• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * OMAP Voltage Controller (VC) interface
3  *
4  * Copyright (C) 2011 Texas Instruments, Inc.
5  *
6  * This file is licensed under the terms of the GNU General Public
7  * License version 2. This program is licensed "as is" without any
8  * warranty of any kind, whether express or implied.
9  */
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/bug.h>
14 #include <linux/io.h>
15 
16 #include <asm/div64.h>
17 
18 #include "iomap.h"
19 #include "soc.h"
20 #include "voltage.h"
21 #include "vc.h"
22 #include "prm-regbits-34xx.h"
23 #include "prm-regbits-44xx.h"
24 #include "prm44xx.h"
25 #include "pm.h"
26 #include "scrm44xx.h"
27 #include "control.h"
28 
29 /**
30  * struct omap_vc_channel_cfg - describe the cfg_channel bitfield
31  * @sa: bit for slave address
32  * @rav: bit for voltage configuration register
33  * @rac: bit for command configuration register
34  * @racen: enable bit for RAC
35  * @cmd: bit for command value set selection
36  *
37  * Channel configuration bits, common for OMAP3+
38  * OMAP3 register: PRM_VC_CH_CONF
39  * OMAP4 register: PRM_VC_CFG_CHANNEL
40  * OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG
41  */
42 struct omap_vc_channel_cfg {
43 	u8 sa;
44 	u8 rav;
45 	u8 rac;
46 	u8 racen;
47 	u8 cmd;
48 };
49 
50 static struct omap_vc_channel_cfg vc_default_channel_cfg = {
51 	.sa    = BIT(0),
52 	.rav   = BIT(1),
53 	.rac   = BIT(2),
54 	.racen = BIT(3),
55 	.cmd   = BIT(4),
56 };
57 
58 /*
59  * On OMAP3+, all VC channels have the above default bitfield
60  * configuration, except the OMAP4 MPU channel.  This appears
61  * to be a freak accident as every other VC channel has the
62  * default configuration, thus creating a mutant channel config.
63  */
64 static struct omap_vc_channel_cfg vc_mutant_channel_cfg = {
65 	.sa    = BIT(0),
66 	.rav   = BIT(2),
67 	.rac   = BIT(3),
68 	.racen = BIT(4),
69 	.cmd   = BIT(1),
70 };
71 
72 static struct omap_vc_channel_cfg *vc_cfg_bits;
73 
74 /* Default I2C trace length on pcb, 6.3cm. Used for capacitance calculations. */
75 static u32 sr_i2c_pcb_length = 63;
76 #define CFG_CHANNEL_MASK 0x1f
77 
78 /**
79  * omap_vc_config_channel - configure VC channel to PMIC mappings
80  * @voltdm: pointer to voltagdomain defining the desired VC channel
81  *
82  * Configures the VC channel to PMIC mappings for the following
83  * PMIC settings
84  * - i2c slave address (SA)
85  * - voltage configuration address (RAV)
86  * - command configuration address (RAC) and enable bit (RACEN)
87  * - command values for ON, ONLP, RET and OFF (CMD)
88  *
89  * This function currently only allows flexible configuration of the
90  * non-default channel.  Starting with OMAP4, there are more than 2
91  * channels, with one defined as the default (on OMAP4, it's MPU.)
92  * Only the non-default channel can be configured.
93  */
omap_vc_config_channel(struct voltagedomain * voltdm)94 static int omap_vc_config_channel(struct voltagedomain *voltdm)
95 {
96 	struct omap_vc_channel *vc = voltdm->vc;
97 
98 	/*
99 	 * For default channel, the only configurable bit is RACEN.
100 	 * All others must stay at zero (see function comment above.)
