1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30
31 #include "of_private.h"
32
33 LIST_HEAD(aliases_lookup);
34
35 struct device_node *of_allnodes;
36 EXPORT_SYMBOL(of_allnodes);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40
41 struct kset *of_kset;
42
43 /*
44 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
45 * This mutex must be held whenever modifications are being made to the
46 * device tree. The of_{attach,detach}_node() and
47 * of_{add,remove,update}_property() helpers make sure this happens.
48 */
49 DEFINE_MUTEX(of_mutex);
50
51 /* use when traversing tree through the allnext, child, sibling,
52 * or parent members of struct device_node.
53 */
54 DEFINE_RAW_SPINLOCK(devtree_lock);
55
of_n_addr_cells(struct device_node * np)56 int of_n_addr_cells(struct device_node *np)
57 {
58 const __be32 *ip;
59
60 do {
61 if (np->parent)
62 np = np->parent;
63 ip = of_get_property(np, "#address-cells", NULL);
64 if (ip)
65 return be32_to_cpup(ip);
66 } while (np->parent);
67 /* No #address-cells property for the root node */
68 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
69 }
70 EXPORT_SYMBOL(of_n_addr_cells);
71
of_n_size_cells(struct device_node * np)72 int of_n_size_cells(struct device_node *np)
73 {
74 const __be32 *ip;
75
76 do {
77 if (np->parent)
78 np = np->parent;
79 ip = of_get_property(np, "#size-cells", NULL);
80 if (ip)
81 return be32_to_cpup(ip);
82 } while (np->parent);
83 /* No #size-cells property for the root node */
84 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
85 }
86 EXPORT_SYMBOL(of_n_size_cells);
87
88 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)89 int __weak of_node_to_nid(struct device_node *np)
90 {
91 return NUMA_NO_NODE;
92 }
93 #endif
94
95 #ifndef CONFIG_OF_DYNAMIC
of_node_release(struct kobject * kobj)96 static void of_node_release(struct kobject *kobj)
97 {
98 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
99 }
100 #endif /* CONFIG_OF_DYNAMIC */
101
102 struct kobj_type of_node_ktype = {
103 .release = of_node_release,
104 };
105
of_node_property_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t offset,size_t count)106 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
107 struct bin_attribute *bin_attr, char *buf,
108 loff_t offset, size_t count)
109 {
110 struct property *pp = container_of(bin_attr, struct property, attr);
111 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
112 }
113
114 /* always return newly allocated name, caller must free after use */
safe_name(struct kobject * kobj,const char * orig_name)115 static const char *safe_name(struct kobject *kobj, const char *orig_name)
116 {
117 const char *name = orig_name;
118 struct kernfs_node *kn;
119 int i = 0;
120
121 /* don't be a hero. After 16 tries give up */
122 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
123 sysfs_put(kn);
124 if (name != orig_name)
125 kfree(name);
126 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
127 }
128
129 if (name == orig_name) {
130 name = kstrdup(orig_name, GFP_KERNEL);
131 } else {
132 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
133 kobject_name(kobj), name);
134 }
135 return name;
136 }
137
__of_add_property_sysfs(struct device_node * np,struct property * pp)138 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
139 {
140 int rc;
141
142 /* Important: Don't leak passwords */
143 bool secure = strncmp(pp->name, "security-", 9) == 0;
144
145 if (!IS_ENABLED(CONFIG_SYSFS))
146 return 0;
147
148 if (!of_kset || !of_node_is_attached(np))
149 return 0;
150
151 sysfs_bin_attr_init(&pp->attr);
152 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
153 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
154 pp->attr.size = secure ? 0 : pp->length;
155 pp->attr.read = of_node_property_read;
156
157 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
158 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
159 return rc;
160 }
161
__of_attach_node_sysfs(struct device_node * np)162 int __of_attach_node_sysfs(struct device_node *np)
163 {
164 const char *name;
165 struct kobject *parent;
166 struct property *pp;
167 int rc;
168
169 if (!IS_ENABLED(CONFIG_SYSFS))
170 return 0;
171
172 if (!of_kset)
173 return 0;
174
175 np->kobj.kset = of_kset;
176 if (!np->parent) {
177 /* Nodes without parents are new top level trees */
178 name = safe_name(&of_kset->kobj, "base");
179 parent = NULL;
180 } else {
181 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
182 parent = &np->parent->kobj;
183 }
184 if (!name)
185 return -ENOMEM;
186 rc = kobject_add(&np->kobj, parent, "%s", name);
187 kfree(name);
188 if (rc)
189 return rc;
190
191 for_each_property_of_node(np, pp)
192 __of_add_property_sysfs(np, pp);
193
194 return 0;
195 }
196
of_init(void)197 static int __init of_init(void)
198 {
199 struct device_node *np;
200
201 /* Create the kset, and register existing nodes */
202 mutex_lock(&of_mutex);
203 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
204 if (!of_kset) {
205 mutex_unlock(&of_mutex);
206 return -ENOMEM;
207 }
208 for_each_of_allnodes(np)
209 __of_attach_node_sysfs(np);
210 mutex_unlock(&of_mutex);
211
212 /* Symlink in /proc as required by userspace ABI */
213 if (of_allnodes)
214 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
215
216 return 0;
217 }
218 core_initcall(of_init);
219
__of_find_property(const struct device_node * np,const char * name,int * lenp)220 static struct property *__of_find_property(const struct device_node *np,
221 const char *name, int *lenp)
222 {
223 struct property *pp;
224
225 if (!np)
226 return NULL;
227
228 for (pp = np->properties; pp; pp = pp->next) {
229 if (of_prop_cmp(pp->name, name) == 0) {
230 if (lenp)
231 *lenp = pp->length;
232 break;
233 }
234 }
235
236 return pp;
237 }
238
of_find_property(const struct device_node * np,const char * name,int * lenp)239 struct property *of_find_property(const struct device_node *np,
240 const char *name,
241 int *lenp)
242 {
243 struct property *pp;
244 unsigned long flags;
245
246 raw_spin_lock_irqsave(&devtree_lock, flags);
247 pp = __of_find_property(np, name, lenp);
248 raw_spin_unlock_irqrestore(&devtree_lock, flags);
249
250 return pp;
251 }
252 EXPORT_SYMBOL(of_find_property);
253
254 /**
255 * of_find_all_nodes - Get next node in global list
256 * @prev: Previous node or NULL to start iteration
257 * of_node_put() will be called on it
258 *
259 * Returns a node pointer with refcount incremented, use
260 * of_node_put() on it when done.
261 */
of_find_all_nodes(struct device_node * prev)262 struct device_node *of_find_all_nodes(struct device_node *prev)
263 {
264 struct device_node *np;
265 unsigned long flags;
266
267 raw_spin_lock_irqsave(&devtree_lock, flags);
268 np = prev ? prev->allnext : of_allnodes;
269 for (; np != NULL; np = np->allnext)
270 if (of_node_get(np))
271 break;
272 of_node_put(prev);
273 raw_spin_unlock_irqrestore(&devtree_lock, flags);
274 return np;
275 }
276 EXPORT_SYMBOL(of_find_all_nodes);
277
278 /*
279 * Find a property with a given name for a given node
280 * and return the value.
281 */
__of_get_property(const struct device_node * np,const char * name,int * lenp)282 const void *__of_get_property(const struct device_node *np,
283 const char *name, int *lenp)
284 {
285 struct property *pp = __of_find_property(np, name, lenp);
286
287 return pp ? pp->value : NULL;
288 }
289
290 /*
291 * Find a property with a given name for a given node
292 * and return the value.
293 */
of_get_property(const struct device_node * np,const char * name,int * lenp)294 const void *of_get_property(const struct device_node *np, const char *name,
295 int *lenp)
296 {
297 struct property *pp = of_find_property(np, name, lenp);
298
299 return pp ? pp->value : NULL;
300 }
301 EXPORT_SYMBOL(of_get_property);
302
303 /*
304 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
305 *
306 * @cpu: logical cpu index of a core/thread
307 * @phys_id: physical identifier of a core/thread
308 *
309 * CPU logical to physical index mapping is architecture specific.
310 * However this __weak function provides a default match of physical
311 * id to logical cpu index. phys_id provided here is usually values read
312 * from the device tree which must match the hardware internal registers.
313 *
314 * Returns true if the physical identifier and the logical cpu index
315 * correspond to the same core/thread, false otherwise.
316 */
arch_match_cpu_phys_id(int cpu,u64 phys_id)317 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
318 {
319 return (u32)phys_id == cpu;
320 }
321
322 /**
323 * Checks if the given "prop_name" property holds the physical id of the
324 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
325 * NULL, local thread number within the core is returned in it.
