• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 EXPORT_SYMBOL(sysctl_tcp_reordering);
85 int sysctl_tcp_dsack __read_mostly = 1;
86 int sysctl_tcp_app_win __read_mostly = 31;
87 int sysctl_tcp_adv_win_scale __read_mostly = 1;
88 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 1000;
92 
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
97 
98 int sysctl_tcp_thin_dupack __read_mostly;
99 
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 int sysctl_tcp_default_init_rwnd __read_mostly = TCP_INIT_CWND * 2;
103 
104 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
105 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
106 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
107 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
108 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
109 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
110 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
111 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
112 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
113 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
114 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
115 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
116 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
117 
118 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
121 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
122 
123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 
126 /* Adapt the MSS value used to make delayed ack decision to the
127  * real world.
128  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)129 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 {
131 	struct inet_connection_sock *icsk = inet_csk(sk);
132 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
133 	unsigned int len;
134 
135 	icsk->icsk_ack.last_seg_size = 0;
136 
137 	/* skb->len may jitter because of SACKs, even if peer
138 	 * sends good full-sized frames.
139 	 */
140 	len = skb_shinfo(skb)->gso_size ? : skb->len;
141 	if (len >= icsk->icsk_ack.rcv_mss) {
142 		icsk->icsk_ack.rcv_mss = len;
143 	} else {
144 		/* Otherwise, we make more careful check taking into account,
145 		 * that SACKs block is variable.
146 		 *
147 		 * "len" is invariant segment length, including TCP header.
148 		 */
149 		len += skb->data - skb_transport_header(skb);
150 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
151 		    /* If PSH is not set, packet should be
152 		     * full sized, provided peer TCP is not badly broken.
153 		     * This observation (if it is correct 8)) allows
154 		     * to handle super-low mtu links fairly.
155 		     */
156 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
157 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
158 			/* Subtract also invariant (if peer is RFC compliant),
159 			 * tcp header plus fixed timestamp option length.
160 			 * Resulting "len" is MSS free of SACK jitter.
161 			 */
162 			len -= tcp_sk(sk)->tcp_header_len;
163 			icsk->icsk_ack.last_seg_size = len;
164 			if (len == lss) {
165 				icsk->icsk_ack.rcv_mss = len;
166 				return;
167 			}
168 		}
169 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
171 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
172 	}
173 }
174 
tcp_incr_quickack(struct sock * sk)175 static void tcp_incr_quickack(struct sock *sk)
176 {
177 	struct inet_connection_sock *icsk = inet_csk(sk);
178 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179 
180 	if (quickacks == 0)
181 		quickacks = 2;
182 	if (quickacks > icsk->icsk_ack.quick)
183 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 }
185 
tcp_enter_quickack_mode(struct sock * sk)186 static void tcp_enter_quickack_mode(struct sock *sk)
187 {
188 	struct inet_connection_sock *icsk = inet_csk(sk);
189 	tcp_incr_quickack(sk);
190 	icsk->icsk_ack.pingpong = 0;
191 	icsk->icsk_ack.ato = TCP_ATO_MIN;
192 }
193 
194 /* Send ACKs quickly, if "quick" count is not exhausted
195  * and the session is not interactive.
196  */
197 
tcp_in_quickack_mode(const struct sock * sk)198 static inline bool tcp_in_quickack_mode(const struct sock *sk)
199 {
200 	const struct inet_connection_sock *icsk = inet_csk(sk);
201 
202 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 }
204 
tcp_ecn_queue_cwr(struct tcp_sock * tp)205 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
206 {
207 	if (tp->ecn_flags & TCP_ECN_OK)
208 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 }
210 
tcp_ecn_accept_cwr(struct tcp_sock * tp,const struct sk_buff * skb)211 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
212 {
213 	if (tcp_hdr(skb)->cwr)
214 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 }
216 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)217 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
218 {
219 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 }
221 
__tcp_ecn_check_ce(struct tcp_sock * tp,const struct sk_buff * skb)222 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
223 {
224 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
225 	case INET_ECN_NOT_ECT:
226 		/* Funny extension: if ECT is not set on a segment,
227 		 * and we already seen ECT on a previous segment,
228 		 * it is probably a retransmit.
229 		 */
230 		if (tp->ecn_flags & TCP_ECN_SEEN)
231 			tcp_enter_quickack_mode((struct sock *)tp);
232 		break;
233 	case INET_ECN_CE:
234 		if (tcp_ca_needs_ecn((struct sock *)tp))
235 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
236 
237 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
238 			/* Better not delay acks, sender can have a very low cwnd */
239 			tcp_enter_quickack_mode((struct sock *)tp);
240 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
241 		}
242 		tp->ecn_flags |= TCP_ECN_SEEN;
243 		break;
244 	default:
245 		if (tcp_ca_needs_ecn((struct sock *)tp))
246 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
247 		tp->ecn_flags |= TCP_ECN_SEEN;
248 		break;
249 	}
250 }
251 
tcp_ecn_check_ce(struct tcp_sock * tp,const struct sk_buff * skb)252 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
253 {
254 	if (tp->ecn_flags & TCP_ECN_OK)
255 		__tcp_ecn_check_ce(tp, skb);
256 }
257 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)258 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
261 		tp->ecn_flags &= ~TCP_ECN_OK;
262 }
263 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)264 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
265 {
266 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
267 		tp->ecn_flags &= ~TCP_ECN_OK;
268 }
269 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)270 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
271 {
272 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
273 		return true;
274 	return false;
275 }
276 
277 /* Buffer size and advertised window tuning.
278  *
279  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
280  */
281 
tcp_sndbuf_expand(struct sock * sk)282 static void tcp_sndbuf_expand(struct sock *sk)
283 {
284 	const struct tcp_sock *tp = tcp_sk(sk);
285 	int sndmem, per_mss;
286 	u32 nr_segs;
287 
288 	/* Worst case is non GSO/TSO : each frame consumes one skb
289 	 * and skb->head is kmalloced using power of two area of memory
290 	 */
291 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
292 		  MAX_TCP_HEADER +
293 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
294 
295 	per_mss = roundup_pow_of_two(per_mss) +
296 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
297 
298 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
299 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
300 
301 	/* Fast Recovery (RFC 5681 3.2) :
302 	 * Cubic needs 1.7 factor, rounded to 2 to include
303 	 * extra cushion (application might react slowly to POLLOUT)
304 	 */
305 	sndmem = 2 * nr_segs * per_mss;
306 
307 	if (sk->sk_sndbuf < sndmem)
308 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
309 }
310 
311 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
312  *
313  * All tcp_full_space() is split to two parts: "network" buffer, allocated
314  * forward and advertised in receiver window (tp->rcv_wnd) and
315  * "application buffer", required to isolate scheduling/application
316  * latencies from network.
317  * window_clamp is maximal advertised window. It can be less than
318  * tcp_full_space(), in this case tcp_full_space() - window_clamp
319  * is reserved for "application" buffer. The less window_clamp is
320  * the smoother our behaviour from viewpoint of network, but the lower
321  * throughput and the higher sensitivity of the connection to losses. 8)
322  *
323  * rcv_ssthresh is more strict window_clamp used at "slow start"
324  * phase to predict further behaviour of this connection.
325  * It is used for two goals:
326  * - to enforce header prediction at sender, even when application
327  *   requires some significant "application buffer". It is check #1.
328  * - to prevent pruning of receive queue because of misprediction
329  *   of receiver window. Check #2.
330  *
331  * The scheme does not work when sender sends good segments opening
332  * window and then starts to feed us spaghetti. But it should work
333  * in common situations. Otherwise, we have to rely on queue collapsing.
334  */
335 
336 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb)337 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
338 {
339 	struct tcp_sock *tp = tcp_sk(sk);
340 	/* Optimize this! */
341 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
342 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
343 
344 	while (tp->rcv_ssthresh <= window) {
345 		if (truesize <= skb->len)
346 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
347 
348 		truesize >>= 1;
349 		window >>= 1;
350 	}
351 	return 0;
352 }
353 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb)354 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
355 {
356 	struct tcp_sock *tp = tcp_sk(sk);
357 
358 	/* Check #1 */
359 	if (tp->rcv_ssthresh < tp->window_clamp &&
360 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
361 	    !sk_under_memory_pressure(sk)) {
362 		int incr;
363 
364 		/* Check #2. Increase window, if skb with such overhead
365 		 * will fit to rcvbuf in future.
366 		 */
367 		if (tcp_win_from_space(skb->truesize) <= skb->len)
368 			incr = 2 * tp->advmss;
369 		else
370 			incr = __tcp_grow_window(sk, skb);
371 
372 		if (incr) {
373 			incr = max_t(int, incr, 2 * skb->len);
374 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
375 					       tp->window_clamp);
376 			inet_csk(sk)->icsk_ack.quick |= 1;
377 		}
378 	}
379 }
380 
381 /* 3. Tuning rcvbuf, when connection enters established state. */
tcp_fixup_rcvbuf(struct sock * sk)382 static void tcp_fixup_rcvbuf(struct sock *sk)
383 {
384 	u32 mss = tcp_sk(sk)->advmss;
385 	int rcvmem;
386 
387 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
388 		 tcp_default_init_rwnd(mss);
389 
390 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
391 	 * Allow enough cushion so that sender is not limited by our window
392 	 */
393 	if (sysctl_tcp_moderate_rcvbuf)
394 		rcvmem <<= 2;
395 
396 	if (sk->sk_rcvbuf < rcvmem)
397 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
398 }
399 
400 /* 4. Try to fixup all. It is made immediately after connection enters
401  *    established state.
402  */
tcp_init_buffer_space(struct sock * sk)403 void tcp_init_buffer_space(struct sock *sk)
404 {
405 	struct tcp_sock *tp = tcp_sk(sk);
406 	int maxwin;
407 
408 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
409 		tcp_fixup_rcvbuf(sk);
410 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
411 		tcp_sndbuf_expand(sk);
412 
413 	tp->rcvq_space.space = tp->rcv_wnd;
414 	tp->rcvq_space.time = tcp_time_stamp;
415 	tp->rcvq_space.seq = tp->copied_seq;
416 
417 	maxwin = tcp_full_space(sk);
418 
419 	if (tp->window_clamp >= maxwin) {
420 		tp->window_clamp = maxwin;
421 
422 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
423 			tp->window_clamp = max(maxwin -
424 					       (maxwin >> sysctl_tcp_app_win),
425 					       4 * tp->advmss);
426 	}
427 
428 	/* Force reservation of one segment. */
429 	if (sysctl_tcp_app_win &&
430 	    tp->window_clamp > 2 * tp->advmss &&
431 	    tp->window_clamp + tp->advmss > maxwin)
432 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
433 
434 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
435 	tp->snd_cwnd_stamp = tcp_time_stamp;
436 }
437 
438 /* 5. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)439 static void tcp_clamp_window(struct sock *sk)
440 {
441 	struct tcp_sock *tp = tcp_sk(sk);
442 	struct inet_connection_sock *icsk = inet_csk(sk);
443 
444 	icsk->icsk_ack.quick = 0;
445 
446 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
447 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
448 	    !sk_under_memory_pressure(sk) &&
449 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
450 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
451 				    sysctl_tcp_rmem[2]);
452 	}
453 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
454 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
455 }
456 
457 /* Initialize RCV_MSS value.
458  * RCV_MSS is an our guess about MSS used by the peer.
459  * We haven't any direct information about the MSS.
460  * It's better to underestimate the RCV_MSS rather than overestimate.
461  * Overestimations make us ACKing less frequently than needed.
462  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
463  */
tcp_initialize_rcv_mss(struct sock * sk)464 void tcp_initialize_rcv_mss(struct sock *sk)
465 {
466 	const struct tcp_sock *tp = tcp_sk(sk);
467 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
468 
469 	hint = min(hint, tp->rcv_wnd / 2);
470 	hint = min(hint, TCP_MSS_DEFAULT);
471 	hint = max(hint, TCP_MIN_MSS);
472 
473 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
474 }
475 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
476 
477 /* Receiver "autotuning" code.
478  *
479  * The algorithm for RTT estimation w/o timestamps is based on
480  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
481  * <http://public.lanl.gov/radiant/pubs.html#DRS>
482  *
483  * More detail on this code can be found at
484  * <http://staff.psc.edu/jheffner/>,
485  * though this reference is out of date.  A new paper
486  * is pending.
487  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)488 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
489 {
490 	u32 new_sample = tp->rcv_rtt_est.rtt;
491 	long m = sample;
492 
493 	if (m == 0)
494 		m = 1;
495 
496 	if (new_sample != 0) {
497 		/* If we sample in larger samples in the non-timestamp
498 		 * case, we could grossly overestimate the RTT especially
499 		 * with chatty applications or bulk transfer apps which
500 		 * are stalled on filesystem I/O.
501 		 *
502 		 * Also, since we are only going for a minimum in the
503 		 * non-timestamp case, we do not smooth things out
504 		 * else with timestamps disabled convergence takes too
505 		 * long.
506 		 */
507 		if (!win_dep) {
508 			m -= (new_sample >> 3);
509 			new_sample += m;
510 		} else {
511 			m <<= 3;
512 			if (m < new_sample)
513 				new_sample = m;
514 		}
515 	} else {
516 		/* No previous measure. */
517 		new_sample = m << 3;
518 	}
519 
520 	if (tp->rcv_rtt_est.rtt != new_sample)
521 		tp->rcv_rtt_est.rtt = new_sample;
522 }
523 
tcp_rcv_rtt_measure(struct tcp_sock * tp)524 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
525 {
526 	if (tp->rcv_rtt_est.time == 0)
527 		goto new_measure;
528 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
529 		return;
530 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
531 
532 new_measure:
533 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
534 	tp->rcv_rtt_est.time = tcp_time_stamp;
535 }
536 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)537 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
538 					  const struct sk_buff *skb)
539 {
540 	struct tcp_sock *tp = tcp_sk(sk);
541 	if (tp->rx_opt.rcv_tsecr &&
542 	    (TCP_SKB_CB(skb)->end_seq -
543 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
544 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
545 }
546 
547 /*
548  * This function should be called every time data is copied to user space.
549  * It calculates the appropriate TCP receive buffer space.
550  */
tcp_rcv_space_adjust(struct sock * sk)551 void tcp_rcv_space_adjust(struct sock *sk)
552 {
553 	struct tcp_sock *tp = tcp_sk(sk);
554 	int time;
555 	int copied;
556 
557 	time = tcp_time_stamp - tp->rcvq_space.time;
558 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
559 		return;
560 
561 	/* Number of bytes copied to user in last RTT */
562 	copied = tp->copied_seq - tp->rcvq_space.seq;
563 	if (copied <= tp->rcvq_space.space)
564 		goto new_measure;
565 
566 	/* A bit of theory :
567 	 * copied = bytes received in previous RTT, our base window
568 	 * To cope with packet losses, we need a 2x factor
569 	 * To cope with slow start, and sender growing its cwin by 100 %
570 	 * every RTT, we need a 4x factor, because the ACK we are sending
571 	 * now is for the next RTT, not the current one :
572 	 * <prev RTT . ><current RTT .. ><next RTT .... >
573 	 */
574 
575 	if (sysctl_tcp_moderate_rcvbuf &&
576 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
577 		int rcvwin, rcvmem, rcvbuf;
578 
579 		/* minimal window to cope with packet losses, assuming
580 		 * steady state. Add some cushion because of small variations.
581 		 */
582 		rcvwin = (copied << 1) + 16 * tp->advmss;
583 
584 		/* If rate increased by 25%,
585 		 *	assume slow start, rcvwin = 3 * copied
586 		 * If rate increased by 50%,
587 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
588 		 */
589 		if (copied >=
590 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
591 			if (copied >=
592 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
593 				rcvwin <<= 1;
594 			else
595 				rcvwin += (rcvwin >> 1);
596 		}
597 
598 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
599 		while (tcp_win_from_space(rcvmem) < tp->advmss)
600 			rcvmem += 128;
601 
602 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
603 		if (rcvbuf > sk->sk_rcvbuf) {
604 			sk->sk_rcvbuf = rcvbuf;
605 
606 			/* Make the window clamp follow along.  */
607 			tp->window_clamp = rcvwin;
608 		}
609 	}
610 	tp->rcvq_space.space = copied;
611 
612 new_measure:
613 	tp->rcvq_space.seq = tp->copied_seq;
614 	tp->rcvq_space.time = tcp_time_stamp;
615 }
616 
617 /* There is something which you must keep in mind when you analyze the
618  * behavior of the tp->ato delayed ack timeout interval.  When a
619  * connection starts up, we want to ack as quickly as possible.  The
620  * problem is that "good" TCP's do slow start at the beginning of data
621  * transmission.  The means that until we send the first few ACK's the
622  * sender will sit on his end and only queue most of his data, because
623  * he can only send snd_cwnd unacked packets at any given time.  For
624  * each ACK we send, he increments snd_cwnd and transmits more of his
625  * queue.  -DaveM
626  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)627 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
628 {
629 	struct tcp_sock *tp = tcp_sk(sk);
630 	struct inet_connection_sock *icsk = inet_csk(sk);
631 	u32 now;
632 
633 	inet_csk_schedule_ack(sk);
634 
635 	tcp_measure_rcv_mss(sk, skb);
636 
637 	tcp_rcv_rtt_measure(tp);
638 
639 	now = tcp_time_stamp;
640 
641 	if (!icsk->icsk_ack.ato) {
642 		/* The _first_ data packet received, initialize
643 		 * delayed ACK engine.
644 		 */
645 		tcp_incr_quickack(sk);
646 		icsk->icsk_ack.ato = TCP_ATO_MIN;
647 	} else {
648 		int m = now - icsk->icsk_ack.lrcvtime;
649 
650 		if (m <= TCP_ATO_MIN / 2) {
651 			/* The fastest case is the first. */
652 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
653 		} else if (m < icsk->icsk_ack.ato) {
654 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
655 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
656 				icsk->icsk_ack.ato = icsk->icsk_rto;
657 		} else if (m > icsk->icsk_rto) {
658 			/* Too long gap. Apparently sender failed to
659 			 * restart window, so that we send ACKs quickly.
660 			 */
661 			tcp_incr_quickack(sk);
662 			sk_mem_reclaim(sk);
663 		}
664 	}
665 	icsk->icsk_ack.lrcvtime = now;
666 
667 	tcp_ecn_check_ce(tp, skb);
668 
669 	if (skb->len >= 128)
670 		tcp_grow_window(sk, skb);
671 }
672 
673 /* Called to compute a smoothed rtt estimate. The data fed to this
674  * routine either comes from timestamps, or from segments that were
675  * known _not_ to have been retransmitted [see Karn/Partridge
676  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
677  * piece by Van Jacobson.
678  * NOTE: the next three routines used to be one big routine.
679  * To save cycles in the RFC 1323 implementation it was better to break
680  * it up into three procedures. -- erics
681  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)682 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
683 {
684 	struct tcp_sock *tp = tcp_sk(sk);
685 	long m = mrtt_us; /* RTT */
686 	u32 srtt = tp->srtt_us;
687 
688 	/*	The following amusing code comes from Jacobson's
689 	 *	article in SIGCOMM '88.  Note that rtt and mdev
690 	 *	are scaled versions of rtt and mean deviation.
691 	 *	This is designed to be as fast as possible
692 	 *	m stands for "measurement".
693 	 *
694 	 *	On a 1990 paper the rto value is changed to:
695 	 *	RTO = rtt + 4 * mdev
696 	 *
697 	 * Funny. This algorithm seems to be very broken.
698 	 * These formulae increase RTO, when it should be decreased, increase
699 	 * too slowly, when it should be increased quickly, decrease too quickly
700 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
701 	 * does not matter how to _calculate_ it. Seems, it was trap
702 	 * that VJ failed to avoid. 8)
703 	 */
704 	if (srtt != 0) {
705 		m -= (srtt >> 3);	/* m is now error in rtt est */
706 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
707 		if (m < 0) {
708 			m = -m;		/* m is now abs(error) */
709 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
710 			/* This is similar to one of Eifel findings.
711 			 * Eifel blocks mdev updates when rtt decreases.
712 			 * This solution is a bit different: we use finer gain
713 			 * for mdev in this case (alpha*beta).
714 			 * Like Eifel it also prevents growth of rto,
715 			 * but also it limits too fast rto decreases,
716 			 * happening in pure Eifel.
717 			 */
718 			if (m > 0)
719 				m >>= 3;
720 		} else {
721 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
722 		}
723 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
724 		if (tp->mdev_us > tp->mdev_max_us) {
725 			tp->mdev_max_us = tp->mdev_us;
726 			if (tp->mdev_max_us > tp->rttvar_us)
727 				tp->rttvar_us = tp->mdev_max_us;
728 		}
729 		if (after(tp->snd_una, tp->rtt_seq)) {
730 			if (tp->mdev_max_us < tp->rttvar_us)
731 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
732 			tp->rtt_seq = tp->snd_nxt;
733 			tp->mdev_max_us = tcp_rto_min_us(sk);
734 		}
735 	} else {
736 		/* no previous measure. */
737 		srtt = m << 3;		/* take the measured time to be rtt */
738 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
739 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
740 		tp->mdev_max_us = tp->rttvar_us;
741 		tp->rtt_seq = tp->snd_nxt;
742 	}
743 	tp->srtt_us = max(1U, srtt);
744 }
745 
746 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
747  * Note: TCP stack does not yet implement pacing.
748  * FQ packet scheduler can be used to implement cheap but effective
749  * TCP pacing, to smooth the burst on large writes when packets
750  * in flight is significantly lower than cwnd (or rwin)
751  */
tcp_update_pacing_rate(struct sock * sk)752 static void tcp_update_pacing_rate(struct sock *sk)
753 {
754 	const struct tcp_sock *tp = tcp_sk(sk);
755 	u64 rate;
756 
757 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
758 	rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
759 
760 	rate *= max(tp->snd_cwnd, tp->packets_out);
761 
762 	if (likely(tp->srtt_us))
763 		do_div(rate, tp->srtt_us);
764 
765 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
766 	 * without any lock. We want to make sure compiler wont store
767 	 * intermediate values in this location.
768 	 */
769 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
770 						sk->sk_max_pacing_rate);
771 }
772 
773 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
774  * routine referred to above.
775  */
tcp_set_rto(struct sock * sk)776 static void tcp_set_rto(struct sock *sk)
777 {
778 	const struct tcp_sock *tp = tcp_sk(sk);
779 	/* Old crap is replaced with new one. 8)
780 	 *
781 	 * More seriously:
782 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
783 	 *    It cannot be less due to utterly erratic ACK generation made
784 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
785 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
786 	 *    is invisible. Actually, Linux-2.4 also generates erratic
787 	 *    ACKs in some circumstances.
788 	 */
789 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
790 
791 	/* 2. Fixups made earlier cannot be right.
792 	 *    If we do not estimate RTO correctly without them,
793 	 *    all the algo is pure shit and should be replaced
794 	 *    with correct one. It is exactly, which we pretend to do.
795 	 */
796 
797 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
798 	 * guarantees that rto is higher.
