1 /*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #define pr_fmt(fmt) "numa: " fmt
12
13 #include <linux/threads.h>
14 #include <linux/bootmem.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/mmzone.h>
18 #include <linux/export.h>
19 #include <linux/nodemask.h>
20 #include <linux/cpu.h>
21 #include <linux/notifier.h>
22 #include <linux/memblock.h>
23 #include <linux/of.h>
24 #include <linux/pfn.h>
25 #include <linux/cpuset.h>
26 #include <linux/node.h>
27 #include <linux/stop_machine.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/uaccess.h>
31 #include <linux/slab.h>
32 #include <asm/cputhreads.h>
33 #include <asm/sparsemem.h>
34 #include <asm/prom.h>
35 #include <asm/smp.h>
36 #include <asm/cputhreads.h>
37 #include <asm/topology.h>
38 #include <asm/firmware.h>
39 #include <asm/paca.h>
40 #include <asm/hvcall.h>
41 #include <asm/setup.h>
42 #include <asm/vdso.h>
43
44 static int numa_enabled = 1;
45
46 static char *cmdline __initdata;
47
48 static int numa_debug;
49 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
50
51 int numa_cpu_lookup_table[NR_CPUS];
52 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
53 struct pglist_data *node_data[MAX_NUMNODES];
54
55 EXPORT_SYMBOL(numa_cpu_lookup_table);
56 EXPORT_SYMBOL(node_to_cpumask_map);
57 EXPORT_SYMBOL(node_data);
58
59 static int min_common_depth;
60 static int n_mem_addr_cells, n_mem_size_cells;
61 static int form1_affinity;
62
63 #define MAX_DISTANCE_REF_POINTS 4
64 static int distance_ref_points_depth;
65 static const __be32 *distance_ref_points;
66 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
67
68 /*
69 * Allocate node_to_cpumask_map based on number of available nodes
70 * Requires node_possible_map to be valid.
71 *
72 * Note: cpumask_of_node() is not valid until after this is done.
73 */
setup_node_to_cpumask_map(void)74 static void __init setup_node_to_cpumask_map(void)
75 {
76 unsigned int node;
77
78 /* setup nr_node_ids if not done yet */
79 if (nr_node_ids == MAX_NUMNODES)
80 setup_nr_node_ids();
81
82 /* allocate the map */
83 for (node = 0; node < nr_node_ids; node++)
84 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
85
86 /* cpumask_of_node() will now work */
87 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
88 }
89
fake_numa_create_new_node(unsigned long end_pfn,unsigned int * nid)90 static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 unsigned int *nid)
92 {
93 unsigned long long mem;
94 char *p = cmdline;
95 static unsigned int fake_nid;
96 static unsigned long long curr_boundary;
97
98 /*
99 * Modify node id, iff we started creating NUMA nodes
100 * We want to continue from where we left of the last time
101 */
102 if (fake_nid)
103 *nid = fake_nid;
104 /*
105 * In case there are no more arguments to parse, the
106 * node_id should be the same as the last fake node id
107 * (we've handled this above).
108 */
109 if (!p)
110 return 0;
111
112 mem = memparse(p, &p);
113 if (!mem)
114 return 0;
115
116 if (mem < curr_boundary)
117 return 0;
118
119 curr_boundary = mem;
120
121 if ((end_pfn << PAGE_SHIFT) > mem) {
122 /*
123 * Skip commas and spaces
124 */
125 while (*p == ',' || *p == ' ' || *p == '\t')
126 p++;
127
128 cmdline = p;
129 fake_nid++;
130 *nid = fake_nid;
131 dbg("created new fake_node with id %d\n", fake_nid);
132 return 1;
133 }
134 return 0;
135 }
136
137 /*
138 * get_node_active_region - Return active region containing pfn
139 * Active range returned is empty if none found.
140 * @pfn: The page to return the region for
141 * @node_ar: Returned set to the active region containing @pfn
142 */
get_node_active_region(unsigned long pfn,struct node_active_region * node_ar)143 static void __init get_node_active_region(unsigned long pfn,
144 struct node_active_region *node_ar)
145 {
146 unsigned long start_pfn, end_pfn;
147 int i, nid;
148
149 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
150 if (pfn >= start_pfn && pfn < end_pfn) {
151 node_ar->nid = nid;
152 node_ar->start_pfn = start_pfn;
153 node_ar->end_pfn = end_pfn;
154 break;
155 }
156 }
157 }
158
reset_numa_cpu_lookup_table(void)159 static void reset_numa_cpu_lookup_table(void)
160 {
161 unsigned int cpu;
162
163 for_each_possible_cpu(cpu)
164 numa_cpu_lookup_table[cpu] = -1;
165 }
166
update_numa_cpu_lookup_table(unsigned int cpu,int node)167 static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
168 {
169 numa_cpu_lookup_table[cpu] = node;
170 }
171
map_cpu_to_node(int cpu,int node)172 static void map_cpu_to_node(int cpu, int node)
173 {
174 update_numa_cpu_lookup_table(cpu, node);
175
176 dbg("adding cpu %d to node %d\n", cpu, node);
177
178 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
179 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
180 }
181
182 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
unmap_cpu_from_node(unsigned long cpu)183 static void unmap_cpu_from_node(unsigned long cpu)
184 {
185 int node = numa_cpu_lookup_table[cpu];
186
187 dbg("removing cpu %lu from node %d\n", cpu, node);
188
189 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
190 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
191 } else {
192 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
193 cpu, node);
194 }
195 }
196 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
197
198 /* must hold reference to node during call */
of_get_associativity(struct device_node * dev)199 static const __be32 *of_get_associativity(struct device_node *dev)
200 {
201 return of_get_property(dev, "ibm,associativity", NULL);
202 }
203
204 /*
205 * Returns the property linux,drconf-usable-memory if
206 * it exists (the property exists only in kexec/kdump kernels,
207 * added by kexec-tools)
208 */
of_get_usable_memory(struct device_node * memory)209 static const __be32 *of_get_usable_memory(struct device_node *memory)
210 {
211 const __be32 *prop;
212 u32 len;
213 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
214 if (!prop || len < sizeof(unsigned int))
215 return NULL;
216 return prop;
217 }
218
__node_distance(int a,int b)219 int __node_distance(int a, int b)
220 {
221 int i;
222 int distance = LOCAL_DISTANCE;
223
224 if (!form1_affinity)
225 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
226
227 for (i = 0; i < distance_ref_points_depth; i++) {
228 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
229 break;
230
231 /* Double the distance for each NUMA level */
232 distance *= 2;
233 }
234
235 return distance;
236 }
237 EXPORT_SYMBOL(__node_distance);
238
initialize_distance_lookup_table(int nid,const __be32 * associativity)239 static void initialize_distance_lookup_table(int nid,
240 const __be32 *associativity)
241 {
242 int i;
243
244 if (!form1_affinity)
245 return;
246
247 for (i = 0; i < distance_ref_points_depth; i++) {
248 const __be32 *entry;
249
250 entry = &associativity[be32_to_cpu(distance_ref_points[i])];
251 distance_lookup_table[nid][i] = of_read_number(entry, 1);
252 }
253 }
254
255 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
256 * info is found.