326 */
__of_find_n_match_cpu_property(struct device_node * cpun,const char * prop_name,int cpu,unsigned int * thread)327 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
328 const char *prop_name, int cpu, unsigned int *thread)
329 {
330 const __be32 *cell;
331 int ac, prop_len, tid;
332 u64 hwid;
333
334 ac = of_n_addr_cells(cpun);
335 cell = of_get_property(cpun, prop_name, &prop_len);
336 if (!cell || !ac)
337 return false;
338 prop_len /= sizeof(*cell) * ac;
339 for (tid = 0; tid < prop_len; tid++) {
340 hwid = of_read_number(cell, ac);
341 if (arch_match_cpu_phys_id(cpu, hwid)) {
342 if (thread)
343 *thread = tid;
344 return true;
345 }
346 cell += ac;
347 }
348 return false;
349 }
350
351 /*
352 * arch_find_n_match_cpu_physical_id - See if the given device node is
353 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
354 * else false. If 'thread' is non-NULL, the local thread number within the
355 * core is returned in it.
356 */
arch_find_n_match_cpu_physical_id(struct device_node * cpun,int cpu,unsigned int * thread)357 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
358 int cpu, unsigned int *thread)
359 {
360 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
361 * for thread ids on PowerPC. If it doesn't exist fallback to
362 * standard "reg" property.
363 */
364 if (IS_ENABLED(CONFIG_PPC) &&
365 __of_find_n_match_cpu_property(cpun,
366 "ibm,ppc-interrupt-server#s",
367 cpu, thread))
368 return true;
369
370 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
371 return true;
372
373 return false;
374 }
375
376 /**
377 * of_get_cpu_node - Get device node associated with the given logical CPU
378 *
379 * @cpu: CPU number(logical index) for which device node is required
380 * @thread: if not NULL, local thread number within the physical core is
381 * returned
382 *
383 * The main purpose of this function is to retrieve the device node for the
384 * given logical CPU index. It should be used to initialize the of_node in
385 * cpu device. Once of_node in cpu device is populated, all the further
386 * references can use that instead.
387 *
388 * CPU logical to physical index mapping is architecture specific and is built
389 * before booting secondary cores. This function uses arch_match_cpu_phys_id
390 * which can be overridden by architecture specific implementation.
391 *
392 * Returns a node pointer for the logical cpu if found, else NULL.
393 */
of_get_cpu_node(int cpu,unsigned int * thread)394 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
395 {
396 struct device_node *cpun;
397
398 for_each_node_by_type(cpun, "cpu") {
399 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
400 return cpun;
401 }
402 return NULL;
403 }
404 EXPORT_SYMBOL(of_get_cpu_node);
405
406 /**
407 * __of_device_is_compatible() - Check if the node matches given constraints
408 * @device: pointer to node
409 * @compat: required compatible string, NULL or "" for any match
410 * @type: required device_type value, NULL or "" for any match
411 * @name: required node name, NULL or "" for any match
412 *
413 * Checks if the given @compat, @type and @name strings match the
414 * properties of the given @device. A constraints can be skipped by
415 * passing NULL or an empty string as the constraint.
416 *
417 * Returns 0 for no match, and a positive integer on match. The return
418 * value is a relative score with larger values indicating better
419 * matches. The score is weighted for the most specific compatible value
420 * to get the highest score. Matching type is next, followed by matching
421 * name. Practically speaking, this results in the following priority
422 * order for matches:
423 *
424 * 1. specific compatible && type && name
425 * 2. specific compatible && type
426 * 3. specific compatible && name
427 * 4. specific compatible
428 * 5. general compatible && type && name
429 * 6. general compatible && type
430 * 7. general compatible && name
431 * 8. general compatible
432 * 9. type && name
433 * 10. type
434 * 11. name
435 */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)436 static int __of_device_is_compatible(const struct device_node *device,
437 const char *compat, const char *type, const char *name)
438 {
439 struct property *prop;
440 const char *cp;
441 int index = 0, score = 0;
442
443 /* Compatible match has highest priority */
444 if (compat && compat[0]) {
445 prop = __of_find_property(device, "compatible", NULL);
446 for (cp = of_prop_next_string(prop, NULL); cp;
447 cp = of_prop_next_string(prop, cp), index++) {
448 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
449 score = INT_MAX/2 - (index << 2);
450 break;
451 }
452 }
453 if (!score)
454 return 0;
455 }
456
457 /* Matching type is better than matching name */
458 if (type && type[0]) {
459 if (!device->type || of_node_cmp(type, device->type))
460 return 0;
461 score += 2;
462 }
463
464 /* Matching name is a bit better than not */
465 if (name && name[0]) {
466 if (!device->name || of_node_cmp(name, device->name))
467 return 0;
468 score++;
469 }
470
471 return score;
472 }
473
474 /** Checks if the given "compat" string matches one of the strings in
475 * the device's "compatible" property
476 */
of_device_is_compatible(const struct device_node * device,const char * compat)477 int of_device_is_compatible(const struct device_node *device,
478 const char *compat)
479 {
480 unsigned long flags;
481 int res;
482
483 raw_spin_lock_irqsave(&devtree_lock, flags);
484 res = __of_device_is_compatible(device, compat, NULL, NULL);
485 raw_spin_unlock_irqrestore(&devtree_lock, flags);
486 return res;
487 }
488 EXPORT_SYMBOL(of_device_is_compatible);
489
490 /**
491 * of_machine_is_compatible - Test root of device tree for a given compatible value
492 * @compat: compatible string to look for in root node's compatible property.
493 *
494 * Returns true if the root node has the given value in its
495 * compatible property.
496 */
of_machine_is_compatible(const char * compat)497 int of_machine_is_compatible(const char *compat)
498 {
499 struct device_node *root;
500 int rc = 0;
501
502 root = of_find_node_by_path("/");
503 if (root) {
504 rc = of_device_is_compatible(root, compat);
505 of_node_put(root);
506 }
507 return rc;
508 }
509 EXPORT_SYMBOL(of_machine_is_compatible);
510
511 /**
512 * __of_device_is_available - check if a device is available for use
513 *
514 * @device: Node to check for availability, with locks already held
515 *
516 * Returns 1 if the status property is absent or set to "okay" or "ok",
517 * 0 otherwise
518 */
__of_device_is_available(const struct device_node * device)519 static int __of_device_is_available(const struct device_node *device)
520 {
521 const char *status;
522 int statlen;
523
524 if (!device)
525 return 0;
526
527 status = __of_get_property(device, "status", &statlen);
528 if (status == NULL)
529 return 1;
530
531 if (statlen > 0) {
532 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
533 return 1;
534 }
535
536 return 0;
537 }
538
539 /**
540 * of_device_is_available - check if a device is available for use
541 *
542 * @device: Node to check for availability
543 *
544 * Returns 1 if the status property is absent or set to "okay" or "ok",
545 * 0 otherwise
546 */
of_device_is_available(const struct device_node * device)547 int of_device_is_available(const struct device_node *device)
548 {
549 unsigned long flags;
550 int res;
551
552 raw_spin_lock_irqsave(&devtree_lock, flags);
553 res = __of_device_is_available(device);
554 raw_spin_unlock_irqrestore(&devtree_lock, flags);
555 return res;
556
557 }
558 EXPORT_SYMBOL(of_device_is_available);
559
560 /**
561 * of_get_parent - Get a node's parent if any
562 * @node: Node to get parent
563 *
564 * Returns a node pointer with refcount incremented, use
565 * of_node_put() on it when done.
566 */
of_get_parent(const struct device_node * node)567 struct device_node *of_get_parent(const struct device_node *node)
568 {
569 struct device_node *np;
570 unsigned long flags;
571
572 if (!node)
573 return NULL;
574
575 raw_spin_lock_irqsave(&devtree_lock, flags);
576 np = of_node_get(node->parent);
577 raw_spin_unlock_irqrestore(&devtree_lock, flags);
578 return np;
579 }
580 EXPORT_SYMBOL(of_get_parent);
581
582 /**
583 * of_get_next_parent - Iterate to a node's parent
584 * @node: Node to get parent of
585 *
586 * This is like of_get_parent() except that it drops the
587 * refcount on the passed node, making it suitable for iterating
588 * through a node's parents.
589 *
590 * Returns a node pointer with refcount incremented, use
591 * of_node_put() on it when done.