799 	 */
800 	tcp_bound_rto(sk);
801 }
802 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)803 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
804 {
805 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
806 
807 	if (!cwnd)
808 		cwnd = TCP_INIT_CWND;
809 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
810 }
811 
812 /*
813  * Packet counting of FACK is based on in-order assumptions, therefore TCP
814  * disables it when reordering is detected
815  */
tcp_disable_fack(struct tcp_sock * tp)816 void tcp_disable_fack(struct tcp_sock *tp)
817 {
818 	/* RFC3517 uses different metric in lost marker => reset on change */
819 	if (tcp_is_fack(tp))
820 		tp->lost_skb_hint = NULL;
821 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
822 }
823 
824 /* Take a notice that peer is sending D-SACKs */
tcp_dsack_seen(struct tcp_sock * tp)825 static void tcp_dsack_seen(struct tcp_sock *tp)
826 {
827 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
828 }
829 
tcp_update_reordering(struct sock * sk,const int metric,const int ts)830 static void tcp_update_reordering(struct sock *sk, const int metric,
831 				  const int ts)
832 {
833 	struct tcp_sock *tp = tcp_sk(sk);
834 	if (metric > tp->reordering) {
835 		int mib_idx;
836 
837 		tp->reordering = min(TCP_MAX_REORDERING, metric);
838 
839 		/* This exciting event is worth to be remembered. 8) */
840 		if (ts)
841 			mib_idx = LINUX_MIB_TCPTSREORDER;
842 		else if (tcp_is_reno(tp))
843 			mib_idx = LINUX_MIB_TCPRENOREORDER;
844 		else if (tcp_is_fack(tp))
845 			mib_idx = LINUX_MIB_TCPFACKREORDER;
846 		else
847 			mib_idx = LINUX_MIB_TCPSACKREORDER;
848 
849 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
850 #if FASTRETRANS_DEBUG > 1
851 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
852 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
853 			 tp->reordering,
854 			 tp->fackets_out,
855 			 tp->sacked_out,
856 			 tp->undo_marker ? tp->undo_retrans : 0);
857 #endif
858 		tcp_disable_fack(tp);
859 	}
860 
861 	if (metric > 0)
862 		tcp_disable_early_retrans(tp);
863 }
864 
865 /* This must be called before lost_out is incremented */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)866 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
867 {
868 	if ((tp->retransmit_skb_hint == NULL) ||
869 	    before(TCP_SKB_CB(skb)->seq,
870 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
871 		tp->retransmit_skb_hint = skb;
872 
873 	if (!tp->lost_out ||
874 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
875 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
876 }
877 
tcp_skb_mark_lost(struct tcp_sock * tp,struct sk_buff * skb)878 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
879 {
880 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
881 		tcp_verify_retransmit_hint(tp, skb);
882 
883 		tp->lost_out += tcp_skb_pcount(skb);
884 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
885 	}
886 }
887 
tcp_skb_mark_lost_uncond_verify(struct tcp_sock * tp,struct sk_buff * skb)888 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
889 					    struct sk_buff *skb)
890 {
891 	tcp_verify_retransmit_hint(tp, skb);
892 
893 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
894 		tp->lost_out += tcp_skb_pcount(skb);
895 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
896 	}
897 }
898 
899 /* This procedure tags the retransmission queue when SACKs arrive.
900  *
901  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
902  * Packets in queue with these bits set are counted in variables
903  * sacked_out, retrans_out and lost_out, correspondingly.
904  *
905  * Valid combinations are:
906  * Tag  InFlight	Description
907  * 0	1		- orig segment is in flight.
908  * S	0		- nothing flies, orig reached receiver.
909  * L	0		- nothing flies, orig lost by net.
910  * R	2		- both orig and retransmit are in flight.
911  * L|R	1		- orig is lost, retransmit is in flight.
912  * S|R  1		- orig reached receiver, retrans is still in flight.
913  * (L|S|R is logically valid, it could occur when L|R is sacked,
914  *  but it is equivalent to plain S and code short-curcuits it to S.
915  *  L|S is logically invalid, it would mean -1 packet in flight 8))
916  *
917  * These 6 states form finite state machine, controlled by the following events:
918  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
919  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
920  * 3. Loss detection event of two flavors:
921  *	A. Scoreboard estimator decided the packet is lost.
922  *	   A'. Reno "three dupacks" marks head of queue lost.
923  *	   A''. Its FACK modification, head until snd.fack is lost.
924  *	B. SACK arrives sacking SND.NXT at the moment, when the
925  *	   segment was retransmitted.
926  * 4. D-SACK added new rule: D-SACK changes any tag to S.
927  *
928  * It is pleasant to note, that state diagram turns out to be commutative,
929  * so that we are allowed not to be bothered by order of our actions,
930  * when multiple events arrive simultaneously. (see the function below).
931  *
932  * Reordering detection.
933  * --------------------
934  * Reordering metric is maximal distance, which a packet can be displaced
935  * in packet stream. With SACKs we can estimate it:
936  *
937  * 1. SACK fills old hole and the corresponding segment was not
938  *    ever retransmitted -> reordering. Alas, we cannot use it
939  *    when segment was retransmitted.
940  * 2. The last flaw is solved with D-SACK. D-SACK arrives
941  *    for retransmitted and already SACKed segment -> reordering..
942  * Both of these heuristics are not used in Loss state, when we cannot
943  * account for retransmits accurately.
944  *
945  * SACK block validation.
946  * ----------------------
947  *
948  * SACK block range validation checks that the received SACK block fits to
949  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
950  * Note that SND.UNA is not included to the range though being valid because
951  * it means that the receiver is rather inconsistent with itself reporting
952  * SACK reneging when it should advance SND.UNA. Such SACK block this is
953  * perfectly valid, however, in light of RFC2018 which explicitly states
954  * that "SACK block MUST reflect the newest segment.  Even if the newest
955  * segment is going to be discarded ...", not that it looks very clever
956  * in case of head skb. Due to potentional receiver driven attacks, we
957  * choose to avoid immediate execution of a walk in write queue due to
958  * reneging and defer head skb's loss recovery to standard loss recovery
959  * procedure that will eventually trigger (nothing forbids us doing this).
960  *
961  * Implements also blockage to start_seq wrap-around. Problem lies in the
962  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
963  * there's no guarantee that it will be before snd_nxt (n). The problem
964  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
965  * wrap (s_w):
966  *
967  *         <- outs wnd ->                          <- wrapzone ->
968  *         u     e      n                         u_w   e_w  s n_w
969  *         |     |      |                          |     |   |  |
970  * |<------------+------+----- TCP seqno space --------------+---------->|
971  * ...-- <2^31 ->|                                           |<--------...
972  * ...---- >2^31 ------>|                                    |<--------...
973  *
974  * Current code wouldn't be vulnerable but it's better still to discard such
975  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
976  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
977  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
978  * equal to the ideal case (infinite seqno space without wrap caused issues).
979  *
980  * With D-SACK the lower bound is extended to cover sequence space below
981  * SND.UNA down to undo_marker, which is the last point of interest. Yet
982  * again, D-SACK block must not to go across snd_una (for the same reason as
983  * for the normal SACK blocks, explained above). But there all simplicity
984  * ends, TCP might receive valid D-SACKs below that. As long as they reside
985  * fully below undo_marker they do not affect behavior in anyway and can
986  * therefore be safely ignored. In rare cases (which are more or less
987  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
988  * fragmentation and packet reordering past skb's retransmission. To consider
989  * them correctly, the acceptable range must be extended even more though
990  * the exact amount is rather hard to quantify. However, tp->max_window can
991  * be used as an exaggerated estimate.
992  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)993 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
994 				   u32 start_seq, u32 end_seq)
995 {
996 	/* Too far in future, or reversed (interpretation is ambiguous) */
997 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
998 		return false;
999 
1000 	/* Nasty start_seq wrap-around check (see comments above) */
1001 	if (!before(start_seq, tp->snd_nxt))
1002 		return false;
1003 
1004 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1005 	 * start_seq == snd_una is non-sensical (see comments above)
1006 	 */
1007 	if (after(start_seq, tp->snd_una))
1008 		return true;
1009 
1010 	if (!is_dsack || !tp->undo_marker)
1011 		return false;
1012 
1013 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1014 	if (after(end_seq, tp->snd_una))
1015 		return false;
1016 
1017 	if (!before(start_seq, tp->undo_marker))
1018 		return true;
1019 
1020 	/* Too old */
1021 	if (!after(end_seq, tp->undo_marker))
1022 		return false;
1023 
1024 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1025 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1026 	 */
1027 	return !before(start_seq, end_seq - tp->max_window);
1028 }
1029 
1030 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1031  * Event "B". Later note: FACK people cheated me again 8), we have to account
1032  * for reordering! Ugly, but should help.
1033  *
1034  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1035  * less than what is now known to be received by the other end (derived from
1036  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1037  * retransmitted skbs to avoid some costly processing per ACKs.
1038  */
tcp_mark_lost_retrans(struct sock * sk)1039 static void tcp_mark_lost_retrans(struct sock *sk)
1040 {
1041 	const struct inet_connection_sock *icsk = inet_csk(sk);
1042 	struct tcp_sock *tp = tcp_sk(sk);
1043 	struct sk_buff *skb;
1044 	int cnt = 0;
1045 	u32 new_low_seq = tp->snd_nxt;
1046 	u32 received_upto = tcp_highest_sack_seq(tp);
1047 
1048 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1049 	    !after(received_upto, tp->lost_retrans_low) ||
1050 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1051 		return;
1052 
1053 	tcp_for_write_queue(skb, sk) {
1054 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1055 
1056 		if (skb == tcp_send_head(sk))
1057 			break;
1058 		if (cnt == tp->retrans_out)
1059 			break;
1060 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1061 			continue;
1062 
1063 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1064 			continue;
1065 
1066 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1067 		 * constraint here (see above) but figuring out that at
1068 		 * least tp->reordering SACK blocks reside between ack_seq
1069 		 * and received_upto is not easy task to do cheaply with
1070 		 * the available datastructures.
1071 		 *
1072 		 * Whether FACK should check here for tp->reordering segs
1073 		 * in-between one could argue for either way (it would be
1074 		 * rather simple to implement as we could count fack_count
1075 		 * during the walk and do tp->fackets_out - fack_count).
1076 		 */
1077 		if (after(received_upto, ack_seq)) {
1078 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1079 			tp->retrans_out -= tcp_skb_pcount(skb);
1080 
1081 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1082 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1083 		} else {
1084 			if (before(ack_seq, new_low_seq))
1085 				new_low_seq = ack_seq;
1086 			cnt += tcp_skb_pcount(skb);
1087 		}
1088 	}
1089 
1090 	if (tp->retrans_out)
1091 		tp->lost_retrans_low = new_low_seq;
1092 }
1093 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una)1094 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1095 			    struct tcp_sack_block_wire *sp, int num_sacks,
1096 			    u32 prior_snd_una)
1097 {
1098 	struct tcp_sock *tp = tcp_sk(sk);
1099 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1100 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1101 	bool dup_sack = false;
1102 
1103 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1104 		dup_sack = true;
1105 		tcp_dsack_seen(tp);
1106 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1107 	} else if (num_sacks > 1) {
1108 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1109 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1110 
1111 		if (!after(end_seq_0, end_seq_1) &&
1112 		    !before(start_seq_0, start_seq_1)) {
1113 			dup_sack = true;
1114 			tcp_dsack_seen(tp);
1115 			NET_INC_STATS_BH(sock_net(sk),
1116 					LINUX_MIB_TCPDSACKOFORECV);
1117 		}
1118 	}
1119 
1120 	/* D-SACK for already forgotten data... Do dumb counting. */
1121 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1122 	    !after(end_seq_0, prior_snd_una) &&
1123 	    after(end_seq_0, tp->undo_marker))
1124 		tp->undo_retrans--;
1125 
1126 	return dup_sack;
1127 }
1128 
1129 struct tcp_sacktag_state {
1130 	int	reord;
1131 	int	fack_count;
1132 	long	rtt_us; /* RTT measured by SACKing never-retransmitted data */
1133 	int	flag;
1134 };
1135 
1136 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1137  * the incoming SACK may not exactly match but we can find smaller MSS
1138  * aligned portion of it that matches. Therefore we might need to fragment
1139  * which may fail and creates some hassle (caller must handle error case
1140  * returns).
1141  *
1142  * FIXME: this could be merged to shift decision code
1143  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1144 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1145 				  u32 start_seq, u32 end_seq)
1146 {
1147 	int err;
1148 	bool in_sack;
1149 	unsigned int pkt_len;
1150 	unsigned int mss;
1151 
1152 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1153 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1154 
1155 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1156 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1157 		mss = tcp_skb_mss(skb);
1158 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1159 
1160 		if (!in_sack) {
1161 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1162 			if (pkt_len < mss)
1163 				pkt_len = mss;
1164 		} else {
1165 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1166 			if (pkt_len < mss)
1167 				return -EINVAL;
1168 		}
1169 
1170 		/* Round if necessary so that SACKs cover only full MSSes
1171 		 * and/or the remaining small portion (if present)
1172 		 */
1173 		if (pkt_len > mss) {
1174 			unsigned int new_len = (pkt_len / mss) * mss;
1175 			if (!in_sack && new_len < pkt_len)
1176 				new_len += mss;
1177 			pkt_len = new_len;
1178 		}
1179 
1180 		if (pkt_len >= skb->len && !in_sack)
1181 			return 0;
1182 
1183 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1184 		if (err < 0)
1185 			return err;
1186 	}
1187 
1188 	return in_sack;
1189 }
1190 
1191 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,const struct skb_mstamp * xmit_time)1192 static u8 tcp_sacktag_one(struct sock *sk,
1193 			  struct tcp_sacktag_state *state, u8 sacked,
1194 			  u32 start_seq, u32 end_seq,
1195 			  int dup_sack, int pcount,
1196 			  const struct skb_mstamp *xmit_time)
1197 {
1198 	struct tcp_sock *tp = tcp_sk(sk);
1199 	int fack_count = state->fack_count;
1200 
1201 	/* Account D-SACK for retransmitted packet. */
1202 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1203 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1204 		    after(end_seq, tp->undo_marker))
1205 			tp->undo_retrans--;
1206 		if (sacked & TCPCB_SACKED_ACKED)
1207 			state->reord = min(fack_count, state->reord);
1208 	}
1209 
1210 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1211 	if (!after(end_seq, tp->snd_una))
1212 		return sacked;
1213 
1214 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1215 		if (sacked & TCPCB_SACKED_RETRANS) {
1216 			/* If the segment is not tagged as lost,
1217 			 * we do not clear RETRANS, believing
1218 			 * that retransmission is still in flight.
1219 			 */
1220 			if (sacked & TCPCB_LOST) {
1221 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1222 				tp->lost_out -= pcount;
1223 				tp->retrans_out -= pcount;
1224 			}
1225 		} else {
1226 			if (!(sacked & TCPCB_RETRANS)) {
1227 				/* New sack for not retransmitted frame,
1228 				 * which was in hole. It is reordering.
1229 				 */
1230 				if (before(start_seq,
1231 					   tcp_highest_sack_seq(tp)))
1232 					state->reord = min(fack_count,
1233 							   state->reord);
1234 				if (!after(end_seq, tp->high_seq))
1235 					state->flag |= FLAG_ORIG_SACK_ACKED;
1236 				/* Pick the earliest sequence sacked for RTT */
1237 				if (state->rtt_us < 0) {
1238 					struct skb_mstamp now;
1239 
1240 					skb_mstamp_get(&now);
1241 					state->rtt_us = skb_mstamp_us_delta(&now,
1242 								xmit_time);
1243 				}
1244 			}
1245 
1246 			if (sacked & TCPCB_LOST) {
1247 				sacked &= ~TCPCB_LOST;
1248 				tp->lost_out -= pcount;
1249 			}
1250 		}
1251 
1252 		sacked |= TCPCB_SACKED_ACKED;
1253 		state->flag |= FLAG_DATA_SACKED;
1254 		tp->sacked_out += pcount;
1255 
1256 		fack_count += pcount;
1257 
1258 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1259 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1260 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1261 			tp->lost_cnt_hint += pcount;
1262 
1263 		if (fack_count > tp->fackets_out)
1264 			tp->fackets_out = fack_count;
1265 	}
1266 
1267 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1268 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1269 	 * are accounted above as well.
1270 	 */
1271 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1272 		sacked &= ~TCPCB_SACKED_RETRANS;
1273 		tp->retrans_out -= pcount;
1274 	}
1275 
1276 	return sacked;
1277 }
1278 
1279 /* Shift newly-SACKed bytes from this skb to the immediately previous
1280  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1281  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1282 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1283 			    struct tcp_sacktag_state *state,
1284 			    unsigned int pcount, int shifted, int mss,
1285 			    bool dup_sack)
1286 {
1287 	struct tcp_sock *tp = tcp_sk(sk);
1288 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1289 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1290 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1291 
1292 	BUG_ON(!pcount);
1293 
1294 	/* Adjust counters and hints for the newly sacked sequence
1295 	 * range but discard the return value since prev is already
1296 	 * marked. We must tag the range first because the seq
1297 	 * advancement below implicitly advances
1298 	 * tcp_highest_sack_seq() when skb is highest_sack.
1299 	 */
1300 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1301 			start_seq, end_seq, dup_sack, pcount,
1302 			&skb->skb_mstamp);
1303 
1304 	if (skb == tp->lost_skb_hint)
1305 		tp->lost_cnt_hint += pcount;
1306 
1307 	TCP_SKB_CB(prev)->end_seq += shifted;
1308 	TCP_SKB_CB(skb)->seq += shifted;
1309 
1310 	tcp_skb_pcount_add(prev, pcount);
1311 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1312 	tcp_skb_pcount_add(skb, -pcount);
1313 
1314 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1315 	 * in theory this shouldn't be necessary but as long as DSACK
1316 	 * code can come after this skb later on it's better to keep
1317 	 * setting gso_size to something.
1318 	 */
1319 	if (!skb_shinfo(prev)->gso_size) {
1320 		skb_shinfo(prev)->gso_size = mss;
1321 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1322 	}
1323 
1324 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1325 	if (tcp_skb_pcount(skb) <= 1) {
1326 		skb_shinfo(skb)->gso_size = 0;
1327 		skb_shinfo(skb)->gso_type = 0;
1328 	}
1329 
1330 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1331 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1332 
1333 	if (skb->len > 0) {
1334 		BUG_ON(!tcp_skb_pcount(skb));
1335 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1336 		return false;
1337 	}
1338 
1339 	/* Whole SKB was eaten :-) */
1340 
1341 	if (skb == tp->retransmit_skb_hint)
1342 		tp->retransmit_skb_hint = prev;
1343 	if (skb == tp->lost_skb_hint) {
1344 		tp->lost_skb_hint = prev;
1345 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1346 	}
1347 
1348 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1349 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1350 		TCP_SKB_CB(prev)->end_seq++;
1351 
1352 	if (skb == tcp_highest_sack(sk))
1353 		tcp_advance_highest_sack(sk, skb);
1354 
1355 	tcp_unlink_write_queue(skb, sk);
1356 	sk_wmem_free_skb(sk, skb);
1357 
1358 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1359 
1360 	return true;
1361 }
1362 
1363 /* I wish gso_size would have a bit more sane initialization than
1364  * something-or-zero which complicates things
1365  */
tcp_skb_seglen(const struct sk_buff * skb)1366 static int tcp_skb_seglen(const struct sk_buff *skb)
1367 {
1368 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1369 }
1370 
1371 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1372 static int skb_can_shift(const struct sk_buff *skb)
1373 {
1374 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1375 }
1376 
1377 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1378  * skb.
1379  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1380 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1381 					  struct tcp_sacktag_state *state,
1382 					  u32 start_seq, u32 end_seq,
1383 					  bool dup_sack)
1384 {
1385 	struct tcp_sock *tp = tcp_sk(sk);
1386 	struct sk_buff *prev;
1387 	int mss;
1388 	int pcount = 0;
1389 	int len;
1390 	int in_sack;
1391 
1392 	if (!sk_can_gso(sk))
1393 		goto fallback;
1394 
1395 	/* Normally R but no L won't result in plain S */
1396 	if (!dup_sack &&
1397 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1398 		goto fallback;
1399 	if (!skb_can_shift(skb))
1400 		goto fallback;
1401 	/* This frame is about to be dropped (was ACKed). */
1402 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1403 		goto fallback;
1404 
1405 	/* Can only happen with delayed DSACK + discard craziness */
1406 	if (unlikely(skb == tcp_write_queue_head(sk)))
1407 		goto fallback;
1408 	prev = tcp_write_queue_prev(sk, skb);
1409 
1410 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1411 		goto fallback;
1412 
1413 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1414 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1415 
1416 	if (in_sack) {
1417 		len = skb->len;
1418 		pcount = tcp_skb_pcount(skb);
1419 		mss = tcp_skb_seglen(skb);
1420 
1421 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1422 		 * drop this restriction as unnecessary
1423 		 */
1424 		if (mss != tcp_skb_seglen(prev))
1425 			goto fallback;
1426 	} else {
1427 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1428 			goto noop;
1429 		/* CHECKME: This is non-MSS split case only?, this will
1430 		 * cause skipped skbs due to advancing loop btw, original
1431 		 * has that feature too
1432 		 */
1433 		if (tcp_skb_pcount(skb) <= 1)
1434 			goto noop;
1435 
1436 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1437 		if (!in_sack) {
1438 			/* TODO: head merge to next could be attempted here
1439 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1440 			 * though it might not be worth of the additional hassle
1441 			 *
1442 			 * ...we can probably just fallback to what was done
1443 			 * previously. We could try merging non-SACKed ones
1444 			 * as well but it probably isn't going to buy off
1445 			 * because later SACKs might again split them, and
1446 			 * it would make skb timestamp tracking considerably
1447 			 * harder problem.
1448 			 */
1449 			goto fallback;
1450 		}
1451 
1452 		len = end_seq - TCP_SKB_CB(skb)->seq;
1453 		BUG_ON(len < 0);
1454 		BUG_ON(len > skb->len);
1455 
1456 		/* MSS boundaries should be honoured or else pcount will
1457 		 * severely break even though it makes things bit trickier.
1458 		 * Optimize common case to avoid most of the divides
1459 		 */
1460 		mss = tcp_skb_mss(skb);
1461 
1462 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1463 		 * drop this restriction as unnecessary
1464 		 */
1465 		if (mss != tcp_skb_seglen(prev))
1466 			goto fallback;
1467 
1468 		if (len == mss) {
1469 			pcount = 1;
1470 		} else if (len < mss) {
1471 			goto noop;
1472 		} else {
1473 			pcount = len / mss;
1474 			len = pcount * mss;
1475 		}
1476 	}
1477 
1478 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1479 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1480 		goto fallback;
1481 
1482 	if (!skb_shift(prev, skb, len))
1483 		goto fallback;
1484 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1485 		goto out;
1486 
1487 	/* Hole filled allows collapsing with the next as well, this is very
1488 	 * useful when hole on every nth skb pattern happens
1489 	 */
1490 	if (prev == tcp_write_queue_tail(sk))
1491 		goto out;
1492 	skb = tcp_write_queue_next(sk, prev);
1493 
1494 	if (!skb_can_shift(skb) ||
1495 	    (skb == tcp_send_head(sk)) ||
1496 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1497 	    (mss != tcp_skb_seglen(skb)))
1498 		goto out;
1499 
1500 	len = skb->len;
1501 	if (skb_shift(prev, skb, len)) {
1502 		pcount += tcp_skb_pcount(skb);
1503 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1504 	}
1505 
1506 out:
1507 	state->fack_count += pcount;
1508 	return prev;
1509 
1510 noop:
1511 	return skb;
1512 
1513 fallback:
1514 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1515 	return NULL;
1516 }
1517 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1518 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1519 					struct tcp_sack_block *next_dup,
1520 					struct tcp_sacktag_state *state,
1521 					u32 start_seq, u32 end_seq,
1522 					bool dup_sack_in)
1523 {
1524 	struct tcp_sock *tp = tcp_sk(sk);
1525 	struct sk_buff *tmp;
1526 
1527 	tcp_for_write_queue_from(skb, sk) {
1528 		int in_sack = 0;
1529 		bool dup_sack = dup_sack_in;
1530 
1531 		if (skb == tcp_send_head(sk))
1532 			break;
1533 
1534 		/* queue is in-order => we can short-circuit the walk early */
1535 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1536 			break;
1537 
1538 		if ((next_dup != NULL) &&
1539 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1540 			in_sack = tcp_match_skb_to_sack(sk, skb,
1541 							next_dup->start_seq,
1542 							next_dup->end_seq);
1543 			if (in_sack > 0)
1544 				dup_sack = true;
1545 		}
1546 
1547 		/* skb reference here is a bit tricky to get right, since
1548 		 * shifting can eat and free both this skb and the next,
1549 		 * so not even _safe variant of the loop is enough.
