1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 EXPORT_SYMBOL(sysctl_tcp_reordering);
85 int sysctl_tcp_dsack __read_mostly = 1;
86 int sysctl_tcp_app_win __read_mostly = 31;
87 int sysctl_tcp_adv_win_scale __read_mostly = 1;
88 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 1000;
92
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 int sysctl_tcp_default_init_rwnd __read_mostly = TCP_INIT_CWND * 2;
103
104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
110 #define FLAG_ECE 0x40 /* ECE in this ACK */
111 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
112 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
113 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
114 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
115 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
116 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
117
118 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
121 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
122
123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125
126 /* Adapt the MSS value used to make delayed ack decision to the
127 * real world.
128 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)129 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 {
131 struct inet_connection_sock *icsk = inet_csk(sk);
132 const unsigned int lss = icsk->icsk_ack.last_seg_size;
133 unsigned int len;
134
135 icsk->icsk_ack.last_seg_size = 0;
136
137 /* skb->len may jitter because of SACKs, even if peer
138 * sends good full-sized frames.
139 */
140 len = skb_shinfo(skb)->gso_size ? : skb->len;
141 if (len >= icsk->icsk_ack.rcv_mss) {
142 icsk->icsk_ack.rcv_mss = len;
143 } else {
144 /* Otherwise, we make more careful check taking into account,
145 * that SACKs block is variable.
146 *
147 * "len" is invariant segment length, including TCP header.
148 */
149 len += skb->data - skb_transport_header(skb);
150 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
151 /* If PSH is not set, packet should be
152 * full sized, provided peer TCP is not badly broken.
153 * This observation (if it is correct 8)) allows
154 * to handle super-low mtu links fairly.
155 */
156 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
157 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
158 /* Subtract also invariant (if peer is RFC compliant),
159 * tcp header plus fixed timestamp option length.
160 * Resulting "len" is MSS free of SACK jitter.
161 */
162 len -= tcp_sk(sk)->tcp_header_len;
163 icsk->icsk_ack.last_seg_size = len;
164 if (len == lss) {
165 icsk->icsk_ack.rcv_mss = len;
166 return;
167 }
168 }
169 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
172 }
173 }
174
tcp_incr_quickack(struct sock * sk)175 static void tcp_incr_quickack(struct sock *sk)
176 {
177 struct inet_connection_sock *icsk = inet_csk(sk);
178 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179
180 if (quickacks == 0)
181 quickacks = 2;
182 if (quickacks > icsk->icsk_ack.quick)
183 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 }
185
tcp_enter_quickack_mode(struct sock * sk)186 static void tcp_enter_quickack_mode(struct sock *sk)
187 {
188 struct inet_connection_sock *icsk = inet_csk(sk);
189 tcp_incr_quickack(sk);
190 icsk->icsk_ack.pingpong = 0;
191 icsk->icsk_ack.ato = TCP_ATO_MIN;
192 }
193
194 /* Send ACKs quickly, if "quick" count is not exhausted
195 * and the session is not interactive.
196 */
197
tcp_in_quickack_mode(const struct sock * sk)198 static inline bool tcp_in_quickack_mode(const struct sock *sk)
199 {
200 const struct inet_connection_sock *icsk = inet_csk(sk);
201
202 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 }
204
tcp_ecn_queue_cwr(struct tcp_sock * tp)205 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
206 {
207 if (tp->ecn_flags & TCP_ECN_OK)
208 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 }
210
tcp_ecn_accept_cwr(struct tcp_sock * tp,const struct sk_buff * skb)211 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
212 {
213 if (tcp_hdr(skb)->cwr)
214 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 }
216
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)217 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
218 {
219 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 }
221
__tcp_ecn_check_ce(struct tcp_sock * tp,const struct sk_buff * skb)222 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
223 {
224 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
225 case INET_ECN_NOT_ECT:
226 /* Funny extension: if ECT is not set on a segment,
227 * and we already seen ECT on a previous segment,
228 * it is probably a retransmit.
229 */
230 if (tp->ecn_flags & TCP_ECN_SEEN)
231 tcp_enter_quickack_mode((struct sock *)tp);
232 break;
233 case INET_ECN_CE:
234 if (tcp_ca_needs_ecn((struct sock *)tp))
235 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
236
237 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
238 /* Better not delay acks, sender can have a very low cwnd */
239 tcp_enter_quickack_mode((struct sock *)tp);
240 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
241 }
242 tp->ecn_flags |= TCP_ECN_SEEN;
243 break;
244 default:
245 if (tcp_ca_needs_ecn((struct sock *)tp))
246 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
247 tp->ecn_flags |= TCP_ECN_SEEN;
248 break;
249 }
250 }
251
tcp_ecn_check_ce(struct tcp_sock * tp,const struct sk_buff * skb)252 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
253 {
254 if (tp->ecn_flags & TCP_ECN_OK)
255 __tcp_ecn_check_ce(tp, skb);
256 }
257
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)258 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
261 tp->ecn_flags &= ~TCP_ECN_OK;
262 }
263
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)264 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
265 {
266 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
267 tp->ecn_flags &= ~TCP_ECN_OK;
268 }
269
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)270 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
271 {
272 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
273 return true;
274 return false;
275 }
276
277 /* Buffer size and advertised window tuning.
278 *
279 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
280 */
281
tcp_sndbuf_expand(struct sock * sk)282 static void tcp_sndbuf_expand(struct sock *sk)
283 {
284 const struct tcp_sock *tp = tcp_sk(sk);
285 int sndmem, per_mss;
286 u32 nr_segs;
287
288 /* Worst case is non GSO/TSO : each frame consumes one skb
289 * and skb->head is kmalloced using power of two area of memory
290 */
291 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
292 MAX_TCP_HEADER +
293 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
294
295 per_mss = roundup_pow_of_two(per_mss) +
296 SKB_DATA_ALIGN(sizeof(struct sk_buff));
297
298 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
299 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
300
301 /* Fast Recovery (RFC 5681 3.2) :
302 * Cubic needs 1.7 factor, rounded to 2 to include
303 * extra cushion (application might react slowly to POLLOUT)
304 */
305 sndmem = 2 * nr_segs * per_mss;
306
307 if (sk->sk_sndbuf < sndmem)
308 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
309 }
310
311 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
312 *
313 * All tcp_full_space() is split to two parts: "network" buffer, allocated
314 * forward and advertised in receiver window (tp->rcv_wnd) and
315 * "application buffer", required to isolate scheduling/application
316 * latencies from network.
317 * window_clamp is maximal advertised window. It can be less than
318 * tcp_full_space(), in this case tcp_full_space() - window_clamp
319 * is reserved for "application" buffer. The less window_clamp is
320 * the smoother our behaviour from viewpoint of network, but the lower
321 * throughput and the higher sensitivity of the connection to losses. 8)
322 *
323 * rcv_ssthresh is more strict window_clamp used at "slow start"
324 * phase to predict further behaviour of this connection.
325 * It is used for two goals:
326 * - to enforce header prediction at sender, even when application
327 * requires some significant "application buffer". It is check #1.
328 * - to prevent pruning of receive queue because of misprediction
329 * of receiver window. Check #2.
330 *
331 * The scheme does not work when sender sends good segments opening
332 * window and then starts to feed us spaghetti. But it should work
333 * in common situations. Otherwise, we have to rely on queue collapsing.
334 */
335
336 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb)337 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
338 {
339 struct tcp_sock *tp = tcp_sk(sk);
340 /* Optimize this! */
341 int truesize = tcp_win_from_space(skb->truesize) >> 1;
342 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
343
344 while (tp->rcv_ssthresh <= window) {
345 if (truesize <= skb->len)
346 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
347
348 truesize >>= 1;
349 window >>= 1;
350 }
351 return 0;
352 }
353
tcp_grow_window(struct sock * sk,const struct sk_buff * skb)354 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
355 {
356 struct tcp_sock *tp = tcp_sk(sk);
357
358 /* Check #1 */
359 if (tp->rcv_ssthresh < tp->window_clamp &&
360 (int)tp->rcv_ssthresh < tcp_space(sk) &&
361 !sk_under_memory_pressure(sk)) {
362 int incr;
363
364 /* Check #2. Increase window, if skb with such overhead
365 * will fit to rcvbuf in future.
366 */
367 if (tcp_win_from_space(skb->truesize) <= skb->len)
368 incr = 2 * tp->advmss;
369 else
370 incr = __tcp_grow_window(sk, skb);
371
372 if (incr) {
373 incr = max_t(int, incr, 2 * skb->len);
374 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
375 tp->window_clamp);
376 inet_csk(sk)->icsk_ack.quick |= 1;
377 }
378 }
379 }
380
381 /* 3. Tuning rcvbuf, when connection enters established state. */
tcp_fixup_rcvbuf(struct sock * sk)382 static void tcp_fixup_rcvbuf(struct sock *sk)
383 {
384 u32 mss = tcp_sk(sk)->advmss;
385 int rcvmem;
386
387 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
388 tcp_default_init_rwnd(mss);
389
390 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
391 * Allow enough cushion so that sender is not limited by our window
392 */
393 if (sysctl_tcp_moderate_rcvbuf)
394 rcvmem <<= 2;
395
396 if (sk->sk_rcvbuf < rcvmem)
397 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
398 }
399
400 /* 4. Try to fixup all. It is made immediately after connection enters
401 * established state.
402 */
tcp_init_buffer_space(struct sock * sk)403 void tcp_init_buffer_space(struct sock *sk)
404 {
405 struct tcp_sock *tp = tcp_sk(sk);
406 int maxwin;
407
408 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
409 tcp_fixup_rcvbuf(sk);
410 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
411 tcp_sndbuf_expand(sk);
412
413 tp->rcvq_space.space = tp->rcv_wnd;
414 tp->rcvq_space.time = tcp_time_stamp;
415 tp->rcvq_space.seq = tp->copied_seq;
416
417 maxwin = tcp_full_space(sk);
418
419 if (tp->window_clamp >= maxwin) {
420 tp->window_clamp = maxwin;
421
422 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
423 tp->window_clamp = max(maxwin -
424 (maxwin >> sysctl_tcp_app_win),
425 4 * tp->advmss);
426 }
427
428 /* Force reservation of one segment. */
429 if (sysctl_tcp_app_win &&
430 tp->window_clamp > 2 * tp->advmss &&
431 tp->window_clamp + tp->advmss > maxwin)
432 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
433
434 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
435 tp->snd_cwnd_stamp = tcp_time_stamp;
436 }
437
438 /* 5. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)439 static void tcp_clamp_window(struct sock *sk)
440 {
441 struct tcp_sock *tp = tcp_sk(sk);
442 struct inet_connection_sock *icsk = inet_csk(sk);
443
444 icsk->icsk_ack.quick = 0;
445
446 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
447 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
448 !sk_under_memory_pressure(sk) &&
449 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
450 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
451 sysctl_tcp_rmem[2]);
452 }
453 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
454 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
455 }
456
457 /* Initialize RCV_MSS value.
458 * RCV_MSS is an our guess about MSS used by the peer.
459 * We haven't any direct information about the MSS.
460 * It's better to underestimate the RCV_MSS rather than overestimate.
461 * Overestimations make us ACKing less frequently than needed.
462 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
463 */
tcp_initialize_rcv_mss(struct sock * sk)464 void tcp_initialize_rcv_mss(struct sock *sk)
465 {
466 const struct tcp_sock *tp = tcp_sk(sk);
467 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
468
469 hint = min(hint, tp->rcv_wnd / 2);
470 hint = min(hint, TCP_MSS_DEFAULT);
471 hint = max(hint, TCP_MIN_MSS);
472
473 inet_csk(sk)->icsk_ack.rcv_mss = hint;
474 }
475 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
476
477 /* Receiver "autotuning" code.
478 *
479 * The algorithm for RTT estimation w/o timestamps is based on
480 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
481 * <http://public.lanl.gov/radiant/pubs.html#DRS>
482 *
483 * More detail on this code can be found at
484 * <http://staff.psc.edu/jheffner/>,
485 * though this reference is out of date. A new paper
486 * is pending.
487 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)488 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
489 {
490 u32 new_sample = tp->rcv_rtt_est.rtt;
491 long m = sample;
492
493 if (m == 0)
494 m = 1;
495
496 if (new_sample != 0) {
497 /* If we sample in larger samples in the non-timestamp
498 * case, we could grossly overestimate the RTT especially
499 * with chatty applications or bulk transfer apps which
500 * are stalled on filesystem I/O.
501 *
502 * Also, since we are only going for a minimum in the
503 * non-timestamp case, we do not smooth things out
504 * else with timestamps disabled convergence takes too
505 * long.
506 */
507 if (!win_dep) {
508 m -= (new_sample >> 3);
509 new_sample += m;
510 } else {
511 m <<= 3;
512 if (m < new_sample)
513 new_sample = m;
514 }
515 } else {
516 /* No previous measure. */
517 new_sample = m << 3;
518 }
519
520 if (tp->rcv_rtt_est.rtt != new_sample)
521 tp->rcv_rtt_est.rtt = new_sample;
522 }
523
tcp_rcv_rtt_measure(struct tcp_sock * tp)524 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
525 {
526 if (tp->rcv_rtt_est.time == 0)
527 goto new_measure;
528 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
529 return;
530 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
531
532 new_measure:
533 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
534 tp->rcv_rtt_est.time = tcp_time_stamp;
535 }
536
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)537 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
538 const struct sk_buff *skb)
539 {
540 struct tcp_sock *tp = tcp_sk(sk);
541 if (tp->rx_opt.rcv_tsecr &&
542 (TCP_SKB_CB(skb)->end_seq -
543 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
544 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
545 }
546
547 /*
548 * This function should be called every time data is copied to user space.
549 * It calculates the appropriate TCP receive buffer space.
550 */
tcp_rcv_space_adjust(struct sock * sk)551 void tcp_rcv_space_adjust(struct sock *sk)
552 {
553 struct tcp_sock *tp = tcp_sk(sk);
554 int time;
555 int copied;
556
557 time = tcp_time_stamp - tp->rcvq_space.time;
558 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
559 return;
560
561 /* Number of bytes copied to user in last RTT */
562 copied = tp->copied_seq - tp->rcvq_space.seq;
563 if (copied <= tp->rcvq_space.space)
564 goto new_measure;
565
566 /* A bit of theory :
567 * copied = bytes received in previous RTT, our base window
568 * To cope with packet losses, we need a 2x factor
569 * To cope with slow start, and sender growing its cwin by 100 %
570 * every RTT, we need a 4x factor, because the ACK we are sending
571 * now is for the next RTT, not the current one :
572 * <prev RTT . ><current RTT .. ><next RTT .... >
573 */
574
575 if (sysctl_tcp_moderate_rcvbuf &&
576 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
577 int rcvwin, rcvmem, rcvbuf;
578
579 /* minimal window to cope with packet losses, assuming
580 * steady state. Add some cushion because of small variations.
581 */
582 rcvwin = (copied << 1) + 16 * tp->advmss;
583
584 /* If rate increased by 25%,
585 * assume slow start, rcvwin = 3 * copied
586 * If rate increased by 50%,
587 * assume sender can use 2x growth, rcvwin = 4 * copied
588 */
589 if (copied >=
590 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
591 if (copied >=
592 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
593 rcvwin <<= 1;
594 else
595 rcvwin += (rcvwin >> 1);
596 }
597
598 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
599 while (tcp_win_from_space(rcvmem) < tp->advmss)
600 rcvmem += 128;
601
602 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
603 if (rcvbuf > sk->sk_rcvbuf) {
604 sk->sk_rcvbuf = rcvbuf;
605
606 /* Make the window clamp follow along. */
607 tp->window_clamp = rcvwin;
608 }
609 }
610 tp->rcvq_space.space = copied;
611
612 new_measure:
613 tp->rcvq_space.seq = tp->copied_seq;
614 tp->rcvq_space.time = tcp_time_stamp;
615 }
616
617 /* There is something which you must keep in mind when you analyze the
618 * behavior of the tp->ato delayed ack timeout interval. When a
619 * connection starts up, we want to ack as quickly as possible. The
620 * problem is that "good" TCP's do slow start at the beginning of data
621 * transmission. The means that until we send the first few ACK's the
622 * sender will sit on his end and only queue most of his data, because
623 * he can only send snd_cwnd unacked packets at any given time. For
624 * each ACK we send, he increments snd_cwnd and transmits more of his
625 * queue. -DaveM
626 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)627 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
628 {
629 struct tcp_sock *tp = tcp_sk(sk);
630 struct inet_connection_sock *icsk = inet_csk(sk);
631 u32 now;
632
633 inet_csk_schedule_ack(sk);
634
635 tcp_measure_rcv_mss(sk, skb);
636
637 tcp_rcv_rtt_measure(tp);
638
639 now = tcp_time_stamp;
640
641 if (!icsk->icsk_ack.ato) {
642 /* The _first_ data packet received, initialize
643 * delayed ACK engine.
644 */
645 tcp_incr_quickack(sk);
646 icsk->icsk_ack.ato = TCP_ATO_MIN;
647 } else {
648 int m = now - icsk->icsk_ack.lrcvtime;
649
650 if (m <= TCP_ATO_MIN / 2) {
651 /* The fastest case is the first. */
652 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
653 } else if (m < icsk->icsk_ack.ato) {
654 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
655 if (icsk->icsk_ack.ato > icsk->icsk_rto)
656 icsk->icsk_ack.ato = icsk->icsk_rto;
657 } else if (m > icsk->icsk_rto) {
658 /* Too long gap. Apparently sender failed to
659 * restart window, so that we send ACKs quickly.
660 */
661 tcp_incr_quickack(sk);
662 sk_mem_reclaim(sk);
663 }
664 }
665 icsk->icsk_ack.lrcvtime = now;
666
667 tcp_ecn_check_ce(tp, skb);
668
669 if (skb->len >= 128)
670 tcp_grow_window(sk, skb);
671 }
672
673 /* Called to compute a smoothed rtt estimate. The data fed to this
674 * routine either comes from timestamps, or from segments that were
675 * known _not_ to have been retransmitted [see Karn/Partridge
676 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
677 * piece by Van Jacobson.
678 * NOTE: the next three routines used to be one big routine.
679 * To save cycles in the RFC 1323 implementation it was better to break
680 * it up into three procedures. -- erics
681 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)682 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
683 {
684 struct tcp_sock *tp = tcp_sk(sk);
685 long m = mrtt_us; /* RTT */
686 u32 srtt = tp->srtt_us;
687
688 /* The following amusing code comes from Jacobson's
689 * article in SIGCOMM '88. Note that rtt and mdev
690 * are scaled versions of rtt and mean deviation.
691 * This is designed to be as fast as possible
692 * m stands for "measurement".
693 *
694 * On a 1990 paper the rto value is changed to:
695 * RTO = rtt + 4 * mdev
696 *
697 * Funny. This algorithm seems to be very broken.
698 * These formulae increase RTO, when it should be decreased, increase
699 * too slowly, when it should be increased quickly, decrease too quickly
700 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
701 * does not matter how to _calculate_ it. Seems, it was trap
702 * that VJ failed to avoid. 8)
703 */
704 if (srtt != 0) {
705 m -= (srtt >> 3); /* m is now error in rtt est */
706 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
707 if (m < 0) {
708 m = -m; /* m is now abs(error) */
709 m -= (tp->mdev_us >> 2); /* similar update on mdev */
710 /* This is similar to one of Eifel findings.
711 * Eifel blocks mdev updates when rtt decreases.
712 * This solution is a bit different: we use finer gain
713 * for mdev in this case (alpha*beta).
714 * Like Eifel it also prevents growth of rto,
715 * but also it limits too fast rto decreases,
716 * happening in pure Eifel.
717 */
718 if (m > 0)
719 m >>= 3;
720 } else {
721 m -= (tp->mdev_us >> 2); /* similar update on mdev */
722 }
723 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
724 if (tp->mdev_us > tp->mdev_max_us) {
725 tp->mdev_max_us = tp->mdev_us;
726 if (tp->mdev_max_us > tp->rttvar_us)
727 tp->rttvar_us = tp->mdev_max_us;
728 }
729 if (after(tp->snd_una, tp->rtt_seq)) {
730 if (tp->mdev_max_us < tp->rttvar_us)
731 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
732 tp->rtt_seq = tp->snd_nxt;
733 tp->mdev_max_us = tcp_rto_min_us(sk);
734 }
735 } else {
736 /* no previous measure. */
737 srtt = m << 3; /* take the measured time to be rtt */
738 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
739 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
740 tp->mdev_max_us = tp->rttvar_us;
741 tp->rtt_seq = tp->snd_nxt;
742 }
743 tp->srtt_us = max(1U, srtt);
744 }
745
746 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
747 * Note: TCP stack does not yet implement pacing.
748 * FQ packet scheduler can be used to implement cheap but effective
749 * TCP pacing, to smooth the burst on large writes when packets
750 * in flight is significantly lower than cwnd (or rwin)
751 */
tcp_update_pacing_rate(struct sock * sk)752 static void tcp_update_pacing_rate(struct sock *sk)
753 {
754 const struct tcp_sock *tp = tcp_sk(sk);
755 u64 rate;
756
757 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
758 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
759
760 rate *= max(tp->snd_cwnd, tp->packets_out);
761
762 if (likely(tp->srtt_us))
763 do_div(rate, tp->srtt_us);
764
765 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
766 * without any lock. We want to make sure compiler wont store
767 * intermediate values in this location.
768 */
769 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
770 sk->sk_max_pacing_rate);
771 }
772
773 /* Calculate rto without backoff. This is the second half of Van Jacobson's
774 * routine referred to above.
775 */
tcp_set_rto(struct sock * sk)776 static void tcp_set_rto(struct sock *sk)
777 {
778 const struct tcp_sock *tp = tcp_sk(sk);
779 /* Old crap is replaced with new one. 8)
780 *
781 * More seriously:
782 * 1. If rtt variance happened to be less 50msec, it is hallucination.
783 * It cannot be less due to utterly erratic ACK generation made
784 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
785 * to do with delayed acks, because at cwnd>2 true delack timeout
786 * is invisible. Actually, Linux-2.4 also generates erratic
787 * ACKs in some circumstances.
788 */
789 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
790
791 /* 2. Fixups made earlier cannot be right.
792 * If we do not estimate RTO correctly without them,
793 * all the algo is pure shit and should be replaced
794 * with correct one. It is exactly, which we pretend to do.
795 */
796
797 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
798 * guarantees that rto is higher.