101 	 */
102 	if (vc->flags & OMAP_VC_CHANNEL_DEFAULT)
103 		vc->cfg_channel &= vc_cfg_bits->racen;
104 
105 	voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift,
106 		    vc->cfg_channel << vc->cfg_channel_sa_shift,
107 		    vc->cfg_channel_reg);
108 
109 	return 0;
110 }
111 
112 /* Voltage scale and accessory APIs */
omap_vc_pre_scale(struct voltagedomain * voltdm,unsigned long target_volt,u8 * target_vsel,u8 * current_vsel)113 int omap_vc_pre_scale(struct voltagedomain *voltdm,
114 		      unsigned long target_volt,
115 		      u8 *target_vsel, u8 *current_vsel)
116 {
117 	struct omap_vc_channel *vc = voltdm->vc;
118 	u32 vc_cmdval;
119 
120 	/* Check if sufficient pmic info is available for this vdd */
121 	if (!voltdm->pmic) {
122 		pr_err("%s: Insufficient pmic info to scale the vdd_%s\n",
123 			__func__, voltdm->name);
124 		return -EINVAL;
125 	}
126 
127 	if (!voltdm->pmic->uv_to_vsel) {
128 		pr_err("%s: PMIC function to convert voltage in uV to vsel not registered. Hence unable to scale voltage for vdd_%s\n",
129 		       __func__, voltdm->name);
130 		return -ENODATA;
131 	}
132 
133 	if (!voltdm->read || !voltdm->write) {
134 		pr_err("%s: No read/write API for accessing vdd_%s regs\n",
135 			__func__, voltdm->name);
136 		return -EINVAL;
137 	}
138 
139 	*target_vsel = voltdm->pmic->uv_to_vsel(target_volt);
140 	*current_vsel = voltdm->pmic->uv_to_vsel(voltdm->nominal_volt);
141 
142 	/* Setting the ON voltage to the new target voltage */
143 	vc_cmdval = voltdm->read(vc->cmdval_reg);
144 	vc_cmdval &= ~vc->common->cmd_on_mask;
145 	vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift);
146 	voltdm->write(vc_cmdval, vc->cmdval_reg);
147 
148 	voltdm->vc_param->on = target_volt;
149 
150 	omap_vp_update_errorgain(voltdm, target_volt);
151 
152 	return 0;
153 }
154 
omap_vc_post_scale(struct voltagedomain * voltdm,unsigned long target_volt,u8 target_vsel,u8 current_vsel)155 void omap_vc_post_scale(struct voltagedomain *voltdm,
156 			unsigned long target_volt,
157 			u8 target_vsel, u8 current_vsel)
158 {
159 	u32 smps_steps = 0, smps_delay = 0;
160 
161 	smps_steps = abs(target_vsel - current_vsel);
162 	/* SMPS slew rate / step size. 2us added as buffer. */
163 	smps_delay = ((smps_steps * voltdm->pmic->step_size) /
164 			voltdm->pmic->slew_rate) + 2;
165 	udelay(smps_delay);
166 }
167 
168 /* vc_bypass_scale - VC bypass method of voltage scaling */
omap_vc_bypass_scale(struct voltagedomain * voltdm,unsigned long target_volt)169 int omap_vc_bypass_scale(struct voltagedomain *voltdm,
170 			 unsigned long target_volt)
171 {
172 	struct omap_vc_channel *vc = voltdm->vc;
173 	u32 loop_cnt = 0, retries_cnt = 0;
174 	u32 vc_valid, vc_bypass_val_reg, vc_bypass_value;
175 	u8 target_vsel, current_vsel;
176 	int ret;
177 
178 	ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, &current_vsel);
179 	if (ret)
180 		return ret;
181 
182 	vc_valid = vc->common->valid;
183 	vc_bypass_val_reg = vc->common->bypass_val_reg;
184 	vc_bypass_value = (target_vsel << vc->common->data_shift) |
185 		(vc->volt_reg_addr << vc->common->regaddr_shift) |
186 		(vc->i2c_slave_addr << vc->common->slaveaddr_shift);
187 
188 	voltdm->write(vc_bypass_value, vc_bypass_val_reg);
189 	voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg);
190 
191 	vc_bypass_value = voltdm->read(vc_bypass_val_reg);
192 	/*
193 	 * Loop till the bypass command is acknowledged from the SMPS.
194 	 * NOTE: This is legacy code. The loop count and retry count needs
195 	 * to be revisited.