1550 		 */
1551 		if (in_sack <= 0) {
1552 			tmp = tcp_shift_skb_data(sk, skb, state,
1553 						 start_seq, end_seq, dup_sack);
1554 			if (tmp != NULL) {
1555 				if (tmp != skb) {
1556 					skb = tmp;
1557 					continue;
1558 				}
1559 
1560 				in_sack = 0;
1561 			} else {
1562 				in_sack = tcp_match_skb_to_sack(sk, skb,
1563 								start_seq,
1564 								end_seq);
1565 			}
1566 		}
1567 
1568 		if (unlikely(in_sack < 0))
1569 			break;
1570 
1571 		if (in_sack) {
1572 			TCP_SKB_CB(skb)->sacked =
1573 				tcp_sacktag_one(sk,
1574 						state,
1575 						TCP_SKB_CB(skb)->sacked,
1576 						TCP_SKB_CB(skb)->seq,
1577 						TCP_SKB_CB(skb)->end_seq,
1578 						dup_sack,
1579 						tcp_skb_pcount(skb),
1580 						&skb->skb_mstamp);
1581 
1582 			if (!before(TCP_SKB_CB(skb)->seq,
1583 				    tcp_highest_sack_seq(tp)))
1584 				tcp_advance_highest_sack(sk, skb);
1585 		}
1586 
1587 		state->fack_count += tcp_skb_pcount(skb);
1588 	}
1589 	return skb;
1590 }
1591 
1592 /* Avoid all extra work that is being done by sacktag while walking in
1593  * a normal way
1594  */
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,struct tcp_sacktag_state * state,u32 skip_to_seq)1595 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1596 					struct tcp_sacktag_state *state,
1597 					u32 skip_to_seq)
1598 {
1599 	tcp_for_write_queue_from(skb, sk) {
1600 		if (skb == tcp_send_head(sk))
1601 			break;
1602 
1603 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1604 			break;
1605 
1606 		state->fack_count += tcp_skb_pcount(skb);
1607 	}
1608 	return skb;
1609 }
1610 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1611 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1612 						struct sock *sk,
1613 						struct tcp_sack_block *next_dup,
1614 						struct tcp_sacktag_state *state,
1615 						u32 skip_to_seq)
1616 {
1617 	if (next_dup == NULL)
1618 		return skb;
1619 
1620 	if (before(next_dup->start_seq, skip_to_seq)) {
1621 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1622 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1623 				       next_dup->start_seq, next_dup->end_seq,
1624 				       1);
1625 	}
1626 
1627 	return skb;
1628 }
1629 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1630 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1631 {
1632 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1633 }
1634 
1635 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,long * sack_rtt_us)1636 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1637 			u32 prior_snd_una, long *sack_rtt_us)
1638 {
1639 	struct tcp_sock *tp = tcp_sk(sk);
1640 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1641 				    TCP_SKB_CB(ack_skb)->sacked);
1642 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1643 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1644 	struct tcp_sack_block *cache;
1645 	struct tcp_sacktag_state state;
1646 	struct sk_buff *skb;
1647 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1648 	int used_sacks;
1649 	bool found_dup_sack = false;
1650 	int i, j;
1651 	int first_sack_index;
1652 
1653 	state.flag = 0;
1654 	state.reord = tp->packets_out;
1655 	state.rtt_us = -1L;
1656 
1657 	if (!tp->sacked_out) {
1658 		if (WARN_ON(tp->fackets_out))
1659 			tp->fackets_out = 0;
1660 		tcp_highest_sack_reset(sk);
1661 	}
1662 
1663 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1664 					 num_sacks, prior_snd_una);
1665 	if (found_dup_sack)
1666 		state.flag |= FLAG_DSACKING_ACK;
1667 
1668 	/* Eliminate too old ACKs, but take into
1669 	 * account more or less fresh ones, they can
1670 	 * contain valid SACK info.
1671 	 */
1672 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1673 		return 0;
1674 
1675 	if (!tp->packets_out)
1676 		goto out;
1677 
1678 	used_sacks = 0;
1679 	first_sack_index = 0;
1680 	for (i = 0; i < num_sacks; i++) {
1681 		bool dup_sack = !i && found_dup_sack;
1682 
1683 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1684 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1685 
1686 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1687 					    sp[used_sacks].start_seq,
1688 					    sp[used_sacks].end_seq)) {
1689 			int mib_idx;
1690 
1691 			if (dup_sack) {
1692 				if (!tp->undo_marker)
1693 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1694 				else
1695 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1696 			} else {
1697 				/* Don't count olds caused by ACK reordering */
1698 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1699 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1700 					continue;
1701 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1702 			}
1703 
1704 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1705 			if (i == 0)
1706 				first_sack_index = -1;
1707 			continue;
1708 		}
1709 
1710 		/* Ignore very old stuff early */
1711 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1712 			continue;
1713 
1714 		used_sacks++;
1715 	}
1716 
1717 	/* order SACK blocks to allow in order walk of the retrans queue */
1718 	for (i = used_sacks - 1; i > 0; i--) {
1719 		for (j = 0; j < i; j++) {
1720 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1721 				swap(sp[j], sp[j + 1]);
1722 
1723 				/* Track where the first SACK block goes to */
1724 				if (j == first_sack_index)
1725 					first_sack_index = j + 1;
1726 			}
1727 		}
1728 	}
1729 
1730 	skb = tcp_write_queue_head(sk);
1731 	state.fack_count = 0;
1732 	i = 0;
1733 
1734 	if (!tp->sacked_out) {
1735 		/* It's already past, so skip checking against it */
1736 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1737 	} else {
1738 		cache = tp->recv_sack_cache;
1739 		/* Skip empty blocks in at head of the cache */
1740 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1741 		       !cache->end_seq)
1742 			cache++;
1743 	}
1744 
1745 	while (i < used_sacks) {
1746 		u32 start_seq = sp[i].start_seq;
1747 		u32 end_seq = sp[i].end_seq;
1748 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1749 		struct tcp_sack_block *next_dup = NULL;
1750 
1751 		if (found_dup_sack && ((i + 1) == first_sack_index))
1752 			next_dup = &sp[i + 1];
1753 
1754 		/* Skip too early cached blocks */
1755 		while (tcp_sack_cache_ok(tp, cache) &&
1756 		       !before(start_seq, cache->end_seq))
1757 			cache++;
1758 
1759 		/* Can skip some work by looking recv_sack_cache? */
1760 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1761 		    after(end_seq, cache->start_seq)) {
1762 
1763 			/* Head todo? */
1764 			if (before(start_seq, cache->start_seq)) {
1765 				skb = tcp_sacktag_skip(skb, sk, &state,
1766 						       start_seq);
1767 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1768 						       &state,
1769 						       start_seq,
1770 						       cache->start_seq,
1771 						       dup_sack);
1772 			}
1773 
1774 			/* Rest of the block already fully processed? */
1775 			if (!after(end_seq, cache->end_seq))
1776 				goto advance_sp;
1777 
1778 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1779 						       &state,
1780 						       cache->end_seq);
1781 
1782 			/* ...tail remains todo... */
1783 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1784 				/* ...but better entrypoint exists! */
1785 				skb = tcp_highest_sack(sk);
1786 				if (skb == NULL)
1787 					break;
1788 				state.fack_count = tp->fackets_out;
1789 				cache++;
1790 				goto walk;
1791 			}
1792 
1793 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1794 			/* Check overlap against next cached too (past this one already) */
1795 			cache++;
1796 			continue;
1797 		}
1798 
1799 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1800 			skb = tcp_highest_sack(sk);
1801 			if (skb == NULL)
1802 				break;
1803 			state.fack_count = tp->fackets_out;
1804 		}
1805 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1806 
1807 walk:
1808 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1809 				       start_seq, end_seq, dup_sack);
1810 
1811 advance_sp:
1812 		i++;
1813 	}
1814 
1815 	/* Clear the head of the cache sack blocks so we can skip it next time */
1816 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1817 		tp->recv_sack_cache[i].start_seq = 0;
1818 		tp->recv_sack_cache[i].end_seq = 0;
1819 	}
1820 	for (j = 0; j < used_sacks; j++)
1821 		tp->recv_sack_cache[i++] = sp[j];
1822 
1823 	tcp_mark_lost_retrans(sk);
1824 
1825 	tcp_verify_left_out(tp);
1826 
1827 	if ((state.reord < tp->fackets_out) &&
1828 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1829 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1830 
1831 out:
1832 
1833 #if FASTRETRANS_DEBUG > 0
1834 	WARN_ON((int)tp->sacked_out < 0);
1835 	WARN_ON((int)tp->lost_out < 0);
1836 	WARN_ON((int)tp->retrans_out < 0);
1837 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1838 #endif
1839 	*sack_rtt_us = state.rtt_us;
1840 	return state.flag;
1841 }
1842 
1843 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1844  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1845  */
tcp_limit_reno_sacked(struct tcp_sock * tp)1846 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1847 {
1848 	u32 holes;
1849 
1850 	holes = max(tp->lost_out, 1U);
1851 	holes = min(holes, tp->packets_out);
1852 
1853 	if ((tp->sacked_out + holes) > tp->packets_out) {
1854 		tp->sacked_out = tp->packets_out - holes;
1855 		return true;
1856 	}
1857 	return false;
1858 }
1859 
1860 /* If we receive more dupacks than we expected counting segments
1861  * in assumption of absent reordering, interpret this as reordering.
1862  * The only another reason could be bug in receiver TCP.
1863  */
tcp_check_reno_reordering(struct sock * sk,const int addend)1864 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1865 {
1866 	struct tcp_sock *tp = tcp_sk(sk);
1867 	if (tcp_limit_reno_sacked(tp))
1868 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1869 }
1870 
1871 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1872 
tcp_add_reno_sack(struct sock * sk)1873 static void tcp_add_reno_sack(struct sock *sk)
1874 {
1875 	struct tcp_sock *tp = tcp_sk(sk);
1876 	tp->sacked_out++;
1877 	tcp_check_reno_reordering(sk, 0);
1878 	tcp_verify_left_out(tp);
1879 }
1880 
1881 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1882 
tcp_remove_reno_sacks(struct sock * sk,int acked)1883 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1884 {
1885 	struct tcp_sock *tp = tcp_sk(sk);
1886 
1887 	if (acked > 0) {
1888 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1889 		if (acked - 1 >= tp->sacked_out)
1890 			tp->sacked_out = 0;
1891 		else
1892 			tp->sacked_out -= acked - 1;
1893 	}
1894 	tcp_check_reno_reordering(sk, acked);
1895 	tcp_verify_left_out(tp);
1896 }
1897 
tcp_reset_reno_sack(struct tcp_sock * tp)1898 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1899 {
1900 	tp->sacked_out = 0;
1901 }
1902 
tcp_clear_retrans(struct tcp_sock * tp)1903 void tcp_clear_retrans(struct tcp_sock *tp)
1904 {
1905 	tp->retrans_out = 0;
1906 	tp->lost_out = 0;
1907 	tp->undo_marker = 0;
1908 	tp->undo_retrans = -1;
1909 	tp->fackets_out = 0;
1910 	tp->sacked_out = 0;
1911 }
1912 
tcp_init_undo(struct tcp_sock * tp)1913 static inline void tcp_init_undo(struct tcp_sock *tp)
1914 {
1915 	tp->undo_marker = tp->snd_una;
1916 	/* Retransmission still in flight may cause DSACKs later. */
1917 	tp->undo_retrans = tp->retrans_out ? : -1;
1918 }
1919 
1920 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1921  * and reset tags completely, otherwise preserve SACKs. If receiver
1922  * dropped its ofo queue, we will know this due to reneging detection.
1923  */
tcp_enter_loss(struct sock * sk)1924 void tcp_enter_loss(struct sock *sk)
1925 {
1926 	const struct inet_connection_sock *icsk = inet_csk(sk);
1927 	struct tcp_sock *tp = tcp_sk(sk);
1928 	struct sk_buff *skb;
1929 	bool new_recovery = false;
1930 	bool is_reneg;			/* is receiver reneging on SACKs? */
1931 
1932 	/* Reduce ssthresh if it has not yet been made inside this window. */
1933 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1934 	    !after(tp->high_seq, tp->snd_una) ||
1935 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1936 		new_recovery = true;
1937 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1938 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1939 		tcp_ca_event(sk, CA_EVENT_LOSS);
1940 		tcp_init_undo(tp);
1941 	}
1942 	tp->snd_cwnd	   = 1;
1943 	tp->snd_cwnd_cnt   = 0;
1944 	tp->snd_cwnd_stamp = tcp_time_stamp;
1945 
1946 	tp->retrans_out = 0;
1947 	tp->lost_out = 0;
1948 
1949 	if (tcp_is_reno(tp))
1950 		tcp_reset_reno_sack(tp);
1951 
1952 	skb = tcp_write_queue_head(sk);
1953 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1954 	if (is_reneg) {
1955 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1956 		tp->sacked_out = 0;
1957 		tp->fackets_out = 0;
1958 	}
1959 	tcp_clear_all_retrans_hints(tp);
1960 
1961 	tcp_for_write_queue(skb, sk) {
1962 		if (skb == tcp_send_head(sk))
1963 			break;
1964 
1965 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1966 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1967 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1968 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1969 			tp->lost_out += tcp_skb_pcount(skb);
1970 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1971 		}
1972 	}
1973 	tcp_verify_left_out(tp);
1974 
1975 	/* Timeout in disordered state after receiving substantial DUPACKs
1976 	 * suggests that the degree of reordering is over-estimated.
1977 	 */
1978 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1979 	    tp->sacked_out >= sysctl_tcp_reordering)
1980 		tp->reordering = min_t(unsigned int, tp->reordering,
1981 				       sysctl_tcp_reordering);
1982 	tcp_set_ca_state(sk, TCP_CA_Loss);
1983 	tp->high_seq = tp->snd_nxt;
1984 	tcp_ecn_queue_cwr(tp);
1985 
1986 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1987 	 * loss recovery is underway except recurring timeout(s) on
1988 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1989 	 */
1990 	tp->frto = sysctl_tcp_frto &&
1991 		   (new_recovery || icsk->icsk_retransmits) &&
1992 		   !inet_csk(sk)->icsk_mtup.probe_size;
1993 }
1994 
1995 /* If ACK arrived pointing to a remembered SACK, it means that our
1996  * remembered SACKs do not reflect real state of receiver i.e.
1997  * receiver _host_ is heavily congested (or buggy).
1998  *
1999  * To avoid big spurious retransmission bursts due to transient SACK
2000  * scoreboard oddities that look like reneging, we give the receiver a
2001  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2002  * restore sanity to the SACK scoreboard. If the apparent reneging
2003  * persists until this RTO then we'll clear the SACK scoreboard.
2004  */
tcp_check_sack_reneging(struct sock * sk,int flag)2005 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2006 {
2007 	if (flag & FLAG_SACK_RENEGING) {
2008 		struct tcp_sock *tp = tcp_sk(sk);
2009 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2010 					  msecs_to_jiffies(10));
2011 
2012 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2013 					  delay, TCP_RTO_MAX);
2014 		return true;
2015 	}
2016 	return false;
2017 }
2018 
tcp_fackets_out(const struct tcp_sock * tp)2019 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2020 {
2021 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2022 }
2023 
2024 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2025  * counter when SACK is enabled (without SACK, sacked_out is used for
2026  * that purpose).
2027  *
2028  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2029  * segments up to the highest received SACK block so far and holes in
2030  * between them.
2031  *
2032  * With reordering, holes may still be in flight, so RFC3517 recovery
2033  * uses pure sacked_out (total number of SACKed segments) even though
2034  * it violates the RFC that uses duplicate ACKs, often these are equal
2035  * but when e.g. out-of-window ACKs or packet duplication occurs,
2036  * they differ. Since neither occurs due to loss, TCP should really
2037  * ignore them.
2038  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2039 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2040 {
2041 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2042 }
2043 
tcp_pause_early_retransmit(struct sock * sk,int flag)2044 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2045 {
2046 	struct tcp_sock *tp = tcp_sk(sk);
2047 	unsigned long delay;
2048 
2049 	/* Delay early retransmit and entering fast recovery for
2050 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2051 	 * available, or RTO is scheduled to fire first.
2052 	 */
2053 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2054 	    (flag & FLAG_ECE) || !tp->srtt_us)
2055 		return false;
2056 
2057 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2058 		    msecs_to_jiffies(2));
2059 
2060 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2061 		return false;
2062 
2063 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2064 				  TCP_RTO_MAX);
2065 	return true;
2066 }
2067 
2068 /* Linux NewReno/SACK/FACK/ECN state machine.
2069  * --------------------------------------
2070  *
2071  * "Open"	Normal state, no dubious events, fast path.
2072  * "Disorder"   In all the respects it is "Open",
2073  *		but requires a bit more attention. It is entered when
2074  *		we see some SACKs or dupacks. It is split of "Open"
2075  *		mainly to move some processing from fast path to slow one.
2076  * "CWR"	CWND was reduced due to some Congestion Notification event.
2077  *		It can be ECN, ICMP source quench, local device congestion.
2078  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2079  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2080  *
2081  * tcp_fastretrans_alert() is entered:
2082  * - each incoming ACK, if state is not "Open"
2083  * - when arrived ACK is unusual, namely:
2084  *	* SACK
2085  *	* Duplicate ACK.
2086  *	* ECN ECE.
2087  *
2088  * Counting packets in flight is pretty simple.
2089  *
2090  *	in_flight = packets_out - left_out + retrans_out
2091  *
2092  *	packets_out is SND.NXT-SND.UNA counted in packets.
2093  *
2094  *	retrans_out is number of retransmitted segments.
2095  *
2096  *	left_out is number of segments left network, but not ACKed yet.
2097  *
2098  *		left_out = sacked_out + lost_out
2099  *
2100  *     sacked_out: Packets, which arrived to receiver out of order
2101  *		   and hence not ACKed. With SACKs this number is simply
2102  *		   amount of SACKed data. Even without SACKs
2103  *		   it is easy to give pretty reliable estimate of this number,
2104  *		   counting duplicate ACKs.
2105  *
2106  *       lost_out: Packets lost by network. TCP has no explicit
2107  *		   "loss notification" feedback from network (for now).
2108  *		   It means that this number can be only _guessed_.
2109  *		   Actually, it is the heuristics to predict lossage that
2110  *		   distinguishes different algorithms.
2111  *
2112  *	F.e. after RTO, when all the queue is considered as lost,
2113  *	lost_out = packets_out and in_flight = retrans_out.
2114  *
2115  *		Essentially, we have now two algorithms counting
2116  *		lost packets.
2117  *
2118  *		FACK: It is the simplest heuristics. As soon as we decided
2119  *		that something is lost, we decide that _all_ not SACKed
2120  *		packets until the most forward SACK are lost. I.e.
2121  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2122  *		It is absolutely correct estimate, if network does not reorder
2123  *		packets. And it loses any connection to reality when reordering
2124  *		takes place. We use FACK by default until reordering
2125  *		is suspected on the path to this destination.
2126  *
2127  *		NewReno: when Recovery is entered, we assume that one segment
2128  *		is lost (classic Reno). While we are in Recovery and
2129  *		a partial ACK arrives, we assume that one more packet
2130  *		is lost (NewReno). This heuristics are the same in NewReno
2131  *		and SACK.
2132  *
2133  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2134  *  deflation etc. CWND is real congestion window, never inflated, changes
2135  *  only according to classic VJ rules.
2136  *
2137  * Really tricky (and requiring careful tuning) part of algorithm
2138  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2139  * The first determines the moment _when_ we should reduce CWND and,
2140  * hence, slow down forward transmission. In fact, it determines the moment
2141  * when we decide that hole is caused by loss, rather than by a reorder.
2142  *
2143  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2144  * holes, caused by lost packets.
2145  *
2146  * And the most logically complicated part of algorithm is undo
2147  * heuristics. We detect false retransmits due to both too early
2148  * fast retransmit (reordering) and underestimated RTO, analyzing
2149  * timestamps and D-SACKs. When we detect that some segments were
2150  * retransmitted by mistake and CWND reduction was wrong, we undo
2151  * window reduction and abort recovery phase. This logic is hidden
2152  * inside several functions named tcp_try_undo_<something>.
2153  */
2154 
2155 /* This function decides, when we should leave Disordered state
2156  * and enter Recovery phase, reducing congestion window.
2157  *
2158  * Main question: may we further continue forward transmission
2159  * with the same cwnd?
2160  */
tcp_time_to_recover(struct sock * sk,int flag)2161 static bool tcp_time_to_recover(struct sock *sk, int flag)
2162 {
2163 	struct tcp_sock *tp = tcp_sk(sk);
2164 	__u32 packets_out;
2165 
2166 	/* Trick#1: The loss is proven. */
2167 	if (tp->lost_out)
2168 		return true;
2169 
2170 	/* Not-A-Trick#2 : Classic rule... */
2171 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2172 		return true;
2173 
2174 	/* Trick#4: It is still not OK... But will it be useful to delay
2175 	 * recovery more?
2176 	 */
2177 	packets_out = tp->packets_out;
2178 	if (packets_out <= tp->reordering &&
2179 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2180 	    !tcp_may_send_now(sk)) {
2181 		/* We have nothing to send. This connection is limited
2182 		 * either by receiver window or by application.
2183 		 */
2184 		return true;
2185 	}
2186 
2187 	/* If a thin stream is detected, retransmit after first
2188 	 * received dupack. Employ only if SACK is supported in order
2189 	 * to avoid possible corner-case series of spurious retransmissions
2190 	 * Use only if there are no unsent data.
2191 	 */
2192 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2193 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2194 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2195 		return true;
2196 
2197 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2198 	 * retransmissions due to small network reorderings, we implement
2199 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2200 	 * interval if appropriate.
2201 	 */
2202 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2203 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2204 	    !tcp_may_send_now(sk))
2205 		return !tcp_pause_early_retransmit(sk, flag);
2206 
2207 	return false;
2208 }
2209 
2210 /* Detect loss in event "A" above by marking head of queue up as lost.
2211  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2212  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2213  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2214  * the maximum SACKed segments to pass before reaching this limit.
2215  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2216 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2217 {
2218 	struct tcp_sock *tp = tcp_sk(sk);
2219 	struct sk_buff *skb;
2220 	int cnt, oldcnt;
2221 	int err;
2222 	unsigned int mss;
2223 	/* Use SACK to deduce losses of new sequences sent during recovery */
2224 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2225 
2226 	WARN_ON(packets > tp->packets_out);
2227 	if (tp->lost_skb_hint) {
2228 		skb = tp->lost_skb_hint;
2229 		cnt = tp->lost_cnt_hint;
2230 		/* Head already handled? */
2231 		if (mark_head && skb != tcp_write_queue_head(sk))
2232 			return;
2233 	} else {
2234 		skb = tcp_write_queue_head(sk);
2235 		cnt = 0;
2236 	}
2237 
2238 	tcp_for_write_queue_from(skb, sk) {
2239 		if (skb == tcp_send_head(sk))
2240 			break;
2241 		/* TODO: do this better */
2242 		/* this is not the most efficient way to do this... */
2243 		tp->lost_skb_hint = skb;
2244 		tp->lost_cnt_hint = cnt;
2245 
2246 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2247 			break;
2248 
2249 		oldcnt = cnt;
2250 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2251 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2252 			cnt += tcp_skb_pcount(skb);
2253 
2254 		if (cnt > packets) {
2255 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2256 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2257 			    (oldcnt >= packets))
2258 				break;
2259 
2260 			mss = skb_shinfo(skb)->gso_size;
2261 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2262 					   mss, GFP_ATOMIC);
2263 			if (err < 0)
2264 				break;
2265 			cnt = packets;
2266 		}
2267 
2268 		tcp_skb_mark_lost(tp, skb);
2269 
2270 		if (mark_head)
2271 			break;
2272 	}
2273 	tcp_verify_left_out(tp);
2274 }
2275 
2276 /* Account newly detected lost packet(s) */
2277 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2278 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2279 {
2280 	struct tcp_sock *tp = tcp_sk(sk);
2281 
2282 	if (tcp_is_reno(tp)) {
2283 		tcp_mark_head_lost(sk, 1, 1);
2284 	} else if (tcp_is_fack(tp)) {
2285 		int lost = tp->fackets_out - tp->reordering;
2286 		if (lost <= 0)
2287 			lost = 1;
2288 		tcp_mark_head_lost(sk, lost, 0);
2289 	} else {
2290 		int sacked_upto = tp->sacked_out - tp->reordering;
2291 		if (sacked_upto >= 0)
2292 			tcp_mark_head_lost(sk, sacked_upto, 0);
2293 		else if (fast_rexmit)
2294 			tcp_mark_head_lost(sk, 1, 1);
2295 	}
2296 }
2297 
2298 /* CWND moderation, preventing bursts due to too big ACKs
2299  * in dubious situations.
