1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/debugfs.h>
50
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56
57 #include "internal.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61
62 struct scan_control {
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
68
69 /* Allocation order */
70 int order;
71
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
77
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
83
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
87 unsigned int may_writepage:1;
88
89 /* Can mapped pages be reclaimed? */
90 unsigned int may_unmap:1;
91
92 /* Can pages be swapped as part of reclaim? */
93 unsigned int may_swap:1;
94
95 unsigned int hibernation_mode:1;
96
97 /* One of the zones is ready for compaction */
98 unsigned int compaction_ready:1;
99
100 /* Incremented by the number of inactive pages that were scanned */
101 unsigned long nr_scanned;
102
103 /* Number of pages freed so far during a call to shrink_zones() */
104 unsigned long nr_reclaimed;
105 };
106
107 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
108
109 #ifdef ARCH_HAS_PREFETCH
110 #define prefetch_prev_lru_page(_page, _base, _field) \
111 do { \
112 if ((_page)->lru.prev != _base) { \
113 struct page *prev; \
114 \
115 prev = lru_to_page(&(_page->lru)); \
116 prefetch(&prev->_field); \
117 } \
118 } while (0)
119 #else
120 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
121 #endif
122
123 #ifdef ARCH_HAS_PREFETCHW
124 #define prefetchw_prev_lru_page(_page, _base, _field) \
125 do { \
126 if ((_page)->lru.prev != _base) { \
127 struct page *prev; \
128 \
129 prev = lru_to_page(&(_page->lru)); \
130 prefetchw(&prev->_field); \
131 } \
132 } while (0)
133 #else
134 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
135 #endif
136
137 /*
138 * From 0 .. 100. Higher means more swappy.
139 */
140 int vm_swappiness = 60;
141 /*
142 * The total number of pages which are beyond the high watermark within all
143 * zones.
144 */
145 unsigned long vm_total_pages;
146
147 static LIST_HEAD(shrinker_list);
148 static DECLARE_RWSEM(shrinker_rwsem);
149
150 #ifdef CONFIG_MEMCG
global_reclaim(struct scan_control * sc)151 static bool global_reclaim(struct scan_control *sc)
152 {
153 return !sc->target_mem_cgroup;
154 }
155 #else
global_reclaim(struct scan_control * sc)156 static bool global_reclaim(struct scan_control *sc)
157 {
158 return true;
159 }
160 #endif
161
zone_reclaimable_pages(struct zone * zone)162 static unsigned long zone_reclaimable_pages(struct zone *zone)
163 {
164 int nr;
165
166 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
167 zone_page_state(zone, NR_INACTIVE_FILE);
168
169 if (get_nr_swap_pages() > 0)
170 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
171 zone_page_state(zone, NR_INACTIVE_ANON);
172
173 return nr;
174 }
175
zone_reclaimable(struct zone * zone)176 bool zone_reclaimable(struct zone *zone)
177 {
178 return zone_page_state(zone, NR_PAGES_SCANNED) <
179 zone_reclaimable_pages(zone) * 6;
180 }
181
get_lru_size(struct lruvec * lruvec,enum lru_list lru)182 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
183 {
184 if (!mem_cgroup_disabled())
185 return mem_cgroup_get_lru_size(lruvec, lru);
186
187 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
188 }
189
190 struct dentry *debug_file;
191
debug_shrinker_show(struct seq_file * s,void * unused)192 static int debug_shrinker_show(struct seq_file *s, void *unused)
193 {
194 struct shrinker *shrinker;
195 struct shrink_control sc;
196
197 sc.gfp_mask = -1;
198 sc.nr_to_scan = 0;
199
200 down_read(&shrinker_rwsem);
201 list_for_each_entry(shrinker, &shrinker_list, list) {
202 int num_objs;
203
204 num_objs = shrinker->count_objects(shrinker, &sc);
205 seq_printf(s, "%pf %d\n", shrinker->scan_objects, num_objs);
206 }
207 up_read(&shrinker_rwsem);
208 return 0;
209 }
210
debug_shrinker_open(struct inode * inode,struct file * file)211 static int debug_shrinker_open(struct inode *inode, struct file *file)
212 {
213 return single_open(file, debug_shrinker_show, inode->i_private);
214 }
215
216 static const struct file_operations debug_shrinker_fops = {
217 .open = debug_shrinker_open,
218 .read = seq_read,
219 .llseek = seq_lseek,
220 .release = single_release,
221 };
222
223 /*
224 * Add a shrinker callback to be called from the vm.
225 */
register_shrinker(struct shrinker * shrinker)226 int register_shrinker(struct shrinker *shrinker)
227 {
228 size_t size = sizeof(*shrinker->nr_deferred);
229
230 /*
231 * If we only have one possible node in the system anyway, save
232 * ourselves the trouble and disable NUMA aware behavior. This way we
233 * will save memory and some small loop time later.
234 */
235 if (nr_node_ids == 1)
236 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
237
238 if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 size *= nr_node_ids;
240
241 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 if (!shrinker->nr_deferred)
243 return -ENOMEM;
244
245 down_write(&shrinker_rwsem);
246 list_add_tail(&shrinker->list, &shrinker_list);
247 up_write(&shrinker_rwsem);
248 return 0;
249 }
250 EXPORT_SYMBOL(register_shrinker);
251
add_shrinker_debug(void)252 static int __init add_shrinker_debug(void)
253 {
254 debugfs_create_file("shrinker", 0644, NULL, NULL,
255 &debug_shrinker_fops);
256 return 0;
257 }
258
259 late_initcall(add_shrinker_debug);
260
261 /*
262 * Remove one
263 */
unregister_shrinker(struct shrinker * shrinker)264 void unregister_shrinker(struct shrinker *shrinker)
265 {
266 down_write(&shrinker_rwsem);
267 list_del(&shrinker->list);
268 up_write(&shrinker_rwsem);
269 kfree(shrinker->nr_deferred);
270 }
271 EXPORT_SYMBOL(unregister_shrinker);
272
273 #define SHRINK_BATCH 128
274
275 static unsigned long
shrink_slab_node(struct shrink_control * shrinkctl,struct shrinker * shrinker,unsigned long nr_pages_scanned,unsigned long lru_pages)276 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
277 unsigned long nr_pages_scanned, unsigned long lru_pages)
278 {
279 unsigned long freed = 0;
280 unsigned long long delta;
281 long total_scan;
282 long freeable;
283 long nr;
284 long new_nr;
285 int nid = shrinkctl->nid;
286 long batch_size = shrinker->batch ? shrinker->batch
287 : SHRINK_BATCH;
288
289 freeable = shrinker->count_objects(shrinker, shrinkctl);
290 if (freeable == 0)
291 return 0;
292
293 /*
294 * copy the current shrinker scan count into a local variable
295 * and zero it so that other concurrent shrinker invocations
296 * don't also do this scanning work.
297 */
298 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
299
300 total_scan = nr;
301 delta = (4 * nr_pages_scanned) / shrinker->seeks;
302 delta *= freeable;
303 do_div(delta, lru_pages + 1);
304 total_scan += delta;
305 if (total_scan < 0) {
306 printk(KERN_ERR
307 "shrink_slab: %pF negative objects to delete nr=%ld\n",
308 shrinker->scan_objects, total_scan);
309 total_scan = freeable;
310 }
311
312 /*
313 * We need to avoid excessive windup on filesystem shrinkers
314 * due to large numbers of GFP_NOFS allocations causing the
315 * shrinkers to return -1 all the time. This results in a large
316 * nr being built up so when a shrink that can do some work
317 * comes along it empties the entire cache due to nr >>>
318 * freeable. This is bad for sustaining a working set in
319 * memory.
320 *
321 * Hence only allow the shrinker to scan the entire cache when
322 * a large delta change is calculated directly.
323 */
324 if (delta < freeable / 4)
325 total_scan = min(total_scan, freeable / 2);
326
327 /*
328 * Avoid risking looping forever due to too large nr value:
329 * never try to free more than twice the estimate number of
330 * freeable entries.
331 */
332 if (total_scan > freeable * 2)
333 total_scan = freeable * 2;
334
335 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
336 nr_pages_scanned, lru_pages,
337 freeable, delta, total_scan);
338
339 /*
340 * Normally, we should not scan less than batch_size objects in one
341 * pass to avoid too frequent shrinker calls, but if the slab has less
342 * than batch_size objects in total and we are really tight on memory,
343 * we will try to reclaim all available objects, otherwise we can end
344 * up failing allocations although there are plenty of reclaimable
345 * objects spread over several slabs with usage less than the
346 * batch_size.
347 *
348 * We detect the "tight on memory" situations by looking at the total
349 * number of objects we want to scan (total_scan). If it is greater
350 * than the total number of objects on slab (freeable), we must be
351 * scanning at high prio and therefore should try to reclaim as much as
352 * possible.
353 */
354 while (total_scan >= batch_size ||
355 total_scan >= freeable) {
356 unsigned long ret;
357 unsigned long nr_to_scan = min(batch_size, total_scan);
358
359 shrinkctl->nr_to_scan = nr_to_scan;
360 ret = shrinker->scan_objects(shrinker, shrinkctl);
361 if (ret == SHRINK_STOP)
362 break;
363 freed += ret;
364
365 count_vm_events(SLABS_SCANNED, nr_to_scan);
366 total_scan -= nr_to_scan;
367
368 cond_resched();
369 }
370
371 /*
372 * move the unused scan count back into the shrinker in a
373 * manner that handles concurrent updates. If we exhausted the
374 * scan, there is no need to do an update.
375 */
376 if (total_scan > 0)
377 new_nr = atomic_long_add_return(total_scan,
378 &shrinker->nr_deferred[nid]);
379 else
380 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
381
382 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
383 return freed;
384 }
385
386 /*
387 * Call the shrink functions to age shrinkable caches
388 *
389 * Here we assume it costs one seek to replace a lru page and that it also
390 * takes a seek to recreate a cache object. With this in mind we age equal
391 * percentages of the lru and ageable caches. This should balance the seeks
392 * generated by these structures.
393 *
394 * If the vm encountered mapped pages on the LRU it increase the pressure on
395 * slab to avoid swapping.
396 *
397 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
398 *
399 * `lru_pages' represents the number of on-LRU pages in all the zones which
400 * are eligible for the caller's allocation attempt. It is used for balancing
401 * slab reclaim versus page reclaim.
402 *
403 * Returns the number of slab objects which we shrunk.
404 */
shrink_slab(struct shrink_control * shrinkctl,unsigned long nr_pages_scanned,unsigned long lru_pages)405 unsigned long shrink_slab(struct shrink_control *shrinkctl,
406 unsigned long nr_pages_scanned,
407 unsigned long lru_pages)
408 {
409 struct shrinker *shrinker;
410 unsigned long freed = 0;
411
412 if (nr_pages_scanned == 0)
413 nr_pages_scanned = SWAP_CLUSTER_MAX;
414
415 if (!down_read_trylock(&shrinker_rwsem)) {
416 /*
417 * If we would return 0, our callers would understand that we
418 * have nothing else to shrink and give up trying. By returning
419 * 1 we keep it going and assume we'll be able to shrink next
420 * time.