799 */
800 tcp_bound_rto(sk);
801 }
802
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)803 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
804 {
805 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
806
807 if (!cwnd)
808 cwnd = TCP_INIT_CWND;
809 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
810 }
811
812 /*
813 * Packet counting of FACK is based on in-order assumptions, therefore TCP
814 * disables it when reordering is detected
815 */
tcp_disable_fack(struct tcp_sock * tp)816 void tcp_disable_fack(struct tcp_sock *tp)
817 {
818 /* RFC3517 uses different metric in lost marker => reset on change */
819 if (tcp_is_fack(tp))
820 tp->lost_skb_hint = NULL;
821 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
822 }
823
824 /* Take a notice that peer is sending D-SACKs */
tcp_dsack_seen(struct tcp_sock * tp)825 static void tcp_dsack_seen(struct tcp_sock *tp)
826 {
827 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
828 }
829
tcp_update_reordering(struct sock * sk,const int metric,const int ts)830 static void tcp_update_reordering(struct sock *sk, const int metric,
831 const int ts)
832 {
833 struct tcp_sock *tp = tcp_sk(sk);
834 if (metric > tp->reordering) {
835 int mib_idx;
836
837 tp->reordering = min(TCP_MAX_REORDERING, metric);
838
839 /* This exciting event is worth to be remembered. 8) */
840 if (ts)
841 mib_idx = LINUX_MIB_TCPTSREORDER;
842 else if (tcp_is_reno(tp))
843 mib_idx = LINUX_MIB_TCPRENOREORDER;
844 else if (tcp_is_fack(tp))
845 mib_idx = LINUX_MIB_TCPFACKREORDER;
846 else
847 mib_idx = LINUX_MIB_TCPSACKREORDER;
848
849 NET_INC_STATS_BH(sock_net(sk), mib_idx);
850 #if FASTRETRANS_DEBUG > 1
851 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
852 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
853 tp->reordering,
854 tp->fackets_out,
855 tp->sacked_out,
856 tp->undo_marker ? tp->undo_retrans : 0);
857 #endif
858 tcp_disable_fack(tp);
859 }
860
861 if (metric > 0)
862 tcp_disable_early_retrans(tp);
863 }
864
865 /* This must be called before lost_out is incremented */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)866 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
867 {
868 if ((tp->retransmit_skb_hint == NULL) ||
869 before(TCP_SKB_CB(skb)->seq,
870 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
871 tp->retransmit_skb_hint = skb;
872
873 if (!tp->lost_out ||
874 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
875 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
876 }
877
tcp_skb_mark_lost(struct tcp_sock * tp,struct sk_buff * skb)878 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
879 {
880 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
881 tcp_verify_retransmit_hint(tp, skb);
882
883 tp->lost_out += tcp_skb_pcount(skb);
884 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
885 }
886 }
887
tcp_skb_mark_lost_uncond_verify(struct tcp_sock * tp,struct sk_buff * skb)888 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
889 struct sk_buff *skb)
890 {
891 tcp_verify_retransmit_hint(tp, skb);
892
893 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
894 tp->lost_out += tcp_skb_pcount(skb);
895 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
896 }
897 }
898
899 /* This procedure tags the retransmission queue when SACKs arrive.
900 *
901 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
902 * Packets in queue with these bits set are counted in variables
903 * sacked_out, retrans_out and lost_out, correspondingly.
904 *
905 * Valid combinations are:
906 * Tag InFlight Description
907 * 0 1 - orig segment is in flight.
908 * S 0 - nothing flies, orig reached receiver.
909 * L 0 - nothing flies, orig lost by net.
910 * R 2 - both orig and retransmit are in flight.
911 * L|R 1 - orig is lost, retransmit is in flight.
912 * S|R 1 - orig reached receiver, retrans is still in flight.
913 * (L|S|R is logically valid, it could occur when L|R is sacked,
914 * but it is equivalent to plain S and code short-curcuits it to S.
915 * L|S is logically invalid, it would mean -1 packet in flight 8))
916 *
917 * These 6 states form finite state machine, controlled by the following events:
918 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
919 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
920 * 3. Loss detection event of two flavors:
921 * A. Scoreboard estimator decided the packet is lost.
922 * A'. Reno "three dupacks" marks head of queue lost.
923 * A''. Its FACK modification, head until snd.fack is lost.
924 * B. SACK arrives sacking SND.NXT at the moment, when the
925 * segment was retransmitted.
926 * 4. D-SACK added new rule: D-SACK changes any tag to S.
927 *
928 * It is pleasant to note, that state diagram turns out to be commutative,
929 * so that we are allowed not to be bothered by order of our actions,
930 * when multiple events arrive simultaneously. (see the function below).
931 *
932 * Reordering detection.
933 * --------------------
934 * Reordering metric is maximal distance, which a packet can be displaced
935 * in packet stream. With SACKs we can estimate it:
936 *
937 * 1. SACK fills old hole and the corresponding segment was not
938 * ever retransmitted -> reordering. Alas, we cannot use it
939 * when segment was retransmitted.
940 * 2. The last flaw is solved with D-SACK. D-SACK arrives
941 * for retransmitted and already SACKed segment -> reordering..
942 * Both of these heuristics are not used in Loss state, when we cannot
943 * account for retransmits accurately.
944 *
945 * SACK block validation.
946 * ----------------------
947 *
948 * SACK block range validation checks that the received SACK block fits to
949 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
950 * Note that SND.UNA is not included to the range though being valid because
951 * it means that the receiver is rather inconsistent with itself reporting
952 * SACK reneging when it should advance SND.UNA. Such SACK block this is
953 * perfectly valid, however, in light of RFC2018 which explicitly states
954 * that "SACK block MUST reflect the newest segment. Even if the newest
955 * segment is going to be discarded ...", not that it looks very clever
956 * in case of head skb. Due to potentional receiver driven attacks, we
957 * choose to avoid immediate execution of a walk in write queue due to
958 * reneging and defer head skb's loss recovery to standard loss recovery
959 * procedure that will eventually trigger (nothing forbids us doing this).
960 *
961 * Implements also blockage to start_seq wrap-around. Problem lies in the
962 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
963 * there's no guarantee that it will be before snd_nxt (n). The problem
964 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
965 * wrap (s_w):
966 *
967 * <- outs wnd -> <- wrapzone ->
968 * u e n u_w e_w s n_w
969 * | | | | | | |
970 * |<------------+------+----- TCP seqno space --------------+---------->|
971 * ...-- <2^31 ->| |<--------...
972 * ...---- >2^31 ------>| |<--------...
973 *
974 * Current code wouldn't be vulnerable but it's better still to discard such
975 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
976 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
977 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
978 * equal to the ideal case (infinite seqno space without wrap caused issues).
979 *
980 * With D-SACK the lower bound is extended to cover sequence space below
981 * SND.UNA down to undo_marker, which is the last point of interest. Yet
982 * again, D-SACK block must not to go across snd_una (for the same reason as
983 * for the normal SACK blocks, explained above). But there all simplicity
984 * ends, TCP might receive valid D-SACKs below that. As long as they reside
985 * fully below undo_marker they do not affect behavior in anyway and can
986 * therefore be safely ignored. In rare cases (which are more or less
987 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
988 * fragmentation and packet reordering past skb's retransmission. To consider
989 * them correctly, the acceptable range must be extended even more though
990 * the exact amount is rather hard to quantify. However, tp->max_window can
991 * be used as an exaggerated estimate.
992 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)993 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
994 u32 start_seq, u32 end_seq)
995 {
996 /* Too far in future, or reversed (interpretation is ambiguous) */
997 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
998 return false;
999
1000 /* Nasty start_seq wrap-around check (see comments above) */
1001 if (!before(start_seq, tp->snd_nxt))
1002 return false;
1003
1004 /* In outstanding window? ...This is valid exit for D-SACKs too.
1005 * start_seq == snd_una is non-sensical (see comments above)
1006 */
1007 if (after(start_seq, tp->snd_una))
1008 return true;
1009
1010 if (!is_dsack || !tp->undo_marker)
1011 return false;
1012
1013 /* ...Then it's D-SACK, and must reside below snd_una completely */
1014 if (after(end_seq, tp->snd_una))
1015 return false;
1016
1017 if (!before(start_seq, tp->undo_marker))
1018 return true;
1019
1020 /* Too old */
1021 if (!after(end_seq, tp->undo_marker))
1022 return false;
1023
1024 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1025 * start_seq < undo_marker and end_seq >= undo_marker.
1026 */
1027 return !before(start_seq, end_seq - tp->max_window);
1028 }
1029
1030 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1031 * Event "B". Later note: FACK people cheated me again 8), we have to account
1032 * for reordering! Ugly, but should help.
1033 *
1034 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1035 * less than what is now known to be received by the other end (derived from
1036 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1037 * retransmitted skbs to avoid some costly processing per ACKs.
1038 */
tcp_mark_lost_retrans(struct sock * sk)1039 static void tcp_mark_lost_retrans(struct sock *sk)
1040 {
1041 const struct inet_connection_sock *icsk = inet_csk(sk);
1042 struct tcp_sock *tp = tcp_sk(sk);
1043 struct sk_buff *skb;
1044 int cnt = 0;
1045 u32 new_low_seq = tp->snd_nxt;
1046 u32 received_upto = tcp_highest_sack_seq(tp);
1047
1048 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1049 !after(received_upto, tp->lost_retrans_low) ||
1050 icsk->icsk_ca_state != TCP_CA_Recovery)
1051 return;
1052
1053 tcp_for_write_queue(skb, sk) {
1054 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1055
1056 if (skb == tcp_send_head(sk))
1057 break;
1058 if (cnt == tp->retrans_out)
1059 break;
1060 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1061 continue;
1062
1063 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1064 continue;
1065
1066 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1067 * constraint here (see above) but figuring out that at
1068 * least tp->reordering SACK blocks reside between ack_seq
1069 * and received_upto is not easy task to do cheaply with
1070 * the available datastructures.
1071 *
1072 * Whether FACK should check here for tp->reordering segs
1073 * in-between one could argue for either way (it would be
1074 * rather simple to implement as we could count fack_count
1075 * during the walk and do tp->fackets_out - fack_count).
1076 */
1077 if (after(received_upto, ack_seq)) {
1078 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1079 tp->retrans_out -= tcp_skb_pcount(skb);
1080
1081 tcp_skb_mark_lost_uncond_verify(tp, skb);
1082 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1083 } else {
1084 if (before(ack_seq, new_low_seq))
1085 new_low_seq = ack_seq;
1086 cnt += tcp_skb_pcount(skb);
1087 }
1088 }
1089
1090 if (tp->retrans_out)
1091 tp->lost_retrans_low = new_low_seq;
1092 }
1093
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una)1094 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1095 struct tcp_sack_block_wire *sp, int num_sacks,
1096 u32 prior_snd_una)
1097 {
1098 struct tcp_sock *tp = tcp_sk(sk);
1099 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1100 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1101 bool dup_sack = false;
1102
1103 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1104 dup_sack = true;
1105 tcp_dsack_seen(tp);
1106 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1107 } else if (num_sacks > 1) {
1108 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1109 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1110
1111 if (!after(end_seq_0, end_seq_1) &&
1112 !before(start_seq_0, start_seq_1)) {
1113 dup_sack = true;
1114 tcp_dsack_seen(tp);
1115 NET_INC_STATS_BH(sock_net(sk),
1116 LINUX_MIB_TCPDSACKOFORECV);
1117 }
1118 }
1119
1120 /* D-SACK for already forgotten data... Do dumb counting. */
1121 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1122 !after(end_seq_0, prior_snd_una) &&
1123 after(end_seq_0, tp->undo_marker))
1124 tp->undo_retrans--;
1125
1126 return dup_sack;
1127 }
1128
1129 struct tcp_sacktag_state {
1130 int reord;
1131 int fack_count;
1132 long rtt_us; /* RTT measured by SACKing never-retransmitted data */
1133 int flag;
1134 };
1135
1136 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1137 * the incoming SACK may not exactly match but we can find smaller MSS
1138 * aligned portion of it that matches. Therefore we might need to fragment
1139 * which may fail and creates some hassle (caller must handle error case
1140 * returns).
1141 *
1142 * FIXME: this could be merged to shift decision code
1143 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1144 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1145 u32 start_seq, u32 end_seq)
1146 {
1147 int err;
1148 bool in_sack;
1149 unsigned int pkt_len;
1150 unsigned int mss;
1151
1152 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1153 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1154
1155 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1156 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1157 mss = tcp_skb_mss(skb);
1158 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1159
1160 if (!in_sack) {
1161 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1162 if (pkt_len < mss)
1163 pkt_len = mss;
1164 } else {
1165 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1166 if (pkt_len < mss)
1167 return -EINVAL;
1168 }
1169
1170 /* Round if necessary so that SACKs cover only full MSSes
1171 * and/or the remaining small portion (if present)
1172 */
1173 if (pkt_len > mss) {
1174 unsigned int new_len = (pkt_len / mss) * mss;
1175 if (!in_sack && new_len < pkt_len)
1176 new_len += mss;
1177 pkt_len = new_len;
1178 }
1179
1180 if (pkt_len >= skb->len && !in_sack)
1181 return 0;
1182
1183 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1184 if (err < 0)
1185 return err;
1186 }
1187
1188 return in_sack;
1189 }
1190
1191 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,const struct skb_mstamp * xmit_time)1192 static u8 tcp_sacktag_one(struct sock *sk,
1193 struct tcp_sacktag_state *state, u8 sacked,
1194 u32 start_seq, u32 end_seq,
1195 int dup_sack, int pcount,
1196 const struct skb_mstamp *xmit_time)
1197 {
1198 struct tcp_sock *tp = tcp_sk(sk);
1199 int fack_count = state->fack_count;
1200
1201 /* Account D-SACK for retransmitted packet. */
1202 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1203 if (tp->undo_marker && tp->undo_retrans > 0 &&
1204 after(end_seq, tp->undo_marker))
1205 tp->undo_retrans--;
1206 if (sacked & TCPCB_SACKED_ACKED)
1207 state->reord = min(fack_count, state->reord);
1208 }
1209
1210 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1211 if (!after(end_seq, tp->snd_una))
1212 return sacked;
1213
1214 if (!(sacked & TCPCB_SACKED_ACKED)) {
1215 if (sacked & TCPCB_SACKED_RETRANS) {
1216 /* If the segment is not tagged as lost,
1217 * we do not clear RETRANS, believing
1218 * that retransmission is still in flight.
1219 */
1220 if (sacked & TCPCB_LOST) {
1221 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1222 tp->lost_out -= pcount;
1223 tp->retrans_out -= pcount;
1224 }
1225 } else {
1226 if (!(sacked & TCPCB_RETRANS)) {
1227 /* New sack for not retransmitted frame,
1228 * which was in hole. It is reordering.
1229 */
1230 if (before(start_seq,
1231 tcp_highest_sack_seq(tp)))
1232 state->reord = min(fack_count,
1233 state->reord);
1234 if (!after(end_seq, tp->high_seq))
1235 state->flag |= FLAG_ORIG_SACK_ACKED;
1236 /* Pick the earliest sequence sacked for RTT */
1237 if (state->rtt_us < 0) {
1238 struct skb_mstamp now;
1239
1240 skb_mstamp_get(&now);
1241 state->rtt_us = skb_mstamp_us_delta(&now,
1242 xmit_time);
1243 }
1244 }
1245
1246 if (sacked & TCPCB_LOST) {
1247 sacked &= ~TCPCB_LOST;
1248 tp->lost_out -= pcount;
1249 }
1250 }
1251
1252 sacked |= TCPCB_SACKED_ACKED;
1253 state->flag |= FLAG_DATA_SACKED;
1254 tp->sacked_out += pcount;
1255
1256 fack_count += pcount;
1257
1258 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1259 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1260 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1261 tp->lost_cnt_hint += pcount;
1262
1263 if (fack_count > tp->fackets_out)
1264 tp->fackets_out = fack_count;
1265 }
1266
1267 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1268 * frames and clear it. undo_retrans is decreased above, L|R frames
1269 * are accounted above as well.
1270 */
1271 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1272 sacked &= ~TCPCB_SACKED_RETRANS;
1273 tp->retrans_out -= pcount;
1274 }
1275
1276 return sacked;
1277 }
1278
1279 /* Shift newly-SACKed bytes from this skb to the immediately previous
1280 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1281 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1282 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1283 struct tcp_sacktag_state *state,
1284 unsigned int pcount, int shifted, int mss,
1285 bool dup_sack)
1286 {
1287 struct tcp_sock *tp = tcp_sk(sk);
1288 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1289 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1290 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1291
1292 BUG_ON(!pcount);
1293
1294 /* Adjust counters and hints for the newly sacked sequence
1295 * range but discard the return value since prev is already
1296 * marked. We must tag the range first because the seq
1297 * advancement below implicitly advances
1298 * tcp_highest_sack_seq() when skb is highest_sack.
1299 */
1300 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1301 start_seq, end_seq, dup_sack, pcount,
1302 &skb->skb_mstamp);
1303
1304 if (skb == tp->lost_skb_hint)
1305 tp->lost_cnt_hint += pcount;
1306
1307 TCP_SKB_CB(prev)->end_seq += shifted;
1308 TCP_SKB_CB(skb)->seq += shifted;
1309
1310 tcp_skb_pcount_add(prev, pcount);
1311 BUG_ON(tcp_skb_pcount(skb) < pcount);
1312 tcp_skb_pcount_add(skb, -pcount);
1313
1314 /* When we're adding to gso_segs == 1, gso_size will be zero,
1315 * in theory this shouldn't be necessary but as long as DSACK
1316 * code can come after this skb later on it's better to keep
1317 * setting gso_size to something.
1318 */
1319 if (!skb_shinfo(prev)->gso_size) {
1320 skb_shinfo(prev)->gso_size = mss;
1321 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1322 }
1323
1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1325 if (tcp_skb_pcount(skb) <= 1) {
1326 skb_shinfo(skb)->gso_size = 0;
1327 skb_shinfo(skb)->gso_type = 0;
1328 }
1329
1330 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1331 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1332
1333 if (skb->len > 0) {
1334 BUG_ON(!tcp_skb_pcount(skb));
1335 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1336 return false;
1337 }
1338
1339 /* Whole SKB was eaten :-) */
1340
1341 if (skb == tp->retransmit_skb_hint)
1342 tp->retransmit_skb_hint = prev;
1343 if (skb == tp->lost_skb_hint) {
1344 tp->lost_skb_hint = prev;
1345 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1346 }
1347
1348 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1349 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1350 TCP_SKB_CB(prev)->end_seq++;
1351
1352 if (skb == tcp_highest_sack(sk))
1353 tcp_advance_highest_sack(sk, skb);
1354
1355 tcp_unlink_write_queue(skb, sk);
1356 sk_wmem_free_skb(sk, skb);
1357
1358 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1359
1360 return true;
1361 }
1362
1363 /* I wish gso_size would have a bit more sane initialization than
1364 * something-or-zero which complicates things
1365 */
tcp_skb_seglen(const struct sk_buff * skb)1366 static int tcp_skb_seglen(const struct sk_buff *skb)
1367 {
1368 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1369 }
1370
1371 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1372 static int skb_can_shift(const struct sk_buff *skb)
1373 {
1374 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1375 }
1376
1377 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1378 * skb.
1379 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1380 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1381 struct tcp_sacktag_state *state,
1382 u32 start_seq, u32 end_seq,
1383 bool dup_sack)
1384 {
1385 struct tcp_sock *tp = tcp_sk(sk);
1386 struct sk_buff *prev;
1387 int mss;
1388 int pcount = 0;
1389 int len;
1390 int in_sack;
1391
1392 if (!sk_can_gso(sk))
1393 goto fallback;
1394
1395 /* Normally R but no L won't result in plain S */
1396 if (!dup_sack &&
1397 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1398 goto fallback;
1399 if (!skb_can_shift(skb))
1400 goto fallback;
1401 /* This frame is about to be dropped (was ACKed). */
1402 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1403 goto fallback;
1404
1405 /* Can only happen with delayed DSACK + discard craziness */
1406 if (unlikely(skb == tcp_write_queue_head(sk)))
1407 goto fallback;
1408 prev = tcp_write_queue_prev(sk, skb);
1409
1410 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1411 goto fallback;
1412
1413 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1414 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1415
1416 if (in_sack) {
1417 len = skb->len;
1418 pcount = tcp_skb_pcount(skb);
1419 mss = tcp_skb_seglen(skb);
1420
1421 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1422 * drop this restriction as unnecessary
1423 */
1424 if (mss != tcp_skb_seglen(prev))
1425 goto fallback;
1426 } else {
1427 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1428 goto noop;
1429 /* CHECKME: This is non-MSS split case only?, this will
1430 * cause skipped skbs due to advancing loop btw, original
1431 * has that feature too
1432 */
1433 if (tcp_skb_pcount(skb) <= 1)
1434 goto noop;
1435
1436 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1437 if (!in_sack) {
1438 /* TODO: head merge to next could be attempted here
1439 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1440 * though it might not be worth of the additional hassle
1441 *
1442 * ...we can probably just fallback to what was done
1443 * previously. We could try merging non-SACKed ones
1444 * as well but it probably isn't going to buy off
1445 * because later SACKs might again split them, and
1446 * it would make skb timestamp tracking considerably
1447 * harder problem.
1448 */
1449 goto fallback;
1450 }
1451
1452 len = end_seq - TCP_SKB_CB(skb)->seq;
1453 BUG_ON(len < 0);
1454 BUG_ON(len > skb->len);
1455
1456 /* MSS boundaries should be honoured or else pcount will
1457 * severely break even though it makes things bit trickier.
1458 * Optimize common case to avoid most of the divides
1459 */
1460 mss = tcp_skb_mss(skb);
1461
1462 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1463 * drop this restriction as unnecessary
1464 */
1465 if (mss != tcp_skb_seglen(prev))
1466 goto fallback;
1467
1468 if (len == mss) {
1469 pcount = 1;
1470 } else if (len < mss) {
1471 goto noop;
1472 } else {
1473 pcount = len / mss;
1474 len = pcount * mss;
1475 }
1476 }
1477
1478 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1479 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1480 goto fallback;
1481
1482 if (!skb_shift(prev, skb, len))
1483 goto fallback;
1484 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1485 goto out;
1486
1487 /* Hole filled allows collapsing with the next as well, this is very
1488 * useful when hole on every nth skb pattern happens
1489 */
1490 if (prev == tcp_write_queue_tail(sk))
1491 goto out;
1492 skb = tcp_write_queue_next(sk, prev);
1493
1494 if (!skb_can_shift(skb) ||
1495 (skb == tcp_send_head(sk)) ||
1496 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1497 (mss != tcp_skb_seglen(skb)))
1498 goto out;
1499
1500 len = skb->len;
1501 if (skb_shift(prev, skb, len)) {
1502 pcount += tcp_skb_pcount(skb);
1503 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1504 }
1505
1506 out:
1507 state->fack_count += pcount;
1508 return prev;
1509
1510 noop:
1511 return skb;
1512
1513 fallback:
1514 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1515 return NULL;
1516 }
1517
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1518 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1519 struct tcp_sack_block *next_dup,
1520 struct tcp_sacktag_state *state,
1521 u32 start_seq, u32 end_seq,
1522 bool dup_sack_in)
1523 {
1524 struct tcp_sock *tp = tcp_sk(sk);
1525 struct sk_buff *tmp;
1526
1527 tcp_for_write_queue_from(skb, sk) {
1528 int in_sack = 0;
1529 bool dup_sack = dup_sack_in;
1530
1531 if (skb == tcp_send_head(sk))
1532 break;
1533
1534 /* queue is in-order => we can short-circuit the walk early */
1535 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1536 break;
1537
1538 if ((next_dup != NULL) &&
1539 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1540 in_sack = tcp_match_skb_to_sack(sk, skb,
1541 next_dup->start_seq,
1542 next_dup->end_seq);
1543 if (in_sack > 0)
1544 dup_sack = true;
1545 }
1546
1547 /* skb reference here is a bit tricky to get right, since
1548 * shifting can eat and free both this skb and the next,
1549 * so not even _safe variant of the loop is enough.