2300  */
tcp_moderate_cwnd(struct tcp_sock * tp)2301 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2302 {
2303 	tp->snd_cwnd = min(tp->snd_cwnd,
2304 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2305 	tp->snd_cwnd_stamp = tcp_time_stamp;
2306 }
2307 
2308 /* Nothing was retransmitted or returned timestamp is less
2309  * than timestamp of the first retransmission.
2310  */
tcp_packet_delayed(const struct tcp_sock * tp)2311 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2312 {
2313 	return !tp->retrans_stamp ||
2314 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2315 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2316 }
2317 
2318 /* Undo procedures. */
2319 
2320 /* We can clear retrans_stamp when there are no retransmissions in the
2321  * window. It would seem that it is trivially available for us in
2322  * tp->retrans_out, however, that kind of assumptions doesn't consider
2323  * what will happen if errors occur when sending retransmission for the
2324  * second time. ...It could the that such segment has only
2325  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2326  * the head skb is enough except for some reneging corner cases that
2327  * are not worth the effort.
2328  *
2329  * Main reason for all this complexity is the fact that connection dying
2330  * time now depends on the validity of the retrans_stamp, in particular,
2331  * that successive retransmissions of a segment must not advance
2332  * retrans_stamp under any conditions.
2333  */
tcp_any_retrans_done(const struct sock * sk)2334 static bool tcp_any_retrans_done(const struct sock *sk)
2335 {
2336 	const struct tcp_sock *tp = tcp_sk(sk);
2337 	struct sk_buff *skb;
2338 
2339 	if (tp->retrans_out)
2340 		return true;
2341 
2342 	skb = tcp_write_queue_head(sk);
2343 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2344 		return true;
2345 
2346 	return false;
2347 }
2348 
2349 #if FASTRETRANS_DEBUG > 1
DBGUNDO(struct sock * sk,const char * msg)2350 static void DBGUNDO(struct sock *sk, const char *msg)
2351 {
2352 	struct tcp_sock *tp = tcp_sk(sk);
2353 	struct inet_sock *inet = inet_sk(sk);
2354 
2355 	if (sk->sk_family == AF_INET) {
2356 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2357 			 msg,
2358 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2359 			 tp->snd_cwnd, tcp_left_out(tp),
2360 			 tp->snd_ssthresh, tp->prior_ssthresh,
2361 			 tp->packets_out);
2362 	}
2363 #if IS_ENABLED(CONFIG_IPV6)
2364 	else if (sk->sk_family == AF_INET6) {
2365 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2366 			 msg,
2367 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2368 			 tp->snd_cwnd, tcp_left_out(tp),
2369 			 tp->snd_ssthresh, tp->prior_ssthresh,
2370 			 tp->packets_out);
2371 	}
2372 #endif
2373 }
2374 #else
2375 #define DBGUNDO(x...) do { } while (0)
2376 #endif
2377 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2378 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2379 {
2380 	struct tcp_sock *tp = tcp_sk(sk);
2381 
2382 	if (unmark_loss) {
2383 		struct sk_buff *skb;
2384 
2385 		tcp_for_write_queue(skb, sk) {
2386 			if (skb == tcp_send_head(sk))
2387 				break;
2388 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2389 		}
2390 		tp->lost_out = 0;
2391 		tcp_clear_all_retrans_hints(tp);
2392 	}
2393 
2394 	if (tp->prior_ssthresh) {
2395 		const struct inet_connection_sock *icsk = inet_csk(sk);
2396 
2397 		if (icsk->icsk_ca_ops->undo_cwnd)
2398 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2399 		else
2400 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2401 
2402 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2403 			tp->snd_ssthresh = tp->prior_ssthresh;
2404 			tcp_ecn_withdraw_cwr(tp);
2405 		}
2406 	} else {
2407 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2408 	}
2409 	tp->snd_cwnd_stamp = tcp_time_stamp;
2410 	tp->undo_marker = 0;
2411 }
2412 
tcp_may_undo(const struct tcp_sock * tp)2413 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2414 {
2415 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2416 }
2417 
2418 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2419 static bool tcp_try_undo_recovery(struct sock *sk)
2420 {
2421 	struct tcp_sock *tp = tcp_sk(sk);
2422 
2423 	if (tcp_may_undo(tp)) {
2424 		int mib_idx;
2425 
2426 		/* Happy end! We did not retransmit anything
2427 		 * or our original transmission succeeded.
2428 		 */
2429 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2430 		tcp_undo_cwnd_reduction(sk, false);
2431 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2432 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2433 		else
2434 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2435 
2436 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2437 	}
2438 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2439 		/* Hold old state until something *above* high_seq
2440 		 * is ACKed. For Reno it is MUST to prevent false
2441 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2442 		tcp_moderate_cwnd(tp);
2443 		if (!tcp_any_retrans_done(sk))
2444 			tp->retrans_stamp = 0;
2445 		return true;
2446 	}
2447 	tcp_set_ca_state(sk, TCP_CA_Open);
2448 	return false;
2449 }
2450 
2451 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2452 static bool tcp_try_undo_dsack(struct sock *sk)
2453 {
2454 	struct tcp_sock *tp = tcp_sk(sk);
2455 
2456 	if (tp->undo_marker && !tp->undo_retrans) {
2457 		DBGUNDO(sk, "D-SACK");
2458 		tcp_undo_cwnd_reduction(sk, false);
2459 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2460 		return true;
2461 	}
2462 	return false;
2463 }
2464 
2465 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2466 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2467 {
2468 	struct tcp_sock *tp = tcp_sk(sk);
2469 
2470 	if (frto_undo || tcp_may_undo(tp)) {
2471 		tcp_undo_cwnd_reduction(sk, true);
2472 
2473 		DBGUNDO(sk, "partial loss");
2474 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2475 		if (frto_undo)
2476 			NET_INC_STATS_BH(sock_net(sk),
2477 					 LINUX_MIB_TCPSPURIOUSRTOS);
2478 		inet_csk(sk)->icsk_retransmits = 0;
2479 		if (frto_undo || tcp_is_sack(tp))
2480 			tcp_set_ca_state(sk, TCP_CA_Open);
2481 		return true;
2482 	}
2483 	return false;
2484 }
2485 
2486 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2487  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2488  * It computes the number of packets to send (sndcnt) based on packets newly
2489  * delivered:
2490  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2491  *	cwnd reductions across a full RTT.
2492  *   2) If packets in flight is lower than ssthresh (such as due to excess
2493  *	losses and/or application stalls), do not perform any further cwnd
2494  *	reductions, but instead slow start up to ssthresh.
2495  */
tcp_init_cwnd_reduction(struct sock * sk)2496 static void tcp_init_cwnd_reduction(struct sock *sk)
2497 {
2498 	struct tcp_sock *tp = tcp_sk(sk);
2499 
2500 	tp->high_seq = tp->snd_nxt;
2501 	tp->tlp_high_seq = 0;
2502 	tp->snd_cwnd_cnt = 0;
2503 	tp->prior_cwnd = tp->snd_cwnd;
2504 	tp->prr_delivered = 0;
2505 	tp->prr_out = 0;
2506 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2507 	tcp_ecn_queue_cwr(tp);
2508 }
2509 
tcp_cwnd_reduction(struct sock * sk,const int prior_unsacked,int fast_rexmit)2510 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2511 			       int fast_rexmit)
2512 {
2513 	struct tcp_sock *tp = tcp_sk(sk);
2514 	int sndcnt = 0;
2515 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2516 	int newly_acked_sacked = prior_unsacked -
2517 				 (tp->packets_out - tp->sacked_out);
2518 
2519 	tp->prr_delivered += newly_acked_sacked;
2520 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2521 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2522 			       tp->prior_cwnd - 1;
2523 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2524 	} else {
2525 		sndcnt = min_t(int, delta,
2526 			       max_t(int, tp->prr_delivered - tp->prr_out,
2527 				     newly_acked_sacked) + 1);
2528 	}
2529 
2530 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2531 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2532 }
2533 
tcp_end_cwnd_reduction(struct sock * sk)2534 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2535 {
2536 	struct tcp_sock *tp = tcp_sk(sk);
2537 
2538 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2539 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2540 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2541 		tp->snd_cwnd = tp->snd_ssthresh;
2542 		tp->snd_cwnd_stamp = tcp_time_stamp;
2543 	}
2544 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2545 }
2546 
2547 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2548 void tcp_enter_cwr(struct sock *sk)
2549 {
2550 	struct tcp_sock *tp = tcp_sk(sk);
2551 
2552 	tp->prior_ssthresh = 0;
2553 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2554 		tp->undo_marker = 0;
2555 		tcp_init_cwnd_reduction(sk);
2556 		tcp_set_ca_state(sk, TCP_CA_CWR);
2557 	}
2558 }
2559 
tcp_try_keep_open(struct sock * sk)2560 static void tcp_try_keep_open(struct sock *sk)
2561 {
2562 	struct tcp_sock *tp = tcp_sk(sk);
2563 	int state = TCP_CA_Open;
2564 
2565 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2566 		state = TCP_CA_Disorder;
2567 
2568 	if (inet_csk(sk)->icsk_ca_state != state) {
2569 		tcp_set_ca_state(sk, state);
2570 		tp->high_seq = tp->snd_nxt;
2571 	}
2572 }
2573 
tcp_try_to_open(struct sock * sk,int flag,const int prior_unsacked)2574 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2575 {
2576 	struct tcp_sock *tp = tcp_sk(sk);
2577 
2578 	tcp_verify_left_out(tp);
2579 
2580 	if (!tcp_any_retrans_done(sk))
2581 		tp->retrans_stamp = 0;
2582 
2583 	if (flag & FLAG_ECE)
2584 		tcp_enter_cwr(sk);
2585 
2586 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2587 		tcp_try_keep_open(sk);
2588 	} else {
2589 		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2590 	}
2591 }
2592 
tcp_mtup_probe_failed(struct sock * sk)2593 static void tcp_mtup_probe_failed(struct sock *sk)
2594 {
2595 	struct inet_connection_sock *icsk = inet_csk(sk);
2596 
2597 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2598 	icsk->icsk_mtup.probe_size = 0;
2599 }
2600 
tcp_mtup_probe_success(struct sock * sk)2601 static void tcp_mtup_probe_success(struct sock *sk)
2602 {
2603 	struct tcp_sock *tp = tcp_sk(sk);
2604 	struct inet_connection_sock *icsk = inet_csk(sk);
2605 
2606 	/* FIXME: breaks with very large cwnd */
2607 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2608 	tp->snd_cwnd = tp->snd_cwnd *
2609 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2610 		       icsk->icsk_mtup.probe_size;
2611 	tp->snd_cwnd_cnt = 0;
2612 	tp->snd_cwnd_stamp = tcp_time_stamp;
2613 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2614 
2615 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2616 	icsk->icsk_mtup.probe_size = 0;
2617 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2618 }
2619 
2620 /* Do a simple retransmit without using the backoff mechanisms in
2621  * tcp_timer. This is used for path mtu discovery.
2622  * The socket is already locked here.
2623  */
tcp_simple_retransmit(struct sock * sk)2624 void tcp_simple_retransmit(struct sock *sk)
2625 {
2626 	const struct inet_connection_sock *icsk = inet_csk(sk);
2627 	struct tcp_sock *tp = tcp_sk(sk);
2628 	struct sk_buff *skb;
2629 	unsigned int mss = tcp_current_mss(sk);
2630 	u32 prior_lost = tp->lost_out;
2631 
2632 	tcp_for_write_queue(skb, sk) {
2633 		if (skb == tcp_send_head(sk))
2634 			break;
2635 		if (tcp_skb_seglen(skb) > mss &&
2636 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2637 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2638 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2639 				tp->retrans_out -= tcp_skb_pcount(skb);
2640 			}
2641 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2642 		}
2643 	}
2644 
2645 	tcp_clear_retrans_hints_partial(tp);
2646 
2647 	if (prior_lost == tp->lost_out)
2648 		return;
2649 
2650 	if (tcp_is_reno(tp))
2651 		tcp_limit_reno_sacked(tp);
2652 
2653 	tcp_verify_left_out(tp);
2654 
2655 	/* Don't muck with the congestion window here.
2656 	 * Reason is that we do not increase amount of _data_
2657 	 * in network, but units changed and effective
2658 	 * cwnd/ssthresh really reduced now.
2659 	 */
2660 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2661 		tp->high_seq = tp->snd_nxt;
2662 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2663 		tp->prior_ssthresh = 0;
2664 		tp->undo_marker = 0;
2665 		tcp_set_ca_state(sk, TCP_CA_Loss);
2666 	}
2667 	tcp_xmit_retransmit_queue(sk);
2668 }
2669 EXPORT_SYMBOL(tcp_simple_retransmit);
2670 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2671 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2672 {
2673 	struct tcp_sock *tp = tcp_sk(sk);
2674 	int mib_idx;
2675 
2676 	if (tcp_is_reno(tp))
2677 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2678 	else
2679 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2680 
2681 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2682 
2683 	tp->prior_ssthresh = 0;
2684 	tcp_init_undo(tp);
2685 
2686 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2687 		if (!ece_ack)
2688 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2689 		tcp_init_cwnd_reduction(sk);
2690 	}
2691 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2692 }
2693 
2694 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2695  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2696  */
tcp_process_loss(struct sock * sk,int flag,bool is_dupack)2697 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2698 {
2699 	struct tcp_sock *tp = tcp_sk(sk);
2700 	bool recovered = !before(tp->snd_una, tp->high_seq);
2701 
2702 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2703 		/* Step 3.b. A timeout is spurious if not all data are
2704 		 * lost, i.e., never-retransmitted data are (s)acked.
2705 		 */
2706 		if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2707 			return;
2708 
2709 		if (after(tp->snd_nxt, tp->high_seq) &&
2710 		    (flag & FLAG_DATA_SACKED || is_dupack)) {
2711 			tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2712 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2713 			tp->high_seq = tp->snd_nxt;
2714 			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2715 						  TCP_NAGLE_OFF);
2716 			if (after(tp->snd_nxt, tp->high_seq))
2717 				return; /* Step 2.b */
2718 			tp->frto = 0;
2719 		}
2720 	}
2721 
2722 	if (recovered) {
2723 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2724 		tcp_try_undo_recovery(sk);
2725 		return;
2726 	}
2727 	if (tcp_is_reno(tp)) {
2728 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2729 		 * delivered. Lower inflight to clock out (re)tranmissions.
2730 		 */
2731 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2732 			tcp_add_reno_sack(sk);
2733 		else if (flag & FLAG_SND_UNA_ADVANCED)
2734 			tcp_reset_reno_sack(tp);
2735 	}
2736 	if (tcp_try_undo_loss(sk, false))
2737 		return;
2738 	tcp_xmit_retransmit_queue(sk);
2739 }
2740 
2741 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,const int acked,const int prior_unsacked)2742 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2743 				 const int prior_unsacked)
2744 {
2745 	struct tcp_sock *tp = tcp_sk(sk);
2746 
2747 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2748 		/* Plain luck! Hole if filled with delayed
2749 		 * packet, rather than with a retransmit.
2750 		 */
2751 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2752 
2753 		/* We are getting evidence that the reordering degree is higher
2754 		 * than we realized. If there are no retransmits out then we
2755 		 * can undo. Otherwise we clock out new packets but do not
2756 		 * mark more packets lost or retransmit more.
2757 		 */
2758 		if (tp->retrans_out) {
2759 			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2760 			return true;
2761 		}
2762 
2763 		if (!tcp_any_retrans_done(sk))
2764 			tp->retrans_stamp = 0;
2765 
2766 		DBGUNDO(sk, "partial recovery");
2767 		tcp_undo_cwnd_reduction(sk, true);
2768 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2769 		tcp_try_keep_open(sk);
2770 		return true;
2771 	}
2772 	return false;
2773 }
2774 
2775 /* Process an event, which can update packets-in-flight not trivially.
2776  * Main goal of this function is to calculate new estimate for left_out,
2777  * taking into account both packets sitting in receiver's buffer and
2778  * packets lost by network.
2779  *
2780  * Besides that it does CWND reduction, when packet loss is detected
2781  * and changes state of machine.
2782  *
2783  * It does _not_ decide what to send, it is made in function
2784  * tcp_xmit_retransmit_queue().
2785  */
tcp_fastretrans_alert(struct sock * sk,const int acked,const int prior_unsacked,bool is_dupack,int flag)2786 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2787 				  const int prior_unsacked,
2788 				  bool is_dupack, int flag)
2789 {
2790 	struct inet_connection_sock *icsk = inet_csk(sk);
2791 	struct tcp_sock *tp = tcp_sk(sk);
2792 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2793 				    (tcp_fackets_out(tp) > tp->reordering));
2794 	int fast_rexmit = 0;
2795 
2796 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2797 		tp->sacked_out = 0;
2798 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2799 		tp->fackets_out = 0;
2800 
2801 	/* Now state machine starts.
2802 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2803 	if (flag & FLAG_ECE)
2804 		tp->prior_ssthresh = 0;
2805 
2806 	/* B. In all the states check for reneging SACKs. */
2807 	if (tcp_check_sack_reneging(sk, flag))
2808 		return;
2809 
2810 	/* C. Check consistency of the current state. */
2811 	tcp_verify_left_out(tp);
2812 
2813 	/* D. Check state exit conditions. State can be terminated
2814 	 *    when high_seq is ACKed. */
2815 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2816 		WARN_ON(tp->retrans_out != 0);
2817 		tp->retrans_stamp = 0;
2818 	} else if (!before(tp->snd_una, tp->high_seq)) {
2819 		switch (icsk->icsk_ca_state) {
2820 		case TCP_CA_CWR:
2821 			/* CWR is to be held something *above* high_seq
2822 			 * is ACKed for CWR bit to reach receiver. */
2823 			if (tp->snd_una != tp->high_seq) {
2824 				tcp_end_cwnd_reduction(sk);
2825 				tcp_set_ca_state(sk, TCP_CA_Open);
2826 			}
2827 			break;
2828 
2829 		case TCP_CA_Recovery:
2830 			if (tcp_is_reno(tp))
2831 				tcp_reset_reno_sack(tp);
2832 			if (tcp_try_undo_recovery(sk))
2833 				return;
2834 			tcp_end_cwnd_reduction(sk);
2835 			break;
2836 		}
2837 	}
2838 
2839 	/* E. Process state. */
2840 	switch (icsk->icsk_ca_state) {
2841 	case TCP_CA_Recovery:
2842 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2843 			if (tcp_is_reno(tp) && is_dupack)
2844 				tcp_add_reno_sack(sk);
2845 		} else {
2846 			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2847 				return;
2848 			/* Partial ACK arrived. Force fast retransmit. */
2849 			do_lost = tcp_is_reno(tp) ||
2850 				  tcp_fackets_out(tp) > tp->reordering;
2851 		}
2852 		if (tcp_try_undo_dsack(sk)) {
2853 			tcp_try_keep_open(sk);
2854 			return;
2855 		}
2856 		break;
2857 	case TCP_CA_Loss:
2858 		tcp_process_loss(sk, flag, is_dupack);
2859 		if (icsk->icsk_ca_state != TCP_CA_Open)
2860 			return;
2861 		/* Fall through to processing in Open state. */
2862 	default:
2863 		if (tcp_is_reno(tp)) {
2864 			if (flag & FLAG_SND_UNA_ADVANCED)
2865 				tcp_reset_reno_sack(tp);
2866 			if (is_dupack)
2867 				tcp_add_reno_sack(sk);
2868 		}
2869 
2870 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2871 			tcp_try_undo_dsack(sk);
2872 
2873 		if (!tcp_time_to_recover(sk, flag)) {
2874 			tcp_try_to_open(sk, flag, prior_unsacked);
2875 			return;
2876 		}
2877 
2878 		/* MTU probe failure: don't reduce cwnd */
2879 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2880 		    icsk->icsk_mtup.probe_size &&
2881 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2882 			tcp_mtup_probe_failed(sk);
2883 			/* Restores the reduction we did in tcp_mtup_probe() */
2884 			tp->snd_cwnd++;
2885 			tcp_simple_retransmit(sk);
2886 			return;
2887 		}
2888 
2889 		/* Otherwise enter Recovery state */
2890 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2891 		fast_rexmit = 1;
2892 	}
2893 
2894 	if (do_lost)
2895 		tcp_update_scoreboard(sk, fast_rexmit);
2896 	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2897 	tcp_xmit_retransmit_queue(sk);
2898 }
2899 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us)2900 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2901 				      long seq_rtt_us, long sack_rtt_us)
2902 {
2903 	const struct tcp_sock *tp = tcp_sk(sk);
2904 
2905 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2906 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2907 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2908 	 * is acked (RFC6298).
2909 	 */
2910 	if (flag & FLAG_RETRANS_DATA_ACKED)
2911 		seq_rtt_us = -1L;
2912 
2913 	if (seq_rtt_us < 0)
2914 		seq_rtt_us = sack_rtt_us;
2915 
2916 	/* RTTM Rule: A TSecr value received in a segment is used to
2917 	 * update the averaged RTT measurement only if the segment
2918 	 * acknowledges some new data, i.e., only if it advances the
2919 	 * left edge of the send window.
2920 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2921 	 */
2922 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2923 	    flag & FLAG_ACKED)
2924 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2925 
2926 	if (seq_rtt_us < 0)
2927 		return false;
2928 
2929 	tcp_rtt_estimator(sk, seq_rtt_us);
2930 	tcp_set_rto(sk);
2931 
2932 	/* RFC6298: only reset backoff on valid RTT measurement. */
2933 	inet_csk(sk)->icsk_backoff = 0;
2934 	return true;
2935 }
2936 
2937 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,const u32 synack_stamp)2938 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2939 {
2940 	struct tcp_sock *tp = tcp_sk(sk);
2941 	long seq_rtt_us = -1L;
2942 
2943 	if (synack_stamp && !tp->total_retrans)
2944 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2945 
2946 	/* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2947 	 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2948 	 */
2949 	if (!tp->srtt_us)
2950 		tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2951 }
2952 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)2953 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2954 {
2955 	const struct inet_connection_sock *icsk = inet_csk(sk);
2956 
2957 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2958 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2959 }
2960 
2961 /* Restart timer after forward progress on connection.
2962  * RFC2988 recommends to restart timer to now+rto.
2963  */
tcp_rearm_rto(struct sock * sk)2964 void tcp_rearm_rto(struct sock *sk)
2965 {
2966 	const struct inet_connection_sock *icsk = inet_csk(sk);
2967 	struct tcp_sock *tp = tcp_sk(sk);
2968 
2969 	/* If the retrans timer is currently being used by Fast Open
2970 	 * for SYN-ACK retrans purpose, stay put.
2971 	 */
2972 	if (tp->fastopen_rsk)
2973 		return;
2974 
2975 	if (!tp->packets_out) {
2976 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2977 	} else {
2978 		u32 rto = inet_csk(sk)->icsk_rto;
2979 		/* Offset the time elapsed after installing regular RTO */
2980 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2981 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2982 			struct sk_buff *skb = tcp_write_queue_head(sk);
2983 			const u32 rto_time_stamp =
2984 				tcp_skb_timestamp(skb) + rto;
2985 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2986 			/* delta may not be positive if the socket is locked
2987 			 * when the retrans timer fires and is rescheduled.
2988 			 */
2989 			rto = max(delta, 1);
2990 		}
2991 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2992 					  TCP_RTO_MAX);
2993 	}
2994 }
2995 
2996 /* This function is called when the delayed ER timer fires. TCP enters
2997  * fast recovery and performs fast-retransmit.