592 */
of_get_next_parent(struct device_node * node)593 struct device_node *of_get_next_parent(struct device_node *node)
594 {
595 struct device_node *parent;
596 unsigned long flags;
597
598 if (!node)
599 return NULL;
600
601 raw_spin_lock_irqsave(&devtree_lock, flags);
602 parent = of_node_get(node->parent);
603 of_node_put(node);
604 raw_spin_unlock_irqrestore(&devtree_lock, flags);
605 return parent;
606 }
607 EXPORT_SYMBOL(of_get_next_parent);
608
__of_get_next_child(const struct device_node * node,struct device_node * prev)609 static struct device_node *__of_get_next_child(const struct device_node *node,
610 struct device_node *prev)
611 {
612 struct device_node *next;
613
614 if (!node)
615 return NULL;
616
617 next = prev ? prev->sibling : node->child;
618 for (; next; next = next->sibling)
619 if (of_node_get(next))
620 break;
621 of_node_put(prev);
622 return next;
623 }
624 #define __for_each_child_of_node(parent, child) \
625 for (child = __of_get_next_child(parent, NULL); child != NULL; \
626 child = __of_get_next_child(parent, child))
627
628 /**
629 * of_get_next_child - Iterate a node childs
630 * @node: parent node
631 * @prev: previous child of the parent node, or NULL to get first
632 *
633 * Returns a node pointer with refcount incremented, use
634 * of_node_put() on it when done.
635 */
of_get_next_child(const struct device_node * node,struct device_node * prev)636 struct device_node *of_get_next_child(const struct device_node *node,
637 struct device_node *prev)
638 {
639 struct device_node *next;
640 unsigned long flags;
641
642 raw_spin_lock_irqsave(&devtree_lock, flags);
643 next = __of_get_next_child(node, prev);
644 raw_spin_unlock_irqrestore(&devtree_lock, flags);
645 return next;
646 }
647 EXPORT_SYMBOL(of_get_next_child);
648
649 /**
650 * of_get_next_available_child - Find the next available child node
651 * @node: parent node
652 * @prev: previous child of the parent node, or NULL to get first
653 *
654 * This function is like of_get_next_child(), except that it
655 * automatically skips any disabled nodes (i.e. status = "disabled").
656 */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)657 struct device_node *of_get_next_available_child(const struct device_node *node,
658 struct device_node *prev)
659 {
660 struct device_node *next;
661 unsigned long flags;
662
663 if (!node)
664 return NULL;
665
666 raw_spin_lock_irqsave(&devtree_lock, flags);
667 next = prev ? prev->sibling : node->child;
668 for (; next; next = next->sibling) {
669 if (!__of_device_is_available(next))
670 continue;
671 if (of_node_get(next))
672 break;
673 }
674 of_node_put(prev);
675 raw_spin_unlock_irqrestore(&devtree_lock, flags);
676 return next;
677 }
678 EXPORT_SYMBOL(of_get_next_available_child);
679
680 /**
681 * of_get_child_by_name - Find the child node by name for a given parent
682 * @node: parent node
683 * @name: child name to look for.
684 *
685 * This function looks for child node for given matching name
686 *
687 * Returns a node pointer if found, with refcount incremented, use
688 * of_node_put() on it when done.
689 * Returns NULL if node is not found.
690 */
of_get_child_by_name(const struct device_node * node,const char * name)691 struct device_node *of_get_child_by_name(const struct device_node *node,
692 const char *name)
693 {
694 struct device_node *child;
695
696 for_each_child_of_node(node, child)
697 if (child->name && (of_node_cmp(child->name, name) == 0))
698 break;
699 return child;
700 }
701 EXPORT_SYMBOL(of_get_child_by_name);
702
__of_find_node_by_path(struct device_node * parent,const char * path)703 static struct device_node *__of_find_node_by_path(struct device_node *parent,
704 const char *path)
705 {
706 struct device_node *child;
707 int len = strchrnul(path, '/') - path;
708
709 if (!len)
710 return NULL;
711
712 __for_each_child_of_node(parent, child) {
713 const char *name = strrchr(child->full_name, '/');
714 if (WARN(!name, "malformed device_node %s\n", child->full_name))
715 continue;
716 name++;
717 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
718 return child;
719 }
720 return NULL;
721 }
722
723 /**
724 * of_find_node_by_path - Find a node matching a full OF path
725 * @path: Either the full path to match, or if the path does not
726 * start with '/', the name of a property of the /aliases
727 * node (an alias). In the case of an alias, the node
728 * matching the alias' value will be returned.
729 *
730 * Valid paths:
731 * /foo/bar Full path
732 * foo Valid alias
733 * foo/bar Valid alias + relative path
734 *
735 * Returns a node pointer with refcount incremented, use
736 * of_node_put() on it when done.
737 */
of_find_node_by_path(const char * path)738 struct device_node *of_find_node_by_path(const char *path)
739 {
740 struct device_node *np = NULL;
741 struct property *pp;
742 unsigned long flags;
743
744 if (strcmp(path, "/") == 0)
745 return of_node_get(of_allnodes);
746
747 /* The path could begin with an alias */
748 if (*path != '/') {
749 char *p = strchrnul(path, '/');
750 int len = p - path;
751
752 /* of_aliases must not be NULL */
753 if (!of_aliases)
754 return NULL;
755
756 for_each_property_of_node(of_aliases, pp) {
757 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
758 np = of_find_node_by_path(pp->value);
759 break;
760 }
761 }
762 if (!np)
763 return NULL;
764 path = p;
765 }
766
767 /* Step down the tree matching path components */
768 raw_spin_lock_irqsave(&devtree_lock, flags);
769 if (!np)
770 np = of_node_get(of_allnodes);
771 while (np && *path == '/') {
772 path++; /* Increment past '/' delimiter */
773 np = __of_find_node_by_path(np, path);
774 path = strchrnul(path, '/');
775 }
776 raw_spin_unlock_irqrestore(&devtree_lock, flags);
777 return np;
778 }
779 EXPORT_SYMBOL(of_find_node_by_path);
780
781 /**
782 * of_find_node_by_name - Find a node by its "name" property
783 * @from: The node to start searching from or NULL, the node
784 * you pass will not be searched, only the next one
785 * will; typically, you pass what the previous call
786 * returned. of_node_put() will be called on it
787 * @name: The name string to match against
788 *
789 * Returns a node pointer with refcount incremented, use
790 * of_node_put() on it when done.
791 */
of_find_node_by_name(struct device_node * from,const char * name)792 struct device_node *of_find_node_by_name(struct device_node *from,
793 const char *name)
794 {
795 struct device_node *np;
796 unsigned long flags;
797
798 raw_spin_lock_irqsave(&devtree_lock, flags);
799 np = from ? from->allnext : of_allnodes;
800 for (; np; np = np->allnext)
801 if (np->name && (of_node_cmp(np->name, name) == 0)
802 && of_node_get(np))
803 break;
804 of_node_put(from);
805 raw_spin_unlock_irqrestore(&devtree_lock, flags);
806 return np;
807 }
808 EXPORT_SYMBOL(of_find_node_by_name);
809
810 /**
811 * of_find_node_by_type - Find a node by its "device_type" property
812 * @from: The node to start searching from, or NULL to start searching
813 * the entire device tree. The node you pass will not be
814 * searched, only the next one will; typically, you pass
815 * what the previous call returned. of_node_put() will be
816 * called on from for you.
817 * @type: The type string to match against
818 *
819 * Returns a node pointer with refcount incremented, use
820 * of_node_put() on it when done.
821 */
of_find_node_by_type(struct device_node * from,const char * type)822 struct device_node *of_find_node_by_type(struct device_node *from,
823 const char *type)
824 {
825 struct device_node *np;
826 unsigned long flags;
827
828 raw_spin_lock_irqsave(&devtree_lock, flags);
829 np = from ? from->allnext : of_allnodes;
830 for (; np; np = np->allnext)
831 if (np->type && (of_node_cmp(np->type, type) == 0)
832 && of_node_get(np))
833 break;
834 of_node_put(from);
835 raw_spin_unlock_irqrestore(&devtree_lock, flags);
836 return np;
837 }
838 EXPORT_SYMBOL(of_find_node_by_type);
839
840 /**
841 * of_find_compatible_node - Find a node based on type and one of the
842 * tokens in its "compatible" property
843 * @from: The node to start searching from or NULL, the node
844 * you pass will not be searched, only the next one
845 * will; typically, you pass what the previous call
846 * returned. of_node_put() will be called on it
847 * @type: The type string to match "device_type" or NULL to ignore
848 * @compatible: The string to match to one of the tokens in the device
849 * "compatible" list.
850 *
851 * Returns a node pointer with refcount incremented, use
852 * of_node_put() on it when done.
853 */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)854 struct device_node *of_find_compatible_node(struct device_node *from,
855 const char *type, const char *compatible)
856 {
857 struct device_node *np;
858 unsigned long flags;
859
860 raw_spin_lock_irqsave(&devtree_lock, flags);
861 np = from ? from->allnext : of_allnodes;
862 for (; np; np = np->allnext) {
863 if (__of_device_is_compatible(np, compatible, type, NULL) &&
864 of_node_get(np))
865 break;
866 }
867 of_node_put(from);
868 raw_spin_unlock_irqrestore(&devtree_lock, flags);
869 return np;
870 }
871 EXPORT_SYMBOL(of_find_compatible_node);
872
873 /**
874 * of_find_node_with_property - Find a node which has a property with
875 * the given name.