257 */
associativity_to_nid(const __be32 * associativity)258 static int associativity_to_nid(const __be32 *associativity)
259 {
260 int nid = -1;
261
262 if (min_common_depth == -1)
263 goto out;
264
265 if (of_read_number(associativity, 1) >= min_common_depth)
266 nid = of_read_number(&associativity[min_common_depth], 1);
267
268 /* POWER4 LPAR uses 0xffff as invalid node */
269 if (nid == 0xffff || nid >= MAX_NUMNODES)
270 nid = -1;
271
272 if (nid > 0 &&
273 of_read_number(associativity, 1) >= distance_ref_points_depth)
274 initialize_distance_lookup_table(nid, associativity);
275
276 out:
277 return nid;
278 }
279
280 /* Returns the nid associated with the given device tree node,
281 * or -1 if not found.
282 */
of_node_to_nid_single(struct device_node * device)283 static int of_node_to_nid_single(struct device_node *device)
284 {
285 int nid = -1;
286 const __be32 *tmp;
287
288 tmp = of_get_associativity(device);
289 if (tmp)
290 nid = associativity_to_nid(tmp);
291 return nid;
292 }
293
294 /* Walk the device tree upwards, looking for an associativity id */
of_node_to_nid(struct device_node * device)295 int of_node_to_nid(struct device_node *device)
296 {
297 struct device_node *tmp;
298 int nid = -1;
299
300 of_node_get(device);
301 while (device) {
302 nid = of_node_to_nid_single(device);
303 if (nid != -1)
304 break;
305
306 tmp = device;
307 device = of_get_parent(tmp);
308 of_node_put(tmp);
309 }
310 of_node_put(device);
311
312 return nid;
313 }
314 EXPORT_SYMBOL_GPL(of_node_to_nid);
315
find_min_common_depth(void)316 static int __init find_min_common_depth(void)
317 {
318 int depth;
319 struct device_node *root;
320
321 if (firmware_has_feature(FW_FEATURE_OPAL))
322 root = of_find_node_by_path("/ibm,opal");
323 else
324 root = of_find_node_by_path("/rtas");
325 if (!root)
326 root = of_find_node_by_path("/");
327
328 /*
329 * This property is a set of 32-bit integers, each representing
330 * an index into the ibm,associativity nodes.
331 *
332 * With form 0 affinity the first integer is for an SMP configuration
333 * (should be all 0's) and the second is for a normal NUMA
334 * configuration. We have only one level of NUMA.
335 *
336 * With form 1 affinity the first integer is the most significant
337 * NUMA boundary and the following are progressively less significant
338 * boundaries. There can be more than one level of NUMA.
339 */
340 distance_ref_points = of_get_property(root,
341 "ibm,associativity-reference-points",
342 &distance_ref_points_depth);
343
344 if (!distance_ref_points) {
345 dbg("NUMA: ibm,associativity-reference-points not found.\n");
346 goto err;
347 }
348
349 distance_ref_points_depth /= sizeof(int);
350
351 if (firmware_has_feature(FW_FEATURE_OPAL) ||
352 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
353 dbg("Using form 1 affinity\n");
354 form1_affinity = 1;
355 }
356
357 if (form1_affinity) {
358 depth = of_read_number(distance_ref_points, 1);
359 } else {
360 if (distance_ref_points_depth < 2) {
361 printk(KERN_WARNING "NUMA: "
362 "short ibm,associativity-reference-points\n");
363 goto err;
364 }
365
366 depth = of_read_number(&distance_ref_points[1], 1);
367 }
368
369 /*
370 * Warn and cap if the hardware supports more than
371 * MAX_DISTANCE_REF_POINTS domains.
372 */
373 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
374 printk(KERN_WARNING "NUMA: distance array capped at "
375 "%d entries\n", MAX_DISTANCE_REF_POINTS);
376 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
377 }
378
379 of_node_put(root);
380 return depth;
381
382 err:
383 of_node_put(root);
384 return -1;
385 }
386
get_n_mem_cells(int * n_addr_cells,int * n_size_cells)387 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
388 {
389 struct device_node *memory = NULL;
390
391 memory = of_find_node_by_type(memory, "memory");
392 if (!memory)
393 panic("numa.c: No memory nodes found!");
394
395 *n_addr_cells = of_n_addr_cells(memory);
396 *n_size_cells = of_n_size_cells(memory);
397 of_node_put(memory);
398 }
399
read_n_cells(int n,const __be32 ** buf)400 static unsigned long read_n_cells(int n, const __be32 **buf)
401 {
402 unsigned long result = 0;
403
404 while (n--) {
405 result = (result << 32) | of_read_number(*buf, 1);
406 (*buf)++;
407 }
408 return result;
409 }
410
411 /*
412 * Read the next memblock list entry from the ibm,dynamic-memory property
413 * and return the information in the provided of_drconf_cell structure.
414 */
read_drconf_cell(struct of_drconf_cell * drmem,const __be32 ** cellp)415 static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
416 {
417 const __be32 *cp;
418
419 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
420
421 cp = *cellp;
422 drmem->drc_index = of_read_number(cp, 1);
423 drmem->reserved = of_read_number(&cp[1], 1);
424 drmem->aa_index = of_read_number(&cp[2], 1);
425 drmem->flags = of_read_number(&cp[3], 1);
426
427 *cellp = cp + 4;
428 }
429
430 /*
431 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
432 *
433 * The layout of the ibm,dynamic-memory property is a number N of memblock
434 * list entries followed by N memblock list entries. Each memblock list entry
435 * contains information as laid out in the of_drconf_cell struct above.
436 */
of_get_drconf_memory(struct device_node * memory,const __be32 ** dm)437 static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
438 {
439 const __be32 *prop;
440 u32 len, entries;
441
442 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
443 if (!prop || len < sizeof(unsigned int))
444 return 0;
445
446 entries = of_read_number(prop++, 1);
447
448 /* Now that we know the number of entries, revalidate the size
449 * of the property read in to ensure we have everything
450 */
451 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
452 return 0;
453
454 *dm = prop;
455 return entries;
456 }
457
458 /*
459 * Retrieve and validate the ibm,lmb-size property for drconf memory
460 * from the device tree.
461 */
of_get_lmb_size(struct device_node * memory)462 static u64 of_get_lmb_size(struct device_node *memory)
463 {
464 const __be32 *prop;
465 u32 len;
466
467 prop = of_get_property(memory, "ibm,lmb-size", &len);
468 if (!prop || len < sizeof(unsigned int))
469 return 0;
470
471 return read_n_cells(n_mem_size_cells, &prop);
472 }
473
474 struct assoc_arrays {
475 u32 n_arrays;
476 u32 array_sz;
477 const __be32 *arrays;
478 };
479
480 /*
481 * Retrieve and validate the list of associativity arrays for drconf
482 * memory from the ibm,associativity-lookup-arrays property of the
483 * device tree..