1550 */
1551 if (in_sack <= 0) {
1552 tmp = tcp_shift_skb_data(sk, skb, state,
1553 start_seq, end_seq, dup_sack);
1554 if (tmp != NULL) {
1555 if (tmp != skb) {
1556 skb = tmp;
1557 continue;
1558 }
1559
1560 in_sack = 0;
1561 } else {
1562 in_sack = tcp_match_skb_to_sack(sk, skb,
1563 start_seq,
1564 end_seq);
1565 }
1566 }
1567
1568 if (unlikely(in_sack < 0))
1569 break;
1570
1571 if (in_sack) {
1572 TCP_SKB_CB(skb)->sacked =
1573 tcp_sacktag_one(sk,
1574 state,
1575 TCP_SKB_CB(skb)->sacked,
1576 TCP_SKB_CB(skb)->seq,
1577 TCP_SKB_CB(skb)->end_seq,
1578 dup_sack,
1579 tcp_skb_pcount(skb),
1580 &skb->skb_mstamp);
1581
1582 if (!before(TCP_SKB_CB(skb)->seq,
1583 tcp_highest_sack_seq(tp)))
1584 tcp_advance_highest_sack(sk, skb);
1585 }
1586
1587 state->fack_count += tcp_skb_pcount(skb);
1588 }
1589 return skb;
1590 }
1591
1592 /* Avoid all extra work that is being done by sacktag while walking in
1593 * a normal way
1594 */
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,struct tcp_sacktag_state * state,u32 skip_to_seq)1595 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1596 struct tcp_sacktag_state *state,
1597 u32 skip_to_seq)
1598 {
1599 tcp_for_write_queue_from(skb, sk) {
1600 if (skb == tcp_send_head(sk))
1601 break;
1602
1603 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1604 break;
1605
1606 state->fack_count += tcp_skb_pcount(skb);
1607 }
1608 return skb;
1609 }
1610
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1611 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1612 struct sock *sk,
1613 struct tcp_sack_block *next_dup,
1614 struct tcp_sacktag_state *state,
1615 u32 skip_to_seq)
1616 {
1617 if (next_dup == NULL)
1618 return skb;
1619
1620 if (before(next_dup->start_seq, skip_to_seq)) {
1621 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1622 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1623 next_dup->start_seq, next_dup->end_seq,
1624 1);
1625 }
1626
1627 return skb;
1628 }
1629
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1630 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1631 {
1632 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1633 }
1634
1635 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,long * sack_rtt_us)1636 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1637 u32 prior_snd_una, long *sack_rtt_us)
1638 {
1639 struct tcp_sock *tp = tcp_sk(sk);
1640 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1641 TCP_SKB_CB(ack_skb)->sacked);
1642 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1643 struct tcp_sack_block sp[TCP_NUM_SACKS];
1644 struct tcp_sack_block *cache;
1645 struct tcp_sacktag_state state;
1646 struct sk_buff *skb;
1647 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1648 int used_sacks;
1649 bool found_dup_sack = false;
1650 int i, j;
1651 int first_sack_index;
1652
1653 state.flag = 0;
1654 state.reord = tp->packets_out;
1655 state.rtt_us = -1L;
1656
1657 if (!tp->sacked_out) {
1658 if (WARN_ON(tp->fackets_out))
1659 tp->fackets_out = 0;
1660 tcp_highest_sack_reset(sk);
1661 }
1662
1663 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1664 num_sacks, prior_snd_una);
1665 if (found_dup_sack)
1666 state.flag |= FLAG_DSACKING_ACK;
1667
1668 /* Eliminate too old ACKs, but take into
1669 * account more or less fresh ones, they can
1670 * contain valid SACK info.
1671 */
1672 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1673 return 0;
1674
1675 if (!tp->packets_out)
1676 goto out;
1677
1678 used_sacks = 0;
1679 first_sack_index = 0;
1680 for (i = 0; i < num_sacks; i++) {
1681 bool dup_sack = !i && found_dup_sack;
1682
1683 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1684 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1685
1686 if (!tcp_is_sackblock_valid(tp, dup_sack,
1687 sp[used_sacks].start_seq,
1688 sp[used_sacks].end_seq)) {
1689 int mib_idx;
1690
1691 if (dup_sack) {
1692 if (!tp->undo_marker)
1693 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1694 else
1695 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1696 } else {
1697 /* Don't count olds caused by ACK reordering */
1698 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1699 !after(sp[used_sacks].end_seq, tp->snd_una))
1700 continue;
1701 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1702 }
1703
1704 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1705 if (i == 0)
1706 first_sack_index = -1;
1707 continue;
1708 }
1709
1710 /* Ignore very old stuff early */
1711 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1712 continue;
1713
1714 used_sacks++;
1715 }
1716
1717 /* order SACK blocks to allow in order walk of the retrans queue */
1718 for (i = used_sacks - 1; i > 0; i--) {
1719 for (j = 0; j < i; j++) {
1720 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1721 swap(sp[j], sp[j + 1]);
1722
1723 /* Track where the first SACK block goes to */
1724 if (j == first_sack_index)
1725 first_sack_index = j + 1;
1726 }
1727 }
1728 }
1729
1730 skb = tcp_write_queue_head(sk);
1731 state.fack_count = 0;
1732 i = 0;
1733
1734 if (!tp->sacked_out) {
1735 /* It's already past, so skip checking against it */
1736 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1737 } else {
1738 cache = tp->recv_sack_cache;
1739 /* Skip empty blocks in at head of the cache */
1740 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1741 !cache->end_seq)
1742 cache++;
1743 }
1744
1745 while (i < used_sacks) {
1746 u32 start_seq = sp[i].start_seq;
1747 u32 end_seq = sp[i].end_seq;
1748 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1749 struct tcp_sack_block *next_dup = NULL;
1750
1751 if (found_dup_sack && ((i + 1) == first_sack_index))
1752 next_dup = &sp[i + 1];
1753
1754 /* Skip too early cached blocks */
1755 while (tcp_sack_cache_ok(tp, cache) &&
1756 !before(start_seq, cache->end_seq))
1757 cache++;
1758
1759 /* Can skip some work by looking recv_sack_cache? */
1760 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1761 after(end_seq, cache->start_seq)) {
1762
1763 /* Head todo? */
1764 if (before(start_seq, cache->start_seq)) {
1765 skb = tcp_sacktag_skip(skb, sk, &state,
1766 start_seq);
1767 skb = tcp_sacktag_walk(skb, sk, next_dup,
1768 &state,
1769 start_seq,
1770 cache->start_seq,
1771 dup_sack);
1772 }
1773
1774 /* Rest of the block already fully processed? */
1775 if (!after(end_seq, cache->end_seq))
1776 goto advance_sp;
1777
1778 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1779 &state,
1780 cache->end_seq);
1781
1782 /* ...tail remains todo... */
1783 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1784 /* ...but better entrypoint exists! */
1785 skb = tcp_highest_sack(sk);
1786 if (skb == NULL)
1787 break;
1788 state.fack_count = tp->fackets_out;
1789 cache++;
1790 goto walk;
1791 }
1792
1793 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1794 /* Check overlap against next cached too (past this one already) */
1795 cache++;
1796 continue;
1797 }
1798
1799 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1800 skb = tcp_highest_sack(sk);
1801 if (skb == NULL)
1802 break;
1803 state.fack_count = tp->fackets_out;
1804 }
1805 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1806
1807 walk:
1808 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1809 start_seq, end_seq, dup_sack);
1810
1811 advance_sp:
1812 i++;
1813 }
1814
1815 /* Clear the head of the cache sack blocks so we can skip it next time */
1816 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1817 tp->recv_sack_cache[i].start_seq = 0;
1818 tp->recv_sack_cache[i].end_seq = 0;
1819 }
1820 for (j = 0; j < used_sacks; j++)
1821 tp->recv_sack_cache[i++] = sp[j];
1822
1823 tcp_mark_lost_retrans(sk);
1824
1825 tcp_verify_left_out(tp);
1826
1827 if ((state.reord < tp->fackets_out) &&
1828 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1829 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1830
1831 out:
1832
1833 #if FASTRETRANS_DEBUG > 0
1834 WARN_ON((int)tp->sacked_out < 0);
1835 WARN_ON((int)tp->lost_out < 0);
1836 WARN_ON((int)tp->retrans_out < 0);
1837 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1838 #endif
1839 *sack_rtt_us = state.rtt_us;
1840 return state.flag;
1841 }
1842
1843 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1844 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1845 */
tcp_limit_reno_sacked(struct tcp_sock * tp)1846 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1847 {
1848 u32 holes;
1849
1850 holes = max(tp->lost_out, 1U);
1851 holes = min(holes, tp->packets_out);
1852
1853 if ((tp->sacked_out + holes) > tp->packets_out) {
1854 tp->sacked_out = tp->packets_out - holes;
1855 return true;
1856 }
1857 return false;
1858 }
1859
1860 /* If we receive more dupacks than we expected counting segments
1861 * in assumption of absent reordering, interpret this as reordering.
1862 * The only another reason could be bug in receiver TCP.
1863 */
tcp_check_reno_reordering(struct sock * sk,const int addend)1864 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1865 {
1866 struct tcp_sock *tp = tcp_sk(sk);
1867 if (tcp_limit_reno_sacked(tp))
1868 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1869 }
1870
1871 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1872
tcp_add_reno_sack(struct sock * sk)1873 static void tcp_add_reno_sack(struct sock *sk)
1874 {
1875 struct tcp_sock *tp = tcp_sk(sk);
1876 tp->sacked_out++;
1877 tcp_check_reno_reordering(sk, 0);
1878 tcp_verify_left_out(tp);
1879 }
1880
1881 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1882
tcp_remove_reno_sacks(struct sock * sk,int acked)1883 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1884 {
1885 struct tcp_sock *tp = tcp_sk(sk);
1886
1887 if (acked > 0) {
1888 /* One ACK acked hole. The rest eat duplicate ACKs. */
1889 if (acked - 1 >= tp->sacked_out)
1890 tp->sacked_out = 0;
1891 else
1892 tp->sacked_out -= acked - 1;
1893 }
1894 tcp_check_reno_reordering(sk, acked);
1895 tcp_verify_left_out(tp);
1896 }
1897
tcp_reset_reno_sack(struct tcp_sock * tp)1898 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1899 {
1900 tp->sacked_out = 0;
1901 }
1902
tcp_clear_retrans(struct tcp_sock * tp)1903 void tcp_clear_retrans(struct tcp_sock *tp)
1904 {
1905 tp->retrans_out = 0;
1906 tp->lost_out = 0;
1907 tp->undo_marker = 0;
1908 tp->undo_retrans = -1;
1909 tp->fackets_out = 0;
1910 tp->sacked_out = 0;
1911 }
1912
tcp_init_undo(struct tcp_sock * tp)1913 static inline void tcp_init_undo(struct tcp_sock *tp)
1914 {
1915 tp->undo_marker = tp->snd_una;
1916 /* Retransmission still in flight may cause DSACKs later. */
1917 tp->undo_retrans = tp->retrans_out ? : -1;
1918 }
1919
1920 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1921 * and reset tags completely, otherwise preserve SACKs. If receiver
1922 * dropped its ofo queue, we will know this due to reneging detection.
1923 */
tcp_enter_loss(struct sock * sk)1924 void tcp_enter_loss(struct sock *sk)
1925 {
1926 const struct inet_connection_sock *icsk = inet_csk(sk);
1927 struct tcp_sock *tp = tcp_sk(sk);
1928 struct sk_buff *skb;
1929 bool new_recovery = false;
1930 bool is_reneg; /* is receiver reneging on SACKs? */
1931
1932 /* Reduce ssthresh if it has not yet been made inside this window. */
1933 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1934 !after(tp->high_seq, tp->snd_una) ||
1935 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1936 new_recovery = true;
1937 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1938 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1939 tcp_ca_event(sk, CA_EVENT_LOSS);
1940 tcp_init_undo(tp);
1941 }
1942 tp->snd_cwnd = 1;
1943 tp->snd_cwnd_cnt = 0;
1944 tp->snd_cwnd_stamp = tcp_time_stamp;
1945
1946 tp->retrans_out = 0;
1947 tp->lost_out = 0;
1948
1949 if (tcp_is_reno(tp))
1950 tcp_reset_reno_sack(tp);
1951
1952 skb = tcp_write_queue_head(sk);
1953 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1954 if (is_reneg) {
1955 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1956 tp->sacked_out = 0;
1957 tp->fackets_out = 0;
1958 }
1959 tcp_clear_all_retrans_hints(tp);
1960
1961 tcp_for_write_queue(skb, sk) {
1962 if (skb == tcp_send_head(sk))
1963 break;
1964
1965 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1966 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1967 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1968 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1969 tp->lost_out += tcp_skb_pcount(skb);
1970 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1971 }
1972 }
1973 tcp_verify_left_out(tp);
1974
1975 /* Timeout in disordered state after receiving substantial DUPACKs
1976 * suggests that the degree of reordering is over-estimated.
1977 */
1978 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1979 tp->sacked_out >= sysctl_tcp_reordering)
1980 tp->reordering = min_t(unsigned int, tp->reordering,
1981 sysctl_tcp_reordering);
1982 tcp_set_ca_state(sk, TCP_CA_Loss);
1983 tp->high_seq = tp->snd_nxt;
1984 tcp_ecn_queue_cwr(tp);
1985
1986 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1987 * loss recovery is underway except recurring timeout(s) on
1988 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1989 */
1990 tp->frto = sysctl_tcp_frto &&
1991 (new_recovery || icsk->icsk_retransmits) &&
1992 !inet_csk(sk)->icsk_mtup.probe_size;
1993 }
1994
1995 /* If ACK arrived pointing to a remembered SACK, it means that our
1996 * remembered SACKs do not reflect real state of receiver i.e.
1997 * receiver _host_ is heavily congested (or buggy).
1998 *
1999 * To avoid big spurious retransmission bursts due to transient SACK
2000 * scoreboard oddities that look like reneging, we give the receiver a
2001 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2002 * restore sanity to the SACK scoreboard. If the apparent reneging
2003 * persists until this RTO then we'll clear the SACK scoreboard.
2004 */
tcp_check_sack_reneging(struct sock * sk,int flag)2005 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2006 {
2007 if (flag & FLAG_SACK_RENEGING) {
2008 struct tcp_sock *tp = tcp_sk(sk);
2009 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2010 msecs_to_jiffies(10));
2011
2012 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2013 delay, TCP_RTO_MAX);
2014 return true;
2015 }
2016 return false;
2017 }
2018
tcp_fackets_out(const struct tcp_sock * tp)2019 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2020 {
2021 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2022 }
2023
2024 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2025 * counter when SACK is enabled (without SACK, sacked_out is used for
2026 * that purpose).
2027 *
2028 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2029 * segments up to the highest received SACK block so far and holes in
2030 * between them.
2031 *
2032 * With reordering, holes may still be in flight, so RFC3517 recovery
2033 * uses pure sacked_out (total number of SACKed segments) even though
2034 * it violates the RFC that uses duplicate ACKs, often these are equal
2035 * but when e.g. out-of-window ACKs or packet duplication occurs,
2036 * they differ. Since neither occurs due to loss, TCP should really
2037 * ignore them.
2038 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2039 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2040 {
2041 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2042 }
2043
tcp_pause_early_retransmit(struct sock * sk,int flag)2044 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2045 {
2046 struct tcp_sock *tp = tcp_sk(sk);
2047 unsigned long delay;
2048
2049 /* Delay early retransmit and entering fast recovery for
2050 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2051 * available, or RTO is scheduled to fire first.
2052 */
2053 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2054 (flag & FLAG_ECE) || !tp->srtt_us)
2055 return false;
2056
2057 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2058 msecs_to_jiffies(2));
2059
2060 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2061 return false;
2062
2063 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2064 TCP_RTO_MAX);
2065 return true;
2066 }
2067
2068 /* Linux NewReno/SACK/FACK/ECN state machine.
2069 * --------------------------------------
2070 *
2071 * "Open" Normal state, no dubious events, fast path.
2072 * "Disorder" In all the respects it is "Open",
2073 * but requires a bit more attention. It is entered when
2074 * we see some SACKs or dupacks. It is split of "Open"
2075 * mainly to move some processing from fast path to slow one.
2076 * "CWR" CWND was reduced due to some Congestion Notification event.
2077 * It can be ECN, ICMP source quench, local device congestion.
2078 * "Recovery" CWND was reduced, we are fast-retransmitting.
2079 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2080 *
2081 * tcp_fastretrans_alert() is entered:
2082 * - each incoming ACK, if state is not "Open"
2083 * - when arrived ACK is unusual, namely:
2084 * * SACK
2085 * * Duplicate ACK.
2086 * * ECN ECE.
2087 *
2088 * Counting packets in flight is pretty simple.
2089 *
2090 * in_flight = packets_out - left_out + retrans_out
2091 *
2092 * packets_out is SND.NXT-SND.UNA counted in packets.
2093 *
2094 * retrans_out is number of retransmitted segments.
2095 *
2096 * left_out is number of segments left network, but not ACKed yet.
2097 *
2098 * left_out = sacked_out + lost_out
2099 *
2100 * sacked_out: Packets, which arrived to receiver out of order
2101 * and hence not ACKed. With SACKs this number is simply
2102 * amount of SACKed data. Even without SACKs
2103 * it is easy to give pretty reliable estimate of this number,
2104 * counting duplicate ACKs.
2105 *
2106 * lost_out: Packets lost by network. TCP has no explicit
2107 * "loss notification" feedback from network (for now).
2108 * It means that this number can be only _guessed_.
2109 * Actually, it is the heuristics to predict lossage that
2110 * distinguishes different algorithms.
2111 *
2112 * F.e. after RTO, when all the queue is considered as lost,
2113 * lost_out = packets_out and in_flight = retrans_out.
2114 *
2115 * Essentially, we have now two algorithms counting
2116 * lost packets.
2117 *
2118 * FACK: It is the simplest heuristics. As soon as we decided
2119 * that something is lost, we decide that _all_ not SACKed
2120 * packets until the most forward SACK are lost. I.e.
2121 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2122 * It is absolutely correct estimate, if network does not reorder
2123 * packets. And it loses any connection to reality when reordering
2124 * takes place. We use FACK by default until reordering
2125 * is suspected on the path to this destination.
2126 *
2127 * NewReno: when Recovery is entered, we assume that one segment
2128 * is lost (classic Reno). While we are in Recovery and
2129 * a partial ACK arrives, we assume that one more packet
2130 * is lost (NewReno). This heuristics are the same in NewReno
2131 * and SACK.
2132 *
2133 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2134 * deflation etc. CWND is real congestion window, never inflated, changes
2135 * only according to classic VJ rules.
2136 *
2137 * Really tricky (and requiring careful tuning) part of algorithm
2138 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2139 * The first determines the moment _when_ we should reduce CWND and,
2140 * hence, slow down forward transmission. In fact, it determines the moment
2141 * when we decide that hole is caused by loss, rather than by a reorder.
2142 *
2143 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2144 * holes, caused by lost packets.
2145 *
2146 * And the most logically complicated part of algorithm is undo
2147 * heuristics. We detect false retransmits due to both too early
2148 * fast retransmit (reordering) and underestimated RTO, analyzing
2149 * timestamps and D-SACKs. When we detect that some segments were
2150 * retransmitted by mistake and CWND reduction was wrong, we undo
2151 * window reduction and abort recovery phase. This logic is hidden
2152 * inside several functions named tcp_try_undo_<something>.
2153 */
2154
2155 /* This function decides, when we should leave Disordered state
2156 * and enter Recovery phase, reducing congestion window.
2157 *
2158 * Main question: may we further continue forward transmission
2159 * with the same cwnd?
2160 */
tcp_time_to_recover(struct sock * sk,int flag)2161 static bool tcp_time_to_recover(struct sock *sk, int flag)
2162 {
2163 struct tcp_sock *tp = tcp_sk(sk);
2164 __u32 packets_out;
2165
2166 /* Trick#1: The loss is proven. */
2167 if (tp->lost_out)
2168 return true;
2169
2170 /* Not-A-Trick#2 : Classic rule... */
2171 if (tcp_dupack_heuristics(tp) > tp->reordering)
2172 return true;
2173
2174 /* Trick#4: It is still not OK... But will it be useful to delay
2175 * recovery more?
2176 */
2177 packets_out = tp->packets_out;
2178 if (packets_out <= tp->reordering &&
2179 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2180 !tcp_may_send_now(sk)) {
2181 /* We have nothing to send. This connection is limited
2182 * either by receiver window or by application.
2183 */
2184 return true;
2185 }
2186
2187 /* If a thin stream is detected, retransmit after first
2188 * received dupack. Employ only if SACK is supported in order
2189 * to avoid possible corner-case series of spurious retransmissions
2190 * Use only if there are no unsent data.
2191 */
2192 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2193 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2194 tcp_is_sack(tp) && !tcp_send_head(sk))
2195 return true;
2196
2197 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2198 * retransmissions due to small network reorderings, we implement
2199 * Mitigation A.3 in the RFC and delay the retransmission for a short
2200 * interval if appropriate.
2201 */
2202 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2203 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2204 !tcp_may_send_now(sk))
2205 return !tcp_pause_early_retransmit(sk, flag);
2206
2207 return false;
2208 }
2209
2210 /* Detect loss in event "A" above by marking head of queue up as lost.
2211 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2212 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2213 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2214 * the maximum SACKed segments to pass before reaching this limit.
2215 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2216 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2217 {
2218 struct tcp_sock *tp = tcp_sk(sk);
2219 struct sk_buff *skb;
2220 int cnt, oldcnt;
2221 int err;
2222 unsigned int mss;
2223 /* Use SACK to deduce losses of new sequences sent during recovery */
2224 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2225
2226 WARN_ON(packets > tp->packets_out);
2227 if (tp->lost_skb_hint) {
2228 skb = tp->lost_skb_hint;
2229 cnt = tp->lost_cnt_hint;
2230 /* Head already handled? */
2231 if (mark_head && skb != tcp_write_queue_head(sk))
2232 return;
2233 } else {
2234 skb = tcp_write_queue_head(sk);
2235 cnt = 0;
2236 }
2237
2238 tcp_for_write_queue_from(skb, sk) {
2239 if (skb == tcp_send_head(sk))
2240 break;
2241 /* TODO: do this better */
2242 /* this is not the most efficient way to do this... */
2243 tp->lost_skb_hint = skb;
2244 tp->lost_cnt_hint = cnt;
2245
2246 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2247 break;
2248
2249 oldcnt = cnt;
2250 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2251 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2252 cnt += tcp_skb_pcount(skb);
2253
2254 if (cnt > packets) {
2255 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2256 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2257 (oldcnt >= packets))
2258 break;
2259
2260 mss = skb_shinfo(skb)->gso_size;
2261 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2262 mss, GFP_ATOMIC);
2263 if (err < 0)
2264 break;
2265 cnt = packets;
2266 }
2267
2268 tcp_skb_mark_lost(tp, skb);
2269
2270 if (mark_head)
2271 break;
2272 }
2273 tcp_verify_left_out(tp);
2274 }
2275
2276 /* Account newly detected lost packet(s) */
2277
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2278 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2279 {
2280 struct tcp_sock *tp = tcp_sk(sk);
2281
2282 if (tcp_is_reno(tp)) {
2283 tcp_mark_head_lost(sk, 1, 1);
2284 } else if (tcp_is_fack(tp)) {
2285 int lost = tp->fackets_out - tp->reordering;
2286 if (lost <= 0)
2287 lost = 1;
2288 tcp_mark_head_lost(sk, lost, 0);
2289 } else {
2290 int sacked_upto = tp->sacked_out - tp->reordering;
2291 if (sacked_upto >= 0)
2292 tcp_mark_head_lost(sk, sacked_upto, 0);
2293 else if (fast_rexmit)
2294 tcp_mark_head_lost(sk, 1, 1);
2295 }
2296 }
2297
2298 /* CWND moderation, preventing bursts due to too big ACKs
2299 * in dubious situations.