876 * @from: The node to start searching from or NULL, the node
877 * you pass will not be searched, only the next one
878 * will; typically, you pass what the previous call
879 * returned. of_node_put() will be called on it
880 * @prop_name: The name of the property to look for.
881 *
882 * Returns a node pointer with refcount incremented, use
883 * of_node_put() on it when done.
884 */
of_find_node_with_property(struct device_node * from,const char * prop_name)885 struct device_node *of_find_node_with_property(struct device_node *from,
886 const char *prop_name)
887 {
888 struct device_node *np;
889 struct property *pp;
890 unsigned long flags;
891
892 raw_spin_lock_irqsave(&devtree_lock, flags);
893 np = from ? from->allnext : of_allnodes;
894 for (; np; np = np->allnext) {
895 for (pp = np->properties; pp; pp = pp->next) {
896 if (of_prop_cmp(pp->name, prop_name) == 0) {
897 of_node_get(np);
898 goto out;
899 }
900 }
901 }
902 out:
903 of_node_put(from);
904 raw_spin_unlock_irqrestore(&devtree_lock, flags);
905 return np;
906 }
907 EXPORT_SYMBOL(of_find_node_with_property);
908
909 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)910 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
911 const struct device_node *node)
912 {
913 const struct of_device_id *best_match = NULL;
914 int score, best_score = 0;
915
916 if (!matches)
917 return NULL;
918
919 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
920 score = __of_device_is_compatible(node, matches->compatible,
921 matches->type, matches->name);
922 if (score > best_score) {
923 best_match = matches;
924 best_score = score;
925 }
926 }
927
928 return best_match;
929 }
930
931 /**
932 * of_match_node - Tell if an device_node has a matching of_match structure
933 * @matches: array of of device match structures to search in
934 * @node: the of device structure to match against
935 *
936 * Low level utility function used by device matching.
937 */
of_match_node(const struct of_device_id * matches,const struct device_node * node)938 const struct of_device_id *of_match_node(const struct of_device_id *matches,
939 const struct device_node *node)
940 {
941 const struct of_device_id *match;
942 unsigned long flags;
943
944 raw_spin_lock_irqsave(&devtree_lock, flags);
945 match = __of_match_node(matches, node);
946 raw_spin_unlock_irqrestore(&devtree_lock, flags);
947 return match;
948 }
949 EXPORT_SYMBOL(of_match_node);
950
951 /**
952 * of_find_matching_node_and_match - Find a node based on an of_device_id
953 * match table.
954 * @from: The node to start searching from or NULL, the node
955 * you pass will not be searched, only the next one
956 * will; typically, you pass what the previous call
957 * returned. of_node_put() will be called on it
958 * @matches: array of of device match structures to search in
959 * @match Updated to point at the matches entry which matched
960 *
961 * Returns a node pointer with refcount incremented, use
962 * of_node_put() on it when done.
963 */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)964 struct device_node *of_find_matching_node_and_match(struct device_node *from,
965 const struct of_device_id *matches,
966 const struct of_device_id **match)
967 {
968 struct device_node *np;
969 const struct of_device_id *m;
970 unsigned long flags;
971
972 if (match)
973 *match = NULL;
974
975 raw_spin_lock_irqsave(&devtree_lock, flags);
976 np = from ? from->allnext : of_allnodes;
977 for (; np; np = np->allnext) {
978 m = __of_match_node(matches, np);
979 if (m && of_node_get(np)) {
980 if (match)
981 *match = m;
982 break;
983 }
984 }
985 of_node_put(from);
986 raw_spin_unlock_irqrestore(&devtree_lock, flags);
987 return np;
988 }
989 EXPORT_SYMBOL(of_find_matching_node_and_match);
990
991 /**
992 * of_modalias_node - Lookup appropriate modalias for a device node
993 * @node: pointer to a device tree node
994 * @modalias: Pointer to buffer that modalias value will be copied into
995 * @len: Length of modalias value
996 *
997 * Based on the value of the compatible property, this routine will attempt
998 * to choose an appropriate modalias value for a particular device tree node.
999 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1000 * from the first entry in the compatible list property.
1001 *
1002 * This routine returns 0 on success, <0 on failure.
1003 */
of_modalias_node(struct device_node * node,char * modalias,int len)1004 int of_modalias_node(struct device_node *node, char *modalias, int len)
1005 {
1006 const char *compatible, *p;
1007 int cplen;
1008
1009 compatible = of_get_property(node, "compatible", &cplen);
1010 if (!compatible || strlen(compatible) > cplen)
1011 return -ENODEV;
1012 p = strchr(compatible, ',');
1013 strlcpy(modalias, p ? p + 1 : compatible, len);
1014 return 0;
1015 }
1016 EXPORT_SYMBOL_GPL(of_modalias_node);
1017
1018 /**
1019 * of_find_node_by_phandle - Find a node given a phandle
1020 * @handle: phandle of the node to find
1021 *
1022 * Returns a node pointer with refcount incremented, use
1023 * of_node_put() on it when done.
1024 */
of_find_node_by_phandle(phandle handle)1025 struct device_node *of_find_node_by_phandle(phandle handle)
1026 {
1027 struct device_node *np;
1028 unsigned long flags;
1029
1030 if (!handle)
1031 return NULL;
1032
1033 raw_spin_lock_irqsave(&devtree_lock, flags);
1034 for (np = of_allnodes; np; np = np->allnext)
1035 if (np->phandle == handle)
1036 break;
1037 of_node_get(np);
1038 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1039 return np;
1040 }
1041 EXPORT_SYMBOL(of_find_node_by_phandle);
1042
1043 /**
1044 * of_property_count_elems_of_size - Count the number of elements in a property
1045 *
1046 * @np: device node from which the property value is to be read.
1047 * @propname: name of the property to be searched.
1048 * @elem_size: size of the individual element
1049 *
1050 * Search for a property in a device node and count the number of elements of
1051 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1052 * property does not exist or its length does not match a multiple of elem_size
1053 * and -ENODATA if the property does not have a value.
1054 */
of_property_count_elems_of_size(const struct device_node * np,const char * propname,int elem_size)1055 int of_property_count_elems_of_size(const struct device_node *np,
1056 const char *propname, int elem_size)
1057 {
1058 struct property *prop = of_find_property(np, propname, NULL);
1059
1060 if (!prop)
1061 return -EINVAL;
1062 if (!prop->value)
1063 return -ENODATA;
1064
1065 if (prop->length % elem_size != 0) {
1066 pr_err("size of %s in node %s is not a multiple of %d\n",
1067 propname, np->full_name, elem_size);
1068 return -EINVAL;
1069 }
1070
1071 return prop->length / elem_size;
1072 }
1073 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1074
1075 /**
1076 * of_find_property_value_of_size
1077 *
1078 * @np: device node from which the property value is to be read.
1079 * @propname: name of the property to be searched.
1080 * @len: requested length of property value
1081 *
1082 * Search for a property in a device node and valid the requested size.
1083 * Returns the property value on success, -EINVAL if the property does not
1084 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1085 * property data isn't large enough.
1086 *
1087 */
of_find_property_value_of_size(const struct device_node * np,const char * propname,u32 len)1088 static void *of_find_property_value_of_size(const struct device_node *np,
1089 const char *propname, u32 len)
1090 {
1091 struct property *prop = of_find_property(np, propname, NULL);
1092
1093 if (!prop)
1094 return ERR_PTR(-EINVAL);
1095 if (!prop->value)
1096 return ERR_PTR(-ENODATA);
1097 if (len > prop->length)
1098 return ERR_PTR(-EOVERFLOW);
1099
1100 return prop->value;
1101 }
1102
1103 /**
1104 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1105 *
1106 * @np: device node from which the property value is to be read.
1107 * @propname: name of the property to be searched.
1108 * @index: index of the u32 in the list of values
1109 * @out_value: pointer to return value, modified only if no error.
1110 *
1111 * Search for a property in a device node and read nth 32-bit value from
1112 * it. Returns 0 on success, -EINVAL if the property does not exist,
1113 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1114 * property data isn't large enough.
1115 *
1116 * The out_value is modified only if a valid u32 value can be decoded.
1117 */
of_property_read_u32_index(const struct device_node * np,const char * propname,u32 index,u32 * out_value)1118 int of_property_read_u32_index(const struct device_node *np,
1119 const char *propname,
1120 u32 index, u32 *out_value)
1121 {
1122 const u32 *val = of_find_property_value_of_size(np, propname,
1123 ((index + 1) * sizeof(*out_value)));
1124
1125 if (IS_ERR(val))
1126 return PTR_ERR(val);
1127
1128 *out_value = be32_to_cpup(((__be32 *)val) + index);
1129 return 0;
1130 }
1131 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1132
1133 /**
1134 * of_property_read_u8_array - Find and read an array of u8 from a property.