2998  */
tcp_resume_early_retransmit(struct sock * sk)2999 void tcp_resume_early_retransmit(struct sock *sk)
3000 {
3001 	struct tcp_sock *tp = tcp_sk(sk);
3002 
3003 	tcp_rearm_rto(sk);
3004 
3005 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3006 	if (!tp->do_early_retrans)
3007 		return;
3008 
3009 	tcp_enter_recovery(sk, false);
3010 	tcp_update_scoreboard(sk, 1);
3011 	tcp_xmit_retransmit_queue(sk);
3012 }
3013 
3014 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3015 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3016 {
3017 	struct tcp_sock *tp = tcp_sk(sk);
3018 	u32 packets_acked;
3019 
3020 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3021 
3022 	packets_acked = tcp_skb_pcount(skb);
3023 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3024 		return 0;
3025 	packets_acked -= tcp_skb_pcount(skb);
3026 
3027 	if (packets_acked) {
3028 		BUG_ON(tcp_skb_pcount(skb) == 0);
3029 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3030 	}
3031 
3032 	return packets_acked;
3033 }
3034 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3035 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3036 			   u32 prior_snd_una)
3037 {
3038 	const struct skb_shared_info *shinfo;
3039 
3040 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3041 	if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3042 		return;
3043 
3044 	shinfo = skb_shinfo(skb);
3045 	if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3046 	    between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3047 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3048 }
3049 
3050 /* Remove acknowledged frames from the retransmission queue. If our packet
3051  * is before the ack sequence we can discard it as it's confirmed to have
3052  * arrived at the other end.
3053  */
tcp_clean_rtx_queue(struct sock * sk,int prior_fackets,u32 prior_snd_una,long sack_rtt_us)3054 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3055 			       u32 prior_snd_una, long sack_rtt_us)
3056 {
3057 	const struct inet_connection_sock *icsk = inet_csk(sk);
3058 	struct skb_mstamp first_ackt, last_ackt, now;
3059 	struct tcp_sock *tp = tcp_sk(sk);
3060 	u32 prior_sacked = tp->sacked_out;
3061 	u32 reord = tp->packets_out;
3062 	bool fully_acked = true;
3063 	long ca_seq_rtt_us = -1L;
3064 	long seq_rtt_us = -1L;
3065 	struct sk_buff *skb;
3066 	u32 pkts_acked = 0;
3067 	bool rtt_update;
3068 	int flag = 0;
3069 
3070 	first_ackt.v64 = 0;
3071 
3072 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3073 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3074 		u8 sacked = scb->sacked;
3075 		u32 acked_pcount;
3076 
3077 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3078 
3079 		/* Determine how many packets and what bytes were acked, tso and else */
3080 		if (after(scb->end_seq, tp->snd_una)) {
3081 			if (tcp_skb_pcount(skb) == 1 ||
3082 			    !after(tp->snd_una, scb->seq))
3083 				break;
3084 
3085 			acked_pcount = tcp_tso_acked(sk, skb);
3086 			if (!acked_pcount)
3087 				break;
3088 
3089 			fully_acked = false;
3090 		} else {
3091 			/* Speedup tcp_unlink_write_queue() and next loop */
3092 			prefetchw(skb->next);
3093 			acked_pcount = tcp_skb_pcount(skb);
3094 		}
3095 
3096 		if (unlikely(sacked & TCPCB_RETRANS)) {
3097 			if (sacked & TCPCB_SACKED_RETRANS)
3098 				tp->retrans_out -= acked_pcount;
3099 			flag |= FLAG_RETRANS_DATA_ACKED;
3100 		} else {
3101 			last_ackt = skb->skb_mstamp;
3102 			WARN_ON_ONCE(last_ackt.v64 == 0);
3103 			if (!first_ackt.v64)
3104 				first_ackt = last_ackt;
3105 
3106 			if (!(sacked & TCPCB_SACKED_ACKED)) {
3107 				reord = min(pkts_acked, reord);
3108 				if (!after(scb->end_seq, tp->high_seq))
3109 					flag |= FLAG_ORIG_SACK_ACKED;
3110 			}
3111 		}
3112 
3113 		if (sacked & TCPCB_SACKED_ACKED)
3114 			tp->sacked_out -= acked_pcount;
3115 		if (sacked & TCPCB_LOST)
3116 			tp->lost_out -= acked_pcount;
3117 
3118 		tp->packets_out -= acked_pcount;
3119 		pkts_acked += acked_pcount;
3120 
3121 		/* Initial outgoing SYN's get put onto the write_queue
3122 		 * just like anything else we transmit.  It is not
3123 		 * true data, and if we misinform our callers that
3124 		 * this ACK acks real data, we will erroneously exit
3125 		 * connection startup slow start one packet too
3126 		 * quickly.  This is severely frowned upon behavior.
3127 		 */
3128 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3129 			flag |= FLAG_DATA_ACKED;
3130 		} else {
3131 			flag |= FLAG_SYN_ACKED;
3132 			tp->retrans_stamp = 0;
3133 		}
3134 
3135 		if (!fully_acked)
3136 			break;
3137 
3138 		tcp_unlink_write_queue(skb, sk);
3139 		sk_wmem_free_skb(sk, skb);
3140 		if (unlikely(skb == tp->retransmit_skb_hint))
3141 			tp->retransmit_skb_hint = NULL;
3142 		if (unlikely(skb == tp->lost_skb_hint))
3143 			tp->lost_skb_hint = NULL;
3144 	}
3145 
3146 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3147 		tp->snd_up = tp->snd_una;
3148 
3149 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3150 		flag |= FLAG_SACK_RENEGING;
3151 
3152 	skb_mstamp_get(&now);
3153 	if (likely(first_ackt.v64)) {
3154 		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3155 		ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3156 	}
3157 
3158 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3159 
3160 	if (flag & FLAG_ACKED) {
3161 		const struct tcp_congestion_ops *ca_ops
3162 			= inet_csk(sk)->icsk_ca_ops;
3163 
3164 		tcp_rearm_rto(sk);
3165 		if (unlikely(icsk->icsk_mtup.probe_size &&
3166 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3167 			tcp_mtup_probe_success(sk);
3168 		}
3169 
3170 		if (tcp_is_reno(tp)) {
3171 			tcp_remove_reno_sacks(sk, pkts_acked);
3172 		} else {
3173 			int delta;
3174 
3175 			/* Non-retransmitted hole got filled? That's reordering */
3176 			if (reord < prior_fackets && reord <= tp->fackets_out)
3177 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3178 
3179 			delta = tcp_is_fack(tp) ? pkts_acked :
3180 						  prior_sacked - tp->sacked_out;
3181 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3182 		}
3183 
3184 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3185 
3186 		if (ca_ops->pkts_acked)
3187 			ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
3188 
3189 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3190 		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3191 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3192 		 * after when the head was last (re)transmitted. Otherwise the
3193 		 * timeout may continue to extend in loss recovery.
3194 		 */
3195 		tcp_rearm_rto(sk);
3196 	}
3197 
3198 #if FASTRETRANS_DEBUG > 0
3199 	WARN_ON((int)tp->sacked_out < 0);
3200 	WARN_ON((int)tp->lost_out < 0);
3201 	WARN_ON((int)tp->retrans_out < 0);
3202 	if (!tp->packets_out && tcp_is_sack(tp)) {
3203 		icsk = inet_csk(sk);
3204 		if (tp->lost_out) {
3205 			pr_debug("Leak l=%u %d\n",
3206 				 tp->lost_out, icsk->icsk_ca_state);
3207 			tp->lost_out = 0;
3208 		}
3209 		if (tp->sacked_out) {
3210 			pr_debug("Leak s=%u %d\n",
3211 				 tp->sacked_out, icsk->icsk_ca_state);
3212 			tp->sacked_out = 0;
3213 		}
3214 		if (tp->retrans_out) {
3215 			pr_debug("Leak r=%u %d\n",
3216 				 tp->retrans_out, icsk->icsk_ca_state);
3217 			tp->retrans_out = 0;
3218 		}
3219 	}
3220 #endif
3221 	return flag;
3222 }
3223 
tcp_ack_probe(struct sock * sk)3224 static void tcp_ack_probe(struct sock *sk)
3225 {
3226 	const struct tcp_sock *tp = tcp_sk(sk);
3227 	struct inet_connection_sock *icsk = inet_csk(sk);
3228 
3229 	/* Was it a usable window open? */
3230 
3231 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3232 		icsk->icsk_backoff = 0;
3233 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3234 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3235 		 * This function is not for random using!
3236 		 */
3237 	} else {
3238 		unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
3239 
3240 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3241 					  when, TCP_RTO_MAX);
3242 	}
3243 }
3244 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3245 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3246 {
3247 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3248 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3249 }
3250 
3251 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3252 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3253 {
3254 	if (tcp_in_cwnd_reduction(sk))
3255 		return false;
3256 
3257 	/* If reordering is high then always grow cwnd whenever data is
3258 	 * delivered regardless of its ordering. Otherwise stay conservative
3259 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3260 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3261 	 * cwnd in tcp_fastretrans_alert() based on more states.
3262 	 */
3263 	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3264 		return flag & FLAG_FORWARD_PROGRESS;
3265 
3266 	return flag & FLAG_DATA_ACKED;
3267 }
3268 
3269 /* Check that window update is acceptable.
3270  * The function assumes that snd_una<=ack<=snd_next.
3271  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3272 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3273 					const u32 ack, const u32 ack_seq,
3274 					const u32 nwin)
3275 {
3276 	return	after(ack, tp->snd_una) ||
3277 		after(ack_seq, tp->snd_wl1) ||
3278 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3279 }
3280 
3281 /* Update our send window.
3282  *
3283  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3284  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3285  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3286 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3287 				 u32 ack_seq)
3288 {
3289 	struct tcp_sock *tp = tcp_sk(sk);
3290 	int flag = 0;
3291 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3292 
3293 	if (likely(!tcp_hdr(skb)->syn))
3294 		nwin <<= tp->rx_opt.snd_wscale;
3295 
3296 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3297 		flag |= FLAG_WIN_UPDATE;
3298 		tcp_update_wl(tp, ack_seq);
3299 
3300 		if (tp->snd_wnd != nwin) {
3301 			tp->snd_wnd = nwin;
3302 
3303 			/* Note, it is the only place, where
3304 			 * fast path is recovered for sending TCP.
3305 			 */
3306 			tp->pred_flags = 0;
3307 			tcp_fast_path_check(sk);
3308 
3309 			if (nwin > tp->max_window) {
3310 				tp->max_window = nwin;
3311 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3312 			}
3313 		}
3314 	}
3315 
3316 	tp->snd_una = ack;
3317 
3318 	return flag;
3319 }
3320 
3321 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3322 static void tcp_send_challenge_ack(struct sock *sk)
3323 {
3324 	/* unprotected vars, we dont care of overwrites */
3325 	static u32 challenge_timestamp;
3326 	static unsigned int challenge_count;
3327 	u32 now = jiffies / HZ;
3328 	u32 count;
3329 
3330 	if (now != challenge_timestamp) {
3331 		u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3332 
3333 		challenge_timestamp = now;
3334 		WRITE_ONCE(challenge_count, half +
3335 			   prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3336 	}
3337 	count = READ_ONCE(challenge_count);
3338 	if (count > 0) {
3339 		WRITE_ONCE(challenge_count, count - 1);
3340 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3341 		tcp_send_ack(sk);
3342 	}
3343 }
3344 
tcp_store_ts_recent(struct tcp_sock * tp)3345 static void tcp_store_ts_recent(struct tcp_sock *tp)
3346 {
3347 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3348 	tp->rx_opt.ts_recent_stamp = get_seconds();
3349 }
3350 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3351 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3352 {
3353 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3354 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3355 		 * extra check below makes sure this can only happen
3356 		 * for pure ACK frames.  -DaveM
3357 		 *
3358 		 * Not only, also it occurs for expired timestamps.
3359 		 */
3360 
3361 		if (tcp_paws_check(&tp->rx_opt, 0))
3362 			tcp_store_ts_recent(tp);
3363 	}
3364 }
3365 
3366 /* This routine deals with acks during a TLP episode.
3367  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3368  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3369 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3370 {
3371 	struct tcp_sock *tp = tcp_sk(sk);
3372 	bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3373 			     !(flag & (FLAG_SND_UNA_ADVANCED |
3374 				       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3375 
3376 	/* Mark the end of TLP episode on receiving TLP dupack or when
3377 	 * ack is after tlp_high_seq.
3378 	 */
3379 	if (is_tlp_dupack) {
3380 		tp->tlp_high_seq = 0;
3381 		return;
3382 	}
3383 
3384 	if (after(ack, tp->tlp_high_seq)) {
3385 		tp->tlp_high_seq = 0;
3386 		/* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3387 		if (!(flag & FLAG_DSACKING_ACK)) {
3388 			tcp_init_cwnd_reduction(sk);
3389 			tcp_set_ca_state(sk, TCP_CA_CWR);
3390 			tcp_end_cwnd_reduction(sk);
3391 			tcp_try_keep_open(sk);
3392 			NET_INC_STATS_BH(sock_net(sk),
3393 					 LINUX_MIB_TCPLOSSPROBERECOVERY);
3394 		}
3395 	}
3396 }
3397 
tcp_in_ack_event(struct sock * sk,u32 flags)3398 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3399 {
3400 	const struct inet_connection_sock *icsk = inet_csk(sk);
3401 
3402 	if (icsk->icsk_ca_ops->in_ack_event)
3403 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3404 }
3405 
3406 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3407 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3408 {
3409 	struct inet_connection_sock *icsk = inet_csk(sk);
3410 	struct tcp_sock *tp = tcp_sk(sk);
3411 	u32 prior_snd_una = tp->snd_una;
3412 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3413 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3414 	bool is_dupack = false;
3415 	u32 prior_fackets;
3416 	int prior_packets = tp->packets_out;
3417 	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3418 	int acked = 0; /* Number of packets newly acked */
3419 	long sack_rtt_us = -1L;
3420 
3421 	/* We very likely will need to access write queue head. */
3422 	prefetchw(sk->sk_write_queue.next);
3423 
3424 	/* If the ack is older than previous acks
3425 	 * then we can probably ignore it.
3426 	 */
3427 	if (before(ack, prior_snd_una)) {
3428 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3429 		if (before(ack, prior_snd_una - tp->max_window)) {
3430 			tcp_send_challenge_ack(sk);
3431 			return -1;
3432 		}
3433 		goto old_ack;
3434 	}
3435 
3436 	/* If the ack includes data we haven't sent yet, discard
3437 	 * this segment (RFC793 Section 3.9).
3438 	 */
3439 	if (after(ack, tp->snd_nxt))
3440 		goto invalid_ack;
3441 
3442 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3443 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3444 		tcp_rearm_rto(sk);
3445 
3446 	if (after(ack, prior_snd_una)) {
3447 		flag |= FLAG_SND_UNA_ADVANCED;
3448 		icsk->icsk_retransmits = 0;
3449 	}
3450 
3451 	prior_fackets = tp->fackets_out;
3452 
3453 	/* ts_recent update must be made after we are sure that the packet
3454 	 * is in window.
3455 	 */
3456 	if (flag & FLAG_UPDATE_TS_RECENT)
3457 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3458 
3459 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3460 		/* Window is constant, pure forward advance.
3461 		 * No more checks are required.
3462 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3463 		 */
3464 		tcp_update_wl(tp, ack_seq);
3465 		tp->snd_una = ack;
3466 		flag |= FLAG_WIN_UPDATE;
3467 
3468 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3469 
3470 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3471 	} else {
3472 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3473 
3474 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3475 			flag |= FLAG_DATA;
3476 		else
3477 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3478 
3479 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3480 
3481 		if (TCP_SKB_CB(skb)->sacked)
3482 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3483 							&sack_rtt_us);
3484 
3485 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3486 			flag |= FLAG_ECE;
3487 			ack_ev_flags |= CA_ACK_ECE;
3488 		}
3489 
3490 		if (flag & FLAG_WIN_UPDATE)
3491 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3492 
3493 		tcp_in_ack_event(sk, ack_ev_flags);
3494 	}
3495 
3496 	/* We passed data and got it acked, remove any soft error
3497 	 * log. Something worked...
3498 	 */
3499 	sk->sk_err_soft = 0;
3500 	icsk->icsk_probes_out = 0;
3501 	tp->rcv_tstamp = tcp_time_stamp;
3502 	if (!prior_packets)
3503 		goto no_queue;
3504 
3505 	/* See if we can take anything off of the retransmit queue. */
3506 	acked = tp->packets_out;
3507 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3508 				    sack_rtt_us);
3509 	acked -= tp->packets_out;
3510 
3511 	/* Advance cwnd if state allows */
3512 	if (tcp_may_raise_cwnd(sk, flag))
3513 		tcp_cong_avoid(sk, ack, acked);
3514 
3515 	if (tcp_ack_is_dubious(sk, flag)) {
3516 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3517 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3518 				      is_dupack, flag);
3519 	}
3520 	if (tp->tlp_high_seq)
3521 		tcp_process_tlp_ack(sk, ack, flag);
3522 
3523 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3524 		struct dst_entry *dst = __sk_dst_get(sk);
3525 		if (dst)
3526 			dst_confirm(dst);
3527 	}
3528 
3529 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3530 		tcp_schedule_loss_probe(sk);
3531 	tcp_update_pacing_rate(sk);
3532 	return 1;
3533 
3534 no_queue:
3535 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3536 	if (flag & FLAG_DSACKING_ACK)
3537 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3538 				      is_dupack, flag);
3539 	/* If this ack opens up a zero window, clear backoff.  It was
3540 	 * being used to time the probes, and is probably far higher than
3541 	 * it needs to be for normal retransmission.
3542 	 */
3543 	if (tcp_send_head(sk))
3544 		tcp_ack_probe(sk);
3545 
3546 	if (tp->tlp_high_seq)
3547 		tcp_process_tlp_ack(sk, ack, flag);
3548 	return 1;
3549 
3550 invalid_ack:
3551 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3552 	return -1;
3553 
3554 old_ack:
3555 	/* If data was SACKed, tag it and see if we should send more data.
3556 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3557 	 */
3558 	if (TCP_SKB_CB(skb)->sacked) {
3559 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3560 						&sack_rtt_us);
3561 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3562 				      is_dupack, flag);
3563 	}
3564 
3565 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3566 	return 0;
3567 }
3568 
3569 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3570  * But, this can also be called on packets in the established flow when
3571  * the fast version below fails.
3572  */
tcp_parse_options(const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)3573 void tcp_parse_options(const struct sk_buff *skb,
3574 		       struct tcp_options_received *opt_rx, int estab,
3575 		       struct tcp_fastopen_cookie *foc)
3576 {
3577 	const unsigned char *ptr;
3578 	const struct tcphdr *th = tcp_hdr(skb);
3579 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3580 
3581 	ptr = (const unsigned char *)(th + 1);
3582 	opt_rx->saw_tstamp = 0;
3583 
3584 	while (length > 0) {
3585 		int opcode = *ptr++;
3586 		int opsize;
3587 
3588 		switch (opcode) {
3589 		case TCPOPT_EOL:
3590 			return;
3591 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3592 			length--;
3593 			continue;
3594 		default:
3595 			opsize = *ptr++;
3596 			if (opsize < 2) /* "silly options" */
3597 				return;
3598 			if (opsize > length)
3599 				return;	/* don't parse partial options */
3600 			switch (opcode) {
3601 			case TCPOPT_MSS:
3602 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3603 					u16 in_mss = get_unaligned_be16(ptr);
3604 					if (in_mss) {
3605 						if (opt_rx->user_mss &&
3606 						    opt_rx->user_mss < in_mss)
3607 							in_mss = opt_rx->user_mss;
3608 						opt_rx->mss_clamp = in_mss;
3609 					}
3610 				}
3611 				break;
3612 			case TCPOPT_WINDOW:
3613 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3614 				    !estab && sysctl_tcp_window_scaling) {
3615 					__u8 snd_wscale = *(__u8 *)ptr;
3616 					opt_rx->wscale_ok = 1;
3617 					if (snd_wscale > 14) {
3618 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3619 								     __func__,
3620 								     snd_wscale);
3621 						snd_wscale = 14;
3622 					}
3623 					opt_rx->snd_wscale = snd_wscale;
3624 				}
3625 				break;
3626 			case TCPOPT_TIMESTAMP:
3627 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3628 				    ((estab && opt_rx->tstamp_ok) ||
3629 				     (!estab && sysctl_tcp_timestamps))) {
3630 					opt_rx->saw_tstamp = 1;
3631 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3632 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3633 				}
3634 				break;
3635 			case TCPOPT_SACK_PERM:
3636 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3637 				    !estab && sysctl_tcp_sack) {
3638 					opt_rx->sack_ok = TCP_SACK_SEEN;
3639 					tcp_sack_reset(opt_rx);
3640 				}
3641 				break;
3642 
3643 			case TCPOPT_SACK:
3644 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3645 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3646 				   opt_rx->sack_ok) {
3647 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3648 				}
3649 				break;
3650 #ifdef CONFIG_TCP_MD5SIG
3651 			case TCPOPT_MD5SIG:
3652 				/*
3653 				 * The MD5 Hash has already been
3654 				 * checked (see tcp_v{4,6}_do_rcv()).
3655 				 */
3656 				break;
3657 #endif
3658 			case TCPOPT_EXP:
3659 				/* Fast Open option shares code 254 using a
3660 				 * 16 bits magic number. It's valid only in
3661 				 * SYN or SYN-ACK with an even size.
3662 				 */
3663 				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3664 				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3665 				    foc == NULL || !th->syn || (opsize & 1))
3666 					break;
3667 				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3668 				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3669 				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3670 					memcpy(foc->val, ptr + 2, foc->len);
3671 				else if (foc->len != 0)
3672 					foc->len = -1;
3673 				break;
3674 
3675 			}
3676 			ptr += opsize-2;
3677 			length -= opsize;
3678 		}
3679 	}
3680 }
3681 EXPORT_SYMBOL(tcp_parse_options);
3682 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)3683 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3684 {
3685 	const __be32 *ptr = (const __be32 *)(th + 1);
3686 
3687 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3688 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3689 		tp->rx_opt.saw_tstamp = 1;
3690 		++ptr;
3691 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3692 		++ptr;
3693 		if (*ptr)
3694 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3695 		else
3696 			tp->rx_opt.rcv_tsecr = 0;
3697 		return true;
3698 	}
3699 	return false;
3700 }
3701 
3702 /* Fast parse options. This hopes to only see timestamps.
3703  * If it is wrong it falls back on tcp_parse_options().
3704  */
tcp_fast_parse_options(const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)3705 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3706 				   const struct tcphdr *th, struct tcp_sock *tp)
3707 {
3708 	/* In the spirit of fast parsing, compare doff directly to constant
3709 	 * values.  Because equality is used, short doff can be ignored here.
3710 	 */
3711 	if (th->doff == (sizeof(*th) / 4)) {
3712 		tp->rx_opt.saw_tstamp = 0;
3713 		return false;
3714 	} else if (tp->rx_opt.tstamp_ok &&
3715 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3716 		if (tcp_parse_aligned_timestamp(tp, th))
3717 			return true;
3718 	}
3719 
3720 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3721 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3722 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3723 
3724 	return true;
3725 }
3726 
3727 #ifdef CONFIG_TCP_MD5SIG
3728 /*
3729  * Parse MD5 Signature option
3730  */
tcp_parse_md5sig_option(const struct tcphdr * th)3731 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3732 {
3733 	int length = (th->doff << 2) - sizeof(*th);
3734 	const u8 *ptr = (const u8 *)(th + 1);
3735 
3736 	/* If the TCP option is too short, we can short cut */
3737 	if (length < TCPOLEN_MD5SIG)
3738 		return NULL;
3739 
3740 	while (length > 0) {
3741 		int opcode = *ptr++;
3742 		int opsize;
3743 
3744 		switch (opcode) {
3745 		case TCPOPT_EOL:
3746 			return NULL;
3747 		case TCPOPT_NOP:
3748 			length--;
3749 			continue;
3750 		default:
3751 			opsize = *ptr++;
3752 			if (opsize < 2 || opsize > length)
3753 				return NULL;
3754 			if (opcode == TCPOPT_MD5SIG)
3755 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3756 		}
3757 		ptr += opsize - 2;
3758 		length -= opsize;
3759 	}
3760 	return NULL;
3761 }
3762 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3763 #endif
3764 
3765 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3766  *
3767  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3768  * it can pass through stack. So, the following predicate verifies that
3769  * this segment is not used for anything but congestion avoidance or
3770  * fast retransmit. Moreover, we even are able to eliminate most of such
3771  * second order effects, if we apply some small "replay" window (~RTO)
3772  * to timestamp space.