421 */
422 freed = 1;
423 goto out;
424 }
425
426 list_for_each_entry(shrinker, &shrinker_list, list) {
427 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
428 shrinkctl->nid = 0;
429 freed += shrink_slab_node(shrinkctl, shrinker,
430 nr_pages_scanned, lru_pages);
431 continue;
432 }
433
434 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
435 if (node_online(shrinkctl->nid))
436 freed += shrink_slab_node(shrinkctl, shrinker,
437 nr_pages_scanned, lru_pages);
438
439 }
440 }
441 up_read(&shrinker_rwsem);
442 out:
443 cond_resched();
444 return freed;
445 }
446
is_page_cache_freeable(struct page * page)447 static inline int is_page_cache_freeable(struct page *page)
448 {
449 /*
450 * A freeable page cache page is referenced only by the caller
451 * that isolated the page, the page cache radix tree and
452 * optional buffer heads at page->private.
453 */
454 return page_count(page) - page_has_private(page) == 2;
455 }
456
may_write_to_queue(struct backing_dev_info * bdi,struct scan_control * sc)457 static int may_write_to_queue(struct backing_dev_info *bdi,
458 struct scan_control *sc)
459 {
460 if (current->flags & PF_SWAPWRITE)
461 return 1;
462 if (!bdi_write_congested(bdi))
463 return 1;
464 if (bdi == current->backing_dev_info)
465 return 1;
466 return 0;
467 }
468
469 /*
470 * We detected a synchronous write error writing a page out. Probably
471 * -ENOSPC. We need to propagate that into the address_space for a subsequent
472 * fsync(), msync() or close().
473 *
474 * The tricky part is that after writepage we cannot touch the mapping: nothing
475 * prevents it from being freed up. But we have a ref on the page and once
476 * that page is locked, the mapping is pinned.
477 *
478 * We're allowed to run sleeping lock_page() here because we know the caller has
479 * __GFP_FS.
480 */
handle_write_error(struct address_space * mapping,struct page * page,int error)481 static void handle_write_error(struct address_space *mapping,
482 struct page *page, int error)
483 {
484 lock_page(page);
485 if (page_mapping(page) == mapping)
486 mapping_set_error(mapping, error);
487 unlock_page(page);
488 }
489
490 /* possible outcome of pageout() */
491 typedef enum {
492 /* failed to write page out, page is locked */
493 PAGE_KEEP,
494 /* move page to the active list, page is locked */
495 PAGE_ACTIVATE,
496 /* page has been sent to the disk successfully, page is unlocked */
497 PAGE_SUCCESS,
498 /* page is clean and locked */
499 PAGE_CLEAN,
500 } pageout_t;
501
502 /*
503 * pageout is called by shrink_page_list() for each dirty page.
504 * Calls ->writepage().
505 */
pageout(struct page * page,struct address_space * mapping,struct scan_control * sc)506 static pageout_t pageout(struct page *page, struct address_space *mapping,
507 struct scan_control *sc)
508 {
509 /*
510 * If the page is dirty, only perform writeback if that write
511 * will be non-blocking. To prevent this allocation from being
512 * stalled by pagecache activity. But note that there may be
513 * stalls if we need to run get_block(). We could test
514 * PagePrivate for that.
515 *
516 * If this process is currently in __generic_file_write_iter() against
517 * this page's queue, we can perform writeback even if that
518 * will block.
519 *
520 * If the page is swapcache, write it back even if that would
521 * block, for some throttling. This happens by accident, because
522 * swap_backing_dev_info is bust: it doesn't reflect the
523 * congestion state of the swapdevs. Easy to fix, if needed.
524 */
525 if (!is_page_cache_freeable(page))
526 return PAGE_KEEP;
527 if (!mapping) {
528 /*
529 * Some data journaling orphaned pages can have
530 * page->mapping == NULL while being dirty with clean buffers.
531 */
532 if (page_has_private(page)) {
533 if (try_to_free_buffers(page)) {
534 ClearPageDirty(page);
535 pr_info("%s: orphaned page\n", __func__);
536 return PAGE_CLEAN;
537 }
538 }
539 return PAGE_KEEP;
540 }
541 if (mapping->a_ops->writepage == NULL)
542 return PAGE_ACTIVATE;
543 if (!may_write_to_queue(mapping->backing_dev_info, sc))
544 return PAGE_KEEP;
545
546 if (clear_page_dirty_for_io(page)) {
547 int res;
548 struct writeback_control wbc = {
549 .sync_mode = WB_SYNC_NONE,
550 .nr_to_write = SWAP_CLUSTER_MAX,
551 .range_start = 0,
552 .range_end = LLONG_MAX,
553 .for_reclaim = 1,
554 };
555
556 SetPageReclaim(page);
557 res = mapping->a_ops->writepage(page, &wbc);
558 if (res < 0)
559 handle_write_error(mapping, page, res);
560 if (res == AOP_WRITEPAGE_ACTIVATE) {
561 ClearPageReclaim(page);
562 return PAGE_ACTIVATE;
563 }
564
565 if (!PageWriteback(page)) {
566 /* synchronous write or broken a_ops? */
567 ClearPageReclaim(page);
568 }
569 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
570 inc_zone_page_state(page, NR_VMSCAN_WRITE);
571 return PAGE_SUCCESS;
572 }
573
574 return PAGE_CLEAN;
575 }
576
577 /*
578 * Same as remove_mapping, but if the page is removed from the mapping, it
579 * gets returned with a refcount of 0.
580 */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed)581 static int __remove_mapping(struct address_space *mapping, struct page *page,
582 bool reclaimed)
583 {
584 BUG_ON(!PageLocked(page));
585 BUG_ON(mapping != page_mapping(page));
586
587 spin_lock_irq(&mapping->tree_lock);
588 /*
589 * The non racy check for a busy page.
590 *
591 * Must be careful with the order of the tests. When someone has
592 * a ref to the page, it may be possible that they dirty it then
593 * drop the reference. So if PageDirty is tested before page_count
594 * here, then the following race may occur:
595 *
596 * get_user_pages(&page);
597 * [user mapping goes away]
598 * write_to(page);
599 * !PageDirty(page) [good]
600 * SetPageDirty(page);
601 * put_page(page);
602 * !page_count(page) [good, discard it]
603 *
604 * [oops, our write_to data is lost]
605 *
606 * Reversing the order of the tests ensures such a situation cannot
607 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
608 * load is not satisfied before that of page->_count.
609 *
610 * Note that if SetPageDirty is always performed via set_page_dirty,
611 * and thus under tree_lock, then this ordering is not required.
612 */
613 if (!page_freeze_refs(page, 2))
614 goto cannot_free;
615 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
616 if (unlikely(PageDirty(page))) {
617 page_unfreeze_refs(page, 2);
618 goto cannot_free;
619 }
620
621 if (PageSwapCache(page)) {
622 swp_entry_t swap = { .val = page_private(page) };
623 mem_cgroup_swapout(page, swap);
624 __delete_from_swap_cache(page);
625 spin_unlock_irq(&mapping->tree_lock);
626 swapcache_free(swap);
627 } else {
628 void (*freepage)(struct page *);
629 void *shadow = NULL;
630
631 freepage = mapping->a_ops->freepage;
632 /*
633 * Remember a shadow entry for reclaimed file cache in
634 * order to detect refaults, thus thrashing, later on.
635 *
636 * But don't store shadows in an address space that is
637 * already exiting. This is not just an optizimation,
638 * inode reclaim needs to empty out the radix tree or
639 * the nodes are lost. Don't plant shadows behind its
640 * back.
641 */
642 if (reclaimed && page_is_file_cache(page) &&
643 !mapping_exiting(mapping))
644 shadow = workingset_eviction(mapping, page);
645 __delete_from_page_cache(page, shadow);
646 spin_unlock_irq(&mapping->tree_lock);
647
648 if (freepage != NULL)
649 freepage(page);
650 }
651
652 return 1;
653
654 cannot_free:
655 spin_unlock_irq(&mapping->tree_lock);
656 return 0;
657 }
658
659 /*
660 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
661 * someone else has a ref on the page, abort and return 0. If it was
662 * successfully detached, return 1. Assumes the caller has a single ref on
663 * this page.
664 */
remove_mapping(struct address_space * mapping,struct page * page)665 int remove_mapping(struct address_space *mapping, struct page *page)
666 {
667 if (__remove_mapping(mapping, page, false)) {
668 /*
669 * Unfreezing the refcount with 1 rather than 2 effectively
670 * drops the pagecache ref for us without requiring another
671 * atomic operation.
672 */
673 page_unfreeze_refs(page, 1);
674 return 1;
675 }
676 return 0;
677 }
678
679 /**
680 * putback_lru_page - put previously isolated page onto appropriate LRU list
681 * @page: page to be put back to appropriate lru list
682 *
683 * Add previously isolated @page to appropriate LRU list.
684 * Page may still be unevictable for other reasons.
685 *
686 * lru_lock must not be held, interrupts must be enabled.
687 */
putback_lru_page(struct page * page)688 void putback_lru_page(struct page *page)
689 {
690 bool is_unevictable;
691 int was_unevictable = PageUnevictable(page);
692
693 VM_BUG_ON_PAGE(PageLRU(page), page);
694
695 redo:
696 ClearPageUnevictable(page);
697
698 if (page_evictable(page)) {
699 /*
700 * For evictable pages, we can use the cache.
701 * In event of a race, worst case is we end up with an
702 * unevictable page on [in]active list.
703 * We know how to handle that.
704 */
705 is_unevictable = false;
706 lru_cache_add(page);
707 } else {
708 /*
709 * Put unevictable pages directly on zone's unevictable
710 * list.
711 */
712 is_unevictable = true;
713 add_page_to_unevictable_list(page);
714 /*
715 * When racing with an mlock or AS_UNEVICTABLE clearing
716 * (page is unlocked) make sure that if the other thread
717 * does not observe our setting of PG_lru and fails
718 * isolation/check_move_unevictable_pages,
719 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
720 * the page back to the evictable list.
721 *
722 * The other side is TestClearPageMlocked() or shmem_lock().
723 */
724 smp_mb();
725 }
726
727 /*
728 * page's status can change while we move it among lru. If an evictable
729 * page is on unevictable list, it never be freed. To avoid that,
730 * check after we added it to the list, again.
731 */
732 if (is_unevictable && page_evictable(page)) {
733 if (!isolate_lru_page(page)) {
734 put_page(page);
735 goto redo;
736 }
737 /* This means someone else dropped this page from LRU
738 * So, it will be freed or putback to LRU again. There is
739 * nothing to do here.
740 */
741 }
742
743 if (was_unevictable && !is_unevictable)
744 count_vm_event(UNEVICTABLE_PGRESCUED);
745 else if (!was_unevictable && is_unevictable)
746 count_vm_event(UNEVICTABLE_PGCULLED);
747
748 put_page(page); /* drop ref from isolate */
749 }
750
751 enum page_references {
752 PAGEREF_RECLAIM,
753 PAGEREF_RECLAIM_CLEAN,
754 PAGEREF_KEEP,
755 PAGEREF_ACTIVATE,
756 };
757
page_check_references(struct page * page,struct scan_control * sc)758 static enum page_references page_check_references(struct page *page,
759 struct scan_control *sc)
760 {
761 int referenced_ptes, referenced_page;
762 unsigned long vm_flags;
763
764 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
765 &vm_flags);
766 referenced_page = TestClearPageReferenced(page);
767
768 /*
769 * Mlock lost the isolation race with us. Let try_to_unmap()
770 * move the page to the unevictable list.