196 	 */
197 	while (!(vc_bypass_value & vc_valid)) {
198 		loop_cnt++;
199 
200 		if (retries_cnt > 10) {
201 			pr_warn("%s: Retry count exceeded\n", __func__);
202 			return -ETIMEDOUT;
203 		}
204 
205 		if (loop_cnt > 50) {
206 			retries_cnt++;
207 			loop_cnt = 0;
208 			udelay(10);
209 		}
210 		vc_bypass_value = voltdm->read(vc_bypass_val_reg);
211 	}
212 
213 	omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel);
214 	return 0;
215 }
216 
217 /* Convert microsecond value to number of 32kHz clock cycles */
omap_usec_to_32k(u32 usec)218 static inline u32 omap_usec_to_32k(u32 usec)
219 {
220 	return DIV_ROUND_UP_ULL(32768ULL * (u64)usec, 1000000ULL);
221 }
222 
223 struct omap3_vc_timings {
224 	u32 voltsetup1;
225 	u32 voltsetup2;
226 };
227 
228 struct omap3_vc {
229 	struct voltagedomain *vd;
230 	u32 voltctrl;
231 	u32 voltsetup1;
232 	u32 voltsetup2;
233 	struct omap3_vc_timings timings[2];
234 };
235 static struct omap3_vc vc;
236 
omap3_vc_set_pmic_signaling(int core_next_state)237 void omap3_vc_set_pmic_signaling(int core_next_state)
238 {
239 	struct voltagedomain *vd = vc.vd;
240 	struct omap3_vc_timings *c = vc.timings;
241 	u32 voltctrl, voltsetup1, voltsetup2;
242 
243 	voltctrl = vc.voltctrl;
244 	voltsetup1 = vc.voltsetup1;
245 	voltsetup2 = vc.voltsetup2;
246 
247 	switch (core_next_state) {
248 	case PWRDM_POWER_OFF:
249 		voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_RET |
250 			      OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
251 		voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_OFF;
252 		if (voltctrl & OMAP3430_PRM_VOLTCTRL_SEL_OFF)
253 			voltsetup2 = c->voltsetup2;
254 		else
255 			voltsetup1 = c->voltsetup1;
256 		break;
257 	case PWRDM_POWER_RET:
258 	default:
259 		c++;
260 		voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_OFF |
261 			      OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
262 		voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_RET;
263 		voltsetup1 = c->voltsetup1;
264 		break;
265 	}
266 
267 	if (voltctrl != vc.voltctrl) {
268 		vd->write(voltctrl, OMAP3_PRM_VOLTCTRL_OFFSET);
269 		vc.voltctrl = voltctrl;
270 	}
271 	if (voltsetup1 != vc.voltsetup1) {
272 		vd->write(c->voltsetup1,
273 			  OMAP3_PRM_VOLTSETUP1_OFFSET);
274 		vc.voltsetup1 = voltsetup1;
275 	}
276 	if (voltsetup2 != vc.voltsetup2) {
277 		vd->write(c->voltsetup2,
278 			  OMAP3_PRM_VOLTSETUP2_OFFSET);
279 		vc.voltsetup2 = voltsetup2;
280 	}
281 }
282 
283 #define PRM_POLCTRL_TWL_MASK	(OMAP3430_PRM_POLCTRL_CLKREQ_POL | \
284 					OMAP3430_PRM_POLCTRL_CLKREQ_POL)
285 #define PRM_POLCTRL_TWL_VAL	OMAP3430_PRM_POLCTRL_CLKREQ_POL
286 
287 /*
288  * Configure signal polarity for sys_clkreq and sys_off_mode pins
289  * as the default values are wrong and can cause the system to hang
290  * if any twl4030 scripts are loaded.
291  */
omap3_vc_init_pmic_signaling(struct voltagedomain * voltdm)292 static void __init omap3_vc_init_pmic_signaling(struct voltagedomain *voltdm)
293 {
294 	u32 val;
295 
296 	if (vc.vd)
297 		return;
298 
299 	vc.vd = voltdm;
300 
301 	val = voltdm->read(OMAP3_PRM_POLCTRL_OFFSET);
302 	if (!(val & OMAP3430_PRM_POLCTRL_CLKREQ_POL) ||
303 	    (val & OMAP3430_PRM_POLCTRL_CLKREQ_POL)) {
304 		val |= OMAP3430_PRM_POLCTRL_CLKREQ_POL;
305 		val &= ~OMAP3430_PRM_POLCTRL_OFFMODE_POL;
306 		pr_debug("PM: fixing sys_clkreq and sys_off_mode polarity to 0x%x\n",
307 			 val);
308 		voltdm->write(val, OMAP3_PRM_POLCTRL_OFFSET);
309 	}
310 
311 	/*
312 	 * By default let's use I2C4 signaling for retention idle
313 	 * and sys_off_mode pin signaling for off idle. This way we
314 	 * have sys_clk_req pin go down for retention and both
315 	 * sys_clk_req and sys_off_mode pins will go down for off
316 	 * idle. And we can also scale voltages to zero for off-idle.
317 	 * Note that no actual voltage scaling during off-idle will
318 	 * happen unless the board specific twl4030 PMIC scripts are
319 	 * loaded. See also omap_vc_i2c_init for comments regarding
320 	 * erratum i531.