3773  *
3774  * All these measures still do not guarantee that we reject wrapped ACKs
3775  * on networks with high bandwidth, when sequence space is recycled fastly,
3776  * but it guarantees that such events will be very rare and do not affect
3777  * connection seriously. This doesn't look nice, but alas, PAWS is really
3778  * buggy extension.
3779  *
3780  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3781  * states that events when retransmit arrives after original data are rare.
3782  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3783  * the biggest problem on large power networks even with minor reordering.
3784  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3785  * up to bandwidth of 18Gigabit/sec. 8) ]
3786  */
3787 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)3788 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3789 {
3790 	const struct tcp_sock *tp = tcp_sk(sk);
3791 	const struct tcphdr *th = tcp_hdr(skb);
3792 	u32 seq = TCP_SKB_CB(skb)->seq;
3793 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3794 
3795 	return (/* 1. Pure ACK with correct sequence number. */
3796 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3797 
3798 		/* 2. ... and duplicate ACK. */
3799 		ack == tp->snd_una &&
3800 
3801 		/* 3. ... and does not update window. */
3802 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3803 
3804 		/* 4. ... and sits in replay window. */
3805 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3806 }
3807 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)3808 static inline bool tcp_paws_discard(const struct sock *sk,
3809 				   const struct sk_buff *skb)
3810 {
3811 	const struct tcp_sock *tp = tcp_sk(sk);
3812 
3813 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3814 	       !tcp_disordered_ack(sk, skb);
3815 }
3816 
3817 /* Check segment sequence number for validity.
3818  *
3819  * Segment controls are considered valid, if the segment
3820  * fits to the window after truncation to the window. Acceptability
3821  * of data (and SYN, FIN, of course) is checked separately.
3822  * See tcp_data_queue(), for example.
3823  *
3824  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3825  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3826  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3827  * (borrowed from freebsd)
3828  */
3829 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)3830 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3831 {
3832 	return	!before(end_seq, tp->rcv_wup) &&
3833 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3834 }
3835 
3836 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)3837 void tcp_reset(struct sock *sk)
3838 {
3839 	/* We want the right error as BSD sees it (and indeed as we do). */
3840 	switch (sk->sk_state) {
3841 	case TCP_SYN_SENT:
3842 		sk->sk_err = ECONNREFUSED;
3843 		break;
3844 	case TCP_CLOSE_WAIT:
3845 		sk->sk_err = EPIPE;
3846 		break;
3847 	case TCP_CLOSE:
3848 		return;
3849 	default:
3850 		sk->sk_err = ECONNRESET;
3851 	}
3852 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3853 	smp_wmb();
3854 
3855 	if (!sock_flag(sk, SOCK_DEAD))
3856 		sk->sk_error_report(sk);
3857 
3858 	tcp_done(sk);
3859 }
3860 
3861 /*
3862  * 	Process the FIN bit. This now behaves as it is supposed to work
3863  *	and the FIN takes effect when it is validly part of sequence
3864  *	space. Not before when we get holes.
3865  *
3866  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3867  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3868  *	TIME-WAIT)
3869  *
3870  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3871  *	close and we go into CLOSING (and later onto TIME-WAIT)
3872  *
3873  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3874  */
tcp_fin(struct sock * sk)3875 static void tcp_fin(struct sock *sk)
3876 {
3877 	struct tcp_sock *tp = tcp_sk(sk);
3878 	const struct dst_entry *dst;
3879 
3880 	inet_csk_schedule_ack(sk);
3881 
3882 	sk->sk_shutdown |= RCV_SHUTDOWN;
3883 	sock_set_flag(sk, SOCK_DONE);
3884 
3885 	switch (sk->sk_state) {
3886 	case TCP_SYN_RECV:
3887 	case TCP_ESTABLISHED:
3888 		/* Move to CLOSE_WAIT */
3889 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3890 		dst = __sk_dst_get(sk);
3891 		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3892 			inet_csk(sk)->icsk_ack.pingpong = 1;
3893 		break;
3894 
3895 	case TCP_CLOSE_WAIT:
3896 	case TCP_CLOSING:
3897 		/* Received a retransmission of the FIN, do
3898 		 * nothing.
3899 		 */
3900 		break;
3901 	case TCP_LAST_ACK:
3902 		/* RFC793: Remain in the LAST-ACK state. */
3903 		break;
3904 
3905 	case TCP_FIN_WAIT1:
3906 		/* This case occurs when a simultaneous close
3907 		 * happens, we must ack the received FIN and
3908 		 * enter the CLOSING state.
3909 		 */
3910 		tcp_send_ack(sk);
3911 		tcp_set_state(sk, TCP_CLOSING);
3912 		break;
3913 	case TCP_FIN_WAIT2:
3914 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3915 		tcp_send_ack(sk);
3916 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3917 		break;
3918 	default:
3919 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3920 		 * cases we should never reach this piece of code.
3921 		 */
3922 		pr_err("%s: Impossible, sk->sk_state=%d\n",
3923 		       __func__, sk->sk_state);
3924 		break;
3925 	}
3926 
3927 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3928 	 * Probably, we should reset in this case. For now drop them.
3929 	 */
3930 	__skb_queue_purge(&tp->out_of_order_queue);
3931 	if (tcp_is_sack(tp))
3932 		tcp_sack_reset(&tp->rx_opt);
3933 	sk_mem_reclaim(sk);
3934 
3935 	if (!sock_flag(sk, SOCK_DEAD)) {
3936 		sk->sk_state_change(sk);
3937 
3938 		/* Do not send POLL_HUP for half duplex close. */
3939 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3940 		    sk->sk_state == TCP_CLOSE)
3941 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3942 		else
3943 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3944 	}
3945 }
3946 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)3947 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3948 				  u32 end_seq)
3949 {
3950 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3951 		if (before(seq, sp->start_seq))
3952 			sp->start_seq = seq;
3953 		if (after(end_seq, sp->end_seq))
3954 			sp->end_seq = end_seq;
3955 		return true;
3956 	}
3957 	return false;
3958 }
3959 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)3960 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3961 {
3962 	struct tcp_sock *tp = tcp_sk(sk);
3963 
3964 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3965 		int mib_idx;
3966 
3967 		if (before(seq, tp->rcv_nxt))
3968 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3969 		else
3970 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3971 
3972 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3973 
3974 		tp->rx_opt.dsack = 1;
3975 		tp->duplicate_sack[0].start_seq = seq;
3976 		tp->duplicate_sack[0].end_seq = end_seq;
3977 	}
3978 }
3979 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)3980 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3981 {
3982 	struct tcp_sock *tp = tcp_sk(sk);
3983 
3984 	if (!tp->rx_opt.dsack)
3985 		tcp_dsack_set(sk, seq, end_seq);
3986 	else
3987 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3988 }
3989 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)3990 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3991 {
3992 	struct tcp_sock *tp = tcp_sk(sk);
3993 
3994 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3995 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3996 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3997 		tcp_enter_quickack_mode(sk);
3998 
3999 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4000 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4001 
4002 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4003 				end_seq = tp->rcv_nxt;
4004 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4005 		}
4006 	}
4007 
4008 	tcp_send_ack(sk);
4009 }
4010 
4011 /* These routines update the SACK block as out-of-order packets arrive or
4012  * in-order packets close up the sequence space.
4013  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4014 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4015 {
4016 	int this_sack;
4017 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4018 	struct tcp_sack_block *swalk = sp + 1;
4019 
4020 	/* See if the recent change to the first SACK eats into
4021 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4022 	 */
4023 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4024 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4025 			int i;
4026 
4027 			/* Zap SWALK, by moving every further SACK up by one slot.
4028 			 * Decrease num_sacks.
4029 			 */
4030 			tp->rx_opt.num_sacks--;
4031 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4032 				sp[i] = sp[i + 1];
4033 			continue;
4034 		}
4035 		this_sack++, swalk++;
4036 	}
4037 }
4038 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4039 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4040 {
4041 	struct tcp_sock *tp = tcp_sk(sk);
4042 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4043 	int cur_sacks = tp->rx_opt.num_sacks;
4044 	int this_sack;
4045 
4046 	if (!cur_sacks)
4047 		goto new_sack;
4048 
4049 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4050 		if (tcp_sack_extend(sp, seq, end_seq)) {
4051 			/* Rotate this_sack to the first one. */
4052 			for (; this_sack > 0; this_sack--, sp--)
4053 				swap(*sp, *(sp - 1));
4054 			if (cur_sacks > 1)
4055 				tcp_sack_maybe_coalesce(tp);
4056 			return;
4057 		}
4058 	}
4059 
4060 	/* Could not find an adjacent existing SACK, build a new one,
4061 	 * put it at the front, and shift everyone else down.  We
4062 	 * always know there is at least one SACK present already here.
4063 	 *
4064 	 * If the sack array is full, forget about the last one.
4065 	 */
4066 	if (this_sack >= TCP_NUM_SACKS) {
4067 		this_sack--;
4068 		tp->rx_opt.num_sacks--;
4069 		sp--;
4070 	}
4071 	for (; this_sack > 0; this_sack--, sp--)
4072 		*sp = *(sp - 1);
4073 
4074 new_sack:
4075 	/* Build the new head SACK, and we're done. */
4076 	sp->start_seq = seq;
4077 	sp->end_seq = end_seq;
4078 	tp->rx_opt.num_sacks++;
4079 }
4080 
4081 /* RCV.NXT advances, some SACKs should be eaten. */
4082 
tcp_sack_remove(struct tcp_sock * tp)4083 static void tcp_sack_remove(struct tcp_sock *tp)
4084 {
4085 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4086 	int num_sacks = tp->rx_opt.num_sacks;
4087 	int this_sack;
4088 
4089 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4090 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4091 		tp->rx_opt.num_sacks = 0;
4092 		return;
4093 	}
4094 
4095 	for (this_sack = 0; this_sack < num_sacks;) {
4096 		/* Check if the start of the sack is covered by RCV.NXT. */
4097 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4098 			int i;
4099 
4100 			/* RCV.NXT must cover all the block! */
4101 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4102 
4103 			/* Zap this SACK, by moving forward any other SACKS. */
4104 			for (i = this_sack+1; i < num_sacks; i++)
4105 				tp->selective_acks[i-1] = tp->selective_acks[i];
4106 			num_sacks--;
4107 			continue;
4108 		}
4109 		this_sack++;
4110 		sp++;
4111 	}
4112 	tp->rx_opt.num_sacks = num_sacks;
4113 }
4114 
4115 /**
4116  * tcp_try_coalesce - try to merge skb to prior one
4117  * @sk: socket
4118  * @to: prior buffer
4119  * @from: buffer to add in queue
4120  * @fragstolen: pointer to boolean
4121  *
4122  * Before queueing skb @from after @to, try to merge them
4123  * to reduce overall memory use and queue lengths, if cost is small.
4124  * Packets in ofo or receive queues can stay a long time.
4125  * Better try to coalesce them right now to avoid future collapses.
4126  * Returns true if caller should free @from instead of queueing it
4127  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4128 static bool tcp_try_coalesce(struct sock *sk,
4129 			     struct sk_buff *to,
4130 			     struct sk_buff *from,
4131 			     bool *fragstolen)
4132 {
4133 	int delta;
4134 
4135 	*fragstolen = false;
4136 
4137 	/* Its possible this segment overlaps with prior segment in queue */
4138 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4139 		return false;
4140 
4141 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4142 		return false;
4143 
4144 	atomic_add(delta, &sk->sk_rmem_alloc);
4145 	sk_mem_charge(sk, delta);
4146 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4147 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4148 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4149 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4150 	return true;
4151 }
4152 
4153 /* This one checks to see if we can put data from the
4154  * out_of_order queue into the receive_queue.
4155  */
tcp_ofo_queue(struct sock * sk)4156 static void tcp_ofo_queue(struct sock *sk)
4157 {
4158 	struct tcp_sock *tp = tcp_sk(sk);
4159 	__u32 dsack_high = tp->rcv_nxt;
4160 	struct sk_buff *skb, *tail;
4161 	bool fragstolen, eaten;
4162 
4163 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4164 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4165 			break;
4166 
4167 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4168 			__u32 dsack = dsack_high;
4169 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4170 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4171 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4172 		}
4173 
4174 		__skb_unlink(skb, &tp->out_of_order_queue);
4175 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4176 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4177 			__kfree_skb(skb);
4178 			continue;
4179 		}
4180 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4181 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4182 			   TCP_SKB_CB(skb)->end_seq);
4183 
4184 		tail = skb_peek_tail(&sk->sk_receive_queue);
4185 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4186 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4187 		if (!eaten)
4188 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4189 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4190 			tcp_fin(sk);
4191 		if (eaten)
4192 			kfree_skb_partial(skb, fragstolen);
4193 	}
4194 }
4195 
4196 static bool tcp_prune_ofo_queue(struct sock *sk);
4197 static int tcp_prune_queue(struct sock *sk);
4198 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4199 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4200 				 unsigned int size)
4201 {
4202 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4203 	    !sk_rmem_schedule(sk, skb, size)) {
4204 
4205 		if (tcp_prune_queue(sk) < 0)
4206 			return -1;
4207 
4208 		if (!sk_rmem_schedule(sk, skb, size)) {
4209 			if (!tcp_prune_ofo_queue(sk))
4210 				return -1;
4211 
4212 			if (!sk_rmem_schedule(sk, skb, size))
4213 				return -1;
4214 		}
4215 	}
4216 	return 0;
4217 }
4218 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4219 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4220 {
4221 	struct tcp_sock *tp = tcp_sk(sk);
4222 	struct sk_buff *skb1;
4223 	u32 seq, end_seq;
4224 
4225 	tcp_ecn_check_ce(tp, skb);
4226 
4227 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4228 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4229 		__kfree_skb(skb);
4230 		return;
4231 	}
4232 
4233 	/* Disable header prediction. */
4234 	tp->pred_flags = 0;
4235 	inet_csk_schedule_ack(sk);
4236 
4237 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4238 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4239 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4240 
4241 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4242 	if (!skb1) {
4243 		/* Initial out of order segment, build 1 SACK. */
4244 		if (tcp_is_sack(tp)) {
4245 			tp->rx_opt.num_sacks = 1;
4246 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4247 			tp->selective_acks[0].end_seq =
4248 						TCP_SKB_CB(skb)->end_seq;
4249 		}
4250 		__skb_queue_head(&tp->out_of_order_queue, skb);
4251 		goto end;
4252 	}
4253 
4254 	seq = TCP_SKB_CB(skb)->seq;
4255 	end_seq = TCP_SKB_CB(skb)->end_seq;
4256 
4257 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4258 		bool fragstolen;
4259 
4260 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4261 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4262 		} else {
4263 			tcp_grow_window(sk, skb);
4264 			kfree_skb_partial(skb, fragstolen);
4265 			skb = NULL;
4266 		}
4267 
4268 		if (!tp->rx_opt.num_sacks ||
4269 		    tp->selective_acks[0].end_seq != seq)
4270 			goto add_sack;
4271 
4272 		/* Common case: data arrive in order after hole. */
4273 		tp->selective_acks[0].end_seq = end_seq;
4274 		goto end;
4275 	}
4276 
4277 	/* Find place to insert this segment. */
4278 	while (1) {
4279 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4280 			break;
4281 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4282 			skb1 = NULL;
4283 			break;
4284 		}
4285 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4286 	}
4287 
4288 	/* Do skb overlap to previous one? */
4289 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4290 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4291 			/* All the bits are present. Drop. */
4292 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4293 			__kfree_skb(skb);
4294 			skb = NULL;
4295 			tcp_dsack_set(sk, seq, end_seq);
4296 			goto add_sack;
4297 		}
4298 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4299 			/* Partial overlap. */
4300 			tcp_dsack_set(sk, seq,
4301 				      TCP_SKB_CB(skb1)->end_seq);
4302 		} else {
4303 			if (skb_queue_is_first(&tp->out_of_order_queue,
4304 					       skb1))
4305 				skb1 = NULL;
4306 			else
4307 				skb1 = skb_queue_prev(
4308 					&tp->out_of_order_queue,
4309 					skb1);
4310 		}
4311 	}
4312 	if (!skb1)
4313 		__skb_queue_head(&tp->out_of_order_queue, skb);
4314 	else
4315 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4316 
4317 	/* And clean segments covered by new one as whole. */
4318 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4319 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4320 
4321 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4322 			break;
4323 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4324 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4325 					 end_seq);
4326 			break;
4327 		}
4328 		__skb_unlink(skb1, &tp->out_of_order_queue);
4329 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4330 				 TCP_SKB_CB(skb1)->end_seq);
4331 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4332 		__kfree_skb(skb1);
4333 	}
4334 
4335 add_sack:
4336 	if (tcp_is_sack(tp))
4337 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4338 end:
4339 	if (skb) {
4340 		tcp_grow_window(sk, skb);
4341 		skb_set_owner_r(skb, sk);
4342 	}
4343 }
4344 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,int hdrlen,bool * fragstolen)4345 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4346 		  bool *fragstolen)
4347 {
4348 	int eaten;
4349 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4350 
4351 	__skb_pull(skb, hdrlen);
4352 	eaten = (tail &&
4353 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4354 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4355 	if (!eaten) {
4356 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4357 		skb_set_owner_r(skb, sk);
4358 	}
4359 	return eaten;
4360 }
4361 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4362 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4363 {
4364 	struct sk_buff *skb;
4365 	int err = -ENOMEM;
4366 	int data_len = 0;
4367 	bool fragstolen;
4368 
4369 	if (size == 0)
4370 		return 0;
4371 
4372 	if (size > PAGE_SIZE) {
4373 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4374 
4375 		data_len = npages << PAGE_SHIFT;
4376 		size = data_len + (size & ~PAGE_MASK);
4377 	}
4378 	skb = alloc_skb_with_frags(size - data_len, data_len,
4379 				   PAGE_ALLOC_COSTLY_ORDER,
4380 				   &err, sk->sk_allocation);
4381 	if (!skb)
4382 		goto err;
4383 
4384 	skb_put(skb, size - data_len);
4385 	skb->data_len = data_len;
4386 	skb->len = size;
4387 
4388 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4389 		goto err_free;
4390 
4391 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, size);
4392 	if (err)
4393 		goto err_free;
4394 
4395 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4396 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4397 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4398 
4399 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4400 		WARN_ON_ONCE(fragstolen); /* should not happen */
4401 		__kfree_skb(skb);
4402 	}
4403 	return size;
4404 
4405 err_free:
4406 	kfree_skb(skb);
4407 err:
4408 	return err;
4409 
4410 }
4411 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4412 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4413 {
4414 	struct tcp_sock *tp = tcp_sk(sk);
4415 	int eaten = -1;
4416 	bool fragstolen = false;
4417 
4418 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4419 		goto drop;
4420 
4421 	skb_dst_drop(skb);
4422 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4423 
4424 	tcp_ecn_accept_cwr(tp, skb);
4425 
4426 	tp->rx_opt.dsack = 0;
4427 
4428 	/*  Queue data for delivery to the user.
4429 	 *  Packets in sequence go to the receive queue.
4430 	 *  Out of sequence packets to the out_of_order_queue.
4431 	 */
4432 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4433 		if (tcp_receive_window(tp) == 0)
4434 			goto out_of_window;
4435 
4436 		/* Ok. In sequence. In window. */
4437 		if (tp->ucopy.task == current &&
4438 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4439 		    sock_owned_by_user(sk) && !tp->urg_data) {
4440 			int chunk = min_t(unsigned int, skb->len,
4441 					  tp->ucopy.len);
4442 
4443 			__set_current_state(TASK_RUNNING);
4444 
4445 			local_bh_enable();
4446 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4447 				tp->ucopy.len -= chunk;
4448 				tp->copied_seq += chunk;
4449 				eaten = (chunk == skb->len);
4450 				tcp_rcv_space_adjust(sk);
4451 			}
4452 			local_bh_disable();
4453 		}
4454 
4455 		if (eaten <= 0) {
4456 queue_and_out:
4457 			if (eaten < 0 &&
4458 			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4459 				goto drop;
4460 
4461 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4462 		}
4463 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4464 		if (skb->len)
4465 			tcp_event_data_recv(sk, skb);
4466 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4467 			tcp_fin(sk);
4468 
4469 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4470 			tcp_ofo_queue(sk);
4471 
4472 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4473 			 * gap in queue is filled.
4474 			 */
4475 			if (skb_queue_empty(&tp->out_of_order_queue))
4476 				inet_csk(sk)->icsk_ack.pingpong = 0;
4477 		}
4478 
4479 		if (tp->rx_opt.num_sacks)
4480 			tcp_sack_remove(tp);
4481 
4482 		tcp_fast_path_check(sk);
4483 
4484 		if (eaten > 0)
4485 			kfree_skb_partial(skb, fragstolen);
4486 		if (!sock_flag(sk, SOCK_DEAD))
4487 			sk->sk_data_ready(sk);
4488 		return;
4489 	}
4490 
4491 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4492 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4493 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4494 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4495 
4496 out_of_window:
4497 		tcp_enter_quickack_mode(sk);
4498 		inet_csk_schedule_ack(sk);
4499 drop:
4500 		__kfree_skb(skb);
4501 		return;
4502 	}
4503 
4504 	/* Out of window. F.e. zero window probe. */
4505 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4506 		goto out_of_window;
4507 
4508 	tcp_enter_quickack_mode(sk);
4509 
4510 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4511 		/* Partial packet, seq < rcv_next < end_seq */
4512 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4513 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4514 			   TCP_SKB_CB(skb)->end_seq);
4515 
4516 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4517 
4518 		/* If window is closed, drop tail of packet. But after
4519 		 * remembering D-SACK for its head made in previous line.
4520 		 */
4521 		if (!tcp_receive_window(tp))
4522 			goto out_of_window;
4523 		goto queue_and_out;
4524 	}
4525 
4526 	tcp_data_queue_ofo(sk, skb);
4527 }
4528 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list)4529 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4530 					struct sk_buff_head *list)
4531 {
4532 	struct sk_buff *next = NULL;
4533 
4534 	if (!skb_queue_is_last(list, skb))
4535 		next = skb_queue_next(list, skb);
4536 
4537 	__skb_unlink(skb, list);
4538 	__kfree_skb(skb);
4539 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4540 
4541 	return next;
4542 }
4543 
4544 /* Collapse contiguous sequence of skbs head..tail with
4545  * sequence numbers start..end.
4546  *
4547  * If tail is NULL, this means until the end of the list.
4548  *
4549  * Segments with FIN/SYN are not collapsed (only because this
4550  * simplifies code)
4551  */
4552 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)4553 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4554 	     struct sk_buff *head, struct sk_buff *tail,
4555 	     u32 start, u32 end)
4556 {
4557 	struct sk_buff *skb, *n;
4558 	bool end_of_skbs;
4559 
4560 	/* First, check that queue is collapsible and find
4561 	 * the point where collapsing can be useful. */
4562 	skb = head;
4563 restart:
4564 	end_of_skbs = true;
4565 	skb_queue_walk_from_safe(list, skb, n) {
4566 		if (skb == tail)
4567 			break;
4568 		/* No new bits? It is possible on ofo queue. */
4569 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4570 			skb = tcp_collapse_one(sk, skb, list);
4571 			if (!skb)
4572 				break;
4573 			goto restart;
4574 		}
4575 
4576 		/* The first skb to collapse is:
4577 		 * - not SYN/FIN and
4578 		 * - bloated or contains data before "start" or
4579 		 *   overlaps to the next one.