771 */
772 if (vm_flags & VM_LOCKED)
773 return PAGEREF_RECLAIM;
774
775 if (referenced_ptes) {
776 if (PageSwapBacked(page))
777 return PAGEREF_ACTIVATE;
778 /*
779 * All mapped pages start out with page table
780 * references from the instantiating fault, so we need
781 * to look twice if a mapped file page is used more
782 * than once.
783 *
784 * Mark it and spare it for another trip around the
785 * inactive list. Another page table reference will
786 * lead to its activation.
787 *
788 * Note: the mark is set for activated pages as well
789 * so that recently deactivated but used pages are
790 * quickly recovered.
791 */
792 SetPageReferenced(page);
793
794 if (referenced_page || referenced_ptes > 1)
795 return PAGEREF_ACTIVATE;
796
797 /*
798 * Activate file-backed executable pages after first usage.
799 */
800 if (vm_flags & VM_EXEC)
801 return PAGEREF_ACTIVATE;
802
803 return PAGEREF_KEEP;
804 }
805
806 /* Reclaim if clean, defer dirty pages to writeback */
807 if (referenced_page && !PageSwapBacked(page))
808 return PAGEREF_RECLAIM_CLEAN;
809
810 return PAGEREF_RECLAIM;
811 }
812
813 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)814 static void page_check_dirty_writeback(struct page *page,
815 bool *dirty, bool *writeback)
816 {
817 struct address_space *mapping;
818
819 /*
820 * Anonymous pages are not handled by flushers and must be written
821 * from reclaim context. Do not stall reclaim based on them
822 */
823 if (!page_is_file_cache(page)) {
824 *dirty = false;
825 *writeback = false;
826 return;
827 }
828
829 /* By default assume that the page flags are accurate */
830 *dirty = PageDirty(page);
831 *writeback = PageWriteback(page);
832
833 /* Verify dirty/writeback state if the filesystem supports it */
834 if (!page_has_private(page))
835 return;
836
837 mapping = page_mapping(page);
838 if (mapping && mapping->a_ops->is_dirty_writeback)
839 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
840 }
841
842 /*
843 * shrink_page_list() returns the number of reclaimed pages
844 */
shrink_page_list(struct list_head * page_list,struct zone * zone,struct scan_control * sc,enum ttu_flags ttu_flags,unsigned long * ret_nr_dirty,unsigned long * ret_nr_unqueued_dirty,unsigned long * ret_nr_congested,unsigned long * ret_nr_writeback,unsigned long * ret_nr_immediate,bool force_reclaim)845 static unsigned long shrink_page_list(struct list_head *page_list,
846 struct zone *zone,
847 struct scan_control *sc,
848 enum ttu_flags ttu_flags,
849 unsigned long *ret_nr_dirty,
850 unsigned long *ret_nr_unqueued_dirty,
851 unsigned long *ret_nr_congested,
852 unsigned long *ret_nr_writeback,
853 unsigned long *ret_nr_immediate,
854 bool force_reclaim)
855 {
856 LIST_HEAD(ret_pages);
857 LIST_HEAD(free_pages);
858 int pgactivate = 0;
859 unsigned long nr_unqueued_dirty = 0;
860 unsigned long nr_dirty = 0;
861 unsigned long nr_congested = 0;
862 unsigned long nr_reclaimed = 0;
863 unsigned long nr_writeback = 0;
864 unsigned long nr_immediate = 0;
865
866 cond_resched();
867
868 while (!list_empty(page_list)) {
869 struct address_space *mapping;
870 struct page *page;
871 int may_enter_fs;
872 enum page_references references = PAGEREF_RECLAIM_CLEAN;
873 bool dirty, writeback;
874
875 cond_resched();
876
877 page = lru_to_page(page_list);
878 list_del(&page->lru);
879
880 if (!trylock_page(page))
881 goto keep;
882
883 VM_BUG_ON_PAGE(PageActive(page), page);
884 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
885
886 sc->nr_scanned++;
887
888 if (unlikely(!page_evictable(page)))
889 goto cull_mlocked;
890
891 if (!sc->may_unmap && page_mapped(page))
892 goto keep_locked;
893
894 /* Double the slab pressure for mapped and swapcache pages */
895 if (page_mapped(page) || PageSwapCache(page))
896 sc->nr_scanned++;
897
898 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
899 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
900
901 /*
902 * The number of dirty pages determines if a zone is marked
903 * reclaim_congested which affects wait_iff_congested. kswapd
904 * will stall and start writing pages if the tail of the LRU
905 * is all dirty unqueued pages.
906 */
907 page_check_dirty_writeback(page, &dirty, &writeback);
908 if (dirty || writeback)
909 nr_dirty++;
910
911 if (dirty && !writeback)
912 nr_unqueued_dirty++;
913
914 /*
915 * Treat this page as congested if the underlying BDI is or if
916 * pages are cycling through the LRU so quickly that the
917 * pages marked for immediate reclaim are making it to the
918 * end of the LRU a second time.
919 */
920 mapping = page_mapping(page);
921 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
922 (writeback && PageReclaim(page)))
923 nr_congested++;
924
925 /*
926 * If a page at the tail of the LRU is under writeback, there
927 * are three cases to consider.
928 *
929 * 1) If reclaim is encountering an excessive number of pages
930 * under writeback and this page is both under writeback and
931 * PageReclaim then it indicates that pages are being queued
932 * for IO but are being recycled through the LRU before the
933 * IO can complete. Waiting on the page itself risks an
934 * indefinite stall if it is impossible to writeback the
935 * page due to IO error or disconnected storage so instead
936 * note that the LRU is being scanned too quickly and the
937 * caller can stall after page list has been processed.
938 *
939 * 2) Global reclaim encounters a page, memcg encounters a
940 * page that is not marked for immediate reclaim or
941 * the caller does not have __GFP_FS (or __GFP_IO if it's
942 * simply going to swap, not to fs). In this case mark
943 * the page for immediate reclaim and continue scanning.
944 *
945 * Require may_enter_fs because we would wait on fs, which
946 * may not have submitted IO yet. And the loop driver might
947 * enter reclaim, and deadlock if it waits on a page for
948 * which it is needed to do the write (loop masks off
949 * __GFP_IO|__GFP_FS for this reason); but more thought
950 * would probably show more reasons.
951 *
952 * 3) memcg encounters a page that is not already marked
953 * PageReclaim. memcg does not have any dirty pages
954 * throttling so we could easily OOM just because too many
955 * pages are in writeback and there is nothing else to
956 * reclaim. Wait for the writeback to complete.
957 */
958 if (PageWriteback(page)) {
959 /* Case 1 above */
960 if (current_is_kswapd() &&
961 PageReclaim(page) &&
962 test_bit(ZONE_WRITEBACK, &zone->flags)) {
963 nr_immediate++;
964 goto keep_locked;
965
966 /* Case 2 above */
967 } else if (global_reclaim(sc) ||
968 !PageReclaim(page) || !may_enter_fs) {
969 /*
970 * This is slightly racy - end_page_writeback()
971 * might have just cleared PageReclaim, then
972 * setting PageReclaim here end up interpreted
973 * as PageReadahead - but that does not matter
974 * enough to care. What we do want is for this
975 * page to have PageReclaim set next time memcg
976 * reclaim reaches the tests above, so it will
977 * then wait_on_page_writeback() to avoid OOM;
978 * and it's also appropriate in global reclaim.
979 */
980 SetPageReclaim(page);
981 nr_writeback++;
982
983 goto keep_locked;
984
985 /* Case 3 above */
986 } else {
987 wait_on_page_writeback(page);
988 }
989 }
990
991 if (!force_reclaim)
992 references = page_check_references(page, sc);
993
994 switch (references) {
995 case PAGEREF_ACTIVATE:
996 goto activate_locked;
997 case PAGEREF_KEEP:
998 goto keep_locked;
999 case PAGEREF_RECLAIM:
1000 case PAGEREF_RECLAIM_CLEAN:
1001 ; /* try to reclaim the page below */
1002 }
1003
1004 /*
1005 * Anonymous process memory has backing store?
1006 * Try to allocate it some swap space here.
1007 */
1008 if (PageAnon(page) && !PageSwapCache(page)) {
1009 if (!(sc->gfp_mask & __GFP_IO))
1010 goto keep_locked;
1011 if (!add_to_swap(page, page_list))
1012 goto activate_locked;
1013 may_enter_fs = 1;
1014
1015 /* Adding to swap updated mapping */
1016 mapping = page_mapping(page);
1017 }
1018
1019 /*
1020 * The page is mapped into the page tables of one or more
1021 * processes. Try to unmap it here.
1022 */
1023 if (page_mapped(page) && mapping) {
1024 switch (try_to_unmap(page, ttu_flags)) {
1025 case SWAP_FAIL:
1026 goto activate_locked;
1027 case SWAP_AGAIN:
1028 goto keep_locked;
1029 case SWAP_MLOCK:
1030 goto cull_mlocked;
1031 case SWAP_SUCCESS:
1032 ; /* try to free the page below */
1033 }
1034 }
1035
1036 if (PageDirty(page)) {
1037 /*
1038 * Only kswapd can writeback filesystem pages to
1039 * avoid risk of stack overflow but only writeback
1040 * if many dirty pages have been encountered.
1041 */
1042 if (page_is_file_cache(page) &&
1043 (!current_is_kswapd() ||
1044 !test_bit(ZONE_DIRTY, &zone->flags))) {
1045 /*
1046 * Immediately reclaim when written back.
1047 * Similar in principal to deactivate_page()
1048 * except we already have the page isolated
1049 * and know it's dirty
1050 */
1051 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1052 SetPageReclaim(page);
1053
1054 goto keep_locked;
1055 }
1056
1057 if (references == PAGEREF_RECLAIM_CLEAN)
1058 goto keep_locked;
1059 if (!may_enter_fs)
1060 goto keep_locked;
1061 if (!sc->may_writepage)
1062 goto keep_locked;
1063
1064 /* Page is dirty, try to write it out here */
1065 switch (pageout(page, mapping, sc)) {
1066 case PAGE_KEEP:
1067 goto keep_locked;
1068 case PAGE_ACTIVATE:
1069 goto activate_locked;
1070 case PAGE_SUCCESS:
1071 if (PageWriteback(page))
1072 goto keep;
1073 if (PageDirty(page))
1074 goto keep;
1075
1076 /*
1077 * A synchronous write - probably a ramdisk. Go
1078 * ahead and try to reclaim the page.
1079 */
1080 if (!trylock_page(page))
1081 goto keep;
1082 if (PageDirty(page) || PageWriteback(page))
1083 goto keep_locked;
1084 mapping = page_mapping(page);
1085 case PAGE_CLEAN:
1086 ; /* try to free the page below */
1087 }
1088 }
1089
1090 /*
1091 * If the page has buffers, try to free the buffer mappings
1092 * associated with this page. If we succeed we try to free
1093 * the page as well.
1094 *
1095 * We do this even if the page is PageDirty().