321 	 */
322 	val = voltdm->read(OMAP3_PRM_VOLTCTRL_OFFSET);
323 	if (!(val & OMAP3430_PRM_VOLTCTRL_SEL_OFF)) {
324 		val |= OMAP3430_PRM_VOLTCTRL_SEL_OFF;
325 		pr_debug("PM: setting voltctrl sys_off_mode signaling to 0x%x\n",
326 			 val);
327 		voltdm->write(val, OMAP3_PRM_VOLTCTRL_OFFSET);
328 	}
329 	vc.voltctrl = val;
330 
331 	omap3_vc_set_pmic_signaling(PWRDM_POWER_ON);
332 }
333 
omap3_init_voltsetup1(struct voltagedomain * voltdm,struct omap3_vc_timings * c,u32 idle)334 static void omap3_init_voltsetup1(struct voltagedomain *voltdm,
335 				  struct omap3_vc_timings *c, u32 idle)
336 {
337 	unsigned long val;
338 
339 	val = (voltdm->vc_param->on - idle) / voltdm->pmic->slew_rate;
340 	val *= voltdm->sys_clk.rate / 8 / 1000000 + 1;
341 	val <<= __ffs(voltdm->vfsm->voltsetup_mask);
342 	c->voltsetup1 &= ~voltdm->vfsm->voltsetup_mask;
343 	c->voltsetup1 |= val;
344 }
345 
346 /**
347  * omap3_set_i2c_timings - sets i2c sleep timings for a channel
348  * @voltdm: channel to configure
349  * @off_mode: select whether retention or off mode values used
350  *
351  * Calculates and sets up voltage controller to use I2C based
352  * voltage scaling for sleep modes. This can be used for either off mode
353  * or retention. Off mode has additionally an option to use sys_off_mode
354  * pad, which uses a global signal to program the whole power IC to
355  * off-mode.
356  *
357  * Note that pmic is not controlling the voltage scaling during
358  * retention signaled over I2C4, so we can keep voltsetup2 as 0.
359  * And the oscillator is not shut off over I2C4, so no need to
360  * set clksetup.
361  */
omap3_set_i2c_timings(struct voltagedomain * voltdm)362 static void omap3_set_i2c_timings(struct voltagedomain *voltdm)
363 {
364 	struct omap3_vc_timings *c = vc.timings;
365 
366 	/* Configure PRWDM_POWER_OFF over I2C4 */
367 	omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->off);
368 	c++;
369 	/* Configure PRWDM_POWER_RET over I2C4 */
370 	omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->ret);
371 }
372 
373 /**
374  * omap3_set_off_timings - sets off-mode timings for a channel
375  * @voltdm: channel to configure
376  *
377  * Calculates and sets up off-mode timings for a channel. Off-mode
378  * can use either I2C based voltage scaling, or alternatively
379  * sys_off_mode pad can be used to send a global command to power IC.n,
380  * sys_off_mode has the additional benefit that voltages can be
381  * scaled to zero volt level with TWL4030 / TWL5030, I2C can only
382  * scale to 600mV.
383  *
384  * Note that omap is not controlling the voltage scaling during
385  * off idle signaled by sys_off_mode, so we can keep voltsetup1
386  * as 0.
387  */
omap3_set_off_timings(struct voltagedomain * voltdm)388 static void omap3_set_off_timings(struct voltagedomain *voltdm)
389 {
390 	struct omap3_vc_timings *c = vc.timings;
391 	u32 tstart, tshut, clksetup, voltoffset;
392 
393 	if (c->voltsetup2)
394 		return;
395 
396 	omap_pm_get_oscillator(&tstart, &tshut);
397 	if (tstart == ULONG_MAX) {
398 		pr_debug("PM: oscillator start-up time not initialized, using 10ms\n");
399 		clksetup = omap_usec_to_32k(10000);
400 	} else {
401 		clksetup = omap_usec_to_32k(tstart);
402 	}
403 
404 	/*
405 	 * For twl4030 errata 27, we need to allow minimum ~488.32 us wait to
406 	 * switch from HFCLKIN to internal oscillator. That means timings
407 	 * have voltoffset fixed to 0xa in rounded up 32 KiHz cycles. And
408 	 * that means we can calculate the value based on the oscillator
409 	 * start-up time since voltoffset2 = clksetup - voltoffset.
