_size_t size;
674 };
675
676 static LIST_HEAD(io_range_list);
677 static DEFINE_SPINLOCK(io_range_lock);
678 #endif
679
680 /*
681 * Record the PCI IO range (expressed as CPU physical address + size).
682 * Return a negative value if an error has occured, zero otherwise
683 */
pci_register_io_range(phys_addr_t addr,resource_size_t size)684 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
685 {
686 int err = 0;
687
688 #ifdef PCI_IOBASE
689 struct io_range *range;
690 resource_size_t allocated_size = 0;
691
692 /* check if the range hasn't been previously recorded */
693 spin_lock(&io_range_lock);
694 list_for_each_entry(range, &io_range_list, list) {
695 if (addr >= range->start && addr + size <= range->start + size) {
696 /* range already registered, bail out */
697 goto end_register;
698 }
699 allocated_size += range->size;
700 }
701
702 /* range not registed yet, check for available space */
703 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
704 /* if it's too big check if 64K space can be reserved */
705 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
706 err = -E2BIG;
707 goto end_register;
708 }
709
710 size = SZ_64K;
711 pr_warn("Requested IO range too big, new size set to 64K\n");
712 }
713
714 /* add the range to the list */
715 range = kzalloc(sizeof(*range), GFP_ATOMIC);
716 if (!range) {
717 err = -ENOMEM;
718 goto end_register;
719 }
720
721 range->start = addr;
722 range->size = size;
723
724 list_add_tail(&range->list, &io_range_list);
725
726 end_register:
727 spin_unlock(&io_range_lock);
728 #endif
729
730 return err;
731 }
732
pci_pio_to_address(unsigned long pio)733 phys_addr_t pci_pio_to_address(unsigned long pio)
734 {
735 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
736
737 #ifdef PCI_IOBASE
738 struct io_range *range;
739 resource_size_t allocated_size = 0;
740
741 if (pio > IO_SPACE_LIMIT)
742 return address;
743
744 spin_lock(&io_range_lock);
745 list_for_each_entry(range, &io_range_list, list) {
746 if (pio >= allocated_size && pio < allocated_size + range->size) {
747 address = range->start + pio - allocated_size;
748 break;
749 }
750 allocated_size += range->size;
751 }
752 spin_unlock(&io_range_lock);
753 #endif
754
755 return address;
756 }
757
pci_address_to_pio(phys_addr_t address)758 unsigned long __weak pci_address_to_pio(phys_addr_t address)
759 {
760 #ifdef PCI_IOBASE
761 struct io_range *res;
762 resource_size_t offset = 0;
763 unsigned long addr = -1;
764
765 spin_lock(&io_range_lock);
766 list_for_each_entry(res, &io_range_list, list) {
767 if (address >= res->start && address < res->start + res->size) {
768 addr = address - res->start + offset;
769 break;
770 }
771 offset += res->size;
772 }
773 spin_unlock(&io_range_lock);
774
775 return addr;
776 #else
777 if (address > IO_SPACE_LIMIT)
778 return (unsigned long)-1;
779
780 return (unsigned long) address;
781 #endif
782 }
783
__of_address_to_resource(struct device_node * dev,const __be32 * addrp,u64 size,unsigned int flags,const char * name,struct resource * r)784 static int __of_address_to_resource(struct device_node *dev,
785 const __be32 *addrp, u64 size, unsigned int flags,
786 const char *name, struct resource *r)
787 {
788 u64 taddr;
789
790 if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
791 return -EINVAL;
792 taddr = of_translate_address(dev, addrp);
793 if (taddr == OF_BAD_ADDR)
794 return -EINVAL;
795 memset(r, 0, sizeof(struct resource));
796 if (flags & IORESOURCE_IO) {
797 unsigned long port;
798 port = pci_address_to_pio(taddr);
799 if (port == (unsigned long)-1)
800 return -EINVAL;
801 r->start = port;
802 r->end = port + size - 1;
803 } else {
804 r->start = taddr;
805 r->end = taddr + size - 1;
806 }
807 r->flags = flags;
808 r->name = name ? name : dev->full_name;
809
810 return 0;
811 }
812
813 /**
814 * of_address_to_resource - Translate device tree address and return as resource
815 *
816 * Note that if your address is a PIO address, the conversion will fail if
817 * the physical address can't be internally converted to an IO token with
818 * pci_address_to_pio(), that is because it's either called to early or it
819 * can't be matched to any host bridge IO space
820 */
of_address_to_resource(struct device_node * dev,int index,struct resource * r)821 int of_address_to_resource(struct device_node *dev, int index,
822 struct resource *r)
823 {
824 const __be32 *addrp;
825 u64 size;
826 unsigned int flags;
827 const char *name = NULL;
828
829 addrp = of_get_address(dev, index, &size, &flags);
830 if (addrp == NULL)
831 return -EINVAL;
832
833 /* Get optional "reg-names" property to add a name to a resource */
834 of_property_read_string_index(dev, "reg-names", index, &name);
835
836 return __of_address_to_resource(dev, addrp, size, flags, name, r);
837 }
838 EXPORT_SYMBOL_GPL(of_address_to_resource);
839
of_find_matching_node_by_address(struct device_node * from,const struct of_device_id * matches,u64 base_address)840 struct device_node *of_find_matching_node_by_address(struct device_node *from,