1096 * try_to_release_page() does not perform I/O, but it is
1097 * possible for a page to have PageDirty set, but it is actually
1098 * clean (all its buffers are clean). This happens if the
1099 * buffers were written out directly, with submit_bh(). ext3
1100 * will do this, as well as the blockdev mapping.
1101 * try_to_release_page() will discover that cleanness and will
1102 * drop the buffers and mark the page clean - it can be freed.
1103 *
1104 * Rarely, pages can have buffers and no ->mapping. These are
1105 * the pages which were not successfully invalidated in
1106 * truncate_complete_page(). We try to drop those buffers here
1107 * and if that worked, and the page is no longer mapped into
1108 * process address space (page_count == 1) it can be freed.
1109 * Otherwise, leave the page on the LRU so it is swappable.
1110 */
1111 if (page_has_private(page)) {
1112 if (!try_to_release_page(page, sc->gfp_mask))
1113 goto activate_locked;
1114 if (!mapping && page_count(page) == 1) {
1115 unlock_page(page);
1116 if (put_page_testzero(page))
1117 goto free_it;
1118 else {
1119 /*
1120 * rare race with speculative reference.
1121 * the speculative reference will free
1122 * this page shortly, so we may
1123 * increment nr_reclaimed here (and
1124 * leave it off the LRU).
1125 */
1126 nr_reclaimed++;
1127 continue;
1128 }
1129 }
1130 }
1131
1132 if (!mapping || !__remove_mapping(mapping, page, true))
1133 goto keep_locked;
1134
1135 /*
1136 * At this point, we have no other references and there is
1137 * no way to pick any more up (removed from LRU, removed
1138 * from pagecache). Can use non-atomic bitops now (and
1139 * we obviously don't have to worry about waking up a process
1140 * waiting on the page lock, because there are no references.
1141 */
1142 __clear_page_locked(page);
1143 free_it:
1144 nr_reclaimed++;
1145
1146 /*
1147 * Is there need to periodically free_page_list? It would
1148 * appear not as the counts should be low
1149 */
1150 list_add(&page->lru, &free_pages);
1151 continue;
1152
1153 cull_mlocked:
1154 if (PageSwapCache(page))
1155 try_to_free_swap(page);
1156 unlock_page(page);
1157 list_add(&page->lru, &ret_pages);
1158 continue;
1159
1160 activate_locked:
1161 /* Not a candidate for swapping, so reclaim swap space. */
1162 if (PageSwapCache(page) && vm_swap_full())
1163 try_to_free_swap(page);
1164 VM_BUG_ON_PAGE(PageActive(page), page);
1165 SetPageActive(page);
1166 pgactivate++;
1167 keep_locked:
1168 unlock_page(page);
1169 keep:
1170 list_add(&page->lru, &ret_pages);
1171 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1172 }
1173
1174 mem_cgroup_uncharge_list(&free_pages);
1175 free_hot_cold_page_list(&free_pages, true);
1176
1177 list_splice(&ret_pages, page_list);
1178 count_vm_events(PGACTIVATE, pgactivate);
1179
1180 *ret_nr_dirty += nr_dirty;
1181 *ret_nr_congested += nr_congested;
1182 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1183 *ret_nr_writeback += nr_writeback;
1184 *ret_nr_immediate += nr_immediate;
1185 return nr_reclaimed;
1186 }
1187
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1188 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1189 struct list_head *page_list)
1190 {
1191 struct scan_control sc = {
1192 .gfp_mask = GFP_KERNEL,
1193 .priority = DEF_PRIORITY,
1194 .may_unmap = 1,
1195 };
1196 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1197 struct page *page, *next;
1198 LIST_HEAD(clean_pages);
1199
1200 list_for_each_entry_safe(page, next, page_list, lru) {
1201 if (page_is_file_cache(page) && !PageDirty(page) &&
1202 !isolated_balloon_page(page)) {
1203 ClearPageActive(page);
1204 list_move(&page->lru, &clean_pages);
1205 }
1206 }
1207
1208 ret = shrink_page_list(&clean_pages, zone, &sc,
1209 TTU_UNMAP|TTU_IGNORE_ACCESS,
1210 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1211 list_splice(&clean_pages, page_list);
1212 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1213 return ret;
1214 }
1215
1216 /*
1217 * Attempt to remove the specified page from its LRU. Only take this page
1218 * if it is of the appropriate PageActive status. Pages which are being
1219 * freed elsewhere are also ignored.
1220 *
1221 * page: page to consider
1222 * mode: one of the LRU isolation modes defined above
1223 *
1224 * returns 0 on success, -ve errno on failure.
1225 */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1226 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1227 {
1228 int ret = -EINVAL;
1229
1230 /* Only take pages on the LRU. */
1231 if (!PageLRU(page))
1232 return ret;
1233
1234 /* Compaction should not handle unevictable pages but CMA can do so */
1235 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1236 return ret;
1237
1238 ret = -EBUSY;
1239
1240 /*
1241 * To minimise LRU disruption, the caller can indicate that it only
1242 * wants to isolate pages it will be able to operate on without
1243 * blocking - clean pages for the most part.
1244 *
1245 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1246 * is used by reclaim when it is cannot write to backing storage
1247 *
1248 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1249 * that it is possible to migrate without blocking
1250 */
1251 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1252 /* All the caller can do on PageWriteback is block */
1253 if (PageWriteback(page))
1254 return ret;
1255
1256 if (PageDirty(page)) {
1257 struct address_space *mapping;
1258
1259 /* ISOLATE_CLEAN means only clean pages */
1260 if (mode & ISOLATE_CLEAN)
1261 return ret;
1262
1263 /*
1264 * Only pages without mappings or that have a
1265 * ->migratepage callback are possible to migrate
1266 * without blocking
1267 */
1268 mapping = page_mapping(page);
1269 if (mapping && !mapping->a_ops->migratepage)
1270 return ret;
1271 }
1272 }
1273
1274 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1275 return ret;
1276
1277 if (likely(get_page_unless_zero(page))) {
1278 /*
1279 * Be careful not to clear PageLRU until after we're
1280 * sure the page is not being freed elsewhere -- the
1281 * page release code relies on it.
1282 */
1283 ClearPageLRU(page);
1284 ret = 0;
1285 }
1286
1287 return ret;
1288 }
1289
1290 /*
1291 * zone->lru_lock is heavily contended. Some of the functions that
1292 * shrink the lists perform better by taking out a batch of pages
1293 * and working on them outside the LRU lock.
1294 *
1295 * For pagecache intensive workloads, this function is the hottest
1296 * spot in the kernel (apart from copy_*_user functions).
1297 *
1298 * Appropriate locks must be held before calling this function.
1299 *
1300 * @nr_to_scan: The number of pages to look through on the list.
1301 * @lruvec: The LRU vector to pull pages from.
1302 * @dst: The temp list to put pages on to.
1303 * @nr_scanned: The number of pages that were scanned.
1304 * @sc: The scan_control struct for this reclaim session
1305 * @mode: One of the LRU isolation modes
1306 * @lru: LRU list id for isolating
1307 *
1308 * returns how many pages were moved onto *@dst.
1309 */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,isolate_mode_t mode,enum lru_list lru)1310 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1311 struct lruvec *lruvec, struct list_head *dst,
1312 unsigned long *nr_scanned, struct scan_control *sc,
1313 isolate_mode_t mode, enum lru_list lru)
1314 {
1315 struct list_head *src = &lruvec->lists[lru];
1316 unsigned long nr_taken = 0;
1317 unsigned long scan;
1318
1319 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1320 struct page *page;
1321 int nr_pages;
1322
1323 page = lru_to_page(src);
1324 prefetchw_prev_lru_page(page, src, flags);
1325
1326 VM_BUG_ON_PAGE(!PageLRU(page), page);
1327
1328 switch (__isolate_lru_page(page, mode)) {
1329 case 0:
1330 nr_pages = hpage_nr_pages(page);
1331 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1332 list_move(&page->lru, dst);
1333 nr_taken += nr_pages;
1334 break;
1335
1336 case -EBUSY:
1337 /* else it is being freed elsewhere */
1338 list_move(&page->lru, src);
1339 continue;
1340
1341 default:
1342 BUG();
1343 }
1344 }
1345
1346 *nr_scanned = scan;
1347 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1348 nr_taken, mode, is_file_lru(lru));
1349 return nr_taken;
1350 }
1351
1352 /**
1353 * isolate_lru_page - tries to isolate a page from its LRU list
1354 * @page: page to isolate from its LRU list
1355 *
1356 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1357 * vmstat statistic corresponding to whatever LRU list the page was on.
1358 *
1359 * Returns 0 if the page was removed from an LRU list.
1360 * Returns -EBUSY if the page was not on an LRU list.
1361 *
1362 * The returned page will have PageLRU() cleared. If it was found on
1363 * the active list, it will have PageActive set. If it was found on
1364 * the unevictable list, it will have the PageUnevictable bit set. That flag
1365 * may need to be cleared by the caller before letting the page go.
1366 *
1367 * The vmstat statistic corresponding to the list on which the page was
1368 * found will be decremented.
1369 *
1370 * Restrictions:
1371 * (1) Must be called with an elevated refcount on the page. This is a
1372 * fundamentnal difference from isolate_lru_pages (which is called
1373 * without a stable reference).
1374 * (2) the lru_lock must not be held.
1375 * (3) interrupts must be enabled.
1376 */
isolate_lru_page(struct page * page)1377 int isolate_lru_page(struct page *page)
1378 {
1379 int ret = -EBUSY;
1380
1381 VM_BUG_ON_PAGE(!page_count(page), page);
1382
1383 if (PageLRU(page)) {
1384 struct zone *zone = page_zone(page);
1385 struct lruvec *lruvec;
1386
1387 spin_lock_irq(&zone->lru_lock);
1388 lruvec = mem_cgroup_page_lruvec(page, zone);
1389 if (PageLRU(page)) {
1390 int lru = page_lru(page);
1391 get_page(page);
1392 ClearPageLRU(page);
1393 del_page_from_lru_list(page, lruvec, lru);
1394 ret = 0;
1395 }
1396 spin_unlock_irq(&zone->lru_lock);
1397 }
1398 return ret;
1399 }
1400
1401 /*
1402 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1403 * then get resheduled. When there are massive number of tasks doing page
1404 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1405 * the LRU list will go small and be scanned faster than necessary, leading to
1406 * unnecessary swapping, thrashing and OOM.
1407 */
too_many_isolated(struct zone * zone,int file,struct scan_control * sc)1408 static int too_many_isolated(struct zone *zone, int file,
1409 struct scan_control *sc)
1410 {
1411 unsigned long inactive, isolated;
1412
1413 if (current_is_kswapd())
1414 return 0;
1415
1416 if (!global_reclaim(sc))
1417 return 0;
1418
1419 if (file) {
1420 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1421 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1422 } else {
1423 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1424 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1425 }
1426
1427 /*
1428 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1429 * won't get blocked by normal direct-reclaimers, forming a circular
1430 * deadlock.
1431 */
1432 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1433 inactive >>= 3;
1434
1435 return isolated > inactive;
1436 }
1437
1438 static noinline_for_stack void
putback_inactive_pages(struct lruvec * lruvec,struct list_head * page_list)1439 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1440 {
1441 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1442 struct zone *zone = lruvec_zone(lruvec);
1443 LIST_HEAD(pages_to_free);
1444
1445 /*
1446 * Put back any unfreeable pages.