484 *
485 * The layout of the ibm,associativity-lookup-arrays property is a number N
486 * indicating the number of associativity arrays, followed by a number M
487 * indicating the size of each associativity array, followed by a list
488 * of N associativity arrays.
489 */
of_get_assoc_arrays(struct device_node * memory,struct assoc_arrays * aa)490 static int of_get_assoc_arrays(struct device_node *memory,
491 struct assoc_arrays *aa)
492 {
493 const __be32 *prop;
494 u32 len;
495
496 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
497 if (!prop || len < 2 * sizeof(unsigned int))
498 return -1;
499
500 aa->n_arrays = of_read_number(prop++, 1);
501 aa->array_sz = of_read_number(prop++, 1);
502
503 /* Now that we know the number of arrays and size of each array,
504 * revalidate the size of the property read in.
505 */
506 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
507 return -1;
508
509 aa->arrays = prop;
510 return 0;
511 }
512
513 /*
514 * This is like of_node_to_nid_single() for memory represented in the
515 * ibm,dynamic-reconfiguration-memory node.
516 */
of_drconf_to_nid_single(struct of_drconf_cell * drmem,struct assoc_arrays * aa)517 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
518 struct assoc_arrays *aa)
519 {
520 int default_nid = 0;
521 int nid = default_nid;
522 int index;
523
524 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
525 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
526 drmem->aa_index < aa->n_arrays) {
527 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
528 nid = of_read_number(&aa->arrays[index], 1);
529
530 if (nid == 0xffff || nid >= MAX_NUMNODES)
531 nid = default_nid;
532 }
533
534 return nid;
535 }
536
537 /*
538 * Figure out to which domain a cpu belongs and stick it there.
539 * Return the id of the domain used.
540 */
numa_setup_cpu(unsigned long lcpu)541 static int numa_setup_cpu(unsigned long lcpu)
542 {
543 int nid = -1;
544 struct device_node *cpu;
545
546 /*
547 * If a valid cpu-to-node mapping is already available, use it
548 * directly instead of querying the firmware, since it represents
549 * the most recent mapping notified to us by the platform (eg: VPHN).
550 */
551 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
552 map_cpu_to_node(lcpu, nid);
553 return nid;
554 }
555
556 cpu = of_get_cpu_node(lcpu, NULL);
557
558 if (!cpu) {
559 WARN_ON(1);
560 if (cpu_present(lcpu))
561 goto out_present;
562 else
563 goto out;
564 }
565
566 nid = of_node_to_nid_single(cpu);
567
568 out_present:
569 if (nid < 0 || !node_online(nid))
570 nid = first_online_node;
571
572 map_cpu_to_node(lcpu, nid);
573 of_node_put(cpu);
574 out:
575 return nid;
576 }
577
verify_cpu_node_mapping(int cpu,int node)578 static void verify_cpu_node_mapping(int cpu, int node)
579 {
580 int base, sibling, i;
581
582 /* Verify that all the threads in the core belong to the same node */
583 base = cpu_first_thread_sibling(cpu);
584
585 for (i = 0; i < threads_per_core; i++) {
586 sibling = base + i;
587
588 if (sibling == cpu || cpu_is_offline(sibling))
589 continue;
590
591 if (cpu_to_node(sibling) != node) {
592 WARN(1, "CPU thread siblings %d and %d don't belong"
593 " to the same node!\n", cpu, sibling);
594 break;
595 }
596 }
597 }
598
cpu_numa_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)599 static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
600 void *hcpu)
601 {
602 unsigned long lcpu = (unsigned long)hcpu;
603 int ret = NOTIFY_DONE, nid;
604
605 switch (action) {
606 case CPU_UP_PREPARE:
607 case CPU_UP_PREPARE_FROZEN:
608 nid = numa_setup_cpu(lcpu);
609 verify_cpu_node_mapping((int)lcpu, nid);
610 ret = NOTIFY_OK;
611 break;
612 #ifdef CONFIG_HOTPLUG_CPU
613 case CPU_DEAD:
614 case CPU_DEAD_FROZEN:
615 case CPU_UP_CANCELED:
616 case CPU_UP_CANCELED_FROZEN:
617 unmap_cpu_from_node(lcpu);
618 ret = NOTIFY_OK;
619 break;
620 #endif
621 }
622 return ret;
623 }
624
625 /*
626 * Check and possibly modify a memory region to enforce the memory limit.
627 *
628 * Returns the size the region should have to enforce the memory limit.
629 * This will either be the original value of size, a truncated value,
630 * or zero. If the returned value of size is 0 the region should be
631 * discarded as it lies wholly above the memory limit.
632 */
numa_enforce_memory_limit(unsigned long start,unsigned long size)633 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
634 unsigned long size)
635 {
636 /*
637 * We use memblock_end_of_DRAM() in here instead of memory_limit because
638 * we've already adjusted it for the limit and it takes care of
639 * having memory holes below the limit. Also, in the case of
640 * iommu_is_off, memory_limit is not set but is implicitly enforced.
641 */
642
643 if (start + size <= memblock_end_of_DRAM())
644 return size;
645
646 if (start >= memblock_end_of_DRAM())
647 return 0;
648
649 return memblock_end_of_DRAM() - start;
650 }
651
652 /*
653 * Reads the counter for a given entry in
654 * linux,drconf-usable-memory property
655 */
read_usm_ranges(const __be32 ** usm)656 static inline int __init read_usm_ranges(const __be32 **usm)
657 {
658 /*
659 * For each lmb in ibm,dynamic-memory a corresponding
660 * entry in linux,drconf-usable-memory property contains
661 * a counter followed by that many (base, size) duple.
662 * read the counter from linux,drconf-usable-memory
663 */
664 return read_n_cells(n_mem_size_cells, usm);
665 }
666
667 /*
668 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
669 * node. This assumes n_mem_{addr,size}_cells have been set.