1135 *
1136 * @np: device node from which the property value is to be read.
1137 * @propname: name of the property to be searched.
1138 * @out_values: pointer to return value, modified only if return value is 0.
1139 * @sz: number of array elements to read
1140 *
1141 * Search for a property in a device node and read 8-bit value(s) from
1142 * it. Returns 0 on success, -EINVAL if the property does not exist,
1143 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1144 * property data isn't large enough.
1145 *
1146 * dts entry of array should be like:
1147 * property = /bits/ 8 <0x50 0x60 0x70>;
1148 *
1149 * The out_values is modified only if a valid u8 value can be decoded.
1150 */
of_property_read_u8_array(const struct device_node * np,const char * propname,u8 * out_values,size_t sz)1151 int of_property_read_u8_array(const struct device_node *np,
1152 const char *propname, u8 *out_values, size_t sz)
1153 {
1154 const u8 *val = of_find_property_value_of_size(np, propname,
1155 (sz * sizeof(*out_values)));
1156
1157 if (IS_ERR(val))
1158 return PTR_ERR(val);
1159
1160 while (sz--)
1161 *out_values++ = *val++;
1162 return 0;
1163 }
1164 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1165
1166 /**
1167 * of_property_read_u16_array - Find and read an array of u16 from a property.
1168 *
1169 * @np: device node from which the property value is to be read.
1170 * @propname: name of the property to be searched.
1171 * @out_values: pointer to return value, modified only if return value is 0.
1172 * @sz: number of array elements to read
1173 *
1174 * Search for a property in a device node and read 16-bit value(s) from
1175 * it. Returns 0 on success, -EINVAL if the property does not exist,
1176 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1177 * property data isn't large enough.
1178 *
1179 * dts entry of array should be like:
1180 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1181 *
1182 * The out_values is modified only if a valid u16 value can be decoded.
1183 */
of_property_read_u16_array(const struct device_node * np,const char * propname,u16 * out_values,size_t sz)1184 int of_property_read_u16_array(const struct device_node *np,
1185 const char *propname, u16 *out_values, size_t sz)
1186 {
1187 const __be16 *val = of_find_property_value_of_size(np, propname,
1188 (sz * sizeof(*out_values)));
1189
1190 if (IS_ERR(val))
1191 return PTR_ERR(val);
1192
1193 while (sz--)
1194 *out_values++ = be16_to_cpup(val++);
1195 return 0;
1196 }
1197 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1198
1199 /**
1200 * of_property_read_u32_array - Find and read an array of 32 bit integers
1201 * from a property.
1202 *
1203 * @np: device node from which the property value is to be read.
1204 * @propname: name of the property to be searched.
1205 * @out_values: pointer to return value, modified only if return value is 0.
1206 * @sz: number of array elements to read
1207 *
1208 * Search for a property in a device node and read 32-bit value(s) from
1209 * it. Returns 0 on success, -EINVAL if the property does not exist,
1210 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1211 * property data isn't large enough.
1212 *
1213 * The out_values is modified only if a valid u32 value can be decoded.
1214 */
of_property_read_u32_array(const struct device_node * np,const char * propname,u32 * out_values,size_t sz)1215 int of_property_read_u32_array(const struct device_node *np,
1216 const char *propname, u32 *out_values,
1217 size_t sz)
1218 {
1219 const __be32 *val = of_find_property_value_of_size(np, propname,
1220 (sz * sizeof(*out_values)));
1221
1222 if (IS_ERR(val))
1223 return PTR_ERR(val);
1224
1225 while (sz--)
1226 *out_values++ = be32_to_cpup(val++);
1227 return 0;
1228 }
1229 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1230
1231 /**
1232 * of_property_read_u64 - Find and read a 64 bit integer from a property
1233 * @np: device node from which the property value is to be read.
1234 * @propname: name of the property to be searched.
1235 * @out_value: pointer to return value, modified only if return value is 0.
1236 *
1237 * Search for a property in a device node and read a 64-bit value from
1238 * it. Returns 0 on success, -EINVAL if the property does not exist,
1239 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1240 * property data isn't large enough.
1241 *
1242 * The out_value is modified only if a valid u64 value can be decoded.
1243 */
of_property_read_u64(const struct device_node * np,const char * propname,u64 * out_value)1244 int of_property_read_u64(const struct device_node *np, const char *propname,
1245 u64 *out_value)
1246 {
1247 const __be32 *val = of_find_property_value_of_size(np, propname,
1248 sizeof(*out_value));
1249
1250 if (IS_ERR(val))
1251 return PTR_ERR(val);
1252
1253 *out_value = of_read_number(val, 2);
1254 return 0;
1255 }
1256 EXPORT_SYMBOL_GPL(of_property_read_u64);
1257
1258 /**
1259 * of_property_read_u64_array - Find and read an array of 64 bit integers
1260 * from a property.
1261 *
1262 * @np: device node from which the property value is to be read.
1263 * @propname: name of the property to be searched.
1264 * @out_values: pointer to return value, modified only if return value is 0.
1265 * @sz: number of array elements to read
1266 *
1267 * Search for a property in a device node and read 64-bit value(s) from
1268 * it. Returns 0 on success, -EINVAL if the property does not exist,
1269 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1270 * property data isn't large enough.
1271 *
1272 * The out_values is modified only if a valid u64 value can be decoded.
1273 */
of_property_read_u64_array(const struct device_node * np,const char * propname,u64 * out_values,size_t sz)1274 int of_property_read_u64_array(const struct device_node *np,
1275 const char *propname, u64 *out_values,
1276 size_t sz)
1277 {
1278 const __be32 *val = of_find_property_value_of_size(np, propname,
1279 (sz * sizeof(*out_values)));
1280
1281 if (IS_ERR(val))
1282 return PTR_ERR(val);
1283
1284 while (sz--) {
1285 *out_values++ = of_read_number(val, 2);
1286 val += 2;
1287 }
1288 return 0;
1289 }
1290
1291 /**
1292 * of_property_read_string - Find and read a string from a property
1293 * @np: device node from which the property value is to be read.
1294 * @propname: name of the property to be searched.
1295 * @out_string: pointer to null terminated return string, modified only if
1296 * return value is 0.
1297 *
1298 * Search for a property in a device tree node and retrieve a null
1299 * terminated string value (pointer to data, not a copy). Returns 0 on
1300 * success, -EINVAL if the property does not exist, -ENODATA if property
1301 * does not have a value, and -EILSEQ if the string is not null-terminated
1302 * within the length of the property data.
1303 *
1304 * The out_string pointer is modified only if a valid string can be decoded.
1305 */
of_property_read_string(struct device_node * np,const char * propname,const char ** out_string)1306 int of_property_read_string(struct device_node *np, const char *propname,
1307 const char **out_string)
1308 {
1309 struct property *prop = of_find_property(np, propname, NULL);
1310 if (!prop)
1311 return -EINVAL;
1312 if (!prop->value)
1313 return -ENODATA;
1314 if (strnlen(prop->value, prop->length) >= prop->length)
1315 return -EILSEQ;
1316 *out_string = prop->value;
1317 return 0;
1318 }
1319 EXPORT_SYMBOL_GPL(of_property_read_string);
1320
1321 /**
1322 * of_property_match_string() - Find string in a list and return index
1323 * @np: pointer to node containing string list property
1324 * @propname: string list property name
1325 * @string: pointer to string to search for in string list
1326 *
1327 * This function searches a string list property and returns the index
1328 * of a specific string value.
1329 */
of_property_match_string(struct device_node * np,const char * propname,const char * string)1330 int of_property_match_string(struct device_node *np, const char *propname,
1331 const char *string)
1332 {
1333 struct property *prop = of_find_property(np, propname, NULL);
1334 size_t l;
1335 int i;
1336 const char *p, *end;
1337
1338 if (!prop)
1339 return -EINVAL;
1340 if (!prop->value)
1341 return -ENODATA;
1342
1343 p = prop->value;
1344 end = p + prop->length;
1345
1346 for (i = 0; p < end; i++, p += l) {
1347 l = strnlen(p, end - p) + 1;
1348 if (p + l > end)
1349 return -EILSEQ;
1350 pr_debug("comparing %s with %s\n", string, p);
1351 if (strcmp(string, p) == 0)
1352 return i; /* Found it; return index */
1353 }
1354 return -ENODATA;
1355 }
1356 EXPORT_SYMBOL_GPL(of_property_match_string);
1357
1358 /**
1359 * of_property_read_string_util() - Utility helper for parsing string properties
1360 * @np: device node from which the property value is to be read.