1447 */
1448 while (!list_empty(page_list)) {
1449 struct page *page = lru_to_page(page_list);
1450 int lru;
1451
1452 VM_BUG_ON_PAGE(PageLRU(page), page);
1453 list_del(&page->lru);
1454 if (unlikely(!page_evictable(page))) {
1455 spin_unlock_irq(&zone->lru_lock);
1456 putback_lru_page(page);
1457 spin_lock_irq(&zone->lru_lock);
1458 continue;
1459 }
1460
1461 lruvec = mem_cgroup_page_lruvec(page, zone);
1462
1463 SetPageLRU(page);
1464 lru = page_lru(page);
1465 add_page_to_lru_list(page, lruvec, lru);
1466
1467 if (is_active_lru(lru)) {
1468 int file = is_file_lru(lru);
1469 int numpages = hpage_nr_pages(page);
1470 reclaim_stat->recent_rotated[file] += numpages;
1471 }
1472 if (put_page_testzero(page)) {
1473 __ClearPageLRU(page);
1474 __ClearPageActive(page);
1475 del_page_from_lru_list(page, lruvec, lru);
1476
1477 if (unlikely(PageCompound(page))) {
1478 spin_unlock_irq(&zone->lru_lock);
1479 mem_cgroup_uncharge(page);
1480 (*get_compound_page_dtor(page))(page);
1481 spin_lock_irq(&zone->lru_lock);
1482 } else
1483 list_add(&page->lru, &pages_to_free);
1484 }
1485 }
1486
1487 /*
1488 * To save our caller's stack, now use input list for pages to free.
1489 */
1490 list_splice(&pages_to_free, page_list);
1491 }
1492
1493 /*
1494 * If a kernel thread (such as nfsd for loop-back mounts) services
1495 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1496 * In that case we should only throttle if the backing device it is
1497 * writing to is congested. In other cases it is safe to throttle.
1498 */
current_may_throttle(void)1499 static int current_may_throttle(void)
1500 {
1501 return !(current->flags & PF_LESS_THROTTLE) ||
1502 current->backing_dev_info == NULL ||
1503 bdi_write_congested(current->backing_dev_info);
1504 }
1505
1506 /*
1507 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1508 * of reclaimed pages
1509 */
1510 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1511 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1512 struct scan_control *sc, enum lru_list lru)
1513 {
1514 LIST_HEAD(page_list);
1515 unsigned long nr_scanned;
1516 unsigned long nr_reclaimed = 0;
1517 unsigned long nr_taken;
1518 unsigned long nr_dirty = 0;
1519 unsigned long nr_congested = 0;
1520 unsigned long nr_unqueued_dirty = 0;
1521 unsigned long nr_writeback = 0;
1522 unsigned long nr_immediate = 0;
1523 isolate_mode_t isolate_mode = 0;
1524 int file = is_file_lru(lru);
1525 struct zone *zone = lruvec_zone(lruvec);
1526 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1527
1528 while (unlikely(too_many_isolated(zone, file, sc))) {
1529 congestion_wait(BLK_RW_ASYNC, HZ/10);
1530
1531 /* We are about to die and free our memory. Return now. */
1532 if (fatal_signal_pending(current))
1533 return SWAP_CLUSTER_MAX;
1534 }
1535
1536 lru_add_drain();
1537
1538 if (!sc->may_unmap)
1539 isolate_mode |= ISOLATE_UNMAPPED;
1540 if (!sc->may_writepage)
1541 isolate_mode |= ISOLATE_CLEAN;
1542
1543 spin_lock_irq(&zone->lru_lock);
1544
1545 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1546 &nr_scanned, sc, isolate_mode, lru);
1547
1548 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1549 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1550
1551 if (global_reclaim(sc)) {
1552 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1553 if (current_is_kswapd())
1554 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1555 else
1556 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1557 }
1558 spin_unlock_irq(&zone->lru_lock);
1559
1560 if (nr_taken == 0)
1561 return 0;
1562
1563 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1564 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1565 &nr_writeback, &nr_immediate,
1566 false);
1567
1568 spin_lock_irq(&zone->lru_lock);
1569
1570 reclaim_stat->recent_scanned[file] += nr_taken;
1571
1572 if (global_reclaim(sc)) {
1573 if (current_is_kswapd())
1574 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1575 nr_reclaimed);
1576 else
1577 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1578 nr_reclaimed);
1579 }
1580
1581 putback_inactive_pages(lruvec, &page_list);
1582
1583 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1584
1585 spin_unlock_irq(&zone->lru_lock);
1586
1587 mem_cgroup_uncharge_list(&page_list);
1588 free_hot_cold_page_list(&page_list, true);
1589
1590 /*
1591 * If reclaim is isolating dirty pages under writeback, it implies
1592 * that the long-lived page allocation rate is exceeding the page
1593 * laundering rate. Either the global limits are not being effective
1594 * at throttling processes due to the page distribution throughout
1595 * zones or there is heavy usage of a slow backing device. The
1596 * only option is to throttle from reclaim context which is not ideal
1597 * as there is no guarantee the dirtying process is throttled in the
1598 * same way balance_dirty_pages() manages.
1599 *
1600 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1601 * of pages under pages flagged for immediate reclaim and stall if any
1602 * are encountered in the nr_immediate check below.
1603 */
1604 if (nr_writeback && nr_writeback == nr_taken)
1605 set_bit(ZONE_WRITEBACK, &zone->flags);
1606
1607 /*
1608 * memcg will stall in page writeback so only consider forcibly
1609 * stalling for global reclaim
1610 */
1611 if (global_reclaim(sc)) {
1612 /*
1613 * Tag a zone as congested if all the dirty pages scanned were
1614 * backed by a congested BDI and wait_iff_congested will stall.
1615 */
1616 if (nr_dirty && nr_dirty == nr_congested)
1617 set_bit(ZONE_CONGESTED, &zone->flags);
1618
1619 /*
1620 * If dirty pages are scanned that are not queued for IO, it
1621 * implies that flushers are not keeping up. In this case, flag
1622 * the zone ZONE_DIRTY and kswapd will start writing pages from
1623 * reclaim context.
1624 */
1625 if (nr_unqueued_dirty == nr_taken)
1626 set_bit(ZONE_DIRTY, &zone->flags);
1627
1628 /*
1629 * If kswapd scans pages marked marked for immediate
1630 * reclaim and under writeback (nr_immediate), it implies
1631 * that pages are cycling through the LRU faster than
1632 * they are written so also forcibly stall.
1633 */
1634 if (nr_immediate && current_may_throttle())
1635 congestion_wait(BLK_RW_ASYNC, HZ/10);
1636 }
1637
1638 /*
1639 * Stall direct reclaim for IO completions if underlying BDIs or zone
1640 * is congested. Allow kswapd to continue until it starts encountering
1641 * unqueued dirty pages or cycling through the LRU too quickly.
1642 */
1643 if (!sc->hibernation_mode && !current_is_kswapd() &&
1644 current_may_throttle())
1645 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1646
1647 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1648 zone_idx(zone),
1649 nr_scanned, nr_reclaimed,
1650 sc->priority,
1651 trace_shrink_flags(file));
1652 return nr_reclaimed;
1653 }
1654
1655 /*
1656 * This moves pages from the active list to the inactive list.
1657 *
1658 * We move them the other way if the page is referenced by one or more
1659 * processes, from rmap.
1660 *
1661 * If the pages are mostly unmapped, the processing is fast and it is
1662 * appropriate to hold zone->lru_lock across the whole operation. But if
1663 * the pages are mapped, the processing is slow (page_referenced()) so we
1664 * should drop zone->lru_lock around each page. It's impossible to balance
1665 * this, so instead we remove the pages from the LRU while processing them.
1666 * It is safe to rely on PG_active against the non-LRU pages in here because
1667 * nobody will play with that bit on a non-LRU page.
1668 *
1669 * The downside is that we have to touch page->_count against each page.
1670 * But we had to alter page->flags anyway.
1671 */
1672
move_active_pages_to_lru(struct lruvec * lruvec,struct list_head * list,struct list_head * pages_to_free,enum lru_list lru)1673 static void move_active_pages_to_lru(struct lruvec *lruvec,
1674 struct list_head *list,
1675 struct list_head *pages_to_free,
1676 enum lru_list lru)
1677 {
1678 struct zone *zone = lruvec_zone(lruvec);
1679 unsigned long pgmoved = 0;
1680 struct page *page;
1681 int nr_pages;
1682
1683 while (!list_empty(list)) {
1684 page = lru_to_page(list);
1685 lruvec = mem_cgroup_page_lruvec(page, zone);
1686
1687 VM_BUG_ON_PAGE(PageLRU(page), page);
1688 SetPageLRU(page);
1689
1690 nr_pages = hpage_nr_pages(page);
1691 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1692 list_move(&page->lru, &lruvec->lists[lru]);
1693 pgmoved += nr_pages;
1694
1695 if (put_page_testzero(page)) {
1696 __ClearPageLRU(page);
1697 __ClearPageActive(page);
1698 del_page_from_lru_list(page, lruvec, lru);
1699
1700 if (unlikely(PageCompound(page))) {
1701 spin_unlock_irq(&zone->lru_lock);
1702 mem_cgroup_uncharge(page);
1703 (*get_compound_page_dtor(page))(page);
1704 spin_lock_irq(&zone->lru_lock);
1705 } else
1706 list_add(&page->lru, pages_to_free);
1707 }
1708 }
1709 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1710 if (!is_active_lru(lru))
1711 __count_vm_events(PGDEACTIVATE, pgmoved);
1712 }
1713
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1714 static void shrink_active_list(unsigned long nr_to_scan,
1715 struct lruvec *lruvec,
1716 struct scan_control *sc,
1717 enum lru_list lru)
1718 {
1719 unsigned long nr_taken;
1720 unsigned long nr_scanned;
1721 unsigned long vm_flags;
1722 LIST_HEAD(l_hold); /* The pages which were snipped off */
1723 LIST_HEAD(l_active);
1724 LIST_HEAD(l_inactive);
1725 struct page *page;
1726 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1727 unsigned long nr_rotated = 0;
1728 isolate_mode_t isolate_mode = 0;
1729 int file = is_file_lru(lru);
1730 struct zone *zone = lruvec_zone(lruvec);
1731
1732 lru_add_drain();
1733
1734 if (!sc->may_unmap)
1735 isolate_mode |= ISOLATE_UNMAPPED;
1736 if (!sc->may_writepage)
1737 isolate_mode |= ISOLATE_CLEAN;
1738
1739 spin_lock_irq(&zone->lru_lock);
1740
1741 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1742 &nr_scanned, sc, isolate_mode, lru);
1743 if (global_reclaim(sc))
1744 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1745
1746 reclaim_stat->recent_scanned[file] += nr_taken;
1747
1748 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1749 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1750 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1751 spin_unlock_irq(&zone->lru_lock);
1752
1753 while (!list_empty(&l_hold)) {
1754 cond_resched();
1755 page = lru_to_page(&l_hold);
1756 list_del(&page->lru);
1757
1758 if (unlikely(!page_evictable(page))) {
1759 putback_lru_page(page);
1760 continue;
1761 }
1762
1763 if (unlikely(buffer_heads_over_limit)) {
1764 if (page_has_private(page) && trylock_page(page)) {
1765 if (page_has_private(page))
1766 try_to_release_page(page, 0);
1767 unlock_page(page);
1768 }
1769 }
1770
1771 if (page_referenced(page, 0, sc->target_mem_cgroup,
1772 &vm_flags)) {
1773 nr_rotated += hpage_nr_pages(page);
1774 /*
1775 * Identify referenced, file-backed active pages and
1776 * give them one more trip around the active list. So
1777 * that executable code get better chances to stay in
1778 * memory under moderate memory pressure. Anon pages
1779 * are not likely to be evicted by use-once streaming
1780 * IO, plus JVM can create lots of anon VM_EXEC pages,
1781 * so we ignore them here.