4580 		 */
4581 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4582 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4583 		     before(TCP_SKB_CB(skb)->seq, start))) {
4584 			end_of_skbs = false;
4585 			break;
4586 		}
4587 
4588 		if (!skb_queue_is_last(list, skb)) {
4589 			struct sk_buff *next = skb_queue_next(list, skb);
4590 			if (next != tail &&
4591 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4592 				end_of_skbs = false;
4593 				break;
4594 			}
4595 		}
4596 
4597 		/* Decided to skip this, advance start seq. */
4598 		start = TCP_SKB_CB(skb)->end_seq;
4599 	}
4600 	if (end_of_skbs ||
4601 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4602 		return;
4603 
4604 	while (before(start, end)) {
4605 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4606 		struct sk_buff *nskb;
4607 
4608 		nskb = alloc_skb(copy, GFP_ATOMIC);
4609 		if (!nskb)
4610 			return;
4611 
4612 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4613 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4614 		__skb_queue_before(list, skb, nskb);
4615 		skb_set_owner_r(nskb, sk);
4616 
4617 		/* Copy data, releasing collapsed skbs. */
4618 		while (copy > 0) {
4619 			int offset = start - TCP_SKB_CB(skb)->seq;
4620 			int size = TCP_SKB_CB(skb)->end_seq - start;
4621 
4622 			BUG_ON(offset < 0);
4623 			if (size > 0) {
4624 				size = min(copy, size);
4625 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4626 					BUG();
4627 				TCP_SKB_CB(nskb)->end_seq += size;
4628 				copy -= size;
4629 				start += size;
4630 			}
4631 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4632 				skb = tcp_collapse_one(sk, skb, list);
4633 				if (!skb ||
4634 				    skb == tail ||
4635 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4636 					return;
4637 			}
4638 		}
4639 	}
4640 }
4641 
4642 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4643  * and tcp_collapse() them until all the queue is collapsed.
4644  */
tcp_collapse_ofo_queue(struct sock * sk)4645 static void tcp_collapse_ofo_queue(struct sock *sk)
4646 {
4647 	struct tcp_sock *tp = tcp_sk(sk);
4648 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4649 	struct sk_buff *head;
4650 	u32 start, end;
4651 
4652 	if (skb == NULL)
4653 		return;
4654 
4655 	start = TCP_SKB_CB(skb)->seq;
4656 	end = TCP_SKB_CB(skb)->end_seq;
4657 	head = skb;
4658 
4659 	for (;;) {
4660 		struct sk_buff *next = NULL;
4661 
4662 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4663 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4664 		skb = next;
4665 
4666 		/* Segment is terminated when we see gap or when
4667 		 * we are at the end of all the queue. */
4668 		if (!skb ||
4669 		    after(TCP_SKB_CB(skb)->seq, end) ||
4670 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4671 			tcp_collapse(sk, &tp->out_of_order_queue,
4672 				     head, skb, start, end);
4673 			head = skb;
4674 			if (!skb)
4675 				break;
4676 			/* Start new segment */
4677 			start = TCP_SKB_CB(skb)->seq;
4678 			end = TCP_SKB_CB(skb)->end_seq;
4679 		} else {
4680 			if (before(TCP_SKB_CB(skb)->seq, start))
4681 				start = TCP_SKB_CB(skb)->seq;
4682 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4683 				end = TCP_SKB_CB(skb)->end_seq;
4684 		}
4685 	}
4686 }
4687 
4688 /*
4689  * Purge the out-of-order queue.
4690  * Return true if queue was pruned.
4691  */
tcp_prune_ofo_queue(struct sock * sk)4692 static bool tcp_prune_ofo_queue(struct sock *sk)
4693 {
4694 	struct tcp_sock *tp = tcp_sk(sk);
4695 	bool res = false;
4696 
4697 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4698 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4699 		__skb_queue_purge(&tp->out_of_order_queue);
4700 
4701 		/* Reset SACK state.  A conforming SACK implementation will
4702 		 * do the same at a timeout based retransmit.  When a connection
4703 		 * is in a sad state like this, we care only about integrity
4704 		 * of the connection not performance.
4705 		 */
4706 		if (tp->rx_opt.sack_ok)
4707 			tcp_sack_reset(&tp->rx_opt);
4708 		sk_mem_reclaim(sk);
4709 		res = true;
4710 	}
4711 	return res;
4712 }
4713 
4714 /* Reduce allocated memory if we can, trying to get
4715  * the socket within its memory limits again.
4716  *
4717  * Return less than zero if we should start dropping frames
4718  * until the socket owning process reads some of the data
4719  * to stabilize the situation.
4720  */
tcp_prune_queue(struct sock * sk)4721 static int tcp_prune_queue(struct sock *sk)
4722 {
4723 	struct tcp_sock *tp = tcp_sk(sk);
4724 
4725 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4726 
4727 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4728 
4729 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4730 		tcp_clamp_window(sk);
4731 	else if (sk_under_memory_pressure(sk))
4732 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4733 
4734 	tcp_collapse_ofo_queue(sk);
4735 	if (!skb_queue_empty(&sk->sk_receive_queue))
4736 		tcp_collapse(sk, &sk->sk_receive_queue,
4737 			     skb_peek(&sk->sk_receive_queue),
4738 			     NULL,
4739 			     tp->copied_seq, tp->rcv_nxt);
4740 	sk_mem_reclaim(sk);
4741 
4742 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4743 		return 0;
4744 
4745 	/* Collapsing did not help, destructive actions follow.
4746 	 * This must not ever occur. */
4747 
4748 	tcp_prune_ofo_queue(sk);
4749 
4750 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4751 		return 0;
4752 
4753 	/* If we are really being abused, tell the caller to silently
4754 	 * drop receive data on the floor.  It will get retransmitted
4755 	 * and hopefully then we'll have sufficient space.
4756 	 */
4757 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4758 
4759 	/* Massive buffer overcommit. */
4760 	tp->pred_flags = 0;
4761 	return -1;
4762 }
4763 
tcp_should_expand_sndbuf(const struct sock * sk)4764 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4765 {
4766 	const struct tcp_sock *tp = tcp_sk(sk);
4767 
4768 	/* If the user specified a specific send buffer setting, do
4769 	 * not modify it.
4770 	 */
4771 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4772 		return false;
4773 
4774 	/* If we are under global TCP memory pressure, do not expand.  */
4775 	if (sk_under_memory_pressure(sk))
4776 		return false;
4777 
4778 	/* If we are under soft global TCP memory pressure, do not expand.  */
4779 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4780 		return false;
4781 
4782 	/* If we filled the congestion window, do not expand.  */
4783 	if (tp->packets_out >= tp->snd_cwnd)
4784 		return false;
4785 
4786 	return true;
4787 }
4788 
4789 /* When incoming ACK allowed to free some skb from write_queue,
4790  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4791  * on the exit from tcp input handler.
4792  *
4793  * PROBLEM: sndbuf expansion does not work well with largesend.
4794  */
tcp_new_space(struct sock * sk)4795 static void tcp_new_space(struct sock *sk)
4796 {
4797 	struct tcp_sock *tp = tcp_sk(sk);
4798 
4799 	if (tcp_should_expand_sndbuf(sk)) {
4800 		tcp_sndbuf_expand(sk);
4801 		tp->snd_cwnd_stamp = tcp_time_stamp;
4802 	}
4803 
4804 	sk->sk_write_space(sk);
4805 }
4806 
tcp_check_space(struct sock * sk)4807 static void tcp_check_space(struct sock *sk)
4808 {
4809 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4810 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4811 		if (sk->sk_socket &&
4812 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4813 			tcp_new_space(sk);
4814 	}
4815 }
4816 
tcp_data_snd_check(struct sock * sk)4817 static inline void tcp_data_snd_check(struct sock *sk)
4818 {
4819 	tcp_push_pending_frames(sk);
4820 	tcp_check_space(sk);
4821 }
4822 
4823 /*
4824  * Check if sending an ack is needed.
4825  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)4826 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4827 {
4828 	struct tcp_sock *tp = tcp_sk(sk);
4829 
4830 	    /* More than one full frame received... */
4831 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4832 	     /* ... and right edge of window advances far enough.
4833 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4834 	      */
4835 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4836 	    /* We ACK each frame or... */
4837 	    tcp_in_quickack_mode(sk) ||
4838 	    /* We have out of order data. */
4839 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4840 		/* Then ack it now */
4841 		tcp_send_ack(sk);
4842 	} else {
4843 		/* Else, send delayed ack. */
4844 		tcp_send_delayed_ack(sk);
4845 	}
4846 }
4847 
tcp_ack_snd_check(struct sock * sk)4848 static inline void tcp_ack_snd_check(struct sock *sk)
4849 {
4850 	if (!inet_csk_ack_scheduled(sk)) {
4851 		/* We sent a data segment already. */
4852 		return;
4853 	}
4854 	__tcp_ack_snd_check(sk, 1);
4855 }
4856 
4857 /*
4858  *	This routine is only called when we have urgent data
4859  *	signaled. Its the 'slow' part of tcp_urg. It could be
4860  *	moved inline now as tcp_urg is only called from one
4861  *	place. We handle URGent data wrong. We have to - as
4862  *	BSD still doesn't use the correction from RFC961.
4863  *	For 1003.1g we should support a new option TCP_STDURG to permit
4864  *	either form (or just set the sysctl tcp_stdurg).
4865  */
4866 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)4867 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4868 {
4869 	struct tcp_sock *tp = tcp_sk(sk);
4870 	u32 ptr = ntohs(th->urg_ptr);
4871 
4872 	if (ptr && !sysctl_tcp_stdurg)
4873 		ptr--;
4874 	ptr += ntohl(th->seq);
4875 
4876 	/* Ignore urgent data that we've already seen and read. */
4877 	if (after(tp->copied_seq, ptr))
4878 		return;
4879 
4880 	/* Do not replay urg ptr.
4881 	 *
4882 	 * NOTE: interesting situation not covered by specs.
4883 	 * Misbehaving sender may send urg ptr, pointing to segment,
4884 	 * which we already have in ofo queue. We are not able to fetch
4885 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4886 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4887 	 * situations. But it is worth to think about possibility of some
4888 	 * DoSes using some hypothetical application level deadlock.
4889 	 */
4890 	if (before(ptr, tp->rcv_nxt))
4891 		return;
4892 
4893 	/* Do we already have a newer (or duplicate) urgent pointer? */
4894 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4895 		return;
4896 
4897 	/* Tell the world about our new urgent pointer. */
4898 	sk_send_sigurg(sk);
4899 
4900 	/* We may be adding urgent data when the last byte read was
4901 	 * urgent. To do this requires some care. We cannot just ignore
4902 	 * tp->copied_seq since we would read the last urgent byte again
4903 	 * as data, nor can we alter copied_seq until this data arrives
4904 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4905 	 *
4906 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4907 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4908 	 * and expect that both A and B disappear from stream. This is _wrong_.
4909 	 * Though this happens in BSD with high probability, this is occasional.
4910 	 * Any application relying on this is buggy. Note also, that fix "works"
4911 	 * only in this artificial test. Insert some normal data between A and B and we will
4912 	 * decline of BSD again. Verdict: it is better to remove to trap
4913 	 * buggy users.
4914 	 */
4915 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4916 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4917 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4918 		tp->copied_seq++;
4919 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4920 			__skb_unlink(skb, &sk->sk_receive_queue);
4921 			__kfree_skb(skb);
4922 		}
4923 	}
4924 
4925 	tp->urg_data = TCP_URG_NOTYET;
4926 	tp->urg_seq = ptr;
4927 
4928 	/* Disable header prediction. */
4929 	tp->pred_flags = 0;
4930 }
4931 
4932 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)4933 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4934 {
4935 	struct tcp_sock *tp = tcp_sk(sk);
4936 
4937 	/* Check if we get a new urgent pointer - normally not. */
4938 	if (th->urg)
4939 		tcp_check_urg(sk, th);
4940 
4941 	/* Do we wait for any urgent data? - normally not... */
4942 	if (tp->urg_data == TCP_URG_NOTYET) {
4943 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4944 			  th->syn;
4945 
4946 		/* Is the urgent pointer pointing into this packet? */
4947 		if (ptr < skb->len) {
4948 			u8 tmp;
4949 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4950 				BUG();
4951 			tp->urg_data = TCP_URG_VALID | tmp;
4952 			if (!sock_flag(sk, SOCK_DEAD))
4953 				sk->sk_data_ready(sk);
4954 		}
4955 	}
4956 }
4957 
tcp_copy_to_iovec(struct sock * sk,struct sk_buff * skb,int hlen)4958 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4959 {
4960 	struct tcp_sock *tp = tcp_sk(sk);
4961 	int chunk = skb->len - hlen;
4962 	int err;
4963 
4964 	local_bh_enable();
4965 	if (skb_csum_unnecessary(skb))
4966 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4967 	else
4968 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4969 						       tp->ucopy.iov);
4970 
4971 	if (!err) {
4972 		tp->ucopy.len -= chunk;
4973 		tp->copied_seq += chunk;
4974 		tcp_rcv_space_adjust(sk);
4975 	}
4976 
4977 	local_bh_disable();
4978 	return err;
4979 }
4980 
__tcp_checksum_complete_user(struct sock * sk,struct sk_buff * skb)4981 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4982 					    struct sk_buff *skb)
4983 {
4984 	__sum16 result;
4985 
4986 	if (sock_owned_by_user(sk)) {
4987 		local_bh_enable();
4988 		result = __tcp_checksum_complete(skb);
4989 		local_bh_disable();
4990 	} else {
4991 		result = __tcp_checksum_complete(skb);
4992 	}
4993 	return result;
4994 }
4995 
tcp_checksum_complete_user(struct sock * sk,struct sk_buff * skb)4996 static inline bool tcp_checksum_complete_user(struct sock *sk,
4997 					     struct sk_buff *skb)
4998 {
4999 	return !skb_csum_unnecessary(skb) &&
5000 	       __tcp_checksum_complete_user(sk, skb);
5001 }
5002 
5003 /* Does PAWS and seqno based validation of an incoming segment, flags will
5004  * play significant role here.
5005  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5006 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5007 				  const struct tcphdr *th, int syn_inerr)
5008 {
5009 	struct tcp_sock *tp = tcp_sk(sk);
5010 
5011 	/* RFC1323: H1. Apply PAWS check first. */
5012 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5013 	    tcp_paws_discard(sk, skb)) {
5014 		if (!th->rst) {
5015 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5016 			tcp_send_dupack(sk, skb);
5017 			goto discard;
5018 		}
5019 		/* Reset is accepted even if it did not pass PAWS. */
5020 	}
5021 
5022 	/* Step 1: check sequence number */
5023 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5024 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5025 		 * (RST) segments are validated by checking their SEQ-fields."
5026 		 * And page 69: "If an incoming segment is not acceptable,
5027 		 * an acknowledgment should be sent in reply (unless the RST
5028 		 * bit is set, if so drop the segment and return)".
5029 		 */
5030 		if (!th->rst) {
5031 			if (th->syn)
5032 				goto syn_challenge;
5033 			tcp_send_dupack(sk, skb);
5034 		}
5035 		goto discard;
5036 	}
5037 
5038 	/* Step 2: check RST bit */
5039 	if (th->rst) {
5040 		/* RFC 5961 3.2 :
5041 		 * If sequence number exactly matches RCV.NXT, then
5042 		 *     RESET the connection
5043 		 * else
5044 		 *     Send a challenge ACK
5045 		 */
5046 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5047 			tcp_reset(sk);
5048 		else
5049 			tcp_send_challenge_ack(sk);
5050 		goto discard;
5051 	}
5052 
5053 	/* step 3: check security and precedence [ignored] */
5054 
5055 	/* step 4: Check for a SYN
5056 	 * RFC 5691 4.2 : Send a challenge ack
5057 	 */
5058 	if (th->syn) {
5059 syn_challenge:
5060 		if (syn_inerr)
5061 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5062 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5063 		tcp_send_challenge_ack(sk);
5064 		goto discard;
5065 	}
5066 
5067 	return true;
5068 
5069 discard:
5070 	__kfree_skb(skb);
5071 	return false;
5072 }
5073 
5074 /*
5075  *	TCP receive function for the ESTABLISHED state.
5076  *
5077  *	It is split into a fast path and a slow path. The fast path is
5078  * 	disabled when:
5079  *	- A zero window was announced from us - zero window probing
5080  *        is only handled properly in the slow path.
5081  *	- Out of order segments arrived.
5082  *	- Urgent data is expected.
5083  *	- There is no buffer space left
5084  *	- Unexpected TCP flags/window values/header lengths are received
5085  *	  (detected by checking the TCP header against pred_flags)
5086  *	- Data is sent in both directions. Fast path only supports pure senders
5087  *	  or pure receivers (this means either the sequence number or the ack
5088  *	  value must stay constant)
5089  *	- Unexpected TCP option.
5090  *
5091  *	When these conditions are not satisfied it drops into a standard
5092  *	receive procedure patterned after RFC793 to handle all cases.
5093  *	The first three cases are guaranteed by proper pred_flags setting,
5094  *	the rest is checked inline. Fast processing is turned on in
5095  *	tcp_data_queue when everything is OK.
5096  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5097 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5098 			 const struct tcphdr *th, unsigned int len)
5099 {
5100 	struct tcp_sock *tp = tcp_sk(sk);
5101 
5102 	if (unlikely(sk->sk_rx_dst == NULL))
5103 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5104 	/*
5105 	 *	Header prediction.
5106 	 *	The code loosely follows the one in the famous
5107 	 *	"30 instruction TCP receive" Van Jacobson mail.
5108 	 *
5109 	 *	Van's trick is to deposit buffers into socket queue
5110 	 *	on a device interrupt, to call tcp_recv function
5111 	 *	on the receive process context and checksum and copy
5112 	 *	the buffer to user space. smart...
5113 	 *
5114 	 *	Our current scheme is not silly either but we take the
5115 	 *	extra cost of the net_bh soft interrupt processing...
5116 	 *	We do checksum and copy also but from device to kernel.
5117 	 */
5118 
5119 	tp->rx_opt.saw_tstamp = 0;
5120 
5121 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5122 	 *	if header_prediction is to be made
5123 	 *	'S' will always be tp->tcp_header_len >> 2
5124 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5125 	 *  turn it off	(when there are holes in the receive
5126 	 *	 space for instance)
5127 	 *	PSH flag is ignored.
5128 	 */
5129 
5130 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5131 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5132 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5133 		int tcp_header_len = tp->tcp_header_len;
5134 
5135 		/* Timestamp header prediction: tcp_header_len
5136 		 * is automatically equal to th->doff*4 due to pred_flags
5137 		 * match.
5138 		 */
5139 
5140 		/* Check timestamp */
5141 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5142 			/* No? Slow path! */
5143 			if (!tcp_parse_aligned_timestamp(tp, th))
5144 				goto slow_path;
5145 
5146 			/* If PAWS failed, check it more carefully in slow path */
5147 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5148 				goto slow_path;
5149 
5150 			/* DO NOT update ts_recent here, if checksum fails
5151 			 * and timestamp was corrupted part, it will result
5152 			 * in a hung connection since we will drop all
5153 			 * future packets due to the PAWS test.
5154 			 */
5155 		}
5156 
5157 		if (len <= tcp_header_len) {
5158 			/* Bulk data transfer: sender */
5159 			if (len == tcp_header_len) {
5160 				/* Predicted packet is in window by definition.
5161 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5162 				 * Hence, check seq<=rcv_wup reduces to:
5163 				 */
5164 				if (tcp_header_len ==
5165 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5166 				    tp->rcv_nxt == tp->rcv_wup)
5167 					tcp_store_ts_recent(tp);
5168 
5169 				/* We know that such packets are checksummed
5170 				 * on entry.
5171 				 */
5172 				tcp_ack(sk, skb, 0);
5173 				__kfree_skb(skb);
5174 				tcp_data_snd_check(sk);
5175 				return;
5176 			} else { /* Header too small */
5177 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5178 				goto discard;
5179 			}
5180 		} else {
5181 			int eaten = 0;
5182 			bool fragstolen = false;
5183 
5184 			if (tp->ucopy.task == current &&
5185 			    tp->copied_seq == tp->rcv_nxt &&
5186 			    len - tcp_header_len <= tp->ucopy.len &&
5187 			    sock_owned_by_user(sk)) {
5188 				__set_current_state(TASK_RUNNING);
5189 
5190 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5191 					/* Predicted packet is in window by definition.
5192 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5193 					 * Hence, check seq<=rcv_wup reduces to:
5194 					 */
5195 					if (tcp_header_len ==
5196 					    (sizeof(struct tcphdr) +
5197 					     TCPOLEN_TSTAMP_ALIGNED) &&
5198 					    tp->rcv_nxt == tp->rcv_wup)
5199 						tcp_store_ts_recent(tp);
5200 
5201 					tcp_rcv_rtt_measure_ts(sk, skb);
5202 
5203 					__skb_pull(skb, tcp_header_len);
5204 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5205 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5206 					eaten = 1;
5207 				}
5208 			}
5209 			if (!eaten) {
5210 				if (tcp_checksum_complete_user(sk, skb))
5211 					goto csum_error;
5212 
5213 				if ((int)skb->truesize > sk->sk_forward_alloc)
5214 					goto step5;
5215 
5216 				/* Predicted packet is in window by definition.
5217 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5218 				 * Hence, check seq<=rcv_wup reduces to:
5219 				 */
5220 				if (tcp_header_len ==
5221 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5222 				    tp->rcv_nxt == tp->rcv_wup)
5223 					tcp_store_ts_recent(tp);
5224 
5225 				tcp_rcv_rtt_measure_ts(sk, skb);
5226 
5227 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5228 
5229 				/* Bulk data transfer: receiver */
5230 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5231 						      &fragstolen);
5232 			}
5233 
5234 			tcp_event_data_recv(sk, skb);
5235 
5236 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5237 				/* Well, only one small jumplet in fast path... */
5238 				tcp_ack(sk, skb, FLAG_DATA);
5239 				tcp_data_snd_check(sk);
5240 				if (!inet_csk_ack_scheduled(sk))
5241 					goto no_ack;
5242 			}
5243 
5244 			__tcp_ack_snd_check(sk, 0);
5245 no_ack:
5246 			if (eaten)
5247 				kfree_skb_partial(skb, fragstolen);
5248 			sk->sk_data_ready(sk);
5249 			return;
5250 		}
5251 	}
5252 
5253 slow_path:
5254 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5255 		goto csum_error;
5256 
5257 	if (!th->ack && !th->rst && !th->syn)
5258 		goto discard;
5259 
5260 	/*
5261 	 *	Standard slow path.
5262 	 */
5263 
5264 	if (!tcp_validate_incoming(sk, skb, th, 1))
5265 		return;
5266 
5267 step5:
5268 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5269 		goto discard;
5270 
5271 	tcp_rcv_rtt_measure_ts(sk, skb);
5272 
5273 	/* Process urgent data. */
5274 	tcp_urg(sk, skb, th);
5275 
5276 	/* step 7: process the segment text */
5277 	tcp_data_queue(sk, skb);
5278 
5279 	tcp_data_snd_check(sk);
5280 	tcp_ack_snd_check(sk);
5281 	return;
5282 
5283 csum_error:
5284 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5285 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5286 
5287 discard:
5288 	__kfree_skb(skb);
5289 }
5290 EXPORT_SYMBOL(tcp_rcv_established);
5291 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5292 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5293 {
5294 	struct tcp_sock *tp = tcp_sk(sk);
5295 	struct inet_connection_sock *icsk = inet_csk(sk);
5296 
5297 	tcp_set_state(sk, TCP_ESTABLISHED);
5298 	icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5299 
5300 	if (skb != NULL) {
5301 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5302 		security_inet_conn_established(sk, skb);
5303 	}
5304 
5305 	/* Make sure socket is routed, for correct metrics.  */
5306 	icsk->icsk_af_ops->rebuild_header(sk);
5307 
5308 	tcp_init_metrics(sk);
5309 
5310 	tcp_init_congestion_control(sk);
5311 
5312 	/* Prevent spurious tcp_cwnd_restart() on first data
5313 	 * packet.