670 */
parse_drconf_memory(struct device_node * memory)671 static void __init parse_drconf_memory(struct device_node *memory)
672 {
673 const __be32 *uninitialized_var(dm), *usm;
674 unsigned int n, rc, ranges, is_kexec_kdump = 0;
675 unsigned long lmb_size, base, size, sz;
676 int nid;
677 struct assoc_arrays aa = { .arrays = NULL };
678
679 n = of_get_drconf_memory(memory, &dm);
680 if (!n)
681 return;
682
683 lmb_size = of_get_lmb_size(memory);
684 if (!lmb_size)
685 return;
686
687 rc = of_get_assoc_arrays(memory, &aa);
688 if (rc)
689 return;
690
691 /* check if this is a kexec/kdump kernel */
692 usm = of_get_usable_memory(memory);
693 if (usm != NULL)
694 is_kexec_kdump = 1;
695
696 for (; n != 0; --n) {
697 struct of_drconf_cell drmem;
698
699 read_drconf_cell(&drmem, &dm);
700
701 /* skip this block if the reserved bit is set in flags (0x80)
702 or if the block is not assigned to this partition (0x8) */
703 if ((drmem.flags & DRCONF_MEM_RESERVED)
704 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
705 continue;
706
707 base = drmem.base_addr;
708 size = lmb_size;
709 ranges = 1;
710
711 if (is_kexec_kdump) {
712 ranges = read_usm_ranges(&usm);
713 if (!ranges) /* there are no (base, size) duple */
714 continue;
715 }
716 do {
717 if (is_kexec_kdump) {
718 base = read_n_cells(n_mem_addr_cells, &usm);
719 size = read_n_cells(n_mem_size_cells, &usm);
720 }
721 nid = of_drconf_to_nid_single(&drmem, &aa);
722 fake_numa_create_new_node(
723 ((base + size) >> PAGE_SHIFT),
724 &nid);
725 node_set_online(nid);
726 sz = numa_enforce_memory_limit(base, size);
727 if (sz)
728 memblock_set_node(base, sz,
729 &memblock.memory, nid);
730 } while (--ranges);
731 }
732 }
733
parse_numa_properties(void)734 static int __init parse_numa_properties(void)
735 {
736 struct device_node *memory;
737 int default_nid = 0;
738 unsigned long i;
739
740 if (numa_enabled == 0) {
741 printk(KERN_WARNING "NUMA disabled by user\n");
742 return -1;
743 }
744
745 min_common_depth = find_min_common_depth();
746
747 if (min_common_depth < 0)
748 return min_common_depth;
749
750 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
751
752 /*
753 * Even though we connect cpus to numa domains later in SMP
754 * init, we need to know the node ids now. This is because
755 * each node to be onlined must have NODE_DATA etc backing it.
756 */
757 for_each_present_cpu(i) {
758 struct device_node *cpu;
759 int nid;
760
761 cpu = of_get_cpu_node(i, NULL);
762 BUG_ON(!cpu);
763 nid = of_node_to_nid_single(cpu);
764 of_node_put(cpu);
765
766 /*
767 * Don't fall back to default_nid yet -- we will plug
768 * cpus into nodes once the memory scan has discovered
769 * the topology.
770 */
771 if (nid < 0)
772 continue;
773 node_set_online(nid);
774 }
775
776 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
777
778 for_each_node_by_type(memory, "memory") {
779 unsigned long start;
780 unsigned long size;
781 int nid;
782 int ranges;
783 const __be32 *memcell_buf;
784 unsigned int len;
785
786 memcell_buf = of_get_property(memory,
787 "linux,usable-memory", &len);
788 if (!memcell_buf || len <= 0)
789 memcell_buf = of_get_property(memory, "reg", &len);
790 if (!memcell_buf || len <= 0)
791 continue;
792
793 /* ranges in cell */
794 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
795 new_range:
796 /* these are order-sensitive, and modify the buffer pointer */
797 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
798 size = read_n_cells(n_mem_size_cells, &memcell_buf);
799
800 /*
801 * Assumption: either all memory nodes or none will
802 * have associativity properties. If none, then
803 * everything goes to default_nid.
804 */
805 nid = of_node_to_nid_single(memory);
806 if (nid < 0)
807 nid = default_nid;
808
809 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
810 node_set_online(nid);
811
812 if (!(size = numa_enforce_memory_limit(start, size))) {
813 if (--ranges)
814 goto new_range;
815 else
816 continue;
817 }
818
819 memblock_set_node(start, size, &memblock.memory, nid);
820
821 if (--ranges)
822 goto new_range;
823 }
824
825 /*
826 * Now do the same thing for each MEMBLOCK listed in the
827 * ibm,dynamic-memory property in the
828 * ibm,dynamic-reconfiguration-memory node.
829 */
830 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
831 if (memory)
832 parse_drconf_memory(memory);
833
834 return 0;
835 }
836
setup_nonnuma(void)837 static void __init setup_nonnuma(void)
838 {
839 unsigned long top_of_ram = memblock_end_of_DRAM();
840 unsigned long total_ram = memblock_phys_mem_size();
841 unsigned long start_pfn, end_pfn;
842 unsigned int nid = 0;
843 struct memblock_region *reg;
844
845 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
846 top_of_ram, total_ram);
847 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
848 (top_of_ram - total_ram) >> 20);
849
850 for_each_memblock(memory, reg) {
851 start_pfn = memblock_region_memory_base_pfn(reg);
852 end_pfn = memblock_region_memory_end_pfn(reg);
853
854 fake_numa_create_new_node(end_pfn, &nid);
855 memblock_set_node(PFN_PHYS(start_pfn),
856 PFN_PHYS(end_pfn - start_pfn),
857 &memblock.memory, nid);
858 node_set_online(nid);
859 }
860 }
861
dump_numa_cpu_topology(void)862 void __init dump_numa_cpu_topology(void)
863 {
864 unsigned int node;
865 unsigned int cpu, count;
866
867 if (min_common_depth == -1 || !numa_enabled)
868 return;
869
870 for_each_online_node(node) {
871 printk(KERN_DEBUG "Node %d CPUs:", node);
872
873 count = 0;
874 /*
875 * If we used a CPU iterator here we would miss printing
876 * the holes in the cpumap.
877 */
878 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
879 if (cpumask_test_cpu(cpu,
880 node_to_cpumask_map[node])) {
881 if (count == 0)
882 printk(" %u", cpu);
883 ++count;
884 } else {
885 if (count > 1)
886 printk("-%u", cpu - 1);
887 count = 0;
888 }
889 }
890
891 if (count > 1)
892 printk("-%u", nr_cpu_ids - 1);
893 printk("\n");
894 }
895 }
896
dump_numa_memory_topology(void)897 static void __init dump_numa_memory_topology(void)
898 {
899 unsigned int node;
900 unsigned int count;
901
902 if (min_common_depth == -1 || !numa_enabled)
903 return;
904
905 for_each_online_node(node) {
906 unsigned long i;
907
908 printk(KERN_DEBUG "Node %d Memory:", node);
909
910 count = 0;
911
912 for (i = 0; i < memblock_end_of_DRAM();
913 i += (1 << SECTION_SIZE_BITS)) {
914 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
915 if (count == 0)
916 printk(" 0x%lx", i);
917 ++count;
918 } else {
919 if (count > 0)
920 printk("-0x%lx", i);
921 count = 0;
922 }
923 }
924
925 if (count > 0)
926 printk("-0x%lx", i);
927 printk("\n");
928 }
929 }
930
931 /*
932 * Allocate some memory, satisfying the memblock or bootmem allocator where
933 * required. nid is the preferred node and end is the physical address of
934 * the highest address in the node.
935 *
936 * Returns the virtual address of the memory.
937 */
careful_zallocation(int nid,unsigned long size,unsigned long align,unsigned long end_pfn)938 static void __init *careful_zallocation(int nid, unsigned long size,
939 unsigned long align,
940 unsigned long end_pfn)
941 {
942 void *ret;
943 int new_nid;
944 unsigned long ret_paddr;
945
946 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
947
948 /* retry over all memory */
949 if (!ret_paddr)
950 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
951
952 if (!ret_paddr)
953 panic("numa.c: cannot allocate %lu bytes for node %d",
954 size, nid);
955
956 ret = __va(ret_paddr);
957
958 /*
959 * We initialize the nodes in numeric order: 0, 1, 2...