410 	 */
411 	voltoffset = omap_usec_to_32k(488);
412 	c->voltsetup2 = clksetup - voltoffset;
413 	voltdm->write(clksetup, OMAP3_PRM_CLKSETUP_OFFSET);
414 	voltdm->write(voltoffset, OMAP3_PRM_VOLTOFFSET_OFFSET);
415 }
416 
omap3_vc_init_channel(struct voltagedomain * voltdm)417 static void __init omap3_vc_init_channel(struct voltagedomain *voltdm)
418 {
419 	omap3_vc_init_pmic_signaling(voltdm);
420 	omap3_set_off_timings(voltdm);
421 	omap3_set_i2c_timings(voltdm);
422 }
423 
424 /**
425  * omap4_calc_volt_ramp - calculates voltage ramping delays on omap4
426  * @voltdm: channel to calculate values for
427  * @voltage_diff: voltage difference in microvolts
428  *
429  * Calculates voltage ramp prescaler + counter values for a voltage
430  * difference on omap4. Returns a field value suitable for writing to
431  * VOLTSETUP register for a channel in following format:
432  * bits[8:9] prescaler ... bits[0:5] counter. See OMAP4 TRM for reference.
433  */
omap4_calc_volt_ramp(struct voltagedomain * voltdm,u32 voltage_diff)434 static u32 omap4_calc_volt_ramp(struct voltagedomain *voltdm, u32 voltage_diff)
435 {
436 	u32 prescaler;
437 	u32 cycles;
438 	u32 time;
439 
440 	time = voltage_diff / voltdm->pmic->slew_rate;
441 
442 	cycles = voltdm->sys_clk.rate / 1000 * time / 1000;
443 
444 	cycles /= 64;
445 	prescaler = 0;
446 
447 	/* shift to next prescaler until no overflow */
448 
449 	/* scale for div 256 = 64 * 4 */
450 	if (cycles > 63) {
451 		cycles /= 4;
452 		prescaler++;
453 	}
454 
455 	/* scale for div 512 = 256 * 2 */
456 	if (cycles > 63) {
457 		cycles /= 2;
458 		prescaler++;
459 	}
460 
461 	/* scale for div 2048 = 512 * 4 */
462 	if (cycles > 63) {
463 		cycles /= 4;
464 		prescaler++;
465 	}
466 
467 	/* check for overflow => invalid ramp time */
468 	if (cycles > 63) {
469 		pr_warn("%s: invalid setuptime for vdd_%s\n", __func__,
470 			voltdm->name);
471 		return 0;
472 	}
473 
474 	cycles++;
475 
476 	return (prescaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) |
477 		(cycles << OMAP4430_RAMP_UP_COUNT_SHIFT);
478 }
479 
480 /**
481  * omap4_usec_to_val_scrm - convert microsecond value to SCRM module bitfield
482  * @usec: microseconds
483  * @shift: number of bits to shift left
484  * @mask: bitfield mask
485  *
486  * Converts microsecond value to OMAP4 SCRM bitfield. Bitfield is
487  * shifted to requested position, and checked agains the mask value.
488  * If larger, forced to the max value of the field (i.e. the mask itself.)
489  * Returns the SCRM bitfield value.
490  */
omap4_usec_to_val_scrm(u32 usec,int shift,u32 mask)491 static u32 omap4_usec_to_val_scrm(u32 usec, int shift, u32 mask)
492 {
493 	u32 val;
494 
495 	val = omap_usec_to_32k(usec) << shift;
496 
497 	/* Check for overflow, if yes, force to max value */
498 	if (val > mask)
499 		val = mask;
500 
501 	return val;
502 }
503 
504 /**
505  * omap4_set_timings - set voltage ramp timings for a channel
506  * @voltdm: channel to configure
507  * @off_mode: whether off-mode values are used
508  *
509  * Calculates and sets the voltage ramp up / down values for a channel.