2300 */
tcp_moderate_cwnd(struct tcp_sock * tp)2301 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2302 {
2303 tp->snd_cwnd = min(tp->snd_cwnd,
2304 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2305 tp->snd_cwnd_stamp = tcp_time_stamp;
2306 }
2307
2308 /* Nothing was retransmitted or returned timestamp is less
2309 * than timestamp of the first retransmission.
2310 */
tcp_packet_delayed(const struct tcp_sock * tp)2311 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2312 {
2313 return !tp->retrans_stamp ||
2314 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2315 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2316 }
2317
2318 /* Undo procedures. */
2319
2320 /* We can clear retrans_stamp when there are no retransmissions in the
2321 * window. It would seem that it is trivially available for us in
2322 * tp->retrans_out, however, that kind of assumptions doesn't consider
2323 * what will happen if errors occur when sending retransmission for the
2324 * second time. ...It could the that such segment has only
2325 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2326 * the head skb is enough except for some reneging corner cases that
2327 * are not worth the effort.
2328 *
2329 * Main reason for all this complexity is the fact that connection dying
2330 * time now depends on the validity of the retrans_stamp, in particular,
2331 * that successive retransmissions of a segment must not advance
2332 * retrans_stamp under any conditions.
2333 */
tcp_any_retrans_done(const struct sock * sk)2334 static bool tcp_any_retrans_done(const struct sock *sk)
2335 {
2336 const struct tcp_sock *tp = tcp_sk(sk);
2337 struct sk_buff *skb;
2338
2339 if (tp->retrans_out)
2340 return true;
2341
2342 skb = tcp_write_queue_head(sk);
2343 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2344 return true;
2345
2346 return false;
2347 }
2348
2349 #if FASTRETRANS_DEBUG > 1
DBGUNDO(struct sock * sk,const char * msg)2350 static void DBGUNDO(struct sock *sk, const char *msg)
2351 {
2352 struct tcp_sock *tp = tcp_sk(sk);
2353 struct inet_sock *inet = inet_sk(sk);
2354
2355 if (sk->sk_family == AF_INET) {
2356 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2357 msg,
2358 &inet->inet_daddr, ntohs(inet->inet_dport),
2359 tp->snd_cwnd, tcp_left_out(tp),
2360 tp->snd_ssthresh, tp->prior_ssthresh,
2361 tp->packets_out);
2362 }
2363 #if IS_ENABLED(CONFIG_IPV6)
2364 else if (sk->sk_family == AF_INET6) {
2365 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2366 msg,
2367 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2368 tp->snd_cwnd, tcp_left_out(tp),
2369 tp->snd_ssthresh, tp->prior_ssthresh,
2370 tp->packets_out);
2371 }
2372 #endif
2373 }
2374 #else
2375 #define DBGUNDO(x...) do { } while (0)
2376 #endif
2377
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2378 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2379 {
2380 struct tcp_sock *tp = tcp_sk(sk);
2381
2382 if (unmark_loss) {
2383 struct sk_buff *skb;
2384
2385 tcp_for_write_queue(skb, sk) {
2386 if (skb == tcp_send_head(sk))
2387 break;
2388 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2389 }
2390 tp->lost_out = 0;
2391 tcp_clear_all_retrans_hints(tp);
2392 }
2393
2394 if (tp->prior_ssthresh) {
2395 const struct inet_connection_sock *icsk = inet_csk(sk);
2396
2397 if (icsk->icsk_ca_ops->undo_cwnd)
2398 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2399 else
2400 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2401
2402 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2403 tp->snd_ssthresh = tp->prior_ssthresh;
2404 tcp_ecn_withdraw_cwr(tp);
2405 }
2406 } else {
2407 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2408 }
2409 tp->snd_cwnd_stamp = tcp_time_stamp;
2410 tp->undo_marker = 0;
2411 }
2412
tcp_may_undo(const struct tcp_sock * tp)2413 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2414 {
2415 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2416 }
2417
2418 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2419 static bool tcp_try_undo_recovery(struct sock *sk)
2420 {
2421 struct tcp_sock *tp = tcp_sk(sk);
2422
2423 if (tcp_may_undo(tp)) {
2424 int mib_idx;
2425
2426 /* Happy end! We did not retransmit anything
2427 * or our original transmission succeeded.
2428 */
2429 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2430 tcp_undo_cwnd_reduction(sk, false);
2431 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2432 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2433 else
2434 mib_idx = LINUX_MIB_TCPFULLUNDO;
2435
2436 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2437 }
2438 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2439 /* Hold old state until something *above* high_seq
2440 * is ACKed. For Reno it is MUST to prevent false
2441 * fast retransmits (RFC2582). SACK TCP is safe. */
2442 tcp_moderate_cwnd(tp);
2443 if (!tcp_any_retrans_done(sk))
2444 tp->retrans_stamp = 0;
2445 return true;
2446 }
2447 tcp_set_ca_state(sk, TCP_CA_Open);
2448 return false;
2449 }
2450
2451 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2452 static bool tcp_try_undo_dsack(struct sock *sk)
2453 {
2454 struct tcp_sock *tp = tcp_sk(sk);
2455
2456 if (tp->undo_marker && !tp->undo_retrans) {
2457 DBGUNDO(sk, "D-SACK");
2458 tcp_undo_cwnd_reduction(sk, false);
2459 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2460 return true;
2461 }
2462 return false;
2463 }
2464
2465 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2466 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2467 {
2468 struct tcp_sock *tp = tcp_sk(sk);
2469
2470 if (frto_undo || tcp_may_undo(tp)) {
2471 tcp_undo_cwnd_reduction(sk, true);
2472
2473 DBGUNDO(sk, "partial loss");
2474 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2475 if (frto_undo)
2476 NET_INC_STATS_BH(sock_net(sk),
2477 LINUX_MIB_TCPSPURIOUSRTOS);
2478 inet_csk(sk)->icsk_retransmits = 0;
2479 if (frto_undo || tcp_is_sack(tp))
2480 tcp_set_ca_state(sk, TCP_CA_Open);
2481 return true;
2482 }
2483 return false;
2484 }
2485
2486 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2487 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2488 * It computes the number of packets to send (sndcnt) based on packets newly
2489 * delivered:
2490 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2491 * cwnd reductions across a full RTT.
2492 * 2) If packets in flight is lower than ssthresh (such as due to excess
2493 * losses and/or application stalls), do not perform any further cwnd
2494 * reductions, but instead slow start up to ssthresh.
2495 */
tcp_init_cwnd_reduction(struct sock * sk)2496 static void tcp_init_cwnd_reduction(struct sock *sk)
2497 {
2498 struct tcp_sock *tp = tcp_sk(sk);
2499
2500 tp->high_seq = tp->snd_nxt;
2501 tp->tlp_high_seq = 0;
2502 tp->snd_cwnd_cnt = 0;
2503 tp->prior_cwnd = tp->snd_cwnd;
2504 tp->prr_delivered = 0;
2505 tp->prr_out = 0;
2506 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2507 tcp_ecn_queue_cwr(tp);
2508 }
2509
tcp_cwnd_reduction(struct sock * sk,const int prior_unsacked,int fast_rexmit)2510 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2511 int fast_rexmit)
2512 {
2513 struct tcp_sock *tp = tcp_sk(sk);
2514 int sndcnt = 0;
2515 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2516 int newly_acked_sacked = prior_unsacked -
2517 (tp->packets_out - tp->sacked_out);
2518
2519 tp->prr_delivered += newly_acked_sacked;
2520 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2521 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2522 tp->prior_cwnd - 1;
2523 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2524 } else {
2525 sndcnt = min_t(int, delta,
2526 max_t(int, tp->prr_delivered - tp->prr_out,
2527 newly_acked_sacked) + 1);
2528 }
2529
2530 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2531 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2532 }
2533
tcp_end_cwnd_reduction(struct sock * sk)2534 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2535 {
2536 struct tcp_sock *tp = tcp_sk(sk);
2537
2538 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2539 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2540 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2541 tp->snd_cwnd = tp->snd_ssthresh;
2542 tp->snd_cwnd_stamp = tcp_time_stamp;
2543 }
2544 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2545 }
2546
2547 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2548 void tcp_enter_cwr(struct sock *sk)
2549 {
2550 struct tcp_sock *tp = tcp_sk(sk);
2551
2552 tp->prior_ssthresh = 0;
2553 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2554 tp->undo_marker = 0;
2555 tcp_init_cwnd_reduction(sk);
2556 tcp_set_ca_state(sk, TCP_CA_CWR);
2557 }
2558 }
2559
tcp_try_keep_open(struct sock * sk)2560 static void tcp_try_keep_open(struct sock *sk)
2561 {
2562 struct tcp_sock *tp = tcp_sk(sk);
2563 int state = TCP_CA_Open;
2564
2565 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2566 state = TCP_CA_Disorder;
2567
2568 if (inet_csk(sk)->icsk_ca_state != state) {
2569 tcp_set_ca_state(sk, state);
2570 tp->high_seq = tp->snd_nxt;
2571 }
2572 }
2573
tcp_try_to_open(struct sock * sk,int flag,const int prior_unsacked)2574 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2575 {
2576 struct tcp_sock *tp = tcp_sk(sk);
2577
2578 tcp_verify_left_out(tp);
2579
2580 if (!tcp_any_retrans_done(sk))
2581 tp->retrans_stamp = 0;
2582
2583 if (flag & FLAG_ECE)
2584 tcp_enter_cwr(sk);
2585
2586 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2587 tcp_try_keep_open(sk);
2588 } else {
2589 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2590 }
2591 }
2592
tcp_mtup_probe_failed(struct sock * sk)2593 static void tcp_mtup_probe_failed(struct sock *sk)
2594 {
2595 struct inet_connection_sock *icsk = inet_csk(sk);
2596
2597 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2598 icsk->icsk_mtup.probe_size = 0;
2599 }
2600
tcp_mtup_probe_success(struct sock * sk)2601 static void tcp_mtup_probe_success(struct sock *sk)
2602 {
2603 struct tcp_sock *tp = tcp_sk(sk);
2604 struct inet_connection_sock *icsk = inet_csk(sk);
2605
2606 /* FIXME: breaks with very large cwnd */
2607 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2608 tp->snd_cwnd = tp->snd_cwnd *
2609 tcp_mss_to_mtu(sk, tp->mss_cache) /
2610 icsk->icsk_mtup.probe_size;
2611 tp->snd_cwnd_cnt = 0;
2612 tp->snd_cwnd_stamp = tcp_time_stamp;
2613 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2614
2615 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2616 icsk->icsk_mtup.probe_size = 0;
2617 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2618 }
2619
2620 /* Do a simple retransmit without using the backoff mechanisms in
2621 * tcp_timer. This is used for path mtu discovery.
2622 * The socket is already locked here.
2623 */
tcp_simple_retransmit(struct sock * sk)2624 void tcp_simple_retransmit(struct sock *sk)
2625 {
2626 const struct inet_connection_sock *icsk = inet_csk(sk);
2627 struct tcp_sock *tp = tcp_sk(sk);
2628 struct sk_buff *skb;
2629 unsigned int mss = tcp_current_mss(sk);
2630 u32 prior_lost = tp->lost_out;
2631
2632 tcp_for_write_queue(skb, sk) {
2633 if (skb == tcp_send_head(sk))
2634 break;
2635 if (tcp_skb_seglen(skb) > mss &&
2636 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2637 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2638 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2639 tp->retrans_out -= tcp_skb_pcount(skb);
2640 }
2641 tcp_skb_mark_lost_uncond_verify(tp, skb);
2642 }
2643 }
2644
2645 tcp_clear_retrans_hints_partial(tp);
2646
2647 if (prior_lost == tp->lost_out)
2648 return;
2649
2650 if (tcp_is_reno(tp))
2651 tcp_limit_reno_sacked(tp);
2652
2653 tcp_verify_left_out(tp);
2654
2655 /* Don't muck with the congestion window here.
2656 * Reason is that we do not increase amount of _data_
2657 * in network, but units changed and effective
2658 * cwnd/ssthresh really reduced now.
2659 */
2660 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2661 tp->high_seq = tp->snd_nxt;
2662 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2663 tp->prior_ssthresh = 0;
2664 tp->undo_marker = 0;
2665 tcp_set_ca_state(sk, TCP_CA_Loss);
2666 }
2667 tcp_xmit_retransmit_queue(sk);
2668 }
2669 EXPORT_SYMBOL(tcp_simple_retransmit);
2670
tcp_enter_recovery(struct sock * sk,bool ece_ack)2671 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2672 {
2673 struct tcp_sock *tp = tcp_sk(sk);
2674 int mib_idx;
2675
2676 if (tcp_is_reno(tp))
2677 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2678 else
2679 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2680
2681 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2682
2683 tp->prior_ssthresh = 0;
2684 tcp_init_undo(tp);
2685
2686 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2687 if (!ece_ack)
2688 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2689 tcp_init_cwnd_reduction(sk);
2690 }
2691 tcp_set_ca_state(sk, TCP_CA_Recovery);
2692 }
2693
2694 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2695 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2696 */
tcp_process_loss(struct sock * sk,int flag,bool is_dupack)2697 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2698 {
2699 struct tcp_sock *tp = tcp_sk(sk);
2700 bool recovered = !before(tp->snd_una, tp->high_seq);
2701
2702 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2703 /* Step 3.b. A timeout is spurious if not all data are
2704 * lost, i.e., never-retransmitted data are (s)acked.
2705 */
2706 if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2707 return;
2708
2709 if (after(tp->snd_nxt, tp->high_seq) &&
2710 (flag & FLAG_DATA_SACKED || is_dupack)) {
2711 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2712 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2713 tp->high_seq = tp->snd_nxt;
2714 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2715 TCP_NAGLE_OFF);
2716 if (after(tp->snd_nxt, tp->high_seq))
2717 return; /* Step 2.b */
2718 tp->frto = 0;
2719 }
2720 }
2721
2722 if (recovered) {
2723 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2724 tcp_try_undo_recovery(sk);
2725 return;
2726 }
2727 if (tcp_is_reno(tp)) {
2728 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2729 * delivered. Lower inflight to clock out (re)tranmissions.
2730 */
2731 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2732 tcp_add_reno_sack(sk);
2733 else if (flag & FLAG_SND_UNA_ADVANCED)
2734 tcp_reset_reno_sack(tp);
2735 }
2736 if (tcp_try_undo_loss(sk, false))
2737 return;
2738 tcp_xmit_retransmit_queue(sk);
2739 }
2740
2741 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,const int acked,const int prior_unsacked)2742 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2743 const int prior_unsacked)
2744 {
2745 struct tcp_sock *tp = tcp_sk(sk);
2746
2747 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2748 /* Plain luck! Hole if filled with delayed
2749 * packet, rather than with a retransmit.
2750 */
2751 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2752
2753 /* We are getting evidence that the reordering degree is higher
2754 * than we realized. If there are no retransmits out then we
2755 * can undo. Otherwise we clock out new packets but do not
2756 * mark more packets lost or retransmit more.
2757 */
2758 if (tp->retrans_out) {
2759 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2760 return true;
2761 }
2762
2763 if (!tcp_any_retrans_done(sk))
2764 tp->retrans_stamp = 0;
2765
2766 DBGUNDO(sk, "partial recovery");
2767 tcp_undo_cwnd_reduction(sk, true);
2768 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2769 tcp_try_keep_open(sk);
2770 return true;
2771 }
2772 return false;
2773 }
2774
2775 /* Process an event, which can update packets-in-flight not trivially.
2776 * Main goal of this function is to calculate new estimate for left_out,
2777 * taking into account both packets sitting in receiver's buffer and
2778 * packets lost by network.
2779 *
2780 * Besides that it does CWND reduction, when packet loss is detected
2781 * and changes state of machine.
2782 *
2783 * It does _not_ decide what to send, it is made in function
2784 * tcp_xmit_retransmit_queue().
2785 */
tcp_fastretrans_alert(struct sock * sk,const int acked,const int prior_unsacked,bool is_dupack,int flag)2786 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2787 const int prior_unsacked,
2788 bool is_dupack, int flag)
2789 {
2790 struct inet_connection_sock *icsk = inet_csk(sk);
2791 struct tcp_sock *tp = tcp_sk(sk);
2792 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2793 (tcp_fackets_out(tp) > tp->reordering));
2794 int fast_rexmit = 0;
2795
2796 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2797 tp->sacked_out = 0;
2798 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2799 tp->fackets_out = 0;
2800
2801 /* Now state machine starts.
2802 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2803 if (flag & FLAG_ECE)
2804 tp->prior_ssthresh = 0;
2805
2806 /* B. In all the states check for reneging SACKs. */
2807 if (tcp_check_sack_reneging(sk, flag))
2808 return;
2809
2810 /* C. Check consistency of the current state. */
2811 tcp_verify_left_out(tp);
2812
2813 /* D. Check state exit conditions. State can be terminated
2814 * when high_seq is ACKed. */
2815 if (icsk->icsk_ca_state == TCP_CA_Open) {
2816 WARN_ON(tp->retrans_out != 0);
2817 tp->retrans_stamp = 0;
2818 } else if (!before(tp->snd_una, tp->high_seq)) {
2819 switch (icsk->icsk_ca_state) {
2820 case TCP_CA_CWR:
2821 /* CWR is to be held something *above* high_seq
2822 * is ACKed for CWR bit to reach receiver. */
2823 if (tp->snd_una != tp->high_seq) {
2824 tcp_end_cwnd_reduction(sk);
2825 tcp_set_ca_state(sk, TCP_CA_Open);
2826 }
2827 break;
2828
2829 case TCP_CA_Recovery:
2830 if (tcp_is_reno(tp))
2831 tcp_reset_reno_sack(tp);
2832 if (tcp_try_undo_recovery(sk))
2833 return;
2834 tcp_end_cwnd_reduction(sk);
2835 break;
2836 }
2837 }
2838
2839 /* E. Process state. */
2840 switch (icsk->icsk_ca_state) {
2841 case TCP_CA_Recovery:
2842 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2843 if (tcp_is_reno(tp) && is_dupack)
2844 tcp_add_reno_sack(sk);
2845 } else {
2846 if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2847 return;
2848 /* Partial ACK arrived. Force fast retransmit. */
2849 do_lost = tcp_is_reno(tp) ||
2850 tcp_fackets_out(tp) > tp->reordering;
2851 }
2852 if (tcp_try_undo_dsack(sk)) {
2853 tcp_try_keep_open(sk);
2854 return;
2855 }
2856 break;
2857 case TCP_CA_Loss:
2858 tcp_process_loss(sk, flag, is_dupack);
2859 if (icsk->icsk_ca_state != TCP_CA_Open)
2860 return;
2861 /* Fall through to processing in Open state. */
2862 default:
2863 if (tcp_is_reno(tp)) {
2864 if (flag & FLAG_SND_UNA_ADVANCED)
2865 tcp_reset_reno_sack(tp);
2866 if (is_dupack)
2867 tcp_add_reno_sack(sk);
2868 }
2869
2870 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2871 tcp_try_undo_dsack(sk);
2872
2873 if (!tcp_time_to_recover(sk, flag)) {
2874 tcp_try_to_open(sk, flag, prior_unsacked);
2875 return;
2876 }
2877
2878 /* MTU probe failure: don't reduce cwnd */
2879 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2880 icsk->icsk_mtup.probe_size &&
2881 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2882 tcp_mtup_probe_failed(sk);
2883 /* Restores the reduction we did in tcp_mtup_probe() */
2884 tp->snd_cwnd++;
2885 tcp_simple_retransmit(sk);
2886 return;
2887 }
2888
2889 /* Otherwise enter Recovery state */
2890 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2891 fast_rexmit = 1;
2892 }
2893
2894 if (do_lost)
2895 tcp_update_scoreboard(sk, fast_rexmit);
2896 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2897 tcp_xmit_retransmit_queue(sk);
2898 }
2899
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us)2900 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2901 long seq_rtt_us, long sack_rtt_us)
2902 {
2903 const struct tcp_sock *tp = tcp_sk(sk);
2904
2905 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2906 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2907 * Karn's algorithm forbids taking RTT if some retransmitted data
2908 * is acked (RFC6298).
2909 */
2910 if (flag & FLAG_RETRANS_DATA_ACKED)
2911 seq_rtt_us = -1L;
2912
2913 if (seq_rtt_us < 0)
2914 seq_rtt_us = sack_rtt_us;
2915
2916 /* RTTM Rule: A TSecr value received in a segment is used to
2917 * update the averaged RTT measurement only if the segment
2918 * acknowledges some new data, i.e., only if it advances the
2919 * left edge of the send window.
2920 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2921 */
2922 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2923 flag & FLAG_ACKED)
2924 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2925
2926 if (seq_rtt_us < 0)
2927 return false;
2928
2929 tcp_rtt_estimator(sk, seq_rtt_us);
2930 tcp_set_rto(sk);
2931
2932 /* RFC6298: only reset backoff on valid RTT measurement. */
2933 inet_csk(sk)->icsk_backoff = 0;
2934 return true;
2935 }
2936
2937 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,const u32 synack_stamp)2938 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2939 {
2940 struct tcp_sock *tp = tcp_sk(sk);
2941 long seq_rtt_us = -1L;
2942
2943 if (synack_stamp && !tp->total_retrans)
2944 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2945
2946 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2947 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2948 */
2949 if (!tp->srtt_us)
2950 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2951 }
2952
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)2953 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2954 {
2955 const struct inet_connection_sock *icsk = inet_csk(sk);
2956
2957 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2958 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2959 }
2960
2961 /* Restart timer after forward progress on connection.
2962 * RFC2988 recommends to restart timer to now+rto.
2963 */
tcp_rearm_rto(struct sock * sk)2964 void tcp_rearm_rto(struct sock *sk)
2965 {
2966 const struct inet_connection_sock *icsk = inet_csk(sk);
2967 struct tcp_sock *tp = tcp_sk(sk);
2968
2969 /* If the retrans timer is currently being used by Fast Open
2970 * for SYN-ACK retrans purpose, stay put.
2971 */
2972 if (tp->fastopen_rsk)
2973 return;
2974
2975 if (!tp->packets_out) {
2976 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2977 } else {
2978 u32 rto = inet_csk(sk)->icsk_rto;
2979 /* Offset the time elapsed after installing regular RTO */
2980 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2981 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2982 struct sk_buff *skb = tcp_write_queue_head(sk);
2983 const u32 rto_time_stamp =
2984 tcp_skb_timestamp(skb) + rto;
2985 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2986 /* delta may not be positive if the socket is locked
2987 * when the retrans timer fires and is rescheduled.