960 * and hand over control from the MEMBLOCK allocator to the
961 * bootmem allocator. If this function is called for
962 * node 5, then we know that all nodes <5 are using the
963 * bootmem allocator instead of the MEMBLOCK allocator.
964 *
965 * So, check the nid from which this allocation came
966 * and double check to see if we need to use bootmem
967 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
968 * since it would be useless.
969 */
970 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
971 if (new_nid < nid) {
972 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
973 size, align, 0);
974
975 dbg("alloc_bootmem %p %lx\n", ret, size);
976 }
977
978 memset(ret, 0, size);
979 return ret;
980 }
981
982 static struct notifier_block ppc64_numa_nb = {
983 .notifier_call = cpu_numa_callback,
984 .priority = 1 /* Must run before sched domains notifier. */
985 };
986
mark_reserved_regions_for_nid(int nid)987 static void __init mark_reserved_regions_for_nid(int nid)
988 {
989 struct pglist_data *node = NODE_DATA(nid);
990 struct memblock_region *reg;
991
992 for_each_memblock(reserved, reg) {
993 unsigned long physbase = reg->base;
994 unsigned long size = reg->size;
995 unsigned long start_pfn = physbase >> PAGE_SHIFT;
996 unsigned long end_pfn = PFN_UP(physbase + size);
997 struct node_active_region node_ar;
998 unsigned long node_end_pfn = pgdat_end_pfn(node);
999
1000 /*
1001 * Check to make sure that this memblock.reserved area is
1002 * within the bounds of the node that we care about.
1003 * Checking the nid of the start and end points is not
1004 * sufficient because the reserved area could span the
1005 * entire node.
1006 */
1007 if (end_pfn <= node->node_start_pfn ||
1008 start_pfn >= node_end_pfn)
1009 continue;
1010
1011 get_node_active_region(start_pfn, &node_ar);
1012 while (start_pfn < end_pfn &&
1013 node_ar.start_pfn < node_ar.end_pfn) {
1014 unsigned long reserve_size = size;
1015 /*
1016 * if reserved region extends past active region
1017 * then trim size to active region
1018 */
1019 if (end_pfn > node_ar.end_pfn)
1020 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
1021 - physbase;
1022 /*
1023 * Only worry about *this* node, others may not
1024 * yet have valid NODE_DATA().
1025 */
1026 if (node_ar.nid == nid) {
1027 dbg("reserve_bootmem %lx %lx nid=%d\n",
1028 physbase, reserve_size, node_ar.nid);
1029 reserve_bootmem_node(NODE_DATA(node_ar.nid),
1030 physbase, reserve_size,
1031 BOOTMEM_DEFAULT);
1032 }
1033 /*
1034 * if reserved region is contained in the active region
1035 * then done.
1036 */
1037 if (end_pfn <= node_ar.end_pfn)
1038 break;
1039
1040 /*
1041 * reserved region extends past the active region
1042 * get next active region that contains this
1043 * reserved region
1044 */
1045 start_pfn = node_ar.end_pfn;
1046 physbase = start_pfn << PAGE_SHIFT;
1047 size = size - reserve_size;
1048 get_node_active_region(start_pfn, &node_ar);
1049 }
1050 }
1051 }
1052
1053
do_init_bootmem(void)1054 void __init do_init_bootmem(void)
1055 {
1056 int nid, cpu;
1057
1058 min_low_pfn = 0;
1059 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1060 max_pfn = max_low_pfn;
1061
1062 if (parse_numa_properties())
1063 setup_nonnuma();
1064 else
1065 dump_numa_memory_topology();
1066
1067 for_each_online_node(nid) {
1068 unsigned long start_pfn, end_pfn;
1069 void *bootmem_vaddr;
1070 unsigned long bootmap_pages;
1071
1072 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1073
1074 /*
1075 * Allocate the node structure node local if possible
1076 *
1077 * Be careful moving this around, as it relies on all
1078 * previous nodes' bootmem to be initialized and have
1079 * all reserved areas marked.
1080 */
1081 NODE_DATA(nid) = careful_zallocation(nid,
1082 sizeof(struct pglist_data),
1083 SMP_CACHE_BYTES, end_pfn);
1084
1085 dbg("node %d\n", nid);
1086 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1087
1088 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1089 NODE_DATA(nid)->node_start_pfn = start_pfn;
1090 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1091
1092 if (NODE_DATA(nid)->node_spanned_pages == 0)
1093 continue;
1094
1095 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1096 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1097
1098 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1099 bootmem_vaddr = careful_zallocation(nid,
1100 bootmap_pages << PAGE_SHIFT,
1101 PAGE_SIZE, end_pfn);
1102
1103 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1104
1105 init_bootmem_node(NODE_DATA(nid),
1106 __pa(bootmem_vaddr) >> PAGE_SHIFT,
1107 start_pfn, end_pfn);
1108
1109 free_bootmem_with_active_regions(nid, end_pfn);
1110 /*
1111 * Be very careful about moving this around. Future
1112 * calls to careful_zallocation() depend on this getting
1113 * done correctly.
1114 */
1115 mark_reserved_regions_for_nid(nid);
1116 sparse_memory_present_with_active_regions(nid);
1117 }
1118
1119 init_bootmem_done = 1;
1120
1121 /*
1122 * Now bootmem is initialised we can create the node to cpumask
1123 * lookup tables and setup the cpu callback to populate them.
1124 */
1125 setup_node_to_cpumask_map();
1126
1127 reset_numa_cpu_lookup_table();
1128 register_cpu_notifier(&ppc64_numa_nb);
1129 /*
1130 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1131 * even before we online them, so that we can use cpu_to_{node,mem}
1132 * early in boot, cf. smp_prepare_cpus().
1133 */
1134 for_each_present_cpu(cpu) {
1135 numa_setup_cpu((unsigned long)cpu);
1136 }
1137 }
1138
early_numa(char * p)1139 static int __init early_numa(char *p)
1140 {
1141 if (!p)
1142 return 0;
1143
1144 if (strstr(p, "off"))
1145 numa_enabled = 0;
1146
1147 if (strstr(p, "debug"))
1148 numa_debug = 1;
1149
1150 p = strstr(p, "fake=");
1151 if (p)
1152 cmdline = p + strlen("fake=");
1153
1154 return 0;
1155 }
1156 early_param("numa", early_numa);
1157
1158 static bool topology_updates_enabled = true;
1159
early_topology_updates(char * p)1160 static int __init early_topology_updates(char *p)
1161 {
1162 if (!p)
1163 return 0;
1164
1165 if (!strcmp(p, "off")) {
1166 pr_info("Disabling topology updates\n");
1167 topology_updates_enabled = false;
1168 }
1169
1170 return 0;
1171 }
1172 early_param("topology_updates", early_topology_updates);
1173
1174 #ifdef CONFIG_MEMORY_HOTPLUG
1175 /*
1176 * Find the node associated with a hot added memory section for
1177 * memory represented in the device tree by the property
1178 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1179 */
hot_add_drconf_scn_to_nid(struct device_node * memory,unsigned long scn_addr)1180 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1181 unsigned long scn_addr)
1182 {
1183 const __be32 *dm;
1184 unsigned int drconf_cell_cnt, rc;
1185 unsigned long lmb_size;
1186 struct assoc_arrays aa;
1187 int nid = -1;
1188
1189 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1190 if (!drconf_cell_cnt)
1191 return -1;
1192
1193 lmb_size = of_get_lmb_size(memory);
1194 if (!lmb_size)
1195 return -1;
1196
1197 rc = of_get_assoc_arrays(memory, &aa);
1198 if (rc)
1199 return -1;
1200
1201 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1202 struct of_drconf_cell drmem;
1203
1204 read_drconf_cell(&drmem, &dm);
1205
1206 /* skip this block if it is reserved or not assigned to
1207 * this partition */
1208 if ((drmem.flags & DRCONF_MEM_RESERVED)
1209 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1210 continue;
1211
1212 if ((scn_addr < drmem.base_addr)
1213 || (scn_addr >= (drmem.base_addr + lmb_size)))
1214 continue;
1215
1216 nid = of_drconf_to_nid_single(&drmem, &aa);
1217 break;
1218 }
1219
1220 return nid;
1221 }
1222
1223 /*
1224 * Find the node associated with a hot added memory section for memory
1225 * represented in the device tree as a node (i.e. memory@XXXX) for
1226 * each memblock.