510  */
omap4_set_timings(struct voltagedomain * voltdm,bool off_mode)511 static void omap4_set_timings(struct voltagedomain *voltdm, bool off_mode)
512 {
513 	u32 val;
514 	u32 ramp;
515 	int offset;
516 	u32 tstart, tshut;
517 
518 	if (off_mode) {
519 		ramp = omap4_calc_volt_ramp(voltdm,
520 			voltdm->vc_param->on - voltdm->vc_param->off);
521 		offset = voltdm->vfsm->voltsetup_off_reg;
522 	} else {
523 		ramp = omap4_calc_volt_ramp(voltdm,
524 			voltdm->vc_param->on - voltdm->vc_param->ret);
525 		offset = voltdm->vfsm->voltsetup_reg;
526 	}
527 
528 	if (!ramp)
529 		return;
530 
531 	val = voltdm->read(offset);
532 
533 	val |= ramp << OMAP4430_RAMP_DOWN_COUNT_SHIFT;
534 
535 	val |= ramp << OMAP4430_RAMP_UP_COUNT_SHIFT;
536 
537 	voltdm->write(val, offset);
538 
539 	omap_pm_get_oscillator(&tstart, &tshut);
540 
541 	val = omap4_usec_to_val_scrm(tstart, OMAP4_SETUPTIME_SHIFT,
542 		OMAP4_SETUPTIME_MASK);
543 	val |= omap4_usec_to_val_scrm(tshut, OMAP4_DOWNTIME_SHIFT,
544 		OMAP4_DOWNTIME_MASK);
545 
546 	writel_relaxed(val, OMAP4_SCRM_CLKSETUPTIME);
547 }
548 
549 /* OMAP4 specific voltage init functions */
omap4_vc_init_channel(struct voltagedomain * voltdm)550 static void __init omap4_vc_init_channel(struct voltagedomain *voltdm)
551 {
552 	omap4_set_timings(voltdm, true);
553 	omap4_set_timings(voltdm, false);
554 }
555 
556 struct i2c_init_data {
557 	u8 loadbits;
558 	u8 load;
559 	u8 hsscll_38_4;
560 	u8 hsscll_26;
561 	u8 hsscll_19_2;
562 	u8 hsscll_16_8;
563 	u8 hsscll_12;
564 };
565 
566 static const __initdata struct i2c_init_data omap4_i2c_timing_data[] = {
567 	{
568 		.load = 50,
569 		.loadbits = 0x3,
570 		.hsscll_38_4 = 13,
571 		.hsscll_26 = 11,
572 		.hsscll_19_2 = 9,
573 		.hsscll_16_8 = 9,
574 		.hsscll_12 = 8,
575 	},
576 	{
577 		.load = 25,
578 		.loadbits = 0x2,
579 		.hsscll_38_4 = 13,
580 		.hsscll_26 = 11,
581 		.hsscll_19_2 = 9,
582 		.hsscll_16_8 = 9,
583 		.hsscll_12 = 8,
584 	},
585 	{
586 		.load = 12,
587 		.loadbits = 0x1,
588 		.hsscll_38_4 = 11,
589 		.hsscll_26 = 10,
590 		.hsscll_19_2 = 9,
591 		.hsscll_16_8 = 9,
592 		.hsscll_12 = 8,
593 	},
594 	{
595 		.load = 0,
596 		.loadbits = 0x0,
597 		.hsscll_38_4 = 12,
598 		.hsscll_26 = 10,
599 		.hsscll_19_2 = 9,
600 		.hsscll_16_8 = 8,
601 		.hsscll_12 = 8,
602 	},
603 };
604 
605 /**
606  * omap4_vc_i2c_timing_init - sets up board I2C timing parameters
607  * @voltdm: voltagedomain pointer to get data from
608  *
609  * Use PMIC + board supplied settings for calculating the total I2C
610  * channel capacitance and set the timing parameters based on this.
611  * Pre-calculated values are provided in data tables, as it is not
612  * too straightforward to calculate these runtime.