1782 */
1783 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1784 list_add(&page->lru, &l_active);
1785 continue;
1786 }
1787 }
1788
1789 ClearPageActive(page); /* we are de-activating */
1790 list_add(&page->lru, &l_inactive);
1791 }
1792
1793 /*
1794 * Move pages back to the lru list.
1795 */
1796 spin_lock_irq(&zone->lru_lock);
1797 /*
1798 * Count referenced pages from currently used mappings as rotated,
1799 * even though only some of them are actually re-activated. This
1800 * helps balance scan pressure between file and anonymous pages in
1801 * get_scan_count.
1802 */
1803 reclaim_stat->recent_rotated[file] += nr_rotated;
1804
1805 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1806 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1807 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1808 spin_unlock_irq(&zone->lru_lock);
1809
1810 mem_cgroup_uncharge_list(&l_hold);
1811 free_hot_cold_page_list(&l_hold, true);
1812 }
1813
1814 #ifdef CONFIG_SWAP
inactive_anon_is_low_global(struct zone * zone)1815 static int inactive_anon_is_low_global(struct zone *zone)
1816 {
1817 unsigned long active, inactive;
1818
1819 active = zone_page_state(zone, NR_ACTIVE_ANON);
1820 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1821
1822 if (inactive * zone->inactive_ratio < active)
1823 return 1;
1824
1825 return 0;
1826 }
1827
1828 /**
1829 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1830 * @lruvec: LRU vector to check
1831 *
1832 * Returns true if the zone does not have enough inactive anon pages,
1833 * meaning some active anon pages need to be deactivated.
1834 */
inactive_anon_is_low(struct lruvec * lruvec)1835 static int inactive_anon_is_low(struct lruvec *lruvec)
1836 {
1837 /*
1838 * If we don't have swap space, anonymous page deactivation
1839 * is pointless.
1840 */
1841 if (!total_swap_pages)
1842 return 0;
1843
1844 if (!mem_cgroup_disabled())
1845 return mem_cgroup_inactive_anon_is_low(lruvec);
1846
1847 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1848 }
1849 #else
inactive_anon_is_low(struct lruvec * lruvec)1850 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1851 {
1852 return 0;
1853 }
1854 #endif
1855
1856 /**
1857 * inactive_file_is_low - check if file pages need to be deactivated
1858 * @lruvec: LRU vector to check
1859 *
1860 * When the system is doing streaming IO, memory pressure here
1861 * ensures that active file pages get deactivated, until more
1862 * than half of the file pages are on the inactive list.
1863 *
1864 * Once we get to that situation, protect the system's working
1865 * set from being evicted by disabling active file page aging.
1866 *
1867 * This uses a different ratio than the anonymous pages, because
1868 * the page cache uses a use-once replacement algorithm.
1869 */
inactive_file_is_low(struct lruvec * lruvec)1870 static int inactive_file_is_low(struct lruvec *lruvec)
1871 {
1872 unsigned long inactive;
1873 unsigned long active;
1874
1875 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1876 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1877
1878 return active > inactive;
1879 }
1880
inactive_list_is_low(struct lruvec * lruvec,enum lru_list lru)1881 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1882 {
1883 if (is_file_lru(lru))
1884 return inactive_file_is_low(lruvec);
1885 else
1886 return inactive_anon_is_low(lruvec);
1887 }
1888
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)1889 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1890 struct lruvec *lruvec, struct scan_control *sc)
1891 {
1892 if (is_active_lru(lru)) {
1893 if (inactive_list_is_low(lruvec, lru))
1894 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1895 return 0;
1896 }
1897
1898 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1899 }
1900
1901 enum scan_balance {
1902 SCAN_EQUAL,
1903 SCAN_FRACT,
1904 SCAN_ANON,
1905 SCAN_FILE,
1906 };
1907
1908 /*
1909 * Determine how aggressively the anon and file LRU lists should be
1910 * scanned. The relative value of each set of LRU lists is determined
1911 * by looking at the fraction of the pages scanned we did rotate back
1912 * onto the active list instead of evict.
1913 *
1914 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1915 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1916 */
get_scan_count(struct lruvec * lruvec,int swappiness,struct scan_control * sc,unsigned long * nr)1917 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1918 struct scan_control *sc, unsigned long *nr)
1919 {
1920 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1921 u64 fraction[2];
1922 u64 denominator = 0; /* gcc */
1923 struct zone *zone = lruvec_zone(lruvec);
1924 unsigned long anon_prio, file_prio;
1925 enum scan_balance scan_balance;
1926 unsigned long anon, file;
1927 bool force_scan = false;
1928 unsigned long ap, fp;
1929 enum lru_list lru;
1930 bool some_scanned;
1931 int pass;
1932
1933 /*
1934 * If the zone or memcg is small, nr[l] can be 0. This
1935 * results in no scanning on this priority and a potential
1936 * priority drop. Global direct reclaim can go to the next
1937 * zone and tends to have no problems. Global kswapd is for
1938 * zone balancing and it needs to scan a minimum amount. When
1939 * reclaiming for a memcg, a priority drop can cause high
1940 * latencies, so it's better to scan a minimum amount there as
1941 * well.
1942 */
1943 if (current_is_kswapd() && !zone_reclaimable(zone))
1944 force_scan = true;
1945 if (!global_reclaim(sc))
1946 force_scan = true;
1947
1948 /* If we have no swap space, do not bother scanning anon pages. */
1949 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1950 scan_balance = SCAN_FILE;
1951 goto out;
1952 }
1953
1954 /*
1955 * Global reclaim will swap to prevent OOM even with no
1956 * swappiness, but memcg users want to use this knob to
1957 * disable swapping for individual groups completely when
1958 * using the memory controller's swap limit feature would be
1959 * too expensive.
1960 */
1961 if (!global_reclaim(sc) && !swappiness) {
1962 scan_balance = SCAN_FILE;
1963 goto out;
1964 }
1965
1966 /*
1967 * Do not apply any pressure balancing cleverness when the
1968 * system is close to OOM, scan both anon and file equally
1969 * (unless the swappiness setting disagrees with swapping).
1970 */
1971 if (!sc->priority && swappiness) {
1972 scan_balance = SCAN_EQUAL;
1973 goto out;
1974 }
1975
1976 /*
1977 * Prevent the reclaimer from falling into the cache trap: as
1978 * cache pages start out inactive, every cache fault will tip
1979 * the scan balance towards the file LRU. And as the file LRU
1980 * shrinks, so does the window for rotation from references.
1981 * This means we have a runaway feedback loop where a tiny
1982 * thrashing file LRU becomes infinitely more attractive than
1983 * anon pages. Try to detect this based on file LRU size.
1984 */
1985 if (global_reclaim(sc)) {
1986 unsigned long zonefile;
1987 unsigned long zonefree;
1988
1989 zonefree = zone_page_state(zone, NR_FREE_PAGES);
1990 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
1991 zone_page_state(zone, NR_INACTIVE_FILE);
1992
1993 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
1994 scan_balance = SCAN_ANON;
1995 goto out;
1996 }
1997 }
1998
1999 /*
2000 * There is enough inactive page cache, do not reclaim
2001 * anything from the anonymous working set right now.
2002 */
2003 if (!inactive_file_is_low(lruvec)) {
2004 scan_balance = SCAN_FILE;
2005 goto out;
2006 }
2007
2008 scan_balance = SCAN_FRACT;
2009
2010 /*
2011 * With swappiness at 100, anonymous and file have the same priority.
2012 * This scanning priority is essentially the inverse of IO cost.
2013 */
2014 anon_prio = swappiness;
2015 file_prio = 200 - anon_prio;
2016
2017 /*
2018 * OK, so we have swap space and a fair amount of page cache
2019 * pages. We use the recently rotated / recently scanned
2020 * ratios to determine how valuable each cache is.
2021 *
2022 * Because workloads change over time (and to avoid overflow)
2023 * we keep these statistics as a floating average, which ends
2024 * up weighing recent references more than old ones.
2025 *
2026 * anon in [0], file in [1]
2027 */
2028
2029 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2030 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2031 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2032 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2033
2034 spin_lock_irq(&zone->lru_lock);
2035 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2036 reclaim_stat->recent_scanned[0] /= 2;
2037 reclaim_stat->recent_rotated[0] /= 2;
2038 }
2039
2040 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2041 reclaim_stat->recent_scanned[1] /= 2;
2042 reclaim_stat->recent_rotated[1] /= 2;
2043 }
2044
2045 /*
2046 * The amount of pressure on anon vs file pages is inversely
2047 * proportional to the fraction of recently scanned pages on
2048 * each list that were recently referenced and in active use.
2049 */
2050 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2051 ap /= reclaim_stat->recent_rotated[0] + 1;
2052
2053 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2054 fp /= reclaim_stat->recent_rotated[1] + 1;
2055 spin_unlock_irq(&zone->lru_lock);
2056
2057 fraction[0] = ap;
2058 fraction[1] = fp;
2059 denominator = ap + fp + 1;
2060 out:
2061 some_scanned = false;
2062 /* Only use force_scan on second pass. */
2063 for (pass = 0; !some_scanned && pass < 2; pass++) {
2064 for_each_evictable_lru(lru) {
2065 int file = is_file_lru(lru);
2066 unsigned long size;
2067 unsigned long scan;
2068
2069 size = get_lru_size(lruvec, lru);
2070 scan = size >> sc->priority;
2071
2072 if (!scan && pass && force_scan)
2073 scan = min(size, SWAP_CLUSTER_MAX);
2074
2075 switch (scan_balance) {
2076 case SCAN_EQUAL:
2077 /* Scan lists relative to size */
2078 break;
2079 case SCAN_FRACT:
2080 /*
2081 * Scan types proportional to swappiness and
2082 * their relative recent reclaim efficiency.
2083 */
2084 scan = div64_u64(scan * fraction[file],
2085 denominator);
2086 break;
2087 case SCAN_FILE:
2088 case SCAN_ANON:
2089 /* Scan one type exclusively */
2090 if ((scan_balance == SCAN_FILE) != file)
2091 scan = 0;
2092 break;
2093 default:
2094 /* Look ma, no brain */
2095 BUG();
2096 }
2097 nr[lru] = scan;
2098 /*
2099 * Skip the second pass and don't force_scan,
2100 * if we found something to scan.