2988 */
2989 rto = max(delta, 1);
2990 }
2991 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2992 TCP_RTO_MAX);
2993 }
2994 }
2995
2996 /* This function is called when the delayed ER timer fires. TCP enters
2997 * fast recovery and performs fast-retransmit.
2998 */
tcp_resume_early_retransmit(struct sock * sk)2999 void tcp_resume_early_retransmit(struct sock *sk)
3000 {
3001 struct tcp_sock *tp = tcp_sk(sk);
3002
3003 tcp_rearm_rto(sk);
3004
3005 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3006 if (!tp->do_early_retrans)
3007 return;
3008
3009 tcp_enter_recovery(sk, false);
3010 tcp_update_scoreboard(sk, 1);
3011 tcp_xmit_retransmit_queue(sk);
3012 }
3013
3014 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3015 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3016 {
3017 struct tcp_sock *tp = tcp_sk(sk);
3018 u32 packets_acked;
3019
3020 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3021
3022 packets_acked = tcp_skb_pcount(skb);
3023 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3024 return 0;
3025 packets_acked -= tcp_skb_pcount(skb);
3026
3027 if (packets_acked) {
3028 BUG_ON(tcp_skb_pcount(skb) == 0);
3029 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3030 }
3031
3032 return packets_acked;
3033 }
3034
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3035 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3036 u32 prior_snd_una)
3037 {
3038 const struct skb_shared_info *shinfo;
3039
3040 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3041 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3042 return;
3043
3044 shinfo = skb_shinfo(skb);
3045 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3046 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3047 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3048 }
3049
3050 /* Remove acknowledged frames from the retransmission queue. If our packet
3051 * is before the ack sequence we can discard it as it's confirmed to have
3052 * arrived at the other end.
3053 */
tcp_clean_rtx_queue(struct sock * sk,int prior_fackets,u32 prior_snd_una,long sack_rtt_us)3054 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3055 u32 prior_snd_una, long sack_rtt_us)
3056 {
3057 const struct inet_connection_sock *icsk = inet_csk(sk);
3058 struct skb_mstamp first_ackt, last_ackt, now;
3059 struct tcp_sock *tp = tcp_sk(sk);
3060 u32 prior_sacked = tp->sacked_out;
3061 u32 reord = tp->packets_out;
3062 bool fully_acked = true;
3063 long ca_seq_rtt_us = -1L;
3064 long seq_rtt_us = -1L;
3065 struct sk_buff *skb;
3066 u32 pkts_acked = 0;
3067 bool rtt_update;
3068 int flag = 0;
3069
3070 first_ackt.v64 = 0;
3071
3072 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3073 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3074 u8 sacked = scb->sacked;
3075 u32 acked_pcount;
3076
3077 tcp_ack_tstamp(sk, skb, prior_snd_una);
3078
3079 /* Determine how many packets and what bytes were acked, tso and else */
3080 if (after(scb->end_seq, tp->snd_una)) {
3081 if (tcp_skb_pcount(skb) == 1 ||
3082 !after(tp->snd_una, scb->seq))
3083 break;
3084
3085 acked_pcount = tcp_tso_acked(sk, skb);
3086 if (!acked_pcount)
3087 break;
3088
3089 fully_acked = false;
3090 } else {
3091 /* Speedup tcp_unlink_write_queue() and next loop */
3092 prefetchw(skb->next);
3093 acked_pcount = tcp_skb_pcount(skb);
3094 }
3095
3096 if (unlikely(sacked & TCPCB_RETRANS)) {
3097 if (sacked & TCPCB_SACKED_RETRANS)
3098 tp->retrans_out -= acked_pcount;
3099 flag |= FLAG_RETRANS_DATA_ACKED;
3100 } else {
3101 last_ackt = skb->skb_mstamp;
3102 WARN_ON_ONCE(last_ackt.v64 == 0);
3103 if (!first_ackt.v64)
3104 first_ackt = last_ackt;
3105
3106 if (!(sacked & TCPCB_SACKED_ACKED)) {
3107 reord = min(pkts_acked, reord);
3108 if (!after(scb->end_seq, tp->high_seq))
3109 flag |= FLAG_ORIG_SACK_ACKED;
3110 }
3111 }
3112
3113 if (sacked & TCPCB_SACKED_ACKED)
3114 tp->sacked_out -= acked_pcount;
3115 if (sacked & TCPCB_LOST)
3116 tp->lost_out -= acked_pcount;
3117
3118 tp->packets_out -= acked_pcount;
3119 pkts_acked += acked_pcount;
3120
3121 /* Initial outgoing SYN's get put onto the write_queue
3122 * just like anything else we transmit. It is not
3123 * true data, and if we misinform our callers that
3124 * this ACK acks real data, we will erroneously exit
3125 * connection startup slow start one packet too
3126 * quickly. This is severely frowned upon behavior.
3127 */
3128 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3129 flag |= FLAG_DATA_ACKED;
3130 } else {
3131 flag |= FLAG_SYN_ACKED;
3132 tp->retrans_stamp = 0;
3133 }
3134
3135 if (!fully_acked)
3136 break;
3137
3138 tcp_unlink_write_queue(skb, sk);
3139 sk_wmem_free_skb(sk, skb);
3140 if (unlikely(skb == tp->retransmit_skb_hint))
3141 tp->retransmit_skb_hint = NULL;
3142 if (unlikely(skb == tp->lost_skb_hint))
3143 tp->lost_skb_hint = NULL;
3144 }
3145
3146 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3147 tp->snd_up = tp->snd_una;
3148
3149 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3150 flag |= FLAG_SACK_RENEGING;
3151
3152 skb_mstamp_get(&now);
3153 if (likely(first_ackt.v64)) {
3154 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3155 ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3156 }
3157
3158 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3159
3160 if (flag & FLAG_ACKED) {
3161 const struct tcp_congestion_ops *ca_ops
3162 = inet_csk(sk)->icsk_ca_ops;
3163
3164 tcp_rearm_rto(sk);
3165 if (unlikely(icsk->icsk_mtup.probe_size &&
3166 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3167 tcp_mtup_probe_success(sk);
3168 }
3169
3170 if (tcp_is_reno(tp)) {
3171 tcp_remove_reno_sacks(sk, pkts_acked);
3172 } else {
3173 int delta;
3174
3175 /* Non-retransmitted hole got filled? That's reordering */
3176 if (reord < prior_fackets && reord <= tp->fackets_out)
3177 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3178
3179 delta = tcp_is_fack(tp) ? pkts_acked :
3180 prior_sacked - tp->sacked_out;
3181 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3182 }
3183
3184 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3185
3186 if (ca_ops->pkts_acked)
3187 ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
3188
3189 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3190 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3191 /* Do not re-arm RTO if the sack RTT is measured from data sent
3192 * after when the head was last (re)transmitted. Otherwise the
3193 * timeout may continue to extend in loss recovery.
3194 */
3195 tcp_rearm_rto(sk);
3196 }
3197
3198 #if FASTRETRANS_DEBUG > 0
3199 WARN_ON((int)tp->sacked_out < 0);
3200 WARN_ON((int)tp->lost_out < 0);
3201 WARN_ON((int)tp->retrans_out < 0);
3202 if (!tp->packets_out && tcp_is_sack(tp)) {
3203 icsk = inet_csk(sk);
3204 if (tp->lost_out) {
3205 pr_debug("Leak l=%u %d\n",
3206 tp->lost_out, icsk->icsk_ca_state);
3207 tp->lost_out = 0;
3208 }
3209 if (tp->sacked_out) {
3210 pr_debug("Leak s=%u %d\n",
3211 tp->sacked_out, icsk->icsk_ca_state);
3212 tp->sacked_out = 0;
3213 }
3214 if (tp->retrans_out) {
3215 pr_debug("Leak r=%u %d\n",
3216 tp->retrans_out, icsk->icsk_ca_state);
3217 tp->retrans_out = 0;
3218 }
3219 }
3220 #endif
3221 return flag;
3222 }
3223
tcp_ack_probe(struct sock * sk)3224 static void tcp_ack_probe(struct sock *sk)
3225 {
3226 const struct tcp_sock *tp = tcp_sk(sk);
3227 struct inet_connection_sock *icsk = inet_csk(sk);
3228
3229 /* Was it a usable window open? */
3230
3231 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3232 icsk->icsk_backoff = 0;
3233 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3234 /* Socket must be waked up by subsequent tcp_data_snd_check().
3235 * This function is not for random using!
3236 */
3237 } else {
3238 unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
3239
3240 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3241 when, TCP_RTO_MAX);
3242 }
3243 }
3244
tcp_ack_is_dubious(const struct sock * sk,const int flag)3245 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3246 {
3247 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3248 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3249 }
3250
3251 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3252 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3253 {
3254 if (tcp_in_cwnd_reduction(sk))
3255 return false;
3256
3257 /* If reordering is high then always grow cwnd whenever data is
3258 * delivered regardless of its ordering. Otherwise stay conservative
3259 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3260 * new SACK or ECE mark may first advance cwnd here and later reduce
3261 * cwnd in tcp_fastretrans_alert() based on more states.
3262 */
3263 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3264 return flag & FLAG_FORWARD_PROGRESS;
3265
3266 return flag & FLAG_DATA_ACKED;
3267 }
3268
3269 /* Check that window update is acceptable.
3270 * The function assumes that snd_una<=ack<=snd_next.
3271 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3272 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3273 const u32 ack, const u32 ack_seq,
3274 const u32 nwin)
3275 {
3276 return after(ack, tp->snd_una) ||
3277 after(ack_seq, tp->snd_wl1) ||
3278 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3279 }
3280
3281 /* Update our send window.
3282 *
3283 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3284 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3285 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3286 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3287 u32 ack_seq)
3288 {
3289 struct tcp_sock *tp = tcp_sk(sk);
3290 int flag = 0;
3291 u32 nwin = ntohs(tcp_hdr(skb)->window);
3292
3293 if (likely(!tcp_hdr(skb)->syn))
3294 nwin <<= tp->rx_opt.snd_wscale;
3295
3296 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3297 flag |= FLAG_WIN_UPDATE;
3298 tcp_update_wl(tp, ack_seq);
3299
3300 if (tp->snd_wnd != nwin) {
3301 tp->snd_wnd = nwin;
3302
3303 /* Note, it is the only place, where
3304 * fast path is recovered for sending TCP.
3305 */
3306 tp->pred_flags = 0;
3307 tcp_fast_path_check(sk);
3308
3309 if (nwin > tp->max_window) {
3310 tp->max_window = nwin;
3311 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3312 }
3313 }
3314 }
3315
3316 tp->snd_una = ack;
3317
3318 return flag;
3319 }
3320
3321 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3322 static void tcp_send_challenge_ack(struct sock *sk)
3323 {
3324 /* unprotected vars, we dont care of overwrites */
3325 static u32 challenge_timestamp;
3326 static unsigned int challenge_count;
3327 u32 now = jiffies / HZ;
3328 u32 count;
3329
3330 if (now != challenge_timestamp) {
3331 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3332
3333 challenge_timestamp = now;
3334 WRITE_ONCE(challenge_count, half +
3335 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3336 }
3337 count = READ_ONCE(challenge_count);
3338 if (count > 0) {
3339 WRITE_ONCE(challenge_count, count - 1);
3340 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3341 tcp_send_ack(sk);
3342 }
3343 }
3344
tcp_store_ts_recent(struct tcp_sock * tp)3345 static void tcp_store_ts_recent(struct tcp_sock *tp)
3346 {
3347 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3348 tp->rx_opt.ts_recent_stamp = get_seconds();
3349 }
3350
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3351 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3352 {
3353 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3354 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3355 * extra check below makes sure this can only happen
3356 * for pure ACK frames. -DaveM
3357 *
3358 * Not only, also it occurs for expired timestamps.
3359 */
3360
3361 if (tcp_paws_check(&tp->rx_opt, 0))
3362 tcp_store_ts_recent(tp);
3363 }
3364 }
3365
3366 /* This routine deals with acks during a TLP episode.
3367 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3368 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3369 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3370 {
3371 struct tcp_sock *tp = tcp_sk(sk);
3372 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3373 !(flag & (FLAG_SND_UNA_ADVANCED |
3374 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3375
3376 /* Mark the end of TLP episode on receiving TLP dupack or when
3377 * ack is after tlp_high_seq.
3378 */
3379 if (is_tlp_dupack) {
3380 tp->tlp_high_seq = 0;
3381 return;
3382 }
3383
3384 if (after(ack, tp->tlp_high_seq)) {
3385 tp->tlp_high_seq = 0;
3386 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3387 if (!(flag & FLAG_DSACKING_ACK)) {
3388 tcp_init_cwnd_reduction(sk);
3389 tcp_set_ca_state(sk, TCP_CA_CWR);
3390 tcp_end_cwnd_reduction(sk);
3391 tcp_try_keep_open(sk);
3392 NET_INC_STATS_BH(sock_net(sk),
3393 LINUX_MIB_TCPLOSSPROBERECOVERY);
3394 }
3395 }
3396 }
3397
tcp_in_ack_event(struct sock * sk,u32 flags)3398 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3399 {
3400 const struct inet_connection_sock *icsk = inet_csk(sk);
3401
3402 if (icsk->icsk_ca_ops->in_ack_event)
3403 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3404 }
3405
3406 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3407 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3408 {
3409 struct inet_connection_sock *icsk = inet_csk(sk);
3410 struct tcp_sock *tp = tcp_sk(sk);
3411 u32 prior_snd_una = tp->snd_una;
3412 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3413 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3414 bool is_dupack = false;
3415 u32 prior_fackets;
3416 int prior_packets = tp->packets_out;
3417 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3418 int acked = 0; /* Number of packets newly acked */
3419 long sack_rtt_us = -1L;
3420
3421 /* We very likely will need to access write queue head. */
3422 prefetchw(sk->sk_write_queue.next);
3423
3424 /* If the ack is older than previous acks
3425 * then we can probably ignore it.
3426 */
3427 if (before(ack, prior_snd_una)) {
3428 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3429 if (before(ack, prior_snd_una - tp->max_window)) {
3430 tcp_send_challenge_ack(sk);
3431 return -1;
3432 }
3433 goto old_ack;
3434 }
3435
3436 /* If the ack includes data we haven't sent yet, discard
3437 * this segment (RFC793 Section 3.9).
3438 */
3439 if (after(ack, tp->snd_nxt))
3440 goto invalid_ack;
3441
3442 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3443 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3444 tcp_rearm_rto(sk);
3445
3446 if (after(ack, prior_snd_una)) {
3447 flag |= FLAG_SND_UNA_ADVANCED;
3448 icsk->icsk_retransmits = 0;
3449 }
3450
3451 prior_fackets = tp->fackets_out;
3452
3453 /* ts_recent update must be made after we are sure that the packet
3454 * is in window.
3455 */
3456 if (flag & FLAG_UPDATE_TS_RECENT)
3457 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3458
3459 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3460 /* Window is constant, pure forward advance.
3461 * No more checks are required.
3462 * Note, we use the fact that SND.UNA>=SND.WL2.
3463 */
3464 tcp_update_wl(tp, ack_seq);
3465 tp->snd_una = ack;
3466 flag |= FLAG_WIN_UPDATE;
3467
3468 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3469
3470 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3471 } else {
3472 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3473
3474 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3475 flag |= FLAG_DATA;
3476 else
3477 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3478
3479 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3480
3481 if (TCP_SKB_CB(skb)->sacked)
3482 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3483 &sack_rtt_us);
3484
3485 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3486 flag |= FLAG_ECE;
3487 ack_ev_flags |= CA_ACK_ECE;
3488 }
3489
3490 if (flag & FLAG_WIN_UPDATE)
3491 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3492
3493 tcp_in_ack_event(sk, ack_ev_flags);
3494 }
3495
3496 /* We passed data and got it acked, remove any soft error
3497 * log. Something worked...
3498 */
3499 sk->sk_err_soft = 0;
3500 icsk->icsk_probes_out = 0;
3501 tp->rcv_tstamp = tcp_time_stamp;
3502 if (!prior_packets)
3503 goto no_queue;
3504
3505 /* See if we can take anything off of the retransmit queue. */
3506 acked = tp->packets_out;
3507 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3508 sack_rtt_us);
3509 acked -= tp->packets_out;
3510
3511 /* Advance cwnd if state allows */
3512 if (tcp_may_raise_cwnd(sk, flag))
3513 tcp_cong_avoid(sk, ack, acked);
3514
3515 if (tcp_ack_is_dubious(sk, flag)) {
3516 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3517 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3518 is_dupack, flag);
3519 }
3520 if (tp->tlp_high_seq)
3521 tcp_process_tlp_ack(sk, ack, flag);
3522
3523 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3524 struct dst_entry *dst = __sk_dst_get(sk);
3525 if (dst)
3526 dst_confirm(dst);
3527 }
3528
3529 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3530 tcp_schedule_loss_probe(sk);
3531 tcp_update_pacing_rate(sk);
3532 return 1;
3533
3534 no_queue:
3535 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3536 if (flag & FLAG_DSACKING_ACK)
3537 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3538 is_dupack, flag);
3539 /* If this ack opens up a zero window, clear backoff. It was
3540 * being used to time the probes, and is probably far higher than
3541 * it needs to be for normal retransmission.
3542 */
3543 if (tcp_send_head(sk))
3544 tcp_ack_probe(sk);
3545
3546 if (tp->tlp_high_seq)
3547 tcp_process_tlp_ack(sk, ack, flag);
3548 return 1;
3549
3550 invalid_ack:
3551 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3552 return -1;
3553
3554 old_ack:
3555 /* If data was SACKed, tag it and see if we should send more data.
3556 * If data was DSACKed, see if we can undo a cwnd reduction.
3557 */
3558 if (TCP_SKB_CB(skb)->sacked) {
3559 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3560 &sack_rtt_us);
3561 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3562 is_dupack, flag);
3563 }
3564
3565 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3566 return 0;
3567 }
3568
3569 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3570 * But, this can also be called on packets in the established flow when
3571 * the fast version below fails.
3572 */
tcp_parse_options(const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)3573 void tcp_parse_options(const struct sk_buff *skb,
3574 struct tcp_options_received *opt_rx, int estab,
3575 struct tcp_fastopen_cookie *foc)
3576 {
3577 const unsigned char *ptr;
3578 const struct tcphdr *th = tcp_hdr(skb);
3579 int length = (th->doff * 4) - sizeof(struct tcphdr);
3580
3581 ptr = (const unsigned char *)(th + 1);
3582 opt_rx->saw_tstamp = 0;
3583
3584 while (length > 0) {
3585 int opcode = *ptr++;
3586 int opsize;
3587
3588 switch (opcode) {
3589 case TCPOPT_EOL:
3590 return;
3591 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3592 length--;
3593 continue;
3594 default:
3595 opsize = *ptr++;
3596 if (opsize < 2) /* "silly options" */
3597 return;
3598 if (opsize > length)
3599 return; /* don't parse partial options */
3600 switch (opcode) {
3601 case TCPOPT_MSS:
3602 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3603 u16 in_mss = get_unaligned_be16(ptr);
3604 if (in_mss) {
3605 if (opt_rx->user_mss &&
3606 opt_rx->user_mss < in_mss)
3607 in_mss = opt_rx->user_mss;
3608 opt_rx->mss_clamp = in_mss;
3609 }
3610 }
3611 break;
3612 case TCPOPT_WINDOW:
3613 if (opsize == TCPOLEN_WINDOW && th->syn &&
3614 !estab && sysctl_tcp_window_scaling) {
3615 __u8 snd_wscale = *(__u8 *)ptr;
3616 opt_rx->wscale_ok = 1;
3617 if (snd_wscale > 14) {
3618 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3619 __func__,
3620 snd_wscale);
3621 snd_wscale = 14;
3622 }
3623 opt_rx->snd_wscale = snd_wscale;
3624 }
3625 break;
3626 case TCPOPT_TIMESTAMP:
3627 if ((opsize == TCPOLEN_TIMESTAMP) &&
3628 ((estab && opt_rx->tstamp_ok) ||
3629 (!estab && sysctl_tcp_timestamps))) {
3630 opt_rx->saw_tstamp = 1;
3631 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3632 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3633 }
3634 break;
3635 case TCPOPT_SACK_PERM:
3636 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3637 !estab && sysctl_tcp_sack) {
3638 opt_rx->sack_ok = TCP_SACK_SEEN;
3639 tcp_sack_reset(opt_rx);
3640 }
3641 break;
3642
3643 case TCPOPT_SACK:
3644 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3645 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3646 opt_rx->sack_ok) {
3647 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3648 }
3649 break;
3650 #ifdef CONFIG_TCP_MD5SIG
3651 case TCPOPT_MD5SIG:
3652 /*
3653 * The MD5 Hash has already been
3654 * checked (see tcp_v{4,6}_do_rcv()).
3655 */
3656 break;
3657 #endif
3658 case TCPOPT_EXP:
3659 /* Fast Open option shares code 254 using a
3660 * 16 bits magic number. It's valid only in
3661 * SYN or SYN-ACK with an even size.
3662 */
3663 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3664 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3665 foc == NULL || !th->syn || (opsize & 1))
3666 break;
3667 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3668 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3669 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3670 memcpy(foc->val, ptr + 2, foc->len);
3671 else if (foc->len != 0)
3672 foc->len = -1;
3673 break;
3674
3675 }
3676 ptr += opsize-2;
3677 length -= opsize;
3678 }
3679 }
3680 }
3681 EXPORT_SYMBOL(tcp_parse_options);
3682
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)3683 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3684 {
3685 const __be32 *ptr = (const __be32 *)(th + 1);
3686
3687 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3688 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3689 tp->rx_opt.saw_tstamp = 1;
3690 ++ptr;
3691 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3692 ++ptr;
3693 if (*ptr)
3694 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3695 else
3696 tp->rx_opt.rcv_tsecr = 0;
3697 return true;
3698 }
3699 return false;
3700 }
3701
3702 /* Fast parse options. This hopes to only see timestamps.
3703 * If it is wrong it falls back on tcp_parse_options().
3704 */
tcp_fast_parse_options(const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)3705 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3706 const struct tcphdr *th, struct tcp_sock *tp)
3707 {
3708 /* In the spirit of fast parsing, compare doff directly to constant
3709 * values. Because equality is used, short doff can be ignored here.
3710 */
3711 if (th->doff == (sizeof(*th) / 4)) {
3712 tp->rx_opt.saw_tstamp = 0;
3713 return false;
3714 } else if (tp->rx_opt.tstamp_ok &&
3715 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3716 if (tcp_parse_aligned_timestamp(tp, th))
3717 return true;
3718 }
3719
3720 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3721 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3722 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3723
3724 return true;
3725 }
3726
3727 #ifdef CONFIG_TCP_MD5SIG
3728 /*
3729 * Parse MD5 Signature option
3730 */
tcp_parse_md5sig_option(const struct tcphdr * th)3731 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3732 {
3733 int length = (th->doff << 2) - sizeof(*th);
3734 const u8 *ptr = (const u8 *)(th + 1);
3735
3736 /* If the TCP option is too short, we can short cut */
3737 if (length < TCPOLEN_MD5SIG)
3738 return NULL;
3739
3740 while (length > 0) {
3741 int opcode = *ptr++;
3742 int opsize;
3743
3744 switch (opcode) {
3745 case TCPOPT_EOL:
3746 return NULL;
3747 case TCPOPT_NOP:
3748 length--;
3749 continue;
3750 default:
3751 opsize = *ptr++;
3752 if (opsize < 2 || opsize > length)
3753 return NULL;
3754 if (opcode == TCPOPT_MD5SIG)
3755 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3756 }
3757 ptr += opsize - 2;
3758 length -= opsize;
3759 }
3760 return NULL;
3761 }
3762 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3763 #endif
3764
3765 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3766 *
3767 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3768 * it can pass through stack. So, the following predicate verifies that
3769 * this segment is not used for anything but congestion avoidance or
3770 * fast retransmit. Moreover, we even are able to eliminate most of such
3771 * second order effects, if we apply some small "replay" window (~RTO)
3772 * to timestamp space.