613  */
omap4_vc_i2c_timing_init(struct voltagedomain * voltdm)614 static void __init omap4_vc_i2c_timing_init(struct voltagedomain *voltdm)
615 {
616 	u32 capacitance;
617 	u32 val;
618 	u16 hsscll;
619 	const struct i2c_init_data *i2c_data;
620 
621 	if (!voltdm->pmic->i2c_high_speed) {
622 		pr_warn("%s: only high speed supported!\n", __func__);
623 		return;
624 	}
625 
626 	/* PCB trace capacitance, 0.125pF / mm => mm / 8 */
627 	capacitance = DIV_ROUND_UP(sr_i2c_pcb_length, 8);
628 
629 	/* OMAP pad capacitance */
630 	capacitance += 4;
631 
632 	/* PMIC pad capacitance */
633 	capacitance += voltdm->pmic->i2c_pad_load;
634 
635 	/* Search for capacitance match in the table */
636 	i2c_data = omap4_i2c_timing_data;
637 
638 	while (i2c_data->load > capacitance)
639 		i2c_data++;
640 
641 	/* Select proper values based on sysclk frequency */
642 	switch (voltdm->sys_clk.rate) {
643 	case 38400000:
644 		hsscll = i2c_data->hsscll_38_4;
645 		break;
646 	case 26000000:
647 		hsscll = i2c_data->hsscll_26;
648 		break;
649 	case 19200000:
650 		hsscll = i2c_data->hsscll_19_2;
651 		break;
652 	case 16800000:
653 		hsscll = i2c_data->hsscll_16_8;
654 		break;
655 	case 12000000:
656 		hsscll = i2c_data->hsscll_12;
657 		break;
658 	default:
659 		pr_warn("%s: unsupported sysclk rate: %d!\n", __func__,
660 			voltdm->sys_clk.rate);
661 		return;
662 	}
663 
664 	/* Loadbits define pull setup for the I2C channels */
665 	val = i2c_data->loadbits << 25 | i2c_data->loadbits << 29;
666 
667 	/* Write to SYSCTRL_PADCONF_WKUP_CTRL_I2C_2 to setup I2C pull */
668 	writel_relaxed(val, OMAP2_L4_IO_ADDRESS(OMAP4_CTRL_MODULE_PAD_WKUP +
669 				OMAP4_CTRL_MODULE_PAD_WKUP_CONTROL_I2C_2));
670 
671 	/* HSSCLH can always be zero */
672 	val = hsscll << OMAP4430_HSSCLL_SHIFT;
673 	val |= (0x28 << OMAP4430_SCLL_SHIFT | 0x2c << OMAP4430_SCLH_SHIFT);
674 
675 	/* Write setup times to I2C config register */
676 	voltdm->write(val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET);
677 }
678 
679 
680 
681 /**
682  * omap_vc_i2c_init - initialize I2C interface to PMIC
683  * @voltdm: voltage domain containing VC data
684  *
685  * Use PMIC supplied settings for I2C high-speed mode and
686  * master code (if set) and program the VC I2C configuration
687  * register.
688  *
689  * The VC I2C configuration is common to all VC channels,
690  * so this function only configures I2C for the first VC
691  * channel registers.  All other VC channels will use the
692  * same configuration.
693  */
omap_vc_i2c_init(struct voltagedomain * voltdm)694 static void __init omap_vc_i2c_init(struct voltagedomain *voltdm)
695 {
696 	struct omap_vc_channel *vc = voltdm->vc;
697 	static bool initialized;
698 	static bool i2c_high_speed;
699 	u8 mcode;
700 
701 	if (initialized) {
702 		if (voltdm->pmic->i2c_high_speed != i2c_high_speed)
703 			pr_warn("%s: I2C config for vdd_%s does not match other channels (%u).\n",
704 				__func__, voltdm->name, i2c_high_speed);
705 		return;
706 	}
707 
708 	/*
709 	 * Note that for omap3 OMAP3430_SREN_MASK clears SREN to work around
710 	 * erratum i531 "Extra Power Consumed When Repeated Start Operation
711 	 * Mode Is Enabled on I2C Interface Dedicated for Smart Reflex (I2C4)".
712 	 * Otherwise I2C4 eventually leads into about 23mW extra power being
713 	 * consumed even during off idle using VMODE.
714 	 */
715 	i2c_high_speed = voltdm->pmic->i2c_high_speed;
716 	if (i2c_high_speed)
717 		voltdm->rmw(vc->common->i2c_cfg_clear_mask,
718 			    vc->common->i2c_cfg_hsen_mask,
719 			    vc->common->i2c_cfg_reg);
720 
721 	mcode = voltdm->pmic->i2c_mcode;
722 	if (mcode)
723 		voltdm->rmw(vc->common->i2c_mcode_mask,
724 			    mcode << __ffs(vc->common->i2c_mcode_mask),
725 			    vc->common->i2c_cfg_reg);
726 
727 	if (cpu_is_omap44xx())
728 		omap4_vc_i2c_timing_init(voltdm);
729 
730 	initialized = true;
731 }
732 
733 /**
734  * omap_vc_calc_vsel - calculate vsel value for a channel
735  * @voltdm: channel to calculate value for
736  * @uvolt: microvolt value to convert to vsel
737  *
738  * Converts a microvolt value to vsel value for the used PMIC.
739  * This checks whether the microvolt value is out of bounds, and
740  * adjusts the value accordingly. If unsupported value detected,
741  * warning is thrown.