2101 */
2102 some_scanned |= !!scan;
2103 }
2104 }
2105 }
2106
2107 /*
2108 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2109 */
shrink_lruvec(struct lruvec * lruvec,int swappiness,struct scan_control * sc)2110 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2111 struct scan_control *sc)
2112 {
2113 unsigned long nr[NR_LRU_LISTS];
2114 unsigned long targets[NR_LRU_LISTS];
2115 unsigned long nr_to_scan;
2116 enum lru_list lru;
2117 unsigned long nr_reclaimed = 0;
2118 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2119 struct blk_plug plug;
2120 bool scan_adjusted;
2121
2122 get_scan_count(lruvec, swappiness, sc, nr);
2123
2124 /* Record the original scan target for proportional adjustments later */
2125 memcpy(targets, nr, sizeof(nr));
2126
2127 /*
2128 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2129 * event that can occur when there is little memory pressure e.g.
2130 * multiple streaming readers/writers. Hence, we do not abort scanning
2131 * when the requested number of pages are reclaimed when scanning at
2132 * DEF_PRIORITY on the assumption that the fact we are direct
2133 * reclaiming implies that kswapd is not keeping up and it is best to
2134 * do a batch of work at once. For memcg reclaim one check is made to
2135 * abort proportional reclaim if either the file or anon lru has already
2136 * dropped to zero at the first pass.
2137 */
2138 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2139 sc->priority == DEF_PRIORITY);
2140
2141 blk_start_plug(&plug);
2142 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2143 nr[LRU_INACTIVE_FILE]) {
2144 unsigned long nr_anon, nr_file, percentage;
2145 unsigned long nr_scanned;
2146
2147 for_each_evictable_lru(lru) {
2148 if (nr[lru]) {
2149 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2150 nr[lru] -= nr_to_scan;
2151
2152 nr_reclaimed += shrink_list(lru, nr_to_scan,
2153 lruvec, sc);
2154 }
2155 }
2156
2157 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2158 continue;
2159
2160 /*
2161 * For kswapd and memcg, reclaim at least the number of pages
2162 * requested. Ensure that the anon and file LRUs are scanned
2163 * proportionally what was requested by get_scan_count(). We
2164 * stop reclaiming one LRU and reduce the amount scanning
2165 * proportional to the original scan target.
2166 */
2167 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2168 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2169
2170 /*
2171 * It's just vindictive to attack the larger once the smaller
2172 * has gone to zero. And given the way we stop scanning the
2173 * smaller below, this makes sure that we only make one nudge
2174 * towards proportionality once we've got nr_to_reclaim.
2175 */
2176 if (!nr_file || !nr_anon)
2177 break;
2178
2179 if (nr_file > nr_anon) {
2180 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2181 targets[LRU_ACTIVE_ANON] + 1;
2182 lru = LRU_BASE;
2183 percentage = nr_anon * 100 / scan_target;
2184 } else {
2185 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2186 targets[LRU_ACTIVE_FILE] + 1;
2187 lru = LRU_FILE;
2188 percentage = nr_file * 100 / scan_target;
2189 }
2190
2191 /* Stop scanning the smaller of the LRU */
2192 nr[lru] = 0;
2193 nr[lru + LRU_ACTIVE] = 0;
2194
2195 /*
2196 * Recalculate the other LRU scan count based on its original
2197 * scan target and the percentage scanning already complete
2198 */
2199 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2200 nr_scanned = targets[lru] - nr[lru];
2201 nr[lru] = targets[lru] * (100 - percentage) / 100;
2202 nr[lru] -= min(nr[lru], nr_scanned);
2203
2204 lru += LRU_ACTIVE;
2205 nr_scanned = targets[lru] - nr[lru];
2206 nr[lru] = targets[lru] * (100 - percentage) / 100;
2207 nr[lru] -= min(nr[lru], nr_scanned);
2208
2209 scan_adjusted = true;
2210 }
2211 blk_finish_plug(&plug);
2212 sc->nr_reclaimed += nr_reclaimed;
2213
2214 /*
2215 * Even if we did not try to evict anon pages at all, we want to
2216 * rebalance the anon lru active/inactive ratio.
2217 */
2218 if (inactive_anon_is_low(lruvec))
2219 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2220 sc, LRU_ACTIVE_ANON);
2221
2222 throttle_vm_writeout(sc->gfp_mask);
2223 }
2224
2225 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2226 static bool in_reclaim_compaction(struct scan_control *sc)
2227 {
2228 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2229 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2230 sc->priority < DEF_PRIORITY - 2))
2231 return true;
2232
2233 return false;
2234 }
2235
2236 /*
2237 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2238 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2239 * true if more pages should be reclaimed such that when the page allocator
2240 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2241 * It will give up earlier than that if there is difficulty reclaiming pages.
2242 */
should_continue_reclaim(struct zone * zone,unsigned long nr_reclaimed,unsigned long nr_scanned,struct scan_control * sc)2243 static inline bool should_continue_reclaim(struct zone *zone,
2244 unsigned long nr_reclaimed,
2245 unsigned long nr_scanned,
2246 struct scan_control *sc)
2247 {
2248 unsigned long pages_for_compaction;
2249 unsigned long inactive_lru_pages;
2250
2251 /* If not in reclaim/compaction mode, stop */
2252 if (!in_reclaim_compaction(sc))
2253 return false;
2254
2255 /* Consider stopping depending on scan and reclaim activity */
2256 if (sc->gfp_mask & __GFP_REPEAT) {
2257 /*
2258 * For __GFP_REPEAT allocations, stop reclaiming if the
2259 * full LRU list has been scanned and we are still failing
2260 * to reclaim pages. This full LRU scan is potentially
2261 * expensive but a __GFP_REPEAT caller really wants to succeed
2262 */
2263 if (!nr_reclaimed && !nr_scanned)
2264 return false;
2265 } else {
2266 /*
2267 * For non-__GFP_REPEAT allocations which can presumably
2268 * fail without consequence, stop if we failed to reclaim
2269 * any pages from the last SWAP_CLUSTER_MAX number of
2270 * pages that were scanned. This will return to the
2271 * caller faster at the risk reclaim/compaction and
2272 * the resulting allocation attempt fails
2273 */
2274 if (!nr_reclaimed)
2275 return false;
2276 }
2277
2278 /*
2279 * If we have not reclaimed enough pages for compaction and the
2280 * inactive lists are large enough, continue reclaiming
2281 */
2282 pages_for_compaction = (2UL << sc->order);
2283 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2284 if (get_nr_swap_pages() > 0)
2285 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2286 if (sc->nr_reclaimed < pages_for_compaction &&
2287 inactive_lru_pages > pages_for_compaction)
2288 return true;
2289
2290 /* If compaction would go ahead or the allocation would succeed, stop */
2291 switch (compaction_suitable(zone, sc->order)) {
2292 case COMPACT_PARTIAL:
2293 case COMPACT_CONTINUE:
2294 return false;
2295 default:
2296 return true;
2297 }
2298 }
2299
shrink_zone(struct zone * zone,struct scan_control * sc)2300 static bool shrink_zone(struct zone *zone, struct scan_control *sc)
2301 {
2302 unsigned long nr_reclaimed, nr_scanned;
2303 bool reclaimable = false;
2304
2305 do {
2306 struct mem_cgroup *root = sc->target_mem_cgroup;
2307 struct mem_cgroup_reclaim_cookie reclaim = {
2308 .zone = zone,
2309 .priority = sc->priority,
2310 };
2311 struct mem_cgroup *memcg;
2312
2313 nr_reclaimed = sc->nr_reclaimed;
2314 nr_scanned = sc->nr_scanned;
2315
2316 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2317 do {
2318 struct lruvec *lruvec;
2319 int swappiness;
2320
2321 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2322 swappiness = mem_cgroup_swappiness(memcg);
2323
2324 shrink_lruvec(lruvec, swappiness, sc);
2325
2326 /*
2327 * Direct reclaim and kswapd have to scan all memory
2328 * cgroups to fulfill the overall scan target for the
2329 * zone.
2330 *
2331 * Limit reclaim, on the other hand, only cares about
2332 * nr_to_reclaim pages to be reclaimed and it will
2333 * retry with decreasing priority if one round over the
2334 * whole hierarchy is not sufficient.
2335 */
2336 if (!global_reclaim(sc) &&
2337 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2338 mem_cgroup_iter_break(root, memcg);
2339 break;
2340 }
2341 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2342 } while (memcg);
2343
2344 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2345 sc->nr_scanned - nr_scanned,
2346 sc->nr_reclaimed - nr_reclaimed);
2347
2348 if (sc->nr_reclaimed - nr_reclaimed)
2349 reclaimable = true;
2350
2351 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2352 sc->nr_scanned - nr_scanned, sc));
2353
2354 return reclaimable;
2355 }
2356
2357 /*
2358 * Returns true if compaction should go ahead for a high-order request, or
2359 * the high-order allocation would succeed without compaction.
2360 */
compaction_ready(struct zone * zone,int order)2361 static inline bool compaction_ready(struct zone *zone, int order)
2362 {
2363 unsigned long balance_gap, watermark;
2364 bool watermark_ok;
2365
2366 /*
2367 * Compaction takes time to run and there are potentially other
2368 * callers using the pages just freed. Continue reclaiming until
2369 * there is a buffer of free pages available to give compaction
2370 * a reasonable chance of completing and allocating the page
2371 */
2372 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2373 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2374 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2375 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2376
2377 /*
2378 * If compaction is deferred, reclaim up to a point where
2379 * compaction will have a chance of success when re-enabled
2380 */
2381 if (compaction_deferred(zone, order))
2382 return watermark_ok;
2383
2384 /*
2385 * If compaction is not ready to start and allocation is not likely
2386 * to succeed without it, then keep reclaiming.
2387 */
2388 if (compaction_suitable(zone, order) == COMPACT_SKIPPED)
2389 return false;
2390
2391 return watermark_ok;
2392 }
2393
2394 /*
2395 * This is the direct reclaim path, for page-allocating processes. We only
2396 * try to reclaim pages from zones which will satisfy the caller's allocation
2397 * request.
2398 *
2399 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2400 * Because:
2401 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2402 * allocation or
2403 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2404 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2405 * zone defense algorithm.
2406 *
2407 * If a zone is deemed to be full of pinned pages then just give it a light
2408 * scan then give up on it.
2409 *
2410 * Returns true if a zone was reclaimable.
2411 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2412 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2413 {
2414 struct zoneref *z;
2415 struct zone *zone;
2416 unsigned long nr_soft_reclaimed;
2417 unsigned long nr_soft_scanned;
2418 unsigned long lru_pages = 0;
2419 struct reclaim_state *reclaim_state = current->reclaim_state;
2420 gfp_t orig_mask;
2421 struct shrink_control shrink = {
2422 .gfp_mask = sc->gfp_mask,
2423 };
2424 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2425 bool reclaimable = false;
2426
2427 /*
2428 * If the number of buffer_heads in the machine exceeds the maximum
2429 * allowed level, force direct reclaim to scan the highmem zone as
2430 * highmem pages could be pinning lowmem pages storing buffer_heads
2431 */
2432 orig_mask = sc->gfp_mask;
2433 if (buffer_heads_over_limit)
2434 sc->gfp_mask |= __GFP_HIGHMEM;
2435
2436 nodes_clear(shrink.nodes_to_scan);
2437
2438 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2439 gfp_zone(sc->gfp_mask), sc->nodemask) {
2440 if (!populated_zone(zone))
2441 continue;
2442 /*
2443 * Take care memory controller reclaiming has small influence
2444 * to global LRU.