3773 *
3774 * All these measures still do not guarantee that we reject wrapped ACKs
3775 * on networks with high bandwidth, when sequence space is recycled fastly,
3776 * but it guarantees that such events will be very rare and do not affect
3777 * connection seriously. This doesn't look nice, but alas, PAWS is really
3778 * buggy extension.
3779 *
3780 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3781 * states that events when retransmit arrives after original data are rare.
3782 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3783 * the biggest problem on large power networks even with minor reordering.
3784 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3785 * up to bandwidth of 18Gigabit/sec. 8) ]
3786 */
3787
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)3788 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3789 {
3790 const struct tcp_sock *tp = tcp_sk(sk);
3791 const struct tcphdr *th = tcp_hdr(skb);
3792 u32 seq = TCP_SKB_CB(skb)->seq;
3793 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3794
3795 return (/* 1. Pure ACK with correct sequence number. */
3796 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3797
3798 /* 2. ... and duplicate ACK. */
3799 ack == tp->snd_una &&
3800
3801 /* 3. ... and does not update window. */
3802 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3803
3804 /* 4. ... and sits in replay window. */
3805 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3806 }
3807
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)3808 static inline bool tcp_paws_discard(const struct sock *sk,
3809 const struct sk_buff *skb)
3810 {
3811 const struct tcp_sock *tp = tcp_sk(sk);
3812
3813 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3814 !tcp_disordered_ack(sk, skb);
3815 }
3816
3817 /* Check segment sequence number for validity.
3818 *
3819 * Segment controls are considered valid, if the segment
3820 * fits to the window after truncation to the window. Acceptability
3821 * of data (and SYN, FIN, of course) is checked separately.
3822 * See tcp_data_queue(), for example.
3823 *
3824 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3825 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3826 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3827 * (borrowed from freebsd)
3828 */
3829
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)3830 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3831 {
3832 return !before(end_seq, tp->rcv_wup) &&
3833 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3834 }
3835
3836 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)3837 void tcp_reset(struct sock *sk)
3838 {
3839 /* We want the right error as BSD sees it (and indeed as we do). */
3840 switch (sk->sk_state) {
3841 case TCP_SYN_SENT:
3842 sk->sk_err = ECONNREFUSED;
3843 break;
3844 case TCP_CLOSE_WAIT:
3845 sk->sk_err = EPIPE;
3846 break;
3847 case TCP_CLOSE:
3848 return;
3849 default:
3850 sk->sk_err = ECONNRESET;
3851 }
3852 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3853 smp_wmb();
3854
3855 if (!sock_flag(sk, SOCK_DEAD))
3856 sk->sk_error_report(sk);
3857
3858 tcp_done(sk);
3859 }
3860
3861 /*
3862 * Process the FIN bit. This now behaves as it is supposed to work
3863 * and the FIN takes effect when it is validly part of sequence
3864 * space. Not before when we get holes.
3865 *
3866 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3867 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3868 * TIME-WAIT)
3869 *
3870 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3871 * close and we go into CLOSING (and later onto TIME-WAIT)
3872 *
3873 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3874 */
tcp_fin(struct sock * sk)3875 static void tcp_fin(struct sock *sk)
3876 {
3877 struct tcp_sock *tp = tcp_sk(sk);
3878 const struct dst_entry *dst;
3879
3880 inet_csk_schedule_ack(sk);
3881
3882 sk->sk_shutdown |= RCV_SHUTDOWN;
3883 sock_set_flag(sk, SOCK_DONE);
3884
3885 switch (sk->sk_state) {
3886 case TCP_SYN_RECV:
3887 case TCP_ESTABLISHED:
3888 /* Move to CLOSE_WAIT */
3889 tcp_set_state(sk, TCP_CLOSE_WAIT);
3890 dst = __sk_dst_get(sk);
3891 if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3892 inet_csk(sk)->icsk_ack.pingpong = 1;
3893 break;
3894
3895 case TCP_CLOSE_WAIT:
3896 case TCP_CLOSING:
3897 /* Received a retransmission of the FIN, do
3898 * nothing.
3899 */
3900 break;
3901 case TCP_LAST_ACK:
3902 /* RFC793: Remain in the LAST-ACK state. */
3903 break;
3904
3905 case TCP_FIN_WAIT1:
3906 /* This case occurs when a simultaneous close
3907 * happens, we must ack the received FIN and
3908 * enter the CLOSING state.
3909 */
3910 tcp_send_ack(sk);
3911 tcp_set_state(sk, TCP_CLOSING);
3912 break;
3913 case TCP_FIN_WAIT2:
3914 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3915 tcp_send_ack(sk);
3916 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3917 break;
3918 default:
3919 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3920 * cases we should never reach this piece of code.
3921 */
3922 pr_err("%s: Impossible, sk->sk_state=%d\n",
3923 __func__, sk->sk_state);
3924 break;
3925 }
3926
3927 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3928 * Probably, we should reset in this case. For now drop them.
3929 */
3930 __skb_queue_purge(&tp->out_of_order_queue);
3931 if (tcp_is_sack(tp))
3932 tcp_sack_reset(&tp->rx_opt);
3933 sk_mem_reclaim(sk);
3934
3935 if (!sock_flag(sk, SOCK_DEAD)) {
3936 sk->sk_state_change(sk);
3937
3938 /* Do not send POLL_HUP for half duplex close. */
3939 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3940 sk->sk_state == TCP_CLOSE)
3941 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3942 else
3943 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3944 }
3945 }
3946
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)3947 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3948 u32 end_seq)
3949 {
3950 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3951 if (before(seq, sp->start_seq))
3952 sp->start_seq = seq;
3953 if (after(end_seq, sp->end_seq))
3954 sp->end_seq = end_seq;
3955 return true;
3956 }
3957 return false;
3958 }
3959
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)3960 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3961 {
3962 struct tcp_sock *tp = tcp_sk(sk);
3963
3964 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3965 int mib_idx;
3966
3967 if (before(seq, tp->rcv_nxt))
3968 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3969 else
3970 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3971
3972 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3973
3974 tp->rx_opt.dsack = 1;
3975 tp->duplicate_sack[0].start_seq = seq;
3976 tp->duplicate_sack[0].end_seq = end_seq;
3977 }
3978 }
3979
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)3980 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3981 {
3982 struct tcp_sock *tp = tcp_sk(sk);
3983
3984 if (!tp->rx_opt.dsack)
3985 tcp_dsack_set(sk, seq, end_seq);
3986 else
3987 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3988 }
3989
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)3990 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3991 {
3992 struct tcp_sock *tp = tcp_sk(sk);
3993
3994 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3995 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3996 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3997 tcp_enter_quickack_mode(sk);
3998
3999 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4000 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4001
4002 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4003 end_seq = tp->rcv_nxt;
4004 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4005 }
4006 }
4007
4008 tcp_send_ack(sk);
4009 }
4010
4011 /* These routines update the SACK block as out-of-order packets arrive or
4012 * in-order packets close up the sequence space.
4013 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4014 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4015 {
4016 int this_sack;
4017 struct tcp_sack_block *sp = &tp->selective_acks[0];
4018 struct tcp_sack_block *swalk = sp + 1;
4019
4020 /* See if the recent change to the first SACK eats into
4021 * or hits the sequence space of other SACK blocks, if so coalesce.
4022 */
4023 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4024 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4025 int i;
4026
4027 /* Zap SWALK, by moving every further SACK up by one slot.
4028 * Decrease num_sacks.
4029 */
4030 tp->rx_opt.num_sacks--;
4031 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4032 sp[i] = sp[i + 1];
4033 continue;
4034 }
4035 this_sack++, swalk++;
4036 }
4037 }
4038
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4039 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4040 {
4041 struct tcp_sock *tp = tcp_sk(sk);
4042 struct tcp_sack_block *sp = &tp->selective_acks[0];
4043 int cur_sacks = tp->rx_opt.num_sacks;
4044 int this_sack;
4045
4046 if (!cur_sacks)
4047 goto new_sack;
4048
4049 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4050 if (tcp_sack_extend(sp, seq, end_seq)) {
4051 /* Rotate this_sack to the first one. */
4052 for (; this_sack > 0; this_sack--, sp--)
4053 swap(*sp, *(sp - 1));
4054 if (cur_sacks > 1)
4055 tcp_sack_maybe_coalesce(tp);
4056 return;
4057 }
4058 }
4059
4060 /* Could not find an adjacent existing SACK, build a new one,
4061 * put it at the front, and shift everyone else down. We
4062 * always know there is at least one SACK present already here.
4063 *
4064 * If the sack array is full, forget about the last one.
4065 */
4066 if (this_sack >= TCP_NUM_SACKS) {
4067 this_sack--;
4068 tp->rx_opt.num_sacks--;
4069 sp--;
4070 }
4071 for (; this_sack > 0; this_sack--, sp--)
4072 *sp = *(sp - 1);
4073
4074 new_sack:
4075 /* Build the new head SACK, and we're done. */
4076 sp->start_seq = seq;
4077 sp->end_seq = end_seq;
4078 tp->rx_opt.num_sacks++;
4079 }
4080
4081 /* RCV.NXT advances, some SACKs should be eaten. */
4082
tcp_sack_remove(struct tcp_sock * tp)4083 static void tcp_sack_remove(struct tcp_sock *tp)
4084 {
4085 struct tcp_sack_block *sp = &tp->selective_acks[0];
4086 int num_sacks = tp->rx_opt.num_sacks;
4087 int this_sack;
4088
4089 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4090 if (skb_queue_empty(&tp->out_of_order_queue)) {
4091 tp->rx_opt.num_sacks = 0;
4092 return;
4093 }
4094
4095 for (this_sack = 0; this_sack < num_sacks;) {
4096 /* Check if the start of the sack is covered by RCV.NXT. */
4097 if (!before(tp->rcv_nxt, sp->start_seq)) {
4098 int i;
4099
4100 /* RCV.NXT must cover all the block! */
4101 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4102
4103 /* Zap this SACK, by moving forward any other SACKS. */
4104 for (i = this_sack+1; i < num_sacks; i++)
4105 tp->selective_acks[i-1] = tp->selective_acks[i];
4106 num_sacks--;
4107 continue;
4108 }
4109 this_sack++;
4110 sp++;
4111 }
4112 tp->rx_opt.num_sacks = num_sacks;
4113 }
4114
4115 /**
4116 * tcp_try_coalesce - try to merge skb to prior one
4117 * @sk: socket
4118 * @to: prior buffer
4119 * @from: buffer to add in queue
4120 * @fragstolen: pointer to boolean
4121 *
4122 * Before queueing skb @from after @to, try to merge them
4123 * to reduce overall memory use and queue lengths, if cost is small.
4124 * Packets in ofo or receive queues can stay a long time.
4125 * Better try to coalesce them right now to avoid future collapses.
4126 * Returns true if caller should free @from instead of queueing it
4127 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4128 static bool tcp_try_coalesce(struct sock *sk,
4129 struct sk_buff *to,
4130 struct sk_buff *from,
4131 bool *fragstolen)
4132 {
4133 int delta;
4134
4135 *fragstolen = false;
4136
4137 /* Its possible this segment overlaps with prior segment in queue */
4138 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4139 return false;
4140
4141 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4142 return false;
4143
4144 atomic_add(delta, &sk->sk_rmem_alloc);
4145 sk_mem_charge(sk, delta);
4146 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4147 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4148 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4149 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4150 return true;
4151 }
4152
4153 /* This one checks to see if we can put data from the
4154 * out_of_order queue into the receive_queue.
4155 */
tcp_ofo_queue(struct sock * sk)4156 static void tcp_ofo_queue(struct sock *sk)
4157 {
4158 struct tcp_sock *tp = tcp_sk(sk);
4159 __u32 dsack_high = tp->rcv_nxt;
4160 struct sk_buff *skb, *tail;
4161 bool fragstolen, eaten;
4162
4163 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4164 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4165 break;
4166
4167 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4168 __u32 dsack = dsack_high;
4169 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4170 dsack_high = TCP_SKB_CB(skb)->end_seq;
4171 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4172 }
4173
4174 __skb_unlink(skb, &tp->out_of_order_queue);
4175 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4176 SOCK_DEBUG(sk, "ofo packet was already received\n");
4177 __kfree_skb(skb);
4178 continue;
4179 }
4180 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4181 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4182 TCP_SKB_CB(skb)->end_seq);
4183
4184 tail = skb_peek_tail(&sk->sk_receive_queue);
4185 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4186 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4187 if (!eaten)
4188 __skb_queue_tail(&sk->sk_receive_queue, skb);
4189 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4190 tcp_fin(sk);
4191 if (eaten)
4192 kfree_skb_partial(skb, fragstolen);
4193 }
4194 }
4195
4196 static bool tcp_prune_ofo_queue(struct sock *sk);
4197 static int tcp_prune_queue(struct sock *sk);
4198
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4199 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4200 unsigned int size)
4201 {
4202 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4203 !sk_rmem_schedule(sk, skb, size)) {
4204
4205 if (tcp_prune_queue(sk) < 0)
4206 return -1;
4207
4208 if (!sk_rmem_schedule(sk, skb, size)) {
4209 if (!tcp_prune_ofo_queue(sk))
4210 return -1;
4211
4212 if (!sk_rmem_schedule(sk, skb, size))
4213 return -1;
4214 }
4215 }
4216 return 0;
4217 }
4218
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4219 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4220 {
4221 struct tcp_sock *tp = tcp_sk(sk);
4222 struct sk_buff *skb1;
4223 u32 seq, end_seq;
4224
4225 tcp_ecn_check_ce(tp, skb);
4226
4227 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4228 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4229 __kfree_skb(skb);
4230 return;
4231 }
4232
4233 /* Disable header prediction. */
4234 tp->pred_flags = 0;
4235 inet_csk_schedule_ack(sk);
4236
4237 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4238 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4239 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4240
4241 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4242 if (!skb1) {
4243 /* Initial out of order segment, build 1 SACK. */
4244 if (tcp_is_sack(tp)) {
4245 tp->rx_opt.num_sacks = 1;
4246 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4247 tp->selective_acks[0].end_seq =
4248 TCP_SKB_CB(skb)->end_seq;
4249 }
4250 __skb_queue_head(&tp->out_of_order_queue, skb);
4251 goto end;
4252 }
4253
4254 seq = TCP_SKB_CB(skb)->seq;
4255 end_seq = TCP_SKB_CB(skb)->end_seq;
4256
4257 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4258 bool fragstolen;
4259
4260 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4261 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4262 } else {
4263 tcp_grow_window(sk, skb);
4264 kfree_skb_partial(skb, fragstolen);
4265 skb = NULL;
4266 }
4267
4268 if (!tp->rx_opt.num_sacks ||
4269 tp->selective_acks[0].end_seq != seq)
4270 goto add_sack;
4271
4272 /* Common case: data arrive in order after hole. */
4273 tp->selective_acks[0].end_seq = end_seq;
4274 goto end;
4275 }
4276
4277 /* Find place to insert this segment. */
4278 while (1) {
4279 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4280 break;
4281 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4282 skb1 = NULL;
4283 break;
4284 }
4285 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4286 }
4287
4288 /* Do skb overlap to previous one? */
4289 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4290 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4291 /* All the bits are present. Drop. */
4292 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4293 __kfree_skb(skb);
4294 skb = NULL;
4295 tcp_dsack_set(sk, seq, end_seq);
4296 goto add_sack;
4297 }
4298 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4299 /* Partial overlap. */
4300 tcp_dsack_set(sk, seq,
4301 TCP_SKB_CB(skb1)->end_seq);
4302 } else {
4303 if (skb_queue_is_first(&tp->out_of_order_queue,
4304 skb1))
4305 skb1 = NULL;
4306 else
4307 skb1 = skb_queue_prev(
4308 &tp->out_of_order_queue,
4309 skb1);
4310 }
4311 }
4312 if (!skb1)
4313 __skb_queue_head(&tp->out_of_order_queue, skb);
4314 else
4315 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4316
4317 /* And clean segments covered by new one as whole. */
4318 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4319 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4320
4321 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4322 break;
4323 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4324 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4325 end_seq);
4326 break;
4327 }
4328 __skb_unlink(skb1, &tp->out_of_order_queue);
4329 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4330 TCP_SKB_CB(skb1)->end_seq);
4331 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4332 __kfree_skb(skb1);
4333 }
4334
4335 add_sack:
4336 if (tcp_is_sack(tp))
4337 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4338 end:
4339 if (skb) {
4340 tcp_grow_window(sk, skb);
4341 skb_set_owner_r(skb, sk);
4342 }
4343 }
4344
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,int hdrlen,bool * fragstolen)4345 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4346 bool *fragstolen)
4347 {
4348 int eaten;
4349 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4350
4351 __skb_pull(skb, hdrlen);
4352 eaten = (tail &&
4353 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4354 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4355 if (!eaten) {
4356 __skb_queue_tail(&sk->sk_receive_queue, skb);
4357 skb_set_owner_r(skb, sk);
4358 }
4359 return eaten;
4360 }
4361
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4362 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4363 {
4364 struct sk_buff *skb;
4365 int err = -ENOMEM;
4366 int data_len = 0;
4367 bool fragstolen;
4368
4369 if (size == 0)
4370 return 0;
4371
4372 if (size > PAGE_SIZE) {
4373 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4374
4375 data_len = npages << PAGE_SHIFT;
4376 size = data_len + (size & ~PAGE_MASK);
4377 }
4378 skb = alloc_skb_with_frags(size - data_len, data_len,
4379 PAGE_ALLOC_COSTLY_ORDER,
4380 &err, sk->sk_allocation);
4381 if (!skb)
4382 goto err;
4383
4384 skb_put(skb, size - data_len);
4385 skb->data_len = data_len;
4386 skb->len = size;
4387
4388 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4389 goto err_free;
4390
4391 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, size);
4392 if (err)
4393 goto err_free;
4394
4395 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4396 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4397 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4398
4399 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4400 WARN_ON_ONCE(fragstolen); /* should not happen */
4401 __kfree_skb(skb);
4402 }
4403 return size;
4404
4405 err_free:
4406 kfree_skb(skb);
4407 err:
4408 return err;
4409
4410 }
4411
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4412 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4413 {
4414 struct tcp_sock *tp = tcp_sk(sk);
4415 int eaten = -1;
4416 bool fragstolen = false;
4417
4418 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4419 goto drop;
4420
4421 skb_dst_drop(skb);
4422 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4423
4424 tcp_ecn_accept_cwr(tp, skb);
4425
4426 tp->rx_opt.dsack = 0;
4427
4428 /* Queue data for delivery to the user.
4429 * Packets in sequence go to the receive queue.
4430 * Out of sequence packets to the out_of_order_queue.
4431 */
4432 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4433 if (tcp_receive_window(tp) == 0)
4434 goto out_of_window;
4435
4436 /* Ok. In sequence. In window. */
4437 if (tp->ucopy.task == current &&
4438 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4439 sock_owned_by_user(sk) && !tp->urg_data) {
4440 int chunk = min_t(unsigned int, skb->len,
4441 tp->ucopy.len);
4442
4443 __set_current_state(TASK_RUNNING);
4444
4445 local_bh_enable();
4446 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4447 tp->ucopy.len -= chunk;
4448 tp->copied_seq += chunk;
4449 eaten = (chunk == skb->len);
4450 tcp_rcv_space_adjust(sk);
4451 }
4452 local_bh_disable();
4453 }
4454
4455 if (eaten <= 0) {
4456 queue_and_out:
4457 if (eaten < 0 &&
4458 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4459 goto drop;
4460
4461 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4462 }
4463 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4464 if (skb->len)
4465 tcp_event_data_recv(sk, skb);
4466 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4467 tcp_fin(sk);
4468
4469 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4470 tcp_ofo_queue(sk);
4471
4472 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4473 * gap in queue is filled.
4474 */
4475 if (skb_queue_empty(&tp->out_of_order_queue))
4476 inet_csk(sk)->icsk_ack.pingpong = 0;
4477 }
4478
4479 if (tp->rx_opt.num_sacks)
4480 tcp_sack_remove(tp);
4481
4482 tcp_fast_path_check(sk);
4483
4484 if (eaten > 0)
4485 kfree_skb_partial(skb, fragstolen);
4486 if (!sock_flag(sk, SOCK_DEAD))
4487 sk->sk_data_ready(sk);
4488 return;
4489 }
4490
4491 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4492 /* A retransmit, 2nd most common case. Force an immediate ack. */
4493 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4494 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4495
4496 out_of_window:
4497 tcp_enter_quickack_mode(sk);
4498 inet_csk_schedule_ack(sk);
4499 drop:
4500 __kfree_skb(skb);
4501 return;
4502 }
4503
4504 /* Out of window. F.e. zero window probe. */
4505 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4506 goto out_of_window;
4507
4508 tcp_enter_quickack_mode(sk);
4509
4510 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4511 /* Partial packet, seq < rcv_next < end_seq */
4512 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4513 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4514 TCP_SKB_CB(skb)->end_seq);
4515
4516 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4517
4518 /* If window is closed, drop tail of packet. But after
4519 * remembering D-SACK for its head made in previous line.
4520 */
4521 if (!tcp_receive_window(tp))
4522 goto out_of_window;
4523 goto queue_and_out;
4524 }
4525
4526 tcp_data_queue_ofo(sk, skb);
4527 }
4528
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list)4529 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4530 struct sk_buff_head *list)
4531 {
4532 struct sk_buff *next = NULL;
4533
4534 if (!skb_queue_is_last(list, skb))
4535 next = skb_queue_next(list, skb);
4536
4537 __skb_unlink(skb, list);
4538 __kfree_skb(skb);
4539 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4540
4541 return next;
4542 }
4543
4544 /* Collapse contiguous sequence of skbs head..tail with
4545 * sequence numbers start..end.
4546 *
4547 * If tail is NULL, this means until the end of the list.
4548 *
4549 * Segments with FIN/SYN are not collapsed (only because this
4550 * simplifies code)
4551 */
4552 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)4553 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4554 struct sk_buff *head, struct sk_buff *tail,
4555 u32 start, u32 end)
4556 {
4557 struct sk_buff *skb, *n;
4558 bool end_of_skbs;
4559
4560 /* First, check that queue is collapsible and find
4561 * the point where collapsing can be useful. */
4562 skb = head;
4563 restart:
4564 end_of_skbs = true;
4565 skb_queue_walk_from_safe(list, skb, n) {
4566 if (skb == tail)
4567 break;
4568 /* No new bits? It is possible on ofo queue. */
4569 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4570 skb = tcp_collapse_one(sk, skb, list);
4571 if (!skb)
4572 break;
4573 goto restart;
4574 }
4575
4576 /* The first skb to collapse is:
4577 * - not SYN/FIN and
4578 * - bloated or contains data before "start" or
4579 * overlaps to the next one.