1361 * @propname: name of the property to be searched.
1362 * @out_strs: output array of string pointers.
1363 * @sz: number of array elements to read.
1364 * @skip: Number of strings to skip over at beginning of list.
1365 *
1366 * Don't call this function directly. It is a utility helper for the
1367 * of_property_read_string*() family of functions.
1368 */
of_property_read_string_helper(struct device_node * np,const char * propname,const char ** out_strs,size_t sz,int skip)1369 int of_property_read_string_helper(struct device_node *np, const char *propname,
1370 const char **out_strs, size_t sz, int skip)
1371 {
1372 struct property *prop = of_find_property(np, propname, NULL);
1373 int l = 0, i = 0;
1374 const char *p, *end;
1375
1376 if (!prop)
1377 return -EINVAL;
1378 if (!prop->value)
1379 return -ENODATA;
1380 p = prop->value;
1381 end = p + prop->length;
1382
1383 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1384 l = strnlen(p, end - p) + 1;
1385 if (p + l > end)
1386 return -EILSEQ;
1387 if (out_strs && i >= skip)
1388 *out_strs++ = p;
1389 }
1390 i -= skip;
1391 return i <= 0 ? -ENODATA : i;
1392 }
1393 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1394
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1395 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1396 {
1397 int i;
1398 printk("%s %s", msg, of_node_full_name(args->np));
1399 for (i = 0; i < args->args_count; i++)
1400 printk(i ? ",%08x" : ":%08x", args->args[i]);
1401 printk("\n");
1402 }
1403
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1404 static int __of_parse_phandle_with_args(const struct device_node *np,
1405 const char *list_name,
1406 const char *cells_name,
1407 int cell_count, int index,
1408 struct of_phandle_args *out_args)
1409 {
1410 const __be32 *list, *list_end;
1411 int rc = 0, size, cur_index = 0;
1412 uint32_t count = 0;
1413 struct device_node *node = NULL;
1414 phandle phandle;
1415
1416 /* Retrieve the phandle list property */
1417 list = of_get_property(np, list_name, &size);
1418 if (!list)
1419 return -ENOENT;
1420 list_end = list + size / sizeof(*list);
1421
1422 /* Loop over the phandles until all the requested entry is found */
1423 while (list < list_end) {
1424 rc = -EINVAL;
1425 count = 0;
1426
1427 /*
1428 * If phandle is 0, then it is an empty entry with no
1429 * arguments. Skip forward to the next entry.
1430 */
1431 phandle = be32_to_cpup(list++);
1432 if (phandle) {
1433 /*
1434 * Find the provider node and parse the #*-cells
1435 * property to determine the argument length.
1436 *
1437 * This is not needed if the cell count is hard-coded
1438 * (i.e. cells_name not set, but cell_count is set),
1439 * except when we're going to return the found node
1440 * below.
1441 */
1442 if (cells_name || cur_index == index) {
1443 node = of_find_node_by_phandle(phandle);
1444 if (!node) {
1445 pr_err("%s: could not find phandle\n",
1446 np->full_name);
1447 goto err;
1448 }
1449 }
1450
1451 if (cells_name) {
1452 if (of_property_read_u32(node, cells_name,
1453 &count)) {
1454 pr_err("%s: could not get %s for %s\n",
1455 np->full_name, cells_name,
1456 node->full_name);
1457 goto err;
1458 }
1459 } else {
1460 count = cell_count;
1461 }
1462
1463 /*
1464 * Make sure that the arguments actually fit in the
1465 * remaining property data length
1466 */
1467 if (list + count > list_end) {
1468 pr_err("%s: arguments longer than property\n",
1469 np->full_name);
1470 goto err;
1471 }
1472 }
1473
1474 /*
1475 * All of the error cases above bail out of the loop, so at
1476 * this point, the parsing is successful. If the requested
1477 * index matches, then fill the out_args structure and return,
1478 * or return -ENOENT for an empty entry.
1479 */
1480 rc = -ENOENT;
1481 if (cur_index == index) {
1482 if (!phandle)
1483 goto err;
1484
1485 if (out_args) {
1486 int i;
1487 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1488 count = MAX_PHANDLE_ARGS;
1489 out_args->np = node;
1490 out_args->args_count = count;
1491 for (i = 0; i < count; i++)
1492 out_args->args[i] = be32_to_cpup(list++);
1493 } else {
1494 of_node_put(node);
1495 }
1496
1497 /* Found it! return success */
1498 return 0;
1499 }
1500
1501 of_node_put(node);
1502 node = NULL;
1503 list += count;
1504 cur_index++;
1505 }
1506
1507 /*
1508 * Unlock node before returning result; will be one of:
1509 * -ENOENT : index is for empty phandle
1510 * -EINVAL : parsing error on data
1511 * [1..n] : Number of phandle (count mode; when index = -1)
1512 */
1513 rc = index < 0 ? cur_index : -ENOENT;
1514 err:
1515 if (node)
1516 of_node_put(node);
1517 return rc;
1518 }
1519
1520 /**
1521 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1522 * @np: Pointer to device node holding phandle property
1523 * @phandle_name: Name of property holding a phandle value
1524 * @index: For properties holding a table of phandles, this is the index into
1525 * the table
1526 *
1527 * Returns the device_node pointer with refcount incremented. Use
1528 * of_node_put() on it when done.
1529 */
of_parse_phandle(const struct device_node * np,const char * phandle_name,int index)1530 struct device_node *of_parse_phandle(const struct device_node *np,
1531 const char *phandle_name, int index)
1532 {
1533 struct of_phandle_args args;
1534
1535 if (index < 0)
1536 return NULL;
1537
1538 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1539 index, &args))
1540 return NULL;
1541
1542 return args.np;
1543 }
1544 EXPORT_SYMBOL(of_parse_phandle);
1545
1546 /**
1547 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1548 * @np: pointer to a device tree node containing a list
1549 * @list_name: property name that contains a list
1550 * @cells_name: property name that specifies phandles' arguments count
1551 * @index: index of a phandle to parse out
1552 * @out_args: optional pointer to output arguments structure (will be filled)
1553 *
1554 * This function is useful to parse lists of phandles and their arguments.
1555 * Returns 0 on success and fills out_args, on error returns appropriate
1556 * errno value.
1557 *
1558 * Caller is responsible to call of_node_put() on the returned out_args->node
1559 * pointer.
1560 *
1561 * Example:
1562 *
1563 * phandle1: node1 {
1564 * #list-cells = <2>;
1565 * }
1566 *
1567 * phandle2: node2 {
1568 * #list-cells = <1>;
1569 * }
1570 *
1571 * node3 {
1572 * list = <&phandle1 1 2 &phandle2 3>;
1573 * }
1574 *
1575 * To get a device_node of the `node2' node you may call this:
1576 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1577 */
of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int index,struct of_phandle_args * out_args)1578 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1579 const char *cells_name, int index,
1580 struct of_phandle_args *out_args)
1581 {
1582 if (index < 0)
1583 return -EINVAL;
1584 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1585 index, out_args);
1586 }
1587 EXPORT_SYMBOL(of_parse_phandle_with_args);
1588
1589 /**
1590 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1591 * @np: pointer to a device tree node containing a list
1592 * @list_name: property name that contains a list
1593 * @cell_count: number of argument cells following the phandle
1594 * @index: index of a phandle to parse out
1595 * @out_args: optional pointer to output arguments structure (will be filled)
1596 *
1597 * This function is useful to parse lists of phandles and their arguments.
1598 * Returns 0 on success and fills out_args, on error returns appropriate
1599 * errno value.
1600 *
1601 * Caller is responsible to call of_node_put() on the returned out_args->node
1602 * pointer.
1603 *
1604 * Example:
1605 *
1606 * phandle1: node1 {
1607 * }
1608 *
1609 * phandle2: node2 {
1610 * }
1611 *
1612 * node3 {
1613 * list = <&phandle1 0 2 &phandle2 2 3>;
1614 * }
1615 *
1616 * To get a device_node of the `node2' node you may call this:
1617 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1618 */
of_parse_phandle_with_fixed_args(const struct device_node * np,const char * list_name,int cell_count,int index,struct of_phandle_args * out_args)1619 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1620 const char *list_name, int cell_count,
1621 int index, struct of_phandle_args *out_args)
1622 {
1623 if (index < 0)
1624 return -EINVAL;
1625 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1626 index, out_args);
1627 }
1628 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1629
1630 /**
1631 * of_count_phandle_with_args() - Find the number of phandles references in a property
1632 * @np: pointer to a device tree node containing a list
1633 * @list_name: property name that contains a list
1634 * @cells_name: property name that specifies phandles' arguments count
1635 *
1636 * Returns the number of phandle + argument tuples within a property. It
1637 * is a typical pattern to encode a list of phandle and variable
1638 * arguments into a single property. The number of arguments is encoded
1639 * by a property in the phandle-target node. For example, a gpios
1640 * property would contain a list of GPIO specifies consisting of a
1641 * phandle and 1 or more arguments. The number of arguments are
1642 * determined by the #gpio-cells property in the node pointed to by the
1643 * phandle.