1227 */
hot_add_node_scn_to_nid(unsigned long scn_addr)1228 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1229 {
1230 struct device_node *memory;
1231 int nid = -1;
1232
1233 for_each_node_by_type(memory, "memory") {
1234 unsigned long start, size;
1235 int ranges;
1236 const __be32 *memcell_buf;
1237 unsigned int len;
1238
1239 memcell_buf = of_get_property(memory, "reg", &len);
1240 if (!memcell_buf || len <= 0)
1241 continue;
1242
1243 /* ranges in cell */
1244 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1245
1246 while (ranges--) {
1247 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1248 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1249
1250 if ((scn_addr < start) || (scn_addr >= (start + size)))
1251 continue;
1252
1253 nid = of_node_to_nid_single(memory);
1254 break;
1255 }
1256
1257 if (nid >= 0)
1258 break;
1259 }
1260
1261 of_node_put(memory);
1262
1263 return nid;
1264 }
1265
1266 /*
1267 * Find the node associated with a hot added memory section. Section
1268 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1269 * sections are fully contained within a single MEMBLOCK.
1270 */
hot_add_scn_to_nid(unsigned long scn_addr)1271 int hot_add_scn_to_nid(unsigned long scn_addr)
1272 {
1273 struct device_node *memory = NULL;
1274 int nid, found = 0;
1275
1276 if (!numa_enabled || (min_common_depth < 0))
1277 return first_online_node;
1278
1279 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1280 if (memory) {
1281 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1282 of_node_put(memory);
1283 } else {
1284 nid = hot_add_node_scn_to_nid(scn_addr);
1285 }
1286
1287 if (nid < 0 || !node_online(nid))
1288 nid = first_online_node;
1289
1290 if (NODE_DATA(nid)->node_spanned_pages)
1291 return nid;
1292
1293 for_each_online_node(nid) {
1294 if (NODE_DATA(nid)->node_spanned_pages) {
1295 found = 1;
1296 break;
1297 }
1298 }
1299
1300 BUG_ON(!found);
1301 return nid;
1302 }
1303
hot_add_drconf_memory_max(void)1304 static u64 hot_add_drconf_memory_max(void)
1305 {
1306 struct device_node *memory = NULL;
1307 unsigned int drconf_cell_cnt = 0;
1308 u64 lmb_size = 0;
1309 const __be32 *dm = NULL;
1310
1311 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1312 if (memory) {
1313 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1314 lmb_size = of_get_lmb_size(memory);
1315 of_node_put(memory);
1316 }
1317 return lmb_size * drconf_cell_cnt;
1318 }
1319
1320 /*
1321 * memory_hotplug_max - return max address of memory that may be added
1322 *
1323 * This is currently only used on systems that support drconfig memory
1324 * hotplug.
1325 */
memory_hotplug_max(void)1326 u64 memory_hotplug_max(void)
1327 {
1328 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1329 }
1330 #endif /* CONFIG_MEMORY_HOTPLUG */
1331
1332 /* Virtual Processor Home Node (VPHN) support */
1333 #ifdef CONFIG_PPC_SPLPAR
1334 struct topology_update_data {
1335 struct topology_update_data *next;
1336 unsigned int cpu;
1337 int old_nid;
1338 int new_nid;
1339 };
1340
1341 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1342 static cpumask_t cpu_associativity_changes_mask;
1343 static int vphn_enabled;
1344 static int prrn_enabled;
1345 static void reset_topology_timer(void);
1346
1347 /*
1348 * Store the current values of the associativity change counters in the
1349 * hypervisor.
1350 */
setup_cpu_associativity_change_counters(void)1351 static void setup_cpu_associativity_change_counters(void)
1352 {
1353 int cpu;
1354
1355 /* The VPHN feature supports a maximum of 8 reference points */
1356 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1357
1358 for_each_possible_cpu(cpu) {
1359 int i;
1360 u8 *counts = vphn_cpu_change_counts[cpu];
1361 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1362
1363 for (i = 0; i < distance_ref_points_depth; i++)
1364 counts[i] = hypervisor_counts[i];
1365 }
1366 }
1367
1368 /*
1369 * The hypervisor maintains a set of 8 associativity change counters in
1370 * the VPA of each cpu that correspond to the associativity levels in the
1371 * ibm,associativity-reference-points property. When an associativity
1372 * level changes, the corresponding counter is incremented.
1373 *
1374 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1375 * node associativity levels have changed.
1376 *
1377 * Returns the number of cpus with unhandled associativity changes.
1378 */
update_cpu_associativity_changes_mask(void)1379 static int update_cpu_associativity_changes_mask(void)
1380 {
1381 int cpu;
1382 cpumask_t *changes = &cpu_associativity_changes_mask;
1383
1384 for_each_possible_cpu(cpu) {
1385 int i, changed = 0;
1386 u8 *counts = vphn_cpu_change_counts[cpu];
1387 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1388
1389 for (i = 0; i < distance_ref_points_depth; i++) {
1390 if (hypervisor_counts[i] != counts[i]) {
1391 counts[i] = hypervisor_counts[i];
1392 changed = 1;
1393 }
1394 }
1395 if (changed) {
1396 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1397 cpu = cpu_last_thread_sibling(cpu);
1398 }
1399 }
1400
1401 return cpumask_weight(changes);
1402 }
1403
1404 /*
1405 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1406 * the complete property we have to add the length in the first cell.
1407 */
1408 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1409
1410 /*
1411 * Convert the associativity domain numbers returned from the hypervisor
1412 * to the sequence they would appear in the ibm,associativity property.