4580 */
4581 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4582 (tcp_win_from_space(skb->truesize) > skb->len ||
4583 before(TCP_SKB_CB(skb)->seq, start))) {
4584 end_of_skbs = false;
4585 break;
4586 }
4587
4588 if (!skb_queue_is_last(list, skb)) {
4589 struct sk_buff *next = skb_queue_next(list, skb);
4590 if (next != tail &&
4591 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4592 end_of_skbs = false;
4593 break;
4594 }
4595 }
4596
4597 /* Decided to skip this, advance start seq. */
4598 start = TCP_SKB_CB(skb)->end_seq;
4599 }
4600 if (end_of_skbs ||
4601 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4602 return;
4603
4604 while (before(start, end)) {
4605 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4606 struct sk_buff *nskb;
4607
4608 nskb = alloc_skb(copy, GFP_ATOMIC);
4609 if (!nskb)
4610 return;
4611
4612 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4613 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4614 __skb_queue_before(list, skb, nskb);
4615 skb_set_owner_r(nskb, sk);
4616
4617 /* Copy data, releasing collapsed skbs. */
4618 while (copy > 0) {
4619 int offset = start - TCP_SKB_CB(skb)->seq;
4620 int size = TCP_SKB_CB(skb)->end_seq - start;
4621
4622 BUG_ON(offset < 0);
4623 if (size > 0) {
4624 size = min(copy, size);
4625 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4626 BUG();
4627 TCP_SKB_CB(nskb)->end_seq += size;
4628 copy -= size;
4629 start += size;
4630 }
4631 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4632 skb = tcp_collapse_one(sk, skb, list);
4633 if (!skb ||
4634 skb == tail ||
4635 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4636 return;
4637 }
4638 }
4639 }
4640 }
4641
4642 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4643 * and tcp_collapse() them until all the queue is collapsed.
4644 */
tcp_collapse_ofo_queue(struct sock * sk)4645 static void tcp_collapse_ofo_queue(struct sock *sk)
4646 {
4647 struct tcp_sock *tp = tcp_sk(sk);
4648 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4649 struct sk_buff *head;
4650 u32 start, end;
4651
4652 if (skb == NULL)
4653 return;
4654
4655 start = TCP_SKB_CB(skb)->seq;
4656 end = TCP_SKB_CB(skb)->end_seq;
4657 head = skb;
4658
4659 for (;;) {
4660 struct sk_buff *next = NULL;
4661
4662 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4663 next = skb_queue_next(&tp->out_of_order_queue, skb);
4664 skb = next;
4665
4666 /* Segment is terminated when we see gap or when
4667 * we are at the end of all the queue. */
4668 if (!skb ||
4669 after(TCP_SKB_CB(skb)->seq, end) ||
4670 before(TCP_SKB_CB(skb)->end_seq, start)) {
4671 tcp_collapse(sk, &tp->out_of_order_queue,
4672 head, skb, start, end);
4673 head = skb;
4674 if (!skb)
4675 break;
4676 /* Start new segment */
4677 start = TCP_SKB_CB(skb)->seq;
4678 end = TCP_SKB_CB(skb)->end_seq;
4679 } else {
4680 if (before(TCP_SKB_CB(skb)->seq, start))
4681 start = TCP_SKB_CB(skb)->seq;
4682 if (after(TCP_SKB_CB(skb)->end_seq, end))
4683 end = TCP_SKB_CB(skb)->end_seq;
4684 }
4685 }
4686 }
4687
4688 /*
4689 * Purge the out-of-order queue.
4690 * Return true if queue was pruned.
4691 */
tcp_prune_ofo_queue(struct sock * sk)4692 static bool tcp_prune_ofo_queue(struct sock *sk)
4693 {
4694 struct tcp_sock *tp = tcp_sk(sk);
4695 bool res = false;
4696
4697 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4698 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4699 __skb_queue_purge(&tp->out_of_order_queue);
4700
4701 /* Reset SACK state. A conforming SACK implementation will
4702 * do the same at a timeout based retransmit. When a connection
4703 * is in a sad state like this, we care only about integrity
4704 * of the connection not performance.
4705 */
4706 if (tp->rx_opt.sack_ok)
4707 tcp_sack_reset(&tp->rx_opt);
4708 sk_mem_reclaim(sk);
4709 res = true;
4710 }
4711 return res;
4712 }
4713
4714 /* Reduce allocated memory if we can, trying to get
4715 * the socket within its memory limits again.
4716 *
4717 * Return less than zero if we should start dropping frames
4718 * until the socket owning process reads some of the data
4719 * to stabilize the situation.
4720 */
tcp_prune_queue(struct sock * sk)4721 static int tcp_prune_queue(struct sock *sk)
4722 {
4723 struct tcp_sock *tp = tcp_sk(sk);
4724
4725 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4726
4727 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4728
4729 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4730 tcp_clamp_window(sk);
4731 else if (sk_under_memory_pressure(sk))
4732 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4733
4734 tcp_collapse_ofo_queue(sk);
4735 if (!skb_queue_empty(&sk->sk_receive_queue))
4736 tcp_collapse(sk, &sk->sk_receive_queue,
4737 skb_peek(&sk->sk_receive_queue),
4738 NULL,
4739 tp->copied_seq, tp->rcv_nxt);
4740 sk_mem_reclaim(sk);
4741
4742 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4743 return 0;
4744
4745 /* Collapsing did not help, destructive actions follow.
4746 * This must not ever occur. */
4747
4748 tcp_prune_ofo_queue(sk);
4749
4750 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4751 return 0;
4752
4753 /* If we are really being abused, tell the caller to silently
4754 * drop receive data on the floor. It will get retransmitted
4755 * and hopefully then we'll have sufficient space.
4756 */
4757 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4758
4759 /* Massive buffer overcommit. */
4760 tp->pred_flags = 0;
4761 return -1;
4762 }
4763
tcp_should_expand_sndbuf(const struct sock * sk)4764 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4765 {
4766 const struct tcp_sock *tp = tcp_sk(sk);
4767
4768 /* If the user specified a specific send buffer setting, do
4769 * not modify it.
4770 */
4771 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4772 return false;
4773
4774 /* If we are under global TCP memory pressure, do not expand. */
4775 if (sk_under_memory_pressure(sk))
4776 return false;
4777
4778 /* If we are under soft global TCP memory pressure, do not expand. */
4779 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4780 return false;
4781
4782 /* If we filled the congestion window, do not expand. */
4783 if (tp->packets_out >= tp->snd_cwnd)
4784 return false;
4785
4786 return true;
4787 }
4788
4789 /* When incoming ACK allowed to free some skb from write_queue,
4790 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4791 * on the exit from tcp input handler.
4792 *
4793 * PROBLEM: sndbuf expansion does not work well with largesend.
4794 */
tcp_new_space(struct sock * sk)4795 static void tcp_new_space(struct sock *sk)
4796 {
4797 struct tcp_sock *tp = tcp_sk(sk);
4798
4799 if (tcp_should_expand_sndbuf(sk)) {
4800 tcp_sndbuf_expand(sk);
4801 tp->snd_cwnd_stamp = tcp_time_stamp;
4802 }
4803
4804 sk->sk_write_space(sk);
4805 }
4806
tcp_check_space(struct sock * sk)4807 static void tcp_check_space(struct sock *sk)
4808 {
4809 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4810 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4811 if (sk->sk_socket &&
4812 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4813 tcp_new_space(sk);
4814 }
4815 }
4816
tcp_data_snd_check(struct sock * sk)4817 static inline void tcp_data_snd_check(struct sock *sk)
4818 {
4819 tcp_push_pending_frames(sk);
4820 tcp_check_space(sk);
4821 }
4822
4823 /*
4824 * Check if sending an ack is needed.
4825 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)4826 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4827 {
4828 struct tcp_sock *tp = tcp_sk(sk);
4829
4830 /* More than one full frame received... */
4831 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4832 /* ... and right edge of window advances far enough.
4833 * (tcp_recvmsg() will send ACK otherwise). Or...
4834 */
4835 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4836 /* We ACK each frame or... */
4837 tcp_in_quickack_mode(sk) ||
4838 /* We have out of order data. */
4839 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4840 /* Then ack it now */
4841 tcp_send_ack(sk);
4842 } else {
4843 /* Else, send delayed ack. */
4844 tcp_send_delayed_ack(sk);
4845 }
4846 }
4847
tcp_ack_snd_check(struct sock * sk)4848 static inline void tcp_ack_snd_check(struct sock *sk)
4849 {
4850 if (!inet_csk_ack_scheduled(sk)) {
4851 /* We sent a data segment already. */
4852 return;
4853 }
4854 __tcp_ack_snd_check(sk, 1);
4855 }
4856
4857 /*
4858 * This routine is only called when we have urgent data
4859 * signaled. Its the 'slow' part of tcp_urg. It could be
4860 * moved inline now as tcp_urg is only called from one
4861 * place. We handle URGent data wrong. We have to - as
4862 * BSD still doesn't use the correction from RFC961.
4863 * For 1003.1g we should support a new option TCP_STDURG to permit
4864 * either form (or just set the sysctl tcp_stdurg).
4865 */
4866
tcp_check_urg(struct sock * sk,const struct tcphdr * th)4867 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4868 {
4869 struct tcp_sock *tp = tcp_sk(sk);
4870 u32 ptr = ntohs(th->urg_ptr);
4871
4872 if (ptr && !sysctl_tcp_stdurg)
4873 ptr--;
4874 ptr += ntohl(th->seq);
4875
4876 /* Ignore urgent data that we've already seen and read. */
4877 if (after(tp->copied_seq, ptr))
4878 return;
4879
4880 /* Do not replay urg ptr.
4881 *
4882 * NOTE: interesting situation not covered by specs.
4883 * Misbehaving sender may send urg ptr, pointing to segment,
4884 * which we already have in ofo queue. We are not able to fetch
4885 * such data and will stay in TCP_URG_NOTYET until will be eaten
4886 * by recvmsg(). Seems, we are not obliged to handle such wicked
4887 * situations. But it is worth to think about possibility of some
4888 * DoSes using some hypothetical application level deadlock.
4889 */
4890 if (before(ptr, tp->rcv_nxt))
4891 return;
4892
4893 /* Do we already have a newer (or duplicate) urgent pointer? */
4894 if (tp->urg_data && !after(ptr, tp->urg_seq))
4895 return;
4896
4897 /* Tell the world about our new urgent pointer. */
4898 sk_send_sigurg(sk);
4899
4900 /* We may be adding urgent data when the last byte read was
4901 * urgent. To do this requires some care. We cannot just ignore
4902 * tp->copied_seq since we would read the last urgent byte again
4903 * as data, nor can we alter copied_seq until this data arrives
4904 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4905 *
4906 * NOTE. Double Dutch. Rendering to plain English: author of comment
4907 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4908 * and expect that both A and B disappear from stream. This is _wrong_.
4909 * Though this happens in BSD with high probability, this is occasional.
4910 * Any application relying on this is buggy. Note also, that fix "works"
4911 * only in this artificial test. Insert some normal data between A and B and we will
4912 * decline of BSD again. Verdict: it is better to remove to trap
4913 * buggy users.
4914 */
4915 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4916 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4917 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4918 tp->copied_seq++;
4919 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4920 __skb_unlink(skb, &sk->sk_receive_queue);
4921 __kfree_skb(skb);
4922 }
4923 }
4924
4925 tp->urg_data = TCP_URG_NOTYET;
4926 tp->urg_seq = ptr;
4927
4928 /* Disable header prediction. */
4929 tp->pred_flags = 0;
4930 }
4931
4932 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)4933 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4934 {
4935 struct tcp_sock *tp = tcp_sk(sk);
4936
4937 /* Check if we get a new urgent pointer - normally not. */
4938 if (th->urg)
4939 tcp_check_urg(sk, th);
4940
4941 /* Do we wait for any urgent data? - normally not... */
4942 if (tp->urg_data == TCP_URG_NOTYET) {
4943 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4944 th->syn;
4945
4946 /* Is the urgent pointer pointing into this packet? */
4947 if (ptr < skb->len) {
4948 u8 tmp;
4949 if (skb_copy_bits(skb, ptr, &tmp, 1))
4950 BUG();
4951 tp->urg_data = TCP_URG_VALID | tmp;
4952 if (!sock_flag(sk, SOCK_DEAD))
4953 sk->sk_data_ready(sk);
4954 }
4955 }
4956 }
4957
tcp_copy_to_iovec(struct sock * sk,struct sk_buff * skb,int hlen)4958 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4959 {
4960 struct tcp_sock *tp = tcp_sk(sk);
4961 int chunk = skb->len - hlen;
4962 int err;
4963
4964 local_bh_enable();
4965 if (skb_csum_unnecessary(skb))
4966 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4967 else
4968 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4969 tp->ucopy.iov);
4970
4971 if (!err) {
4972 tp->ucopy.len -= chunk;
4973 tp->copied_seq += chunk;
4974 tcp_rcv_space_adjust(sk);
4975 }
4976
4977 local_bh_disable();
4978 return err;
4979 }
4980
__tcp_checksum_complete_user(struct sock * sk,struct sk_buff * skb)4981 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4982 struct sk_buff *skb)
4983 {
4984 __sum16 result;
4985
4986 if (sock_owned_by_user(sk)) {
4987 local_bh_enable();
4988 result = __tcp_checksum_complete(skb);
4989 local_bh_disable();
4990 } else {
4991 result = __tcp_checksum_complete(skb);
4992 }
4993 return result;
4994 }
4995
tcp_checksum_complete_user(struct sock * sk,struct sk_buff * skb)4996 static inline bool tcp_checksum_complete_user(struct sock *sk,
4997 struct sk_buff *skb)
4998 {
4999 return !skb_csum_unnecessary(skb) &&
5000 __tcp_checksum_complete_user(sk, skb);
5001 }
5002
5003 /* Does PAWS and seqno based validation of an incoming segment, flags will
5004 * play significant role here.
5005 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5006 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5007 const struct tcphdr *th, int syn_inerr)
5008 {
5009 struct tcp_sock *tp = tcp_sk(sk);
5010
5011 /* RFC1323: H1. Apply PAWS check first. */
5012 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5013 tcp_paws_discard(sk, skb)) {
5014 if (!th->rst) {
5015 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5016 tcp_send_dupack(sk, skb);
5017 goto discard;
5018 }
5019 /* Reset is accepted even if it did not pass PAWS. */
5020 }
5021
5022 /* Step 1: check sequence number */
5023 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5024 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5025 * (RST) segments are validated by checking their SEQ-fields."
5026 * And page 69: "If an incoming segment is not acceptable,
5027 * an acknowledgment should be sent in reply (unless the RST
5028 * bit is set, if so drop the segment and return)".
5029 */
5030 if (!th->rst) {
5031 if (th->syn)
5032 goto syn_challenge;
5033 tcp_send_dupack(sk, skb);
5034 }
5035 goto discard;
5036 }
5037
5038 /* Step 2: check RST bit */
5039 if (th->rst) {
5040 /* RFC 5961 3.2 :
5041 * If sequence number exactly matches RCV.NXT, then
5042 * RESET the connection
5043 * else
5044 * Send a challenge ACK
5045 */
5046 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5047 tcp_reset(sk);
5048 else
5049 tcp_send_challenge_ack(sk);
5050 goto discard;
5051 }
5052
5053 /* step 3: check security and precedence [ignored] */
5054
5055 /* step 4: Check for a SYN
5056 * RFC 5691 4.2 : Send a challenge ack
5057 */
5058 if (th->syn) {
5059 syn_challenge:
5060 if (syn_inerr)
5061 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5062 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5063 tcp_send_challenge_ack(sk);
5064 goto discard;
5065 }
5066
5067 return true;
5068
5069 discard:
5070 __kfree_skb(skb);
5071 return false;
5072 }
5073
5074 /*
5075 * TCP receive function for the ESTABLISHED state.
5076 *
5077 * It is split into a fast path and a slow path. The fast path is
5078 * disabled when:
5079 * - A zero window was announced from us - zero window probing
5080 * is only handled properly in the slow path.
5081 * - Out of order segments arrived.
5082 * - Urgent data is expected.
5083 * - There is no buffer space left
5084 * - Unexpected TCP flags/window values/header lengths are received
5085 * (detected by checking the TCP header against pred_flags)
5086 * - Data is sent in both directions. Fast path only supports pure senders
5087 * or pure receivers (this means either the sequence number or the ack
5088 * value must stay constant)
5089 * - Unexpected TCP option.
5090 *
5091 * When these conditions are not satisfied it drops into a standard
5092 * receive procedure patterned after RFC793 to handle all cases.
5093 * The first three cases are guaranteed by proper pred_flags setting,
5094 * the rest is checked inline. Fast processing is turned on in
5095 * tcp_data_queue when everything is OK.
5096 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5097 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5098 const struct tcphdr *th, unsigned int len)
5099 {
5100 struct tcp_sock *tp = tcp_sk(sk);
5101
5102 if (unlikely(sk->sk_rx_dst == NULL))
5103 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5104 /*
5105 * Header prediction.
5106 * The code loosely follows the one in the famous
5107 * "30 instruction TCP receive" Van Jacobson mail.
5108 *
5109 * Van's trick is to deposit buffers into socket queue
5110 * on a device interrupt, to call tcp_recv function
5111 * on the receive process context and checksum and copy
5112 * the buffer to user space. smart...
5113 *
5114 * Our current scheme is not silly either but we take the
5115 * extra cost of the net_bh soft interrupt processing...
5116 * We do checksum and copy also but from device to kernel.
5117 */
5118
5119 tp->rx_opt.saw_tstamp = 0;
5120
5121 /* pred_flags is 0xS?10 << 16 + snd_wnd
5122 * if header_prediction is to be made
5123 * 'S' will always be tp->tcp_header_len >> 2
5124 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5125 * turn it off (when there are holes in the receive
5126 * space for instance)
5127 * PSH flag is ignored.
5128 */
5129
5130 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5131 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5132 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5133 int tcp_header_len = tp->tcp_header_len;
5134
5135 /* Timestamp header prediction: tcp_header_len
5136 * is automatically equal to th->doff*4 due to pred_flags
5137 * match.
5138 */
5139
5140 /* Check timestamp */
5141 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5142 /* No? Slow path! */
5143 if (!tcp_parse_aligned_timestamp(tp, th))
5144 goto slow_path;
5145
5146 /* If PAWS failed, check it more carefully in slow path */
5147 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5148 goto slow_path;
5149
5150 /* DO NOT update ts_recent here, if checksum fails
5151 * and timestamp was corrupted part, it will result
5152 * in a hung connection since we will drop all
5153 * future packets due to the PAWS test.
5154 */
5155 }
5156
5157 if (len <= tcp_header_len) {
5158 /* Bulk data transfer: sender */
5159 if (len == tcp_header_len) {
5160 /* Predicted packet is in window by definition.
5161 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5162 * Hence, check seq<=rcv_wup reduces to:
5163 */
5164 if (tcp_header_len ==
5165 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5166 tp->rcv_nxt == tp->rcv_wup)
5167 tcp_store_ts_recent(tp);
5168
5169 /* We know that such packets are checksummed
5170 * on entry.
5171 */
5172 tcp_ack(sk, skb, 0);
5173 __kfree_skb(skb);
5174 tcp_data_snd_check(sk);
5175 return;
5176 } else { /* Header too small */
5177 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5178 goto discard;
5179 }
5180 } else {
5181 int eaten = 0;
5182 bool fragstolen = false;
5183
5184 if (tp->ucopy.task == current &&
5185 tp->copied_seq == tp->rcv_nxt &&
5186 len - tcp_header_len <= tp->ucopy.len &&
5187 sock_owned_by_user(sk)) {
5188 __set_current_state(TASK_RUNNING);
5189
5190 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5191 /* Predicted packet is in window by definition.
5192 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5193 * Hence, check seq<=rcv_wup reduces to:
5194 */
5195 if (tcp_header_len ==
5196 (sizeof(struct tcphdr) +
5197 TCPOLEN_TSTAMP_ALIGNED) &&
5198 tp->rcv_nxt == tp->rcv_wup)
5199 tcp_store_ts_recent(tp);
5200
5201 tcp_rcv_rtt_measure_ts(sk, skb);
5202
5203 __skb_pull(skb, tcp_header_len);
5204 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5205 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5206 eaten = 1;
5207 }
5208 }
5209 if (!eaten) {
5210 if (tcp_checksum_complete_user(sk, skb))
5211 goto csum_error;
5212
5213 if ((int)skb->truesize > sk->sk_forward_alloc)
5214 goto step5;
5215
5216 /* Predicted packet is in window by definition.
5217 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5218 * Hence, check seq<=rcv_wup reduces to:
5219 */
5220 if (tcp_header_len ==
5221 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5222 tp->rcv_nxt == tp->rcv_wup)
5223 tcp_store_ts_recent(tp);
5224
5225 tcp_rcv_rtt_measure_ts(sk, skb);
5226
5227 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5228
5229 /* Bulk data transfer: receiver */
5230 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5231 &fragstolen);
5232 }
5233
5234 tcp_event_data_recv(sk, skb);
5235
5236 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5237 /* Well, only one small jumplet in fast path... */
5238 tcp_ack(sk, skb, FLAG_DATA);
5239 tcp_data_snd_check(sk);
5240 if (!inet_csk_ack_scheduled(sk))
5241 goto no_ack;
5242 }
5243
5244 __tcp_ack_snd_check(sk, 0);
5245 no_ack:
5246 if (eaten)
5247 kfree_skb_partial(skb, fragstolen);
5248 sk->sk_data_ready(sk);
5249 return;
5250 }
5251 }
5252
5253 slow_path:
5254 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5255 goto csum_error;
5256
5257 if (!th->ack && !th->rst && !th->syn)
5258 goto discard;
5259
5260 /*
5261 * Standard slow path.
5262 */
5263
5264 if (!tcp_validate_incoming(sk, skb, th, 1))
5265 return;
5266
5267 step5:
5268 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5269 goto discard;
5270
5271 tcp_rcv_rtt_measure_ts(sk, skb);
5272
5273 /* Process urgent data. */
5274 tcp_urg(sk, skb, th);
5275
5276 /* step 7: process the segment text */
5277 tcp_data_queue(sk, skb);
5278
5279 tcp_data_snd_check(sk);
5280 tcp_ack_snd_check(sk);
5281 return;
5282
5283 csum_error:
5284 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5285 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5286
5287 discard:
5288 __kfree_skb(skb);
5289 }
5290 EXPORT_SYMBOL(tcp_rcv_established);
5291
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5292 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5293 {
5294 struct tcp_sock *tp = tcp_sk(sk);
5295 struct inet_connection_sock *icsk = inet_csk(sk);
5296
5297 tcp_set_state(sk, TCP_ESTABLISHED);
5298 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5299
5300 if (skb != NULL) {
5301 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5302 security_inet_conn_established(sk, skb);
5303 }
5304
5305 /* Make sure socket is routed, for correct metrics. */
5306 icsk->icsk_af_ops->rebuild_header(sk);
5307
5308 tcp_init_metrics(sk);
5309
5310 tcp_init_congestion_control(sk);
5311
5312 /* Prevent spurious tcp_cwnd_restart() on first data
5313 * packet.