841 const struct of_device_id *matches,
842 u64 base_address)
843 {
844 struct device_node *dn = of_find_matching_node(from, matches);
845 struct resource res;
846
847 while (dn) {
848 if (!of_address_to_resource(dn, 0, &res) &&
849 res.start == base_address)
850 return dn;
851
852 dn = of_find_matching_node(dn, matches);
853 }
854
855 return NULL;
856 }
857
858
859 /**
860 * of_iomap - Maps the memory mapped IO for a given device_node
861 * @device: the device whose io range will be mapped
862 * @index: index of the io range
863 *
864 * Returns a pointer to the mapped memory
865 */
of_iomap(struct device_node * np,int index)866 void __iomem *of_iomap(struct device_node *np, int index)
867 {
868 struct resource res;
869
870 if (of_address_to_resource(np, index, &res))
871 return NULL;
872
873 return ioremap(res.start, resource_size(&res));
874 }
875 EXPORT_SYMBOL(of_iomap);
876
877 /*
878 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
879 * for a given device_node
880 * @device: the device whose io range will be mapped
881 * @index: index of the io range
882 * @name: name of the resource
883 *
884 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
885 * error code on failure. Usage example:
886 *
887 * base = of_io_request_and_map(node, 0, "foo");
888 * if (IS_ERR(base))
889 * return PTR_ERR(base);
890 */
of_io_request_and_map(struct device_node * np,int index,char * name)891 void __iomem *of_io_request_and_map(struct device_node *np, int index,
892 char *name)
893 {
894 struct resource res;
895 void __iomem *mem;
896
897 if (of_address_to_resource(np, index, &res))
898 return IOMEM_ERR_PTR(-EINVAL);
899
900 if (!request_mem_region(res.start, resource_size(&res), name))
901 return IOMEM_ERR_PTR(-EBUSY);
902
903 mem = ioremap(res.start, resource_size(&res));
904 if (!mem) {
905 release_mem_region(res.start, resource_size(&res));
906 return IOMEM_ERR_PTR(-ENOMEM);
907 }
908
909 return mem;
910 }
911 EXPORT_SYMBOL(of_io_request_and_map);
912
913 /**
914 * of_dma_get_range - Get DMA range info
915 * @np: device node to get DMA range info
916 * @dma_addr: pointer to store initial DMA address of DMA range
917 * @paddr: pointer to store initial CPU address of DMA range
918 * @size: pointer to store size of DMA range
919 *
920 * Look in bottom up direction for the first "dma-ranges" property
921 * and parse it.
922 * dma-ranges format:
923 * DMA addr (dma_addr) : naddr cells
924 * CPU addr (phys_addr_t) : pna cells
925 * size : nsize cells
926 *
927 * It returns -ENODEV if "dma-ranges" property was not found
928 * for this device in DT.
929 */
of_dma_get_range(struct device_node * np,u64 * dma_addr,u64 * paddr,u64 * size)930 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
931 {
932 struct device_node *node = of_node_get(np);
933 const __be32 *ranges = NULL;
934 int len, naddr, nsize, pna;
935 int ret = 0;
936 u64 dmaaddr;
937
938 if (!node)
939 return -EINVAL;
940
941 while (1) {
942 naddr = of_n_addr_cells(node);
943 nsize = of_n_size_cells(node);
944 node = of_get_next_parent(node);
945 if (!node)
946 break;
947
948 ranges = of_get_property(node, "dma-ranges", &len);
949
950 /* Ignore empty ranges, they imply no translation required */
951 if (ranges && len > 0)
952 break;
953
954 /*
955 * At least empty ranges has to be defined for parent node if
956 * DMA is supported
957 */
958 if (!ranges)
959 break;
960 }
961
962 if (!ranges) {
963 pr_debug("%s: no dma-ranges found for node(%s)\n",
964 __func__, np->full_name);
965 ret = -ENODEV;
966 goto out;
967 }
968
969 len /= sizeof(u32);
970
971 pna = of_n_addr_cells(node);
972
973 /* dma-ranges format:
974 * DMA addr : naddr cells
975 * CPU addr : pna cells
976 * size : nsize cells
977 */
978 dmaaddr = of_read_number(ranges, naddr);
979 *paddr = of_translate_dma_address(np, ranges);
980 if (*paddr == OF_BAD_ADDR) {
981 pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n",
982 __func__, dma_addr, np->full_name);
983 ret = -EINVAL;
984 goto out;
985 }
986 *dma_addr = dmaaddr;
987
988 *size = of_read_number(ranges + naddr + pna, nsize);
989
990 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
991 *dma_addr, *paddr, *size);
992
993 out:
994 of_node_put(node);
995
996 return ret;
997 }
998 EXPORT_SYMBOL_GPL(of_dma_get_range);
999
1000 /**
1001 * of_dma_is_coherent - Check if device is coherent
1002 * @np: device node
1003 *
1004 * It returns true if "dma-coherent" property was found
1005 * for this device in DT.
1006 */
of_dma_is_coherent(struct device_node * np)1007 bool of_dma_is_coherent(struct device_node *np)
1008 {
1009 struct device_node *node = of_node_get(np);
1010
1011 while (node) {
1012 if (of_property_read_bool(node, "dma-coherent")) {
1013 of_node_put(node);
1014 return true;
1015 }
1016 node = of_get_next_parent(node);
1017 }
1018 of_node_put(node);
1019 return false;
1020 }
1021 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1022