1413 */
vphn_unpack_associativity(const long * packed,__be32 * unpacked)1414 static int vphn_unpack_associativity(const long *packed, __be32 *unpacked)
1415 {
1416 int i, nr_assoc_doms = 0;
1417 const __be16 *field = (const __be16 *) packed;
1418
1419 #define VPHN_FIELD_UNUSED (0xffff)
1420 #define VPHN_FIELD_MSB (0x8000)
1421 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1422
1423 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1424 if (be16_to_cpup(field) == VPHN_FIELD_UNUSED) {
1425 /* All significant fields processed, and remaining
1426 * fields contain the reserved value of all 1's.
1427 * Just store them.
1428 */
1429 unpacked[i] = *((__be32 *)field);
1430 field += 2;
1431 } else if (be16_to_cpup(field) & VPHN_FIELD_MSB) {
1432 /* Data is in the lower 15 bits of this field */
1433 unpacked[i] = cpu_to_be32(
1434 be16_to_cpup(field) & VPHN_FIELD_MASK);
1435 field++;
1436 nr_assoc_doms++;
1437 } else {
1438 /* Data is in the lower 15 bits of this field
1439 * concatenated with the next 16 bit field
1440 */
1441 unpacked[i] = *((__be32 *)field);
1442 field += 2;
1443 nr_assoc_doms++;
1444 }
1445 }
1446
1447 /* The first cell contains the length of the property */
1448 unpacked[0] = cpu_to_be32(nr_assoc_doms);
1449
1450 return nr_assoc_doms;
1451 }
1452
1453 /*
1454 * Retrieve the new associativity information for a virtual processor's
1455 * home node.
1456 */
hcall_vphn(unsigned long cpu,__be32 * associativity)1457 static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1458 {
1459 long rc;
1460 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1461 u64 flags = 1;
1462 int hwcpu = get_hard_smp_processor_id(cpu);
1463 int i;
1464
1465 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1466 for (i = 0; i < 6; i++)
1467 retbuf[i] = cpu_to_be64(retbuf[i]);
1468 vphn_unpack_associativity(retbuf, associativity);
1469
1470 return rc;
1471 }
1472
vphn_get_associativity(unsigned long cpu,__be32 * associativity)1473 static long vphn_get_associativity(unsigned long cpu,
1474 __be32 *associativity)
1475 {
1476 long rc;
1477
1478 rc = hcall_vphn(cpu, associativity);
1479
1480 switch (rc) {
1481 case H_FUNCTION:
1482 printk(KERN_INFO
1483 "VPHN is not supported. Disabling polling...\n");
1484 stop_topology_update();
1485 break;
1486 case H_HARDWARE:
1487 printk(KERN_ERR
1488 "hcall_vphn() experienced a hardware fault "
1489 "preventing VPHN. Disabling polling...\n");
1490 stop_topology_update();
1491 }
1492
1493 return rc;
1494 }
1495
1496 /*
1497 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1498 * characteristics change. This function doesn't perform any locking and is
1499 * only safe to call from stop_machine().
1500 */
update_cpu_topology(void * data)1501 static int update_cpu_topology(void *data)
1502 {
1503 struct topology_update_data *update;
1504 unsigned long cpu;
1505
1506 if (!data)
1507 return -EINVAL;
1508
1509 cpu = smp_processor_id();
1510
1511 for (update = data; update; update = update->next) {
1512 int new_nid = update->new_nid;
1513 if (cpu != update->cpu)
1514 continue;
1515
1516 unmap_cpu_from_node(cpu);
1517 map_cpu_to_node(cpu, new_nid);
1518 set_cpu_numa_node(cpu, new_nid);
1519 set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1520 vdso_getcpu_init();
1521 }
1522
1523 return 0;
1524 }
1525
update_lookup_table(void * data)1526 static int update_lookup_table(void *data)
1527 {
1528 struct topology_update_data *update;
1529
1530 if (!data)
1531 return -EINVAL;
1532
1533 /*
1534 * Upon topology update, the numa-cpu lookup table needs to be updated
1535 * for all threads in the core, including offline CPUs, to ensure that
1536 * future hotplug operations respect the cpu-to-node associativity
1537 * properly.
1538 */
1539 for (update = data; update; update = update->next) {
1540 int nid, base, j;
1541
1542 nid = update->new_nid;
1543 base = cpu_first_thread_sibling(update->cpu);
1544
1545 for (j = 0; j < threads_per_core; j++) {
1546 update_numa_cpu_lookup_table(base + j, nid);
1547 }
1548 }
1549
1550 return 0;
1551 }
1552
1553 /*
1554 * Update the node maps and sysfs entries for each cpu whose home node
1555 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1556 */
arch_update_cpu_topology(void)1557 int arch_update_cpu_topology(void)
1558 {
1559 unsigned int cpu, sibling, changed = 0;
1560 struct topology_update_data *updates, *ud;
1561 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1562 cpumask_t updated_cpus;
1563 struct device *dev;
1564 int weight, new_nid, i = 0;
1565
1566 if (!prrn_enabled && !vphn_enabled)
1567 return 0;
1568
1569 weight = cpumask_weight(&cpu_associativity_changes_mask);
1570 if (!weight)
1571 return 0;
1572
1573 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1574 if (!updates)
1575 return 0;
1576
1577 cpumask_clear(&updated_cpus);
1578
1579 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1580 /*
1581 * If siblings aren't flagged for changes, updates list
1582 * will be too short. Skip on this update and set for next
1583 * update.
1584 */
1585 if (!cpumask_subset(cpu_sibling_mask(cpu),
1586 &cpu_associativity_changes_mask)) {
1587 pr_info("Sibling bits not set for associativity "
1588 "change, cpu%d\n", cpu);
1589 cpumask_or(&cpu_associativity_changes_mask,
1590 &cpu_associativity_changes_mask,
1591 cpu_sibling_mask(cpu));
1592 cpu = cpu_last_thread_sibling(cpu);
1593 continue;
1594 }
1595
1596 /* Use associativity from first thread for all siblings */
1597 vphn_get_associativity(cpu, associativity);
1598 new_nid = associativity_to_nid(associativity);
1599 if (new_nid < 0 || !node_online(new_nid))
1600 new_nid = first_online_node;
1601
1602 if (new_nid == numa_cpu_lookup_table[cpu]) {
1603 cpumask_andnot(&cpu_associativity_changes_mask,
1604 &cpu_associativity_changes_mask,
1605 cpu_sibling_mask(cpu));
1606 cpu = cpu_last_thread_sibling(cpu);
1607 continue;
1608 }
1609
1610 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1611 ud = &updates[i++];
1612 ud->cpu = sibling;
1613 ud->new_nid = new_nid;
1614 ud->old_nid = numa_cpu_lookup_table[sibling];
1615 cpumask_set_cpu(sibling, &updated_cpus);
1616 if (i < weight)
1617 ud->next = &updates[i];
1618 }
1619 cpu = cpu_last_thread_sibling(cpu);
1620 }
1621
1622 pr_debug("Topology update for the following CPUs:\n");
1623 if (cpumask_weight(&updated_cpus)) {
1624 for (ud = &updates[0]; ud; ud = ud->next) {
1625 pr_debug("cpu %d moving from node %d "
1626 "to %d\n", ud->cpu,
1627 ud->old_nid, ud->new_nid);
1628 }
1629 }
1630
1631 /*
1632 * In cases where we have nothing to update (because the updates list
1633 * is too short or because the new topology is same as the old one),
1634 * skip invoking update_cpu_topology() via stop-machine(). This is
1635 * necessary (and not just a fast-path optimization) since stop-machine
1636 * can end up electing a random CPU to run update_cpu_topology(), and
1637 * thus trick us into setting up incorrect cpu-node mappings (since
1638 * 'updates' is kzalloc()'ed).