5314 */
5315 tp->lsndtime = tcp_time_stamp;
5316
5317 tcp_init_buffer_space(sk);
5318
5319 if (sock_flag(sk, SOCK_KEEPOPEN))
5320 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5321
5322 if (!tp->rx_opt.snd_wscale)
5323 __tcp_fast_path_on(tp, tp->snd_wnd);
5324 else
5325 tp->pred_flags = 0;
5326
5327 if (!sock_flag(sk, SOCK_DEAD)) {
5328 sk->sk_state_change(sk);
5329 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5330 }
5331 }
5332
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)5333 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5334 struct tcp_fastopen_cookie *cookie)
5335 {
5336 struct tcp_sock *tp = tcp_sk(sk);
5337 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5338 u16 mss = tp->rx_opt.mss_clamp;
5339 bool syn_drop;
5340
5341 if (mss == tp->rx_opt.user_mss) {
5342 struct tcp_options_received opt;
5343
5344 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5345 tcp_clear_options(&opt);
5346 opt.user_mss = opt.mss_clamp = 0;
5347 tcp_parse_options(synack, &opt, 0, NULL);
5348 mss = opt.mss_clamp;
5349 }
5350
5351 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5352 cookie->len = -1;
5353
5354 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5355 * the remote receives only the retransmitted (regular) SYNs: either
5356 * the original SYN-data or the corresponding SYN-ACK is lost.
5357 */
5358 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5359
5360 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5361
5362 if (data) { /* Retransmit unacked data in SYN */
5363 tcp_for_write_queue_from(data, sk) {
5364 if (data == tcp_send_head(sk) ||
5365 __tcp_retransmit_skb(sk, data))
5366 break;
5367 }
5368 tcp_rearm_rto(sk);
5369 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5370 return true;
5371 }
5372 tp->syn_data_acked = tp->syn_data;
5373 if (tp->syn_data_acked)
5374 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5375 return false;
5376 }
5377
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5378 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5379 const struct tcphdr *th, unsigned int len)
5380 {
5381 struct inet_connection_sock *icsk = inet_csk(sk);
5382 struct tcp_sock *tp = tcp_sk(sk);
5383 struct tcp_fastopen_cookie foc = { .len = -1 };
5384 int saved_clamp = tp->rx_opt.mss_clamp;
5385
5386 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5387 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5388 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5389
5390 if (th->ack) {
5391 /* rfc793:
5392 * "If the state is SYN-SENT then
5393 * first check the ACK bit
5394 * If the ACK bit is set
5395 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5396 * a reset (unless the RST bit is set, if so drop
5397 * the segment and return)"
5398 */
5399 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5400 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5401 goto reset_and_undo;
5402
5403 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5404 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5405 tcp_time_stamp)) {
5406 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5407 goto reset_and_undo;
5408 }
5409
5410 /* Now ACK is acceptable.
5411 *
5412 * "If the RST bit is set
5413 * If the ACK was acceptable then signal the user "error:
5414 * connection reset", drop the segment, enter CLOSED state,
5415 * delete TCB, and return."
5416 */
5417
5418 if (th->rst) {
5419 tcp_reset(sk);
5420 goto discard;
5421 }
5422
5423 /* rfc793:
5424 * "fifth, if neither of the SYN or RST bits is set then
5425 * drop the segment and return."
5426 *
5427 * See note below!
5428 * --ANK(990513)
5429 */
5430 if (!th->syn)
5431 goto discard_and_undo;
5432
5433 /* rfc793:
5434 * "If the SYN bit is on ...
5435 * are acceptable then ...
5436 * (our SYN has been ACKed), change the connection
5437 * state to ESTABLISHED..."
5438 */
5439
5440 tcp_ecn_rcv_synack(tp, th);
5441
5442 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5443 tcp_ack(sk, skb, FLAG_SLOWPATH);
5444
5445 /* Ok.. it's good. Set up sequence numbers and
5446 * move to established.
5447 */
5448 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5449 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5450
5451 /* RFC1323: The window in SYN & SYN/ACK segments is
5452 * never scaled.
5453 */
5454 tp->snd_wnd = ntohs(th->window);
5455
5456 if (!tp->rx_opt.wscale_ok) {
5457 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5458 tp->window_clamp = min(tp->window_clamp, 65535U);
5459 }
5460
5461 if (tp->rx_opt.saw_tstamp) {
5462 tp->rx_opt.tstamp_ok = 1;
5463 tp->tcp_header_len =
5464 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5465 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5466 tcp_store_ts_recent(tp);
5467 } else {
5468 tp->tcp_header_len = sizeof(struct tcphdr);
5469 }
5470
5471 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5472 tcp_enable_fack(tp);
5473
5474 tcp_mtup_init(sk);
5475 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5476 tcp_initialize_rcv_mss(sk);
5477
5478 /* Remember, tcp_poll() does not lock socket!
5479 * Change state from SYN-SENT only after copied_seq
5480 * is initialized. */
5481 tp->copied_seq = tp->rcv_nxt;
5482
5483 smp_mb();
5484
5485 tcp_finish_connect(sk, skb);
5486
5487 if ((tp->syn_fastopen || tp->syn_data) &&
5488 tcp_rcv_fastopen_synack(sk, skb, &foc))
5489 return -1;
5490
5491 if (sk->sk_write_pending ||
5492 icsk->icsk_accept_queue.rskq_defer_accept ||
5493 icsk->icsk_ack.pingpong) {
5494 /* Save one ACK. Data will be ready after
5495 * several ticks, if write_pending is set.
5496 *
5497 * It may be deleted, but with this feature tcpdumps
5498 * look so _wonderfully_ clever, that I was not able
5499 * to stand against the temptation 8) --ANK
5500 */
5501 inet_csk_schedule_ack(sk);
5502 tcp_enter_quickack_mode(sk);
5503 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5504 TCP_DELACK_MAX, TCP_RTO_MAX);
5505
5506 discard:
5507 __kfree_skb(skb);
5508 return 0;
5509 } else {
5510 tcp_send_ack(sk);
5511 }
5512 return -1;
5513 }
5514
5515 /* No ACK in the segment */
5516
5517 if (th->rst) {
5518 /* rfc793:
5519 * "If the RST bit is set
5520 *
5521 * Otherwise (no ACK) drop the segment and return."
5522 */
5523
5524 goto discard_and_undo;
5525 }
5526
5527 /* PAWS check. */
5528 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5529 tcp_paws_reject(&tp->rx_opt, 0))
5530 goto discard_and_undo;
5531
5532 if (th->syn) {
5533 /* We see SYN without ACK. It is attempt of
5534 * simultaneous connect with crossed SYNs.
5535 * Particularly, it can be connect to self.
5536 */
5537 tcp_set_state(sk, TCP_SYN_RECV);
5538
5539 if (tp->rx_opt.saw_tstamp) {
5540 tp->rx_opt.tstamp_ok = 1;
5541 tcp_store_ts_recent(tp);
5542 tp->tcp_header_len =
5543 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5544 } else {
5545 tp->tcp_header_len = sizeof(struct tcphdr);
5546 }
5547
5548 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5549 tp->copied_seq = tp->rcv_nxt;
5550 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5551
5552 /* RFC1323: The window in SYN & SYN/ACK segments is
5553 * never scaled.
5554 */
5555 tp->snd_wnd = ntohs(th->window);
5556 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5557 tp->max_window = tp->snd_wnd;
5558
5559 tcp_ecn_rcv_syn(tp, th);
5560
5561 tcp_mtup_init(sk);
5562 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5563 tcp_initialize_rcv_mss(sk);
5564
5565 tcp_send_synack(sk);
5566 #if 0
5567 /* Note, we could accept data and URG from this segment.
5568 * There are no obstacles to make this (except that we must
5569 * either change tcp_recvmsg() to prevent it from returning data
5570 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5571 *
5572 * However, if we ignore data in ACKless segments sometimes,
5573 * we have no reasons to accept it sometimes.
5574 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5575 * is not flawless. So, discard packet for sanity.
5576 * Uncomment this return to process the data.
5577 */
5578 return -1;
5579 #else
5580 goto discard;
5581 #endif
5582 }
5583 /* "fifth, if neither of the SYN or RST bits is set then
5584 * drop the segment and return."
5585 */
5586
5587 discard_and_undo:
5588 tcp_clear_options(&tp->rx_opt);
5589 tp->rx_opt.mss_clamp = saved_clamp;
5590 goto discard;
5591
5592 reset_and_undo:
5593 tcp_clear_options(&tp->rx_opt);
5594 tp->rx_opt.mss_clamp = saved_clamp;
5595 return 1;
5596 }
5597
5598 /*
5599 * This function implements the receiving procedure of RFC 793 for
5600 * all states except ESTABLISHED and TIME_WAIT.
5601 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5602 * address independent.
5603 */
5604
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5605 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5606 const struct tcphdr *th, unsigned int len)
5607 {
5608 struct tcp_sock *tp = tcp_sk(sk);
5609 struct inet_connection_sock *icsk = inet_csk(sk);
5610 struct request_sock *req;
5611 int queued = 0;
5612 bool acceptable;
5613 u32 synack_stamp;
5614
5615 tp->rx_opt.saw_tstamp = 0;
5616
5617 switch (sk->sk_state) {
5618 case TCP_CLOSE:
5619 goto discard;
5620
5621 case TCP_LISTEN:
5622 if (th->ack)
5623 return 1;
5624
5625 if (th->rst)
5626 goto discard;
5627
5628 if (th->syn) {
5629 if (th->fin)
5630 goto discard;
5631 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5632 return 1;
5633
5634 /* Now we have several options: In theory there is
5635 * nothing else in the frame. KA9Q has an option to
5636 * send data with the syn, BSD accepts data with the
5637 * syn up to the [to be] advertised window and
5638 * Solaris 2.1 gives you a protocol error. For now
5639 * we just ignore it, that fits the spec precisely
5640 * and avoids incompatibilities. It would be nice in
5641 * future to drop through and process the data.
5642 *
5643 * Now that TTCP is starting to be used we ought to
5644 * queue this data.
5645 * But, this leaves one open to an easy denial of
5646 * service attack, and SYN cookies can't defend
5647 * against this problem. So, we drop the data
5648 * in the interest of security over speed unless
5649 * it's still in use.
5650 */
5651 kfree_skb(skb);
5652 return 0;
5653 }
5654 goto discard;
5655
5656 case TCP_SYN_SENT:
5657 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5658 if (queued >= 0)
5659 return queued;
5660
5661 /* Do step6 onward by hand. */
5662 tcp_urg(sk, skb, th);
5663 __kfree_skb(skb);
5664 tcp_data_snd_check(sk);
5665 return 0;
5666 }
5667
5668 req = tp->fastopen_rsk;
5669 if (req != NULL) {
5670 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5671 sk->sk_state != TCP_FIN_WAIT1);
5672
5673 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5674 goto discard;
5675 }
5676
5677 if (!th->ack && !th->rst && !th->syn)
5678 goto discard;
5679
5680 if (!tcp_validate_incoming(sk, skb, th, 0))
5681 return 0;
5682
5683 /* step 5: check the ACK field */
5684 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5685 FLAG_UPDATE_TS_RECENT) > 0;
5686
5687 switch (sk->sk_state) {
5688 case TCP_SYN_RECV:
5689 if (!acceptable)
5690 return 1;
5691
5692 /* Once we leave TCP_SYN_RECV, we no longer need req
5693 * so release it.
5694 */
5695 if (req) {
5696 synack_stamp = tcp_rsk(req)->snt_synack;
5697 tp->total_retrans = req->num_retrans;
5698 reqsk_fastopen_remove(sk, req, false);
5699 } else {
5700 synack_stamp = tp->lsndtime;
5701 /* Make sure socket is routed, for correct metrics. */
5702 icsk->icsk_af_ops->rebuild_header(sk);
5703 tcp_init_congestion_control(sk);
5704
5705 tcp_mtup_init(sk);
5706 tp->copied_seq = tp->rcv_nxt;
5707 tcp_init_buffer_space(sk);
5708 }
5709 smp_mb();
5710 tcp_set_state(sk, TCP_ESTABLISHED);
5711 sk->sk_state_change(sk);
5712
5713 /* Note, that this wakeup is only for marginal crossed SYN case.
5714 * Passively open sockets are not waked up, because
5715 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5716 */
5717 if (sk->sk_socket)
5718 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5719
5720 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5721 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5722 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5723 tcp_synack_rtt_meas(sk, synack_stamp);
5724
5725 if (tp->rx_opt.tstamp_ok)
5726 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5727
5728 if (req) {
5729 /* Re-arm the timer because data may have been sent out.
5730 * This is similar to the regular data transmission case
5731 * when new data has just been ack'ed.
5732 *
5733 * (TFO) - we could try to be more aggressive and
5734 * retransmitting any data sooner based on when they
5735 * are sent out.
5736 */
5737 tcp_rearm_rto(sk);
5738 } else
5739 tcp_init_metrics(sk);
5740
5741 tcp_update_pacing_rate(sk);
5742
5743 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5744 tp->lsndtime = tcp_time_stamp;
5745
5746 tcp_initialize_rcv_mss(sk);
5747 tcp_fast_path_on(tp);
5748 break;
5749
5750 case TCP_FIN_WAIT1: {
5751 struct dst_entry *dst;
5752 int tmo;
5753
5754 /* If we enter the TCP_FIN_WAIT1 state and we are a
5755 * Fast Open socket and this is the first acceptable
5756 * ACK we have received, this would have acknowledged
5757 * our SYNACK so stop the SYNACK timer.
5758 */
5759 if (req != NULL) {
5760 /* Return RST if ack_seq is invalid.
5761 * Note that RFC793 only says to generate a
5762 * DUPACK for it but for TCP Fast Open it seems
5763 * better to treat this case like TCP_SYN_RECV
5764 * above.
5765 */
5766 if (!acceptable)
5767 return 1;
5768 /* We no longer need the request sock. */
5769 reqsk_fastopen_remove(sk, req, false);
5770 tcp_rearm_rto(sk);
5771 }
5772 if (tp->snd_una != tp->write_seq)
5773 break;
5774
5775 tcp_set_state(sk, TCP_FIN_WAIT2);
5776 sk->sk_shutdown |= SEND_SHUTDOWN;
5777
5778 dst = __sk_dst_get(sk);
5779 if (dst)
5780 dst_confirm(dst);
5781
5782 if (!sock_flag(sk, SOCK_DEAD)) {
5783 /* Wake up lingering close() */
5784 sk->sk_state_change(sk);
5785 break;
5786 }
5787
5788 if (tp->linger2 < 0 ||
5789 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5790 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5791 tcp_done(sk);
5792 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5793 return 1;
5794 }
5795
5796 tmo = tcp_fin_time(sk);
5797 if (tmo > TCP_TIMEWAIT_LEN) {
5798 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5799 } else if (th->fin || sock_owned_by_user(sk)) {
5800 /* Bad case. We could lose such FIN otherwise.
5801 * It is not a big problem, but it looks confusing
5802 * and not so rare event. We still can lose it now,
5803 * if it spins in bh_lock_sock(), but it is really
5804 * marginal case.
5805 */
5806 inet_csk_reset_keepalive_timer(sk, tmo);
5807 } else {
5808 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5809 goto discard;
5810 }
5811 break;
5812 }
5813
5814 case TCP_CLOSING:
5815 if (tp->snd_una == tp->write_seq) {
5816 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5817 goto discard;
5818 }
5819 break;
5820
5821 case TCP_LAST_ACK:
5822 if (tp->snd_una == tp->write_seq) {
5823 tcp_update_metrics(sk);
5824 tcp_done(sk);
5825 goto discard;
5826 }
5827 break;
5828 }
5829
5830 /* step 6: check the URG bit */
5831 tcp_urg(sk, skb, th);
5832
5833 /* step 7: process the segment text */
5834 switch (sk->sk_state) {
5835 case TCP_CLOSE_WAIT:
5836 case TCP_CLOSING:
5837 case TCP_LAST_ACK:
5838 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5839 break;
5840 case TCP_FIN_WAIT1:
5841 case TCP_FIN_WAIT2:
5842 /* RFC 793 says to queue data in these states,
5843 * RFC 1122 says we MUST send a reset.
5844 * BSD 4.4 also does reset.
5845 */
5846 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5847 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5848 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5849 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5850 tcp_reset(sk);
5851 return 1;
5852 }
5853 }
5854 /* Fall through */
5855 case TCP_ESTABLISHED:
5856 tcp_data_queue(sk, skb);
5857 queued = 1;
5858 break;
5859 }
5860
5861 /* tcp_data could move socket to TIME-WAIT */
5862 if (sk->sk_state != TCP_CLOSE) {
5863 tcp_data_snd_check(sk);
5864 tcp_ack_snd_check(sk);
5865 }
5866
5867 if (!queued) {
5868 discard:
5869 __kfree_skb(skb);
5870 }
5871 return 0;
5872 }
5873 EXPORT_SYMBOL(tcp_rcv_state_process);
5874
pr_drop_req(struct request_sock * req,__u16 port,int family)5875 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5876 {
5877 struct inet_request_sock *ireq = inet_rsk(req);
5878
5879 if (family == AF_INET)
5880 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
5881 &ireq->ir_rmt_addr, port);
5882 #if IS_ENABLED(CONFIG_IPV6)
5883 else if (family == AF_INET6)
5884 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI6/%u\n"),
5885 &ireq->ir_v6_rmt_addr, port);
5886 #endif
5887 }
5888
5889 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
5890 *
5891 * If we receive a SYN packet with these bits set, it means a
5892 * network is playing bad games with TOS bits. In order to
5893 * avoid possible false congestion notifications, we disable
5894 * TCP ECN negociation.
5895 *
5896 * Exception: tcp_ca wants ECN. This is required for DCTCP
5897 * congestion control; it requires setting ECT on all packets,
5898 * including SYN. We inverse the test in this case: If our
5899 * local socket wants ECN, but peer only set ece/cwr (but not
5900 * ECT in IP header) its probably a non-DCTCP aware sender.
5901 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk)5902 static void tcp_ecn_create_request(struct request_sock *req,
5903 const struct sk_buff *skb,
5904 const struct sock *listen_sk)
5905 {
5906 const struct tcphdr *th = tcp_hdr(skb);
5907 const struct net *net = sock_net(listen_sk);
5908 bool th_ecn = th->ece && th->cwr;
5909 bool ect, need_ecn;
5910
5911 if (!th_ecn)
5912 return;
5913
5914 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
5915 need_ecn = tcp_ca_needs_ecn(listen_sk);
5916
5917 if (!ect && !need_ecn && net->ipv4.sysctl_tcp_ecn)
5918 inet_rsk(req)->ecn_ok = 1;
5919 else if (ect && need_ecn)
5920 inet_rsk(req)->ecn_ok = 1;
5921 }
5922
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)5923 int tcp_conn_request(struct request_sock_ops *rsk_ops,
5924 const struct tcp_request_sock_ops *af_ops,
5925 struct sock *sk, struct sk_buff *skb)
5926 {
5927 struct tcp_options_received tmp_opt;
5928 struct request_sock *req;
5929 struct tcp_sock *tp = tcp_sk(sk);
5930 struct dst_entry *dst = NULL;
5931 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
5932 bool want_cookie = false, fastopen;
5933 struct flowi fl;
5934 struct tcp_fastopen_cookie foc = { .len = -1 };
5935 int err;
5936
5937
5938 /* TW buckets are converted to open requests without
5939 * limitations, they conserve resources and peer is
5940 * evidently real one.
5941 */
5942 if ((sysctl_tcp_syncookies == 2 ||
5943 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
5944 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
5945 if (!want_cookie)
5946 goto drop;
5947 }
5948
5949
5950 /* Accept backlog is full. If we have already queued enough
5951 * of warm entries in syn queue, drop request. It is better than
5952 * clogging syn queue with openreqs with exponentially increasing
5953 * timeout.
5954 */
5955 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
5956 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
5957 goto drop;
5958 }
5959
5960 req = inet_reqsk_alloc(rsk_ops);
5961 if (!req)
5962 goto drop;
5963
5964 tcp_rsk(req)->af_specific = af_ops;
5965
5966 tcp_clear_options(&tmp_opt);
5967 tmp_opt.mss_clamp = af_ops->mss_clamp;
5968 tmp_opt.user_mss = tp->rx_opt.user_mss;
5969 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
5970
5971 if (want_cookie && !tmp_opt.saw_tstamp)
5972 tcp_clear_options(&tmp_opt);
5973
5974 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
5975 tcp_openreq_init(req, &tmp_opt, skb, sk);
5976
5977 af_ops->init_req(req, sk, skb);
5978
5979 if (security_inet_conn_request(sk, skb, req))
5980 goto drop_and_free;
5981
5982 if (!want_cookie || tmp_opt.tstamp_ok)
5983 tcp_ecn_create_request(req, skb, sk);
5984
5985 if (want_cookie) {
5986 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
5987 req->cookie_ts = tmp_opt.tstamp_ok;
5988 } else if (!isn) {
5989 /* VJ's idea. We save last timestamp seen
5990 * from the destination in peer table, when entering
5991 * state TIME-WAIT, and check against it before
5992 * accepting new connection request.
5993 *
5994 * If "isn" is not zero, this request hit alive
5995 * timewait bucket, so that all the necessary checks
5996 * are made in the function processing timewait state.
5997 */
5998 if (tcp_death_row.sysctl_tw_recycle) {
5999 bool strict;
6000
6001 dst = af_ops->route_req(sk, &fl, req, &strict);
6002
6003 if (dst && strict &&
6004 !tcp_peer_is_proven(req, dst, true,
6005 tmp_opt.saw_tstamp)) {
6006 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6007 goto drop_and_release;
6008 }
6009 }
6010 /* Kill the following clause, if you dislike this way. */
6011 else if (!sysctl_tcp_syncookies &&
6012 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6013 (sysctl_max_syn_backlog >> 2)) &&
6014 !tcp_peer_is_proven(req, dst, false,
6015 tmp_opt.saw_tstamp)) {
6016 /* Without syncookies last quarter of
6017 * backlog is filled with destinations,
6018 * proven to be alive.
6019 * It means that we continue to communicate
6020 * to destinations, already remembered
6021 * to the moment of synflood.
6022 */
6023 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6024 rsk_ops->family);
6025 goto drop_and_release;
6026 }
6027
6028 isn = af_ops->init_seq(skb);
6029 }
6030 if (!dst) {
6031 dst = af_ops->route_req(sk, &fl, req, NULL);
6032 if (!dst)
6033 goto drop_and_free;
6034 }
6035
6036 tcp_rsk(req)->snt_isn = isn;
6037 tcp_openreq_init_rwin(req, sk, dst);
6038 fastopen = !want_cookie &&
6039 tcp_try_fastopen(sk, skb, req, &foc, dst);
6040 err = af_ops->send_synack(sk, dst, &fl, req,
6041 skb_get_queue_mapping(skb), &foc);
6042 if (!fastopen) {
6043 if (err || want_cookie)
6044 goto drop_and_free;
6045
6046 tcp_rsk(req)->listener = NULL;
6047 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6048 }
6049
6050 return 0;
6051
6052 drop_and_release:
6053 dst_release(dst);
6054 drop_and_free:
6055 reqsk_free(req);
6056 drop:
6057 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6058 return 0;
6059 }
6060 EXPORT_SYMBOL(tcp_conn_request);
6061