742  */
omap_vc_calc_vsel(struct voltagedomain * voltdm,u32 uvolt)743 static u8 omap_vc_calc_vsel(struct voltagedomain *voltdm, u32 uvolt)
744 {
745 	if (voltdm->pmic->vddmin > uvolt)
746 		uvolt = voltdm->pmic->vddmin;
747 	if (voltdm->pmic->vddmax < uvolt) {
748 		WARN(1, "%s: voltage not supported by pmic: %u vs max %u\n",
749 			__func__, uvolt, voltdm->pmic->vddmax);
750 		/* Lets try maximum value anyway */
751 		uvolt = voltdm->pmic->vddmax;
752 	}
753 
754 	return voltdm->pmic->uv_to_vsel(uvolt);
755 }
756 
757 #ifdef CONFIG_PM
758 /**
759  * omap_pm_setup_sr_i2c_pcb_length - set length of SR I2C traces on PCB
760  * @mm: length of the PCB trace in millimetres
761  *
762  * Sets the PCB trace length for the I2C channel. By default uses 63mm.
763  * This is needed for properly calculating the capacitance value for
764  * the PCB trace, and for setting the SR I2C channel timing parameters.
765  */
omap_pm_setup_sr_i2c_pcb_length(u32 mm)766 void __init omap_pm_setup_sr_i2c_pcb_length(u32 mm)
767 {
768 	sr_i2c_pcb_length = mm;
769 }
770 #endif
771 
omap_vc_init_channel(struct voltagedomain * voltdm)772 void __init omap_vc_init_channel(struct voltagedomain *voltdm)
773 {
774 	struct omap_vc_channel *vc = voltdm->vc;
775 	u8 on_vsel, onlp_vsel, ret_vsel, off_vsel;
776 	u32 val;
777 
778 	if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
779 		pr_err("%s: No PMIC info for vdd_%s\n", __func__, voltdm->name);
780 		return;
781 	}
782 
783 	if (!voltdm->read || !voltdm->write) {
784 		pr_err("%s: No read/write API for accessing vdd_%s regs\n",
785 			__func__, voltdm->name);
786 		return;
787 	}
788 
789 	vc->cfg_channel = 0;
790 	if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT)
791 		vc_cfg_bits = &vc_mutant_channel_cfg;
792 	else
793 		vc_cfg_bits = &vc_default_channel_cfg;
794 
795 	/* get PMIC/board specific settings */
796 	vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr;
797 	vc->volt_reg_addr = voltdm->pmic->volt_reg_addr;
798 	vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr;
799 
800 	/* Configure the i2c slave address for this VC */
801 	voltdm->rmw(vc->smps_sa_mask,
802 		    vc->i2c_slave_addr << __ffs(vc->smps_sa_mask),
803 		    vc->smps_sa_reg);
804 	vc->cfg_channel |= vc_cfg_bits->sa;
805 
806 	/*
807 	 * Configure the PMIC register addresses.
808 	 */
809 	voltdm->rmw(vc->smps_volra_mask,
810 		    vc->volt_reg_addr << __ffs(vc->smps_volra_mask),
811 		    vc->smps_volra_reg);
812 	vc->cfg_channel |= vc_cfg_bits->rav;
813 
814 	if (vc->cmd_reg_addr) {
815 		voltdm->rmw(vc->smps_cmdra_mask,
816 			    vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask),
817 			    vc->smps_cmdra_reg);
818 		vc->cfg_channel |= vc_cfg_bits->rac;
819 	}
820 
821 	if (vc->cmd_reg_addr == vc->volt_reg_addr)
822 		vc->cfg_channel |= vc_cfg_bits->racen;
823 
824 	/* Set up the on, inactive, retention and off voltage */
825 	on_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->on);
826 	onlp_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->onlp);
827 	ret_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->ret);
828 	off_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->off);
829 
830 	val = ((on_vsel << vc->common->cmd_on_shift) |
831 	       (onlp_vsel << vc->common->cmd_onlp_shift) |
832 	       (ret_vsel << vc->common->cmd_ret_shift) |
833 	       (off_vsel << vc->common->cmd_off_shift));
834 	voltdm->write(val, vc->cmdval_reg);
835 	vc->cfg_channel |= vc_cfg_bits->cmd;
836 
837 	/* Channel configuration */
838 	omap_vc_config_channel(voltdm);
839 
840 	omap_vc_i2c_init(voltdm);
841 
842 	if (cpu_is_omap34xx())
843 		omap3_vc_init_channel(voltdm);
844 	else if (cpu_is_omap44xx())
845 		omap4_vc_init_channel(voltdm);
846 }
847 
848