1639 *
1640 * And for the similar reason, we will skip all the following updating.
1641 */
1642 if (!cpumask_weight(&updated_cpus))
1643 goto out;
1644
1645 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1646
1647 /*
1648 * Update the numa-cpu lookup table with the new mappings, even for
1649 * offline CPUs. It is best to perform this update from the stop-
1650 * machine context.
1651 */
1652 stop_machine(update_lookup_table, &updates[0],
1653 cpumask_of(raw_smp_processor_id()));
1654
1655 for (ud = &updates[0]; ud; ud = ud->next) {
1656 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1657 register_cpu_under_node(ud->cpu, ud->new_nid);
1658
1659 dev = get_cpu_device(ud->cpu);
1660 if (dev)
1661 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1662 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1663 changed = 1;
1664 }
1665
1666 out:
1667 kfree(updates);
1668 return changed;
1669 }
1670
topology_work_fn(struct work_struct * work)1671 static void topology_work_fn(struct work_struct *work)
1672 {
1673 rebuild_sched_domains();
1674 }
1675 static DECLARE_WORK(topology_work, topology_work_fn);
1676
topology_schedule_update(void)1677 static void topology_schedule_update(void)
1678 {
1679 schedule_work(&topology_work);
1680 }
1681
topology_timer_fn(unsigned long ignored)1682 static void topology_timer_fn(unsigned long ignored)
1683 {
1684 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1685 topology_schedule_update();
1686 else if (vphn_enabled) {
1687 if (update_cpu_associativity_changes_mask() > 0)
1688 topology_schedule_update();
1689 reset_topology_timer();
1690 }
1691 }
1692 static struct timer_list topology_timer =
1693 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1694
reset_topology_timer(void)1695 static void reset_topology_timer(void)
1696 {
1697 topology_timer.data = 0;
1698 topology_timer.expires = jiffies + 60 * HZ;
1699 mod_timer(&topology_timer, topology_timer.expires);
1700 }
1701
1702 #ifdef CONFIG_SMP
1703
stage_topology_update(int core_id)1704 static void stage_topology_update(int core_id)
1705 {
1706 cpumask_or(&cpu_associativity_changes_mask,
1707 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1708 reset_topology_timer();
1709 }
1710
dt_update_callback(struct notifier_block * nb,unsigned long action,void * data)1711 static int dt_update_callback(struct notifier_block *nb,
1712 unsigned long action, void *data)
1713 {
1714 struct of_prop_reconfig *update;
1715 int rc = NOTIFY_DONE;
1716
1717 switch (action) {
1718 case OF_RECONFIG_UPDATE_PROPERTY:
1719 update = (struct of_prop_reconfig *)data;
1720 if (!of_prop_cmp(update->dn->type, "cpu") &&
1721 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1722 u32 core_id;
1723 of_property_read_u32(update->dn, "reg", &core_id);
1724 stage_topology_update(core_id);
1725 rc = NOTIFY_OK;
1726 }
1727 break;
1728 }
1729
1730 return rc;
1731 }
1732
1733 static struct notifier_block dt_update_nb = {
1734 .notifier_call = dt_update_callback,
1735 };
1736
1737 #endif
1738
1739 /*
1740 * Start polling for associativity changes.
1741 */
start_topology_update(void)1742 int start_topology_update(void)
1743 {
1744 int rc = 0;
1745
1746 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1747 if (!prrn_enabled) {
1748 prrn_enabled = 1;
1749 vphn_enabled = 0;
1750 #ifdef CONFIG_SMP
1751 rc = of_reconfig_notifier_register(&dt_update_nb);
1752 #endif
1753 }
1754 } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1755 lppaca_shared_proc(get_lppaca())) {
1756 if (!vphn_enabled) {
1757 prrn_enabled = 0;
1758 vphn_enabled = 1;
1759 setup_cpu_associativity_change_counters();
1760 init_timer_deferrable(&topology_timer);
1761 reset_topology_timer();
1762 }
1763 }
1764
1765 return rc;
1766 }
1767
1768 /*
1769 * Disable polling for VPHN associativity changes.
1770 */
stop_topology_update(void)1771 int stop_topology_update(void)
1772 {
1773 int rc = 0;
1774
1775 if (prrn_enabled) {
1776 prrn_enabled = 0;
1777 #ifdef CONFIG_SMP
1778 rc = of_reconfig_notifier_unregister(&dt_update_nb);
1779 #endif
1780 } else if (vphn_enabled) {
1781 vphn_enabled = 0;
1782 rc = del_timer_sync(&topology_timer);
1783 }
1784
1785 return rc;
1786 }
1787
prrn_is_enabled(void)1788 int prrn_is_enabled(void)
1789 {
1790 return prrn_enabled;
1791 }
1792
topology_read(struct seq_file * file,void * v)1793 static int topology_read(struct seq_file *file, void *v)
1794 {
1795 if (vphn_enabled || prrn_enabled)
1796 seq_puts(file, "on\n");
1797 else
1798 seq_puts(file, "off\n");
1799
1800 return 0;
1801 }
1802
topology_open(struct inode * inode,struct file * file)1803 static int topology_open(struct inode *inode, struct file *file)
1804 {
1805 return single_open(file, topology_read, NULL);
1806 }
1807
topology_write(struct file * file,const char __user * buf,size_t count,loff_t * off)1808 static ssize_t topology_write(struct file *file, const char __user *buf,
1809 size_t count, loff_t *off)
1810 {
1811 char kbuf[4]; /* "on" or "off" plus null. */
1812 int read_len;
1813
1814 read_len = count < 3 ? count : 3;
1815 if (copy_from_user(kbuf, buf, read_len))
1816 return -EINVAL;
1817
1818 kbuf[read_len] = '\0';
1819
1820 if (!strncmp(kbuf, "on", 2))
1821 start_topology_update();
1822 else if (!strncmp(kbuf, "off", 3))
1823 stop_topology_update();
1824 else
1825 return -EINVAL;
1826
1827 return count;
1828 }
1829
1830 static const struct file_operations topology_ops = {
1831 .read = seq_read,
1832 .write = topology_write,
1833 .open = topology_open,
1834 .release = single_release
1835 };
1836
topology_update_init(void)1837 static int topology_update_init(void)
1838 {
1839 /* Do not poll for changes if disabled at boot */
1840 if (topology_updates_enabled)
1841 start_topology_update();
1842
1843 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1844 return -ENOMEM;
1845
1846 return 0;
1847 }
1848 device_initcall(topology_update_init);
1849 #endif /* CONFIG_PPC_SPLPAR */
1850