1644 */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1645 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1646 const char *cells_name)
1647 {
1648 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1649 NULL);
1650 }
1651 EXPORT_SYMBOL(of_count_phandle_with_args);
1652
1653 /**
1654 * __of_add_property - Add a property to a node without lock operations
1655 */
__of_add_property(struct device_node * np,struct property * prop)1656 int __of_add_property(struct device_node *np, struct property *prop)
1657 {
1658 struct property **next;
1659
1660 prop->next = NULL;
1661 next = &np->properties;
1662 while (*next) {
1663 if (strcmp(prop->name, (*next)->name) == 0)
1664 /* duplicate ! don't insert it */
1665 return -EEXIST;
1666
1667 next = &(*next)->next;
1668 }
1669 *next = prop;
1670
1671 return 0;
1672 }
1673
1674 /**
1675 * of_add_property - Add a property to a node
1676 */
of_add_property(struct device_node * np,struct property * prop)1677 int of_add_property(struct device_node *np, struct property *prop)
1678 {
1679 unsigned long flags;
1680 int rc;
1681
1682 mutex_lock(&of_mutex);
1683
1684 raw_spin_lock_irqsave(&devtree_lock, flags);
1685 rc = __of_add_property(np, prop);
1686 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1687
1688 if (!rc)
1689 __of_add_property_sysfs(np, prop);
1690
1691 mutex_unlock(&of_mutex);
1692
1693 if (!rc)
1694 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1695
1696 return rc;
1697 }
1698
__of_remove_property(struct device_node * np,struct property * prop)1699 int __of_remove_property(struct device_node *np, struct property *prop)
1700 {
1701 struct property **next;
1702
1703 for (next = &np->properties; *next; next = &(*next)->next) {
1704 if (*next == prop)
1705 break;
1706 }
1707 if (*next == NULL)
1708 return -ENODEV;
1709
1710 /* found the node */
1711 *next = prop->next;
1712 prop->next = np->deadprops;
1713 np->deadprops = prop;
1714
1715 return 0;
1716 }
1717
__of_sysfs_remove_bin_file(struct device_node * np,struct property * prop)1718 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
1719 {
1720 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1721 kfree(prop->attr.attr.name);
1722 }
1723
__of_remove_property_sysfs(struct device_node * np,struct property * prop)1724 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1725 {
1726 if (!IS_ENABLED(CONFIG_SYSFS))
1727 return;
1728
1729 /* at early boot, bail here and defer setup to of_init() */
1730 if (of_kset && of_node_is_attached(np))
1731 __of_sysfs_remove_bin_file(np, prop);
1732 }
1733
1734 /**
1735 * of_remove_property - Remove a property from a node.
1736 *
1737 * Note that we don't actually remove it, since we have given out
1738 * who-knows-how-many pointers to the data using get-property.
1739 * Instead we just move the property to the "dead properties"
1740 * list, so it won't be found any more.
1741 */
of_remove_property(struct device_node * np,struct property * prop)1742 int of_remove_property(struct device_node *np, struct property *prop)
1743 {
1744 unsigned long flags;
1745 int rc;
1746
1747 mutex_lock(&of_mutex);
1748
1749 raw_spin_lock_irqsave(&devtree_lock, flags);
1750 rc = __of_remove_property(np, prop);
1751 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1752
1753 if (!rc)
1754 __of_remove_property_sysfs(np, prop);
1755
1756 mutex_unlock(&of_mutex);
1757
1758 if (!rc)
1759 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1760
1761 return rc;
1762 }
1763
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1764 int __of_update_property(struct device_node *np, struct property *newprop,
1765 struct property **oldpropp)
1766 {
1767 struct property **next, *oldprop;
1768
1769 for (next = &np->properties; *next; next = &(*next)->next) {
1770 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1771 break;
1772 }
1773 *oldpropp = oldprop = *next;
1774
1775 if (oldprop) {
1776 /* replace the node */
1777 newprop->next = oldprop->next;
1778 *next = newprop;
1779 oldprop->next = np->deadprops;
1780 np->deadprops = oldprop;
1781 } else {
1782 /* new node */
1783 newprop->next = NULL;
1784 *next = newprop;
1785 }
1786
1787 return 0;
1788 }
1789
__of_update_property_sysfs(struct device_node * np,struct property * newprop,struct property * oldprop)1790 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1791 struct property *oldprop)
1792 {
1793 if (!IS_ENABLED(CONFIG_SYSFS))
1794 return;
1795
1796 /* At early boot, bail out and defer setup to of_init() */
1797 if (!of_kset)
1798 return;
1799
1800 if (oldprop)
1801 __of_sysfs_remove_bin_file(np, oldprop);
1802 __of_add_property_sysfs(np, newprop);
1803 }
1804
1805 /*
1806 * of_update_property - Update a property in a node, if the property does
1807 * not exist, add it.
1808 *
1809 * Note that we don't actually remove it, since we have given out
1810 * who-knows-how-many pointers to the data using get-property.
1811 * Instead we just move the property to the "dead properties" list,
1812 * and add the new property to the property list
1813 */
of_update_property(struct device_node * np,struct property * newprop)1814 int of_update_property(struct device_node *np, struct property *newprop)
1815 {
1816 struct property *oldprop;
1817 unsigned long flags;
1818 int rc;
1819
1820 if (!newprop->name)
1821 return -EINVAL;
1822
1823 mutex_lock(&of_mutex);
1824
1825 raw_spin_lock_irqsave(&devtree_lock, flags);
1826 rc = __of_update_property(np, newprop, &oldprop);
1827 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1828
1829 if (!rc)
1830 __of_update_property_sysfs(np, newprop, oldprop);
1831
1832 mutex_unlock(&of_mutex);
1833
1834 if (!rc)
1835 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1836
1837 return rc;
1838 }
1839
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1840 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1841 int id, const char *stem, int stem_len)
1842 {
1843 ap->np = np;
1844 ap->id = id;
1845 strncpy(ap->stem, stem, stem_len);
1846 ap->stem[stem_len] = 0;
1847 list_add_tail(&ap->link, &aliases_lookup);
1848 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1849 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1850 }
1851
1852 /**
1853 * of_alias_scan - Scan all properties of 'aliases' node
1854 *
1855 * The function scans all the properties of 'aliases' node and populate
1856 * the the global lookup table with the properties. It returns the
1857 * number of alias_prop found, or error code in error case.
1858 *
1859 * @dt_alloc: An allocator that provides a virtual address to memory
1860 * for the resulting tree
1861 */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1862 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1863 {
1864 struct property *pp;
1865
1866 of_aliases = of_find_node_by_path("/aliases");
1867 of_chosen = of_find_node_by_path("/chosen");
1868 if (of_chosen == NULL)
1869 of_chosen = of_find_node_by_path("/chosen@0");
1870
1871 if (of_chosen) {
1872 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1873 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1874 if (!name)
1875 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1876 if (IS_ENABLED(CONFIG_PPC) && !name)
1877 name = of_get_property(of_aliases, "stdout", NULL);
1878 if (name)
1879 of_stdout = of_find_node_by_path(name);
1880 }
1881
1882 if (!of_aliases)
1883 return;
1884
1885 for_each_property_of_node(of_aliases, pp) {
1886 const char *start = pp->name;
1887 const char *end = start + strlen(start);
1888 struct device_node *np;
1889 struct alias_prop *ap;
1890 int id, len;
1891
1892 /* Skip those we do not want to proceed */
1893 if (!strcmp(pp->name, "name") ||
1894 !strcmp(pp->name, "phandle") ||
1895 !strcmp(pp->name, "linux,phandle"))
1896 continue;
1897
1898 np = of_find_node_by_path(pp->value);
1899 if (!np)
1900 continue;
1901
1902 /* walk the alias backwards to extract the id and work out
1903 * the 'stem' string */
1904 while (isdigit(*(end-1)) && end > start)
1905 end--;
1906 len = end - start;
1907
1908 if (kstrtoint(end, 10, &id) < 0)
1909 continue;
1910
1911 /* Allocate an alias_prop with enough space for the stem */
1912 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1913 if (!ap)
1914 continue;
1915 memset(ap, 0, sizeof(*ap) + len + 1);
1916 ap->alias = start;
1917 of_alias_add(ap, np, id, start, len);
1918 }
1919 }
1920
1921 /**
1922 * of_alias_get_id - Get alias id for the given device_node
1923 * @np: Pointer to the given device_node
1924 * @stem: Alias stem of the given device_node
1925 *
1926 * The function travels the lookup table to get the alias id for the given
1927 * device_node and alias stem. It returns the alias id if found.