5314 	 */
5315 	tp->lsndtime = tcp_time_stamp;
5316 
5317 	tcp_init_buffer_space(sk);
5318 
5319 	if (sock_flag(sk, SOCK_KEEPOPEN))
5320 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5321 
5322 	if (!tp->rx_opt.snd_wscale)
5323 		__tcp_fast_path_on(tp, tp->snd_wnd);
5324 	else
5325 		tp->pred_flags = 0;
5326 
5327 	if (!sock_flag(sk, SOCK_DEAD)) {
5328 		sk->sk_state_change(sk);
5329 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5330 	}
5331 }
5332 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)5333 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5334 				    struct tcp_fastopen_cookie *cookie)
5335 {
5336 	struct tcp_sock *tp = tcp_sk(sk);
5337 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5338 	u16 mss = tp->rx_opt.mss_clamp;
5339 	bool syn_drop;
5340 
5341 	if (mss == tp->rx_opt.user_mss) {
5342 		struct tcp_options_received opt;
5343 
5344 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5345 		tcp_clear_options(&opt);
5346 		opt.user_mss = opt.mss_clamp = 0;
5347 		tcp_parse_options(synack, &opt, 0, NULL);
5348 		mss = opt.mss_clamp;
5349 	}
5350 
5351 	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5352 		cookie->len = -1;
5353 
5354 	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5355 	 * the remote receives only the retransmitted (regular) SYNs: either
5356 	 * the original SYN-data or the corresponding SYN-ACK is lost.
5357 	 */
5358 	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5359 
5360 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5361 
5362 	if (data) { /* Retransmit unacked data in SYN */
5363 		tcp_for_write_queue_from(data, sk) {
5364 			if (data == tcp_send_head(sk) ||
5365 			    __tcp_retransmit_skb(sk, data))
5366 				break;
5367 		}
5368 		tcp_rearm_rto(sk);
5369 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5370 		return true;
5371 	}
5372 	tp->syn_data_acked = tp->syn_data;
5373 	if (tp->syn_data_acked)
5374 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5375 	return false;
5376 }
5377 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5378 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5379 					 const struct tcphdr *th, unsigned int len)
5380 {
5381 	struct inet_connection_sock *icsk = inet_csk(sk);
5382 	struct tcp_sock *tp = tcp_sk(sk);
5383 	struct tcp_fastopen_cookie foc = { .len = -1 };
5384 	int saved_clamp = tp->rx_opt.mss_clamp;
5385 
5386 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5387 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5388 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5389 
5390 	if (th->ack) {
5391 		/* rfc793:
5392 		 * "If the state is SYN-SENT then
5393 		 *    first check the ACK bit
5394 		 *      If the ACK bit is set
5395 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5396 		 *        a reset (unless the RST bit is set, if so drop
5397 		 *        the segment and return)"
5398 		 */
5399 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5400 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5401 			goto reset_and_undo;
5402 
5403 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5404 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5405 			     tcp_time_stamp)) {
5406 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5407 			goto reset_and_undo;
5408 		}
5409 
5410 		/* Now ACK is acceptable.
5411 		 *
5412 		 * "If the RST bit is set
5413 		 *    If the ACK was acceptable then signal the user "error:
5414 		 *    connection reset", drop the segment, enter CLOSED state,
5415 		 *    delete TCB, and return."
5416 		 */
5417 
5418 		if (th->rst) {
5419 			tcp_reset(sk);
5420 			goto discard;
5421 		}
5422 
5423 		/* rfc793:
5424 		 *   "fifth, if neither of the SYN or RST bits is set then
5425 		 *    drop the segment and return."
5426 		 *
5427 		 *    See note below!
5428 		 *                                        --ANK(990513)
5429 		 */
5430 		if (!th->syn)
5431 			goto discard_and_undo;
5432 
5433 		/* rfc793:
5434 		 *   "If the SYN bit is on ...
5435 		 *    are acceptable then ...
5436 		 *    (our SYN has been ACKed), change the connection
5437 		 *    state to ESTABLISHED..."
5438 		 */
5439 
5440 		tcp_ecn_rcv_synack(tp, th);
5441 
5442 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5443 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5444 
5445 		/* Ok.. it's good. Set up sequence numbers and
5446 		 * move to established.
5447 		 */
5448 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5449 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5450 
5451 		/* RFC1323: The window in SYN & SYN/ACK segments is
5452 		 * never scaled.
5453 		 */
5454 		tp->snd_wnd = ntohs(th->window);
5455 
5456 		if (!tp->rx_opt.wscale_ok) {
5457 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5458 			tp->window_clamp = min(tp->window_clamp, 65535U);
5459 		}
5460 
5461 		if (tp->rx_opt.saw_tstamp) {
5462 			tp->rx_opt.tstamp_ok	   = 1;
5463 			tp->tcp_header_len =
5464 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5465 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5466 			tcp_store_ts_recent(tp);
5467 		} else {
5468 			tp->tcp_header_len = sizeof(struct tcphdr);
5469 		}
5470 
5471 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5472 			tcp_enable_fack(tp);
5473 
5474 		tcp_mtup_init(sk);
5475 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5476 		tcp_initialize_rcv_mss(sk);
5477 
5478 		/* Remember, tcp_poll() does not lock socket!
5479 		 * Change state from SYN-SENT only after copied_seq
5480 		 * is initialized. */
5481 		tp->copied_seq = tp->rcv_nxt;
5482 
5483 		smp_mb();
5484 
5485 		tcp_finish_connect(sk, skb);
5486 
5487 		if ((tp->syn_fastopen || tp->syn_data) &&
5488 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5489 			return -1;
5490 
5491 		if (sk->sk_write_pending ||
5492 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5493 		    icsk->icsk_ack.pingpong) {
5494 			/* Save one ACK. Data will be ready after
5495 			 * several ticks, if write_pending is set.
5496 			 *
5497 			 * It may be deleted, but with this feature tcpdumps
5498 			 * look so _wonderfully_ clever, that I was not able
5499 			 * to stand against the temptation 8)     --ANK
5500 			 */
5501 			inet_csk_schedule_ack(sk);
5502 			tcp_enter_quickack_mode(sk);
5503 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5504 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5505 
5506 discard:
5507 			__kfree_skb(skb);
5508 			return 0;
5509 		} else {
5510 			tcp_send_ack(sk);
5511 		}
5512 		return -1;
5513 	}
5514 
5515 	/* No ACK in the segment */
5516 
5517 	if (th->rst) {
5518 		/* rfc793:
5519 		 * "If the RST bit is set
5520 		 *
5521 		 *      Otherwise (no ACK) drop the segment and return."
5522 		 */
5523 
5524 		goto discard_and_undo;
5525 	}
5526 
5527 	/* PAWS check. */
5528 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5529 	    tcp_paws_reject(&tp->rx_opt, 0))
5530 		goto discard_and_undo;
5531 
5532 	if (th->syn) {
5533 		/* We see SYN without ACK. It is attempt of
5534 		 * simultaneous connect with crossed SYNs.
5535 		 * Particularly, it can be connect to self.
5536 		 */
5537 		tcp_set_state(sk, TCP_SYN_RECV);
5538 
5539 		if (tp->rx_opt.saw_tstamp) {
5540 			tp->rx_opt.tstamp_ok = 1;
5541 			tcp_store_ts_recent(tp);
5542 			tp->tcp_header_len =
5543 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5544 		} else {
5545 			tp->tcp_header_len = sizeof(struct tcphdr);
5546 		}
5547 
5548 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5549 		tp->copied_seq = tp->rcv_nxt;
5550 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5551 
5552 		/* RFC1323: The window in SYN & SYN/ACK segments is
5553 		 * never scaled.
5554 		 */
5555 		tp->snd_wnd    = ntohs(th->window);
5556 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5557 		tp->max_window = tp->snd_wnd;
5558 
5559 		tcp_ecn_rcv_syn(tp, th);
5560 
5561 		tcp_mtup_init(sk);
5562 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5563 		tcp_initialize_rcv_mss(sk);
5564 
5565 		tcp_send_synack(sk);
5566 #if 0
5567 		/* Note, we could accept data and URG from this segment.
5568 		 * There are no obstacles to make this (except that we must
5569 		 * either change tcp_recvmsg() to prevent it from returning data
5570 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5571 		 *
5572 		 * However, if we ignore data in ACKless segments sometimes,
5573 		 * we have no reasons to accept it sometimes.
5574 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5575 		 * is not flawless. So, discard packet for sanity.
5576 		 * Uncomment this return to process the data.
5577 		 */
5578 		return -1;
5579 #else
5580 		goto discard;
5581 #endif
5582 	}
5583 	/* "fifth, if neither of the SYN or RST bits is set then
5584 	 * drop the segment and return."
5585 	 */
5586 
5587 discard_and_undo:
5588 	tcp_clear_options(&tp->rx_opt);
5589 	tp->rx_opt.mss_clamp = saved_clamp;
5590 	goto discard;
5591 
5592 reset_and_undo:
5593 	tcp_clear_options(&tp->rx_opt);
5594 	tp->rx_opt.mss_clamp = saved_clamp;
5595 	return 1;
5596 }
5597 
5598 /*
5599  *	This function implements the receiving procedure of RFC 793 for
5600  *	all states except ESTABLISHED and TIME_WAIT.
5601  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5602  *	address independent.
5603  */
5604 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5605 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5606 			  const struct tcphdr *th, unsigned int len)
5607 {
5608 	struct tcp_sock *tp = tcp_sk(sk);
5609 	struct inet_connection_sock *icsk = inet_csk(sk);
5610 	struct request_sock *req;
5611 	int queued = 0;
5612 	bool acceptable;
5613 	u32 synack_stamp;
5614 
5615 	tp->rx_opt.saw_tstamp = 0;
5616 
5617 	switch (sk->sk_state) {
5618 	case TCP_CLOSE:
5619 		goto discard;
5620 
5621 	case TCP_LISTEN:
5622 		if (th->ack)
5623 			return 1;
5624 
5625 		if (th->rst)
5626 			goto discard;
5627 
5628 		if (th->syn) {
5629 			if (th->fin)
5630 				goto discard;
5631 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5632 				return 1;
5633 
5634 			/* Now we have several options: In theory there is
5635 			 * nothing else in the frame. KA9Q has an option to
5636 			 * send data with the syn, BSD accepts data with the
5637 			 * syn up to the [to be] advertised window and
5638 			 * Solaris 2.1 gives you a protocol error. For now
5639 			 * we just ignore it, that fits the spec precisely
5640 			 * and avoids incompatibilities. It would be nice in
5641 			 * future to drop through and process the data.
5642 			 *
5643 			 * Now that TTCP is starting to be used we ought to
5644 			 * queue this data.
5645 			 * But, this leaves one open to an easy denial of
5646 			 * service attack, and SYN cookies can't defend
5647 			 * against this problem. So, we drop the data
5648 			 * in the interest of security over speed unless
5649 			 * it's still in use.
5650 			 */
5651 			kfree_skb(skb);
5652 			return 0;
5653 		}
5654 		goto discard;
5655 
5656 	case TCP_SYN_SENT:
5657 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5658 		if (queued >= 0)
5659 			return queued;
5660 
5661 		/* Do step6 onward by hand. */
5662 		tcp_urg(sk, skb, th);
5663 		__kfree_skb(skb);
5664 		tcp_data_snd_check(sk);
5665 		return 0;
5666 	}
5667 
5668 	req = tp->fastopen_rsk;
5669 	if (req != NULL) {
5670 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5671 		    sk->sk_state != TCP_FIN_WAIT1);
5672 
5673 		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5674 			goto discard;
5675 	}
5676 
5677 	if (!th->ack && !th->rst && !th->syn)
5678 		goto discard;
5679 
5680 	if (!tcp_validate_incoming(sk, skb, th, 0))
5681 		return 0;
5682 
5683 	/* step 5: check the ACK field */
5684 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5685 				      FLAG_UPDATE_TS_RECENT) > 0;
5686 
5687 	switch (sk->sk_state) {
5688 	case TCP_SYN_RECV:
5689 		if (!acceptable)
5690 			return 1;
5691 
5692 		/* Once we leave TCP_SYN_RECV, we no longer need req
5693 		 * so release it.
5694 		 */
5695 		if (req) {
5696 			synack_stamp = tcp_rsk(req)->snt_synack;
5697 			tp->total_retrans = req->num_retrans;
5698 			reqsk_fastopen_remove(sk, req, false);
5699 		} else {
5700 			synack_stamp = tp->lsndtime;
5701 			/* Make sure socket is routed, for correct metrics. */
5702 			icsk->icsk_af_ops->rebuild_header(sk);
5703 			tcp_init_congestion_control(sk);
5704 
5705 			tcp_mtup_init(sk);
5706 			tp->copied_seq = tp->rcv_nxt;
5707 			tcp_init_buffer_space(sk);
5708 		}
5709 		smp_mb();
5710 		tcp_set_state(sk, TCP_ESTABLISHED);
5711 		sk->sk_state_change(sk);
5712 
5713 		/* Note, that this wakeup is only for marginal crossed SYN case.
5714 		 * Passively open sockets are not waked up, because
5715 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5716 		 */
5717 		if (sk->sk_socket)
5718 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5719 
5720 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5721 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5722 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5723 		tcp_synack_rtt_meas(sk, synack_stamp);
5724 
5725 		if (tp->rx_opt.tstamp_ok)
5726 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5727 
5728 		if (req) {
5729 			/* Re-arm the timer because data may have been sent out.
5730 			 * This is similar to the regular data transmission case
5731 			 * when new data has just been ack'ed.
5732 			 *
5733 			 * (TFO) - we could try to be more aggressive and
5734 			 * retransmitting any data sooner based on when they
5735 			 * are sent out.
5736 			 */
5737 			tcp_rearm_rto(sk);
5738 		} else
5739 			tcp_init_metrics(sk);
5740 
5741 		tcp_update_pacing_rate(sk);
5742 
5743 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5744 		tp->lsndtime = tcp_time_stamp;
5745 
5746 		tcp_initialize_rcv_mss(sk);
5747 		tcp_fast_path_on(tp);
5748 		break;
5749 
5750 	case TCP_FIN_WAIT1: {
5751 		struct dst_entry *dst;
5752 		int tmo;
5753 
5754 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5755 		 * Fast Open socket and this is the first acceptable
5756 		 * ACK we have received, this would have acknowledged
5757 		 * our SYNACK so stop the SYNACK timer.
5758 		 */
5759 		if (req != NULL) {
5760 			/* Return RST if ack_seq is invalid.
5761 			 * Note that RFC793 only says to generate a
5762 			 * DUPACK for it but for TCP Fast Open it seems
5763 			 * better to treat this case like TCP_SYN_RECV
5764 			 * above.
5765 			 */
5766 			if (!acceptable)
5767 				return 1;
5768 			/* We no longer need the request sock. */
5769 			reqsk_fastopen_remove(sk, req, false);
5770 			tcp_rearm_rto(sk);
5771 		}
5772 		if (tp->snd_una != tp->write_seq)
5773 			break;
5774 
5775 		tcp_set_state(sk, TCP_FIN_WAIT2);
5776 		sk->sk_shutdown |= SEND_SHUTDOWN;
5777 
5778 		dst = __sk_dst_get(sk);
5779 		if (dst)
5780 			dst_confirm(dst);
5781 
5782 		if (!sock_flag(sk, SOCK_DEAD)) {
5783 			/* Wake up lingering close() */
5784 			sk->sk_state_change(sk);
5785 			break;
5786 		}
5787 
5788 		if (tp->linger2 < 0 ||
5789 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5790 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5791 			tcp_done(sk);
5792 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5793 			return 1;
5794 		}
5795 
5796 		tmo = tcp_fin_time(sk);
5797 		if (tmo > TCP_TIMEWAIT_LEN) {
5798 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5799 		} else if (th->fin || sock_owned_by_user(sk)) {
5800 			/* Bad case. We could lose such FIN otherwise.
5801 			 * It is not a big problem, but it looks confusing
5802 			 * and not so rare event. We still can lose it now,
5803 			 * if it spins in bh_lock_sock(), but it is really
5804 			 * marginal case.
5805 			 */
5806 			inet_csk_reset_keepalive_timer(sk, tmo);
5807 		} else {
5808 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5809 			goto discard;
5810 		}
5811 		break;
5812 	}
5813 
5814 	case TCP_CLOSING:
5815 		if (tp->snd_una == tp->write_seq) {
5816 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5817 			goto discard;
5818 		}
5819 		break;
5820 
5821 	case TCP_LAST_ACK:
5822 		if (tp->snd_una == tp->write_seq) {
5823 			tcp_update_metrics(sk);
5824 			tcp_done(sk);
5825 			goto discard;
5826 		}
5827 		break;
5828 	}
5829 
5830 	/* step 6: check the URG bit */
5831 	tcp_urg(sk, skb, th);
5832 
5833 	/* step 7: process the segment text */
5834 	switch (sk->sk_state) {
5835 	case TCP_CLOSE_WAIT:
5836 	case TCP_CLOSING:
5837 	case TCP_LAST_ACK:
5838 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5839 			break;
5840 	case TCP_FIN_WAIT1:
5841 	case TCP_FIN_WAIT2:
5842 		/* RFC 793 says to queue data in these states,
5843 		 * RFC 1122 says we MUST send a reset.
5844 		 * BSD 4.4 also does reset.
5845 		 */
5846 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5847 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5848 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5849 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5850 				tcp_reset(sk);
5851 				return 1;
5852 			}
5853 		}
5854 		/* Fall through */
5855 	case TCP_ESTABLISHED:
5856 		tcp_data_queue(sk, skb);
5857 		queued = 1;
5858 		break;
5859 	}
5860 
5861 	/* tcp_data could move socket to TIME-WAIT */
5862 	if (sk->sk_state != TCP_CLOSE) {
5863 		tcp_data_snd_check(sk);
5864 		tcp_ack_snd_check(sk);
5865 	}
5866 
5867 	if (!queued) {
5868 discard:
5869 		__kfree_skb(skb);
5870 	}
5871 	return 0;
5872 }
5873 EXPORT_SYMBOL(tcp_rcv_state_process);
5874 
pr_drop_req(struct request_sock * req,__u16 port,int family)5875 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5876 {
5877 	struct inet_request_sock *ireq = inet_rsk(req);
5878 
5879 	if (family == AF_INET)
5880 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
5881 			       &ireq->ir_rmt_addr, port);
5882 #if IS_ENABLED(CONFIG_IPV6)
5883 	else if (family == AF_INET6)
5884 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI6/%u\n"),
5885 			       &ireq->ir_v6_rmt_addr, port);
5886 #endif
5887 }
5888 
5889 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
5890  *
5891  * If we receive a SYN packet with these bits set, it means a
5892  * network is playing bad games with TOS bits. In order to
5893  * avoid possible false congestion notifications, we disable
5894  * TCP ECN negociation.
5895  *
5896  * Exception: tcp_ca wants ECN. This is required for DCTCP
5897  * congestion control; it requires setting ECT on all packets,
5898  * including SYN. We inverse the test in this case: If our
5899  * local socket wants ECN, but peer only set ece/cwr (but not
5900  * ECT in IP header) its probably a non-DCTCP aware sender.
5901  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk)5902 static void tcp_ecn_create_request(struct request_sock *req,
5903 				   const struct sk_buff *skb,
5904 				   const struct sock *listen_sk)
5905 {
5906 	const struct tcphdr *th = tcp_hdr(skb);
5907 	const struct net *net = sock_net(listen_sk);
5908 	bool th_ecn = th->ece && th->cwr;
5909 	bool ect, need_ecn;
5910 
5911 	if (!th_ecn)
5912 		return;
5913 
5914 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
5915 	need_ecn = tcp_ca_needs_ecn(listen_sk);
5916 
5917 	if (!ect && !need_ecn && net->ipv4.sysctl_tcp_ecn)
5918 		inet_rsk(req)->ecn_ok = 1;
5919 	else if (ect && need_ecn)
5920 		inet_rsk(req)->ecn_ok = 1;
5921 }
5922 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)5923 int tcp_conn_request(struct request_sock_ops *rsk_ops,
5924 		     const struct tcp_request_sock_ops *af_ops,
5925 		     struct sock *sk, struct sk_buff *skb)
5926 {
5927 	struct tcp_options_received tmp_opt;
5928 	struct request_sock *req;
5929 	struct tcp_sock *tp = tcp_sk(sk);
5930 	struct dst_entry *dst = NULL;
5931 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
5932 	bool want_cookie = false, fastopen;
5933 	struct flowi fl;
5934 	struct tcp_fastopen_cookie foc = { .len = -1 };
5935 	int err;
5936 
5937 
5938 	/* TW buckets are converted to open requests without
5939 	 * limitations, they conserve resources and peer is
5940 	 * evidently real one.
5941 	 */
5942 	if ((sysctl_tcp_syncookies == 2 ||
5943 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
5944 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
5945 		if (!want_cookie)
5946 			goto drop;
5947 	}
5948 
5949 
5950 	/* Accept backlog is full. If we have already queued enough
5951 	 * of warm entries in syn queue, drop request. It is better than
5952 	 * clogging syn queue with openreqs with exponentially increasing
5953 	 * timeout.
5954 	 */
5955 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
5956 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
5957 		goto drop;
5958 	}
5959 
5960 	req = inet_reqsk_alloc(rsk_ops);
5961 	if (!req)
5962 		goto drop;
5963 
5964 	tcp_rsk(req)->af_specific = af_ops;
5965 
5966 	tcp_clear_options(&tmp_opt);
5967 	tmp_opt.mss_clamp = af_ops->mss_clamp;
5968 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
5969 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
5970 
5971 	if (want_cookie && !tmp_opt.saw_tstamp)
5972 		tcp_clear_options(&tmp_opt);
5973 
5974 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
5975 	tcp_openreq_init(req, &tmp_opt, skb, sk);
5976 
5977 	af_ops->init_req(req, sk, skb);
5978 
5979 	if (security_inet_conn_request(sk, skb, req))
5980 		goto drop_and_free;
5981 
5982 	if (!want_cookie || tmp_opt.tstamp_ok)
5983 		tcp_ecn_create_request(req, skb, sk);
5984 
5985 	if (want_cookie) {
5986 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
5987 		req->cookie_ts = tmp_opt.tstamp_ok;
5988 	} else if (!isn) {
5989 		/* VJ's idea. We save last timestamp seen
5990 		 * from the destination in peer table, when entering
5991 		 * state TIME-WAIT, and check against it before
5992 		 * accepting new connection request.
5993 		 *
5994 		 * If "isn" is not zero, this request hit alive
5995 		 * timewait bucket, so that all the necessary checks
5996 		 * are made in the function processing timewait state.
5997 		 */
5998 		if (tcp_death_row.sysctl_tw_recycle) {
5999 			bool strict;
6000 
6001 			dst = af_ops->route_req(sk, &fl, req, &strict);
6002 
6003 			if (dst && strict &&
6004 			    !tcp_peer_is_proven(req, dst, true,
6005 						tmp_opt.saw_tstamp)) {
6006 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6007 				goto drop_and_release;
6008 			}
6009 		}
6010 		/* Kill the following clause, if you dislike this way. */
6011 		else if (!sysctl_tcp_syncookies &&
6012 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6013 			  (sysctl_max_syn_backlog >> 2)) &&
6014 			 !tcp_peer_is_proven(req, dst, false,
6015 					     tmp_opt.saw_tstamp)) {
6016 			/* Without syncookies last quarter of
6017 			 * backlog is filled with destinations,
6018 			 * proven to be alive.
6019 			 * It means that we continue to communicate
6020 			 * to destinations, already remembered
6021 			 * to the moment of synflood.
6022 			 */
6023 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6024 				    rsk_ops->family);
6025 			goto drop_and_release;
6026 		}
6027 
6028 		isn = af_ops->init_seq(skb);
6029 	}
6030 	if (!dst) {
6031 		dst = af_ops->route_req(sk, &fl, req, NULL);
6032 		if (!dst)
6033 			goto drop_and_free;
6034 	}
6035 
6036 	tcp_rsk(req)->snt_isn = isn;
6037 	tcp_openreq_init_rwin(req, sk, dst);
6038 	fastopen = !want_cookie &&
6039 		   tcp_try_fastopen(sk, skb, req, &foc, dst);
6040 	err = af_ops->send_synack(sk, dst, &fl, req,
6041 				  skb_get_queue_mapping(skb), &foc);
6042 	if (!fastopen) {
6043 		if (err || want_cookie)
6044 			goto drop_and_free;
6045 
6046 		tcp_rsk(req)->listener = NULL;
6047 		af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6048 	}
6049 
6050 	return 0;
6051 
6052 drop_and_release:
6053 	dst_release(dst);
6054 drop_and_free:
6055 	reqsk_free(req);
6056 drop:
6057 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6058 	return 0;
6059 }
6060 EXPORT_SYMBOL(tcp_conn_request);
6061