1928 */
of_alias_get_id(struct device_node * np,const char * stem)1929 int of_alias_get_id(struct device_node *np, const char *stem)
1930 {
1931 struct alias_prop *app;
1932 int id = -ENODEV;
1933
1934 mutex_lock(&of_mutex);
1935 list_for_each_entry(app, &aliases_lookup, link) {
1936 if (strcmp(app->stem, stem) != 0)
1937 continue;
1938
1939 if (np == app->np) {
1940 id = app->id;
1941 break;
1942 }
1943 }
1944 mutex_unlock(&of_mutex);
1945
1946 return id;
1947 }
1948 EXPORT_SYMBOL_GPL(of_alias_get_id);
1949
of_prop_next_u32(struct property * prop,const __be32 * cur,u32 * pu)1950 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1951 u32 *pu)
1952 {
1953 const void *curv = cur;
1954
1955 if (!prop)
1956 return NULL;
1957
1958 if (!cur) {
1959 curv = prop->value;
1960 goto out_val;
1961 }
1962
1963 curv += sizeof(*cur);
1964 if (curv >= prop->value + prop->length)
1965 return NULL;
1966
1967 out_val:
1968 *pu = be32_to_cpup(curv);
1969 return curv;
1970 }
1971 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1972
of_prop_next_string(struct property * prop,const char * cur)1973 const char *of_prop_next_string(struct property *prop, const char *cur)
1974 {
1975 const void *curv = cur;
1976
1977 if (!prop)
1978 return NULL;
1979
1980 if (!cur)
1981 return prop->value;
1982
1983 curv += strlen(cur) + 1;
1984 if (curv >= prop->value + prop->length)
1985 return NULL;
1986
1987 return curv;
1988 }
1989 EXPORT_SYMBOL_GPL(of_prop_next_string);
1990
1991 /**
1992 * of_console_check() - Test and setup console for DT setup
1993 * @dn - Pointer to device node
1994 * @name - Name to use for preferred console without index. ex. "ttyS"
1995 * @index - Index to use for preferred console.
1996 *
1997 * Check if the given device node matches the stdout-path property in the
1998 * /chosen node. If it does then register it as the preferred console and return
1999 * TRUE. Otherwise return FALSE.
2000 */
of_console_check(struct device_node * dn,char * name,int index)2001 bool of_console_check(struct device_node *dn, char *name, int index)
2002 {
2003 if (!dn || dn != of_stdout || console_set_on_cmdline)
2004 return false;
2005 return !add_preferred_console(name, index, NULL);
2006 }
2007 EXPORT_SYMBOL_GPL(of_console_check);
2008
2009 /**
2010 * of_find_next_cache_node - Find a node's subsidiary cache
2011 * @np: node of type "cpu" or "cache"
2012 *
2013 * Returns a node pointer with refcount incremented, use
2014 * of_node_put() on it when done. Caller should hold a reference
2015 * to np.
2016 */
of_find_next_cache_node(const struct device_node * np)2017 struct device_node *of_find_next_cache_node(const struct device_node *np)
2018 {
2019 struct device_node *child;
2020 const phandle *handle;
2021
2022 handle = of_get_property(np, "l2-cache", NULL);
2023 if (!handle)
2024 handle = of_get_property(np, "next-level-cache", NULL);
2025
2026 if (handle)
2027 return of_find_node_by_phandle(be32_to_cpup(handle));
2028
2029 /* OF on pmac has nodes instead of properties named "l2-cache"
2030 * beneath CPU nodes.
2031 */
2032 if (!strcmp(np->type, "cpu"))
2033 for_each_child_of_node(np, child)
2034 if (!strcmp(child->type, "cache"))
2035 return child;
2036
2037 return NULL;
2038 }
2039
2040 /**
2041 * of_graph_parse_endpoint() - parse common endpoint node properties
2042 * @node: pointer to endpoint device_node
2043 * @endpoint: pointer to the OF endpoint data structure
2044 *
2045 * The caller should hold a reference to @node.
2046 */
of_graph_parse_endpoint(const struct device_node * node,struct of_endpoint * endpoint)2047 int of_graph_parse_endpoint(const struct device_node *node,
2048 struct of_endpoint *endpoint)
2049 {
2050 struct device_node *port_node = of_get_parent(node);
2051
2052 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2053 __func__, node->full_name);
2054
2055 memset(endpoint, 0, sizeof(*endpoint));
2056
2057 endpoint->local_node = node;
2058 /*
2059 * It doesn't matter whether the two calls below succeed.
2060 * If they don't then the default value 0 is used.
2061 */
2062 of_property_read_u32(port_node, "reg", &endpoint->port);
2063 of_property_read_u32(node, "reg", &endpoint->id);
2064
2065 of_node_put(port_node);
2066
2067 return 0;
2068 }
2069 EXPORT_SYMBOL(of_graph_parse_endpoint);
2070
2071 /**
2072 * of_graph_get_next_endpoint() - get next endpoint node
2073 * @parent: pointer to the parent device node
2074 * @prev: previous endpoint node, or NULL to get first
2075 *
2076 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2077 * of the passed @prev node is not decremented, the caller have to use
2078 * of_node_put() on it when done.
2079 */
of_graph_get_next_endpoint(const struct device_node * parent,struct device_node * prev)2080 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2081 struct device_node *prev)
2082 {
2083 struct device_node *endpoint;
2084 struct device_node *port;
2085
2086 if (!parent)
2087 return NULL;
2088
2089 /*
2090 * Start by locating the port node. If no previous endpoint is specified
2091 * search for the first port node, otherwise get the previous endpoint
2092 * parent port node.
2093 */
2094 if (!prev) {
2095 struct device_node *node;
2096
2097 node = of_get_child_by_name(parent, "ports");
2098 if (node)
2099 parent = node;
2100
2101 port = of_get_child_by_name(parent, "port");
2102 of_node_put(node);
2103
2104 if (!port) {
2105 pr_err("%s(): no port node found in %s\n",
2106 __func__, parent->full_name);
2107 return NULL;
2108 }
2109 } else {
2110 port = of_get_parent(prev);
2111 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2112 __func__, prev->full_name))
2113 return NULL;
2114
2115 /*
2116 * Avoid dropping prev node refcount to 0 when getting the next
2117 * child below.
2118 */
2119 of_node_get(prev);
2120 }
2121
2122 while (1) {
2123 /*
2124 * Now that we have a port node, get the next endpoint by
2125 * getting the next child. If the previous endpoint is NULL this
2126 * will return the first child.
2127 */
2128 endpoint = of_get_next_child(port, prev);
2129 if (endpoint) {
2130 of_node_put(port);
2131 return endpoint;
2132 }
2133
2134 /* No more endpoints under this port, try the next one. */
2135 prev = NULL;
2136
2137 do {
2138 port = of_get_next_child(parent, port);
2139 if (!port)
2140 return NULL;
2141 } while (of_node_cmp(port->name, "port"));
2142 }
2143 }
2144 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2145
2146 /**
2147 * of_graph_get_remote_port_parent() - get remote port's parent node
2148 * @node: pointer to a local endpoint device_node
2149 *
2150 * Return: Remote device node associated with remote endpoint node linked
2151 * to @node. Use of_node_put() on it when done.
2152 */
of_graph_get_remote_port_parent(const struct device_node * node)2153 struct device_node *of_graph_get_remote_port_parent(
2154 const struct device_node *node)
2155 {
2156 struct device_node *np;
2157 unsigned int depth;
2158
2159 /* Get remote endpoint node. */
2160 np = of_parse_phandle(node, "remote-endpoint", 0);
2161
2162 /* Walk 3 levels up only if there is 'ports' node. */
2163 for (depth = 3; depth && np; depth--) {
2164 np = of_get_next_parent(np);
2165 if (depth == 2 && of_node_cmp(np->name, "ports"))
2166 break;
2167 }
2168 return np;
2169 }
2170 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2171
2172 /**
2173 * of_graph_get_remote_port() - get remote port node
2174 * @node: pointer to a local endpoint device_node
2175 *
2176 * Return: Remote port node associated with remote endpoint node linked
2177 * to @node. Use of_node_put() on it when done.
2178 */
of_graph_get_remote_port(const struct device_node * node)2179 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2180 {
2181 struct device_node *np;
2182
2183 /* Get remote endpoint node. */
2184 np = of_parse_phandle(node, "remote-endpoint", 0);
2185 if (!np)
2186 return NULL;
2187 return of_get_next_parent(np);
2188 }
2189 EXPORT_SYMBOL(of_graph_get_remote_port);
2190