2445 */
2446 if (global_reclaim(sc)) {
2447 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2448 continue;
2449
2450 lru_pages += zone_reclaimable_pages(zone);
2451 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2452
2453 if (sc->priority != DEF_PRIORITY &&
2454 !zone_reclaimable(zone))
2455 continue; /* Let kswapd poll it */
2456
2457 /*
2458 * If we already have plenty of memory free for
2459 * compaction in this zone, don't free any more.
2460 * Even though compaction is invoked for any
2461 * non-zero order, only frequent costly order
2462 * reclamation is disruptive enough to become a
2463 * noticeable problem, like transparent huge
2464 * page allocations.
2465 */
2466 if (IS_ENABLED(CONFIG_COMPACTION) &&
2467 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2468 zonelist_zone_idx(z) <= requested_highidx &&
2469 compaction_ready(zone, sc->order)) {
2470 sc->compaction_ready = true;
2471 continue;
2472 }
2473
2474 /*
2475 * This steals pages from memory cgroups over softlimit
2476 * and returns the number of reclaimed pages and
2477 * scanned pages. This works for global memory pressure
2478 * and balancing, not for a memcg's limit.
2479 */
2480 nr_soft_scanned = 0;
2481 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2482 sc->order, sc->gfp_mask,
2483 &nr_soft_scanned);
2484 sc->nr_reclaimed += nr_soft_reclaimed;
2485 sc->nr_scanned += nr_soft_scanned;
2486 if (nr_soft_reclaimed)
2487 reclaimable = true;
2488 /* need some check for avoid more shrink_zone() */
2489 }
2490
2491 if (shrink_zone(zone, sc))
2492 reclaimable = true;
2493
2494 if (global_reclaim(sc) &&
2495 !reclaimable && zone_reclaimable(zone))
2496 reclaimable = true;
2497 }
2498
2499 /*
2500 * Don't shrink slabs when reclaiming memory from over limit cgroups
2501 * but do shrink slab at least once when aborting reclaim for
2502 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2503 * pages.
2504 */
2505 if (global_reclaim(sc)) {
2506 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2507 if (reclaim_state) {
2508 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2509 reclaim_state->reclaimed_slab = 0;
2510 }
2511 }
2512
2513 /*
2514 * Restore to original mask to avoid the impact on the caller if we
2515 * promoted it to __GFP_HIGHMEM.
2516 */
2517 sc->gfp_mask = orig_mask;
2518
2519 return reclaimable;
2520 }
2521
2522 /*
2523 * This is the main entry point to direct page reclaim.
2524 *
2525 * If a full scan of the inactive list fails to free enough memory then we
2526 * are "out of memory" and something needs to be killed.
2527 *
2528 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2529 * high - the zone may be full of dirty or under-writeback pages, which this
2530 * caller can't do much about. We kick the writeback threads and take explicit
2531 * naps in the hope that some of these pages can be written. But if the
2532 * allocating task holds filesystem locks which prevent writeout this might not
2533 * work, and the allocation attempt will fail.
2534 *
2535 * returns: 0, if no pages reclaimed
2536 * else, the number of pages reclaimed
2537 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)2538 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2539 struct scan_control *sc)
2540 {
2541 unsigned long total_scanned = 0;
2542 unsigned long writeback_threshold;
2543 bool zones_reclaimable;
2544
2545 delayacct_freepages_start();
2546
2547 if (global_reclaim(sc))
2548 count_vm_event(ALLOCSTALL);
2549
2550 do {
2551 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2552 sc->priority);
2553 sc->nr_scanned = 0;
2554 zones_reclaimable = shrink_zones(zonelist, sc);
2555
2556 total_scanned += sc->nr_scanned;
2557 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2558 break;
2559
2560 if (sc->compaction_ready)
2561 break;
2562
2563 /*
2564 * If we're getting trouble reclaiming, start doing
2565 * writepage even in laptop mode.
2566 */
2567 if (sc->priority < DEF_PRIORITY - 2)
2568 sc->may_writepage = 1;
2569
2570 /*
2571 * Try to write back as many pages as we just scanned. This
2572 * tends to cause slow streaming writers to write data to the
2573 * disk smoothly, at the dirtying rate, which is nice. But
2574 * that's undesirable in laptop mode, where we *want* lumpy
2575 * writeout. So in laptop mode, write out the whole world.
2576 */
2577 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2578 if (total_scanned > writeback_threshold) {
2579 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2580 WB_REASON_TRY_TO_FREE_PAGES);
2581 sc->may_writepage = 1;
2582 }
2583 } while (--sc->priority >= 0);
2584
2585 delayacct_freepages_end();
2586
2587 if (sc->nr_reclaimed)
2588 return sc->nr_reclaimed;
2589
2590 /* Aborted reclaim to try compaction? don't OOM, then */
2591 if (sc->compaction_ready)
2592 return 1;
2593
2594 /* Any of the zones still reclaimable? Don't OOM. */
2595 if (zones_reclaimable)
2596 return 1;
2597
2598 return 0;
2599 }
2600
pfmemalloc_watermark_ok(pg_data_t * pgdat)2601 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2602 {
2603 struct zone *zone;
2604 unsigned long pfmemalloc_reserve = 0;
2605 unsigned long free_pages = 0;
2606 int i;
2607 bool wmark_ok;
2608
2609 for (i = 0; i <= ZONE_NORMAL; i++) {
2610 zone = &pgdat->node_zones[i];
2611 if (!populated_zone(zone))
2612 continue;
2613
2614 pfmemalloc_reserve += min_wmark_pages(zone);
2615 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2616 }
2617
2618 /* If there are no reserves (unexpected config) then do not throttle */
2619 if (!pfmemalloc_reserve)
2620 return true;
2621
2622 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2623
2624 /* kswapd must be awake if processes are being throttled */
2625 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2626 pgdat->classzone_idx = min(pgdat->classzone_idx,
2627 (enum zone_type)ZONE_NORMAL);
2628 wake_up_interruptible(&pgdat->kswapd_wait);
2629 }
2630
2631 return wmark_ok;
2632 }
2633
2634 /*
2635 * Throttle direct reclaimers if backing storage is backed by the network
2636 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2637 * depleted. kswapd will continue to make progress and wake the processes
2638 * when the low watermark is reached.
2639 *
2640 * Returns true if a fatal signal was delivered during throttling. If this
2641 * happens, the page allocator should not consider triggering the OOM killer.
2642 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)2643 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2644 nodemask_t *nodemask)
2645 {
2646 struct zoneref *z;
2647 struct zone *zone;
2648 pg_data_t *pgdat = NULL;
2649
2650 /*
2651 * Kernel threads should not be throttled as they may be indirectly
2652 * responsible for cleaning pages necessary for reclaim to make forward
2653 * progress. kjournald for example may enter direct reclaim while
2654 * committing a transaction where throttling it could forcing other
2655 * processes to block on log_wait_commit().
2656 */
2657 if (current->flags & PF_KTHREAD)
2658 goto out;
2659
2660 /*
2661 * If a fatal signal is pending, this process should not throttle.
2662 * It should return quickly so it can exit and free its memory
2663 */
2664 if (fatal_signal_pending(current))
2665 goto out;
2666
2667 /*
2668 * Check if the pfmemalloc reserves are ok by finding the first node
2669 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2670 * GFP_KERNEL will be required for allocating network buffers when
2671 * swapping over the network so ZONE_HIGHMEM is unusable.
2672 *
2673 * Throttling is based on the first usable node and throttled processes
2674 * wait on a queue until kswapd makes progress and wakes them. There
2675 * is an affinity then between processes waking up and where reclaim
2676 * progress has been made assuming the process wakes on the same node.
2677 * More importantly, processes running on remote nodes will not compete
2678 * for remote pfmemalloc reserves and processes on different nodes
2679 * should make reasonable progress.
2680 */
2681 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2682 gfp_mask, nodemask) {
2683 if (zone_idx(zone) > ZONE_NORMAL)
2684 continue;
2685
2686 /* Throttle based on the first usable node */
2687 pgdat = zone->zone_pgdat;
2688 if (pfmemalloc_watermark_ok(pgdat))
2689 goto out;
2690 break;
2691 }
2692
2693 /* If no zone was usable by the allocation flags then do not throttle */
2694 if (!pgdat)
2695 goto out;
2696
2697 /* Account for the throttling */
2698 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2699
2700 /*
2701 * If the caller cannot enter the filesystem, it's possible that it
2702 * is due to the caller holding an FS lock or performing a journal
2703 * transaction in the case of a filesystem like ext[3|4]. In this case,
2704 * it is not safe to block on pfmemalloc_wait as kswapd could be
2705 * blocked waiting on the same lock. Instead, throttle for up to a
2706 * second before continuing.
2707 */
2708 if (!(gfp_mask & __GFP_FS)) {
2709 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2710 pfmemalloc_watermark_ok(pgdat), HZ);
2711
2712 goto check_pending;
2713 }
2714
2715 /* Throttle until kswapd wakes the process */
2716 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2717 pfmemalloc_watermark_ok(pgdat));
2718
2719 check_pending:
2720 if (fatal_signal_pending(current))
2721 return true;
2722
2723 out:
2724 return false;
2725 }
2726
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)2727 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2728 gfp_t gfp_mask, nodemask_t *nodemask)
2729 {
2730 unsigned long nr_reclaimed;
2731 struct scan_control sc = {
2732 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2733 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2734 .order = order,
2735 .nodemask = nodemask,
2736 .priority = DEF_PRIORITY,
2737 .may_writepage = !laptop_mode,
2738 .may_unmap = 1,
2739 .may_swap = 1,
2740 };
2741
2742 /*
2743 * Do not enter reclaim if fatal signal was delivered while throttled.
2744 * 1 is returned so that the page allocator does not OOM kill at this
2745 * point.
2746 */
2747 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2748 return 1;
2749
2750 trace_mm_vmscan_direct_reclaim_begin(order,
2751 sc.may_writepage,
2752 gfp_mask);
2753
2754 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2755
2756 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2757
2758 return nr_reclaimed;
2759 }
2760
2761 #ifdef CONFIG_MEMCG
2762
mem_cgroup_shrink_node_zone(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,struct zone * zone,unsigned long * nr_scanned)2763 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2764 gfp_t gfp_mask, bool noswap,
2765 struct zone *zone,
2766 unsigned long *nr_scanned)
2767 {
2768 struct scan_control sc = {
2769 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2770 .target_mem_cgroup = memcg,
2771 .may_writepage = !laptop_mode,
2772 .may_unmap = 1,
2773 .may_swap = !noswap,
2774 };
2775 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2776 int swappiness = mem_cgroup_swappiness(memcg);
2777
2778 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2779 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2780
2781 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2782 sc.may_writepage,
2783 sc.gfp_mask);
2784
2785 /*
2786 * NOTE: Although we can get the priority field, using it
2787 * here is not a good idea, since it limits the pages we can scan.
2788 * if we don't reclaim here, the shrink_zone from balance_pgdat
2789 * will pick up pages from other mem cgroup's as well. We hack
2790 * the priority and make it zero.
2791 */
2792 shrink_lruvec(lruvec, swappiness, &sc);
2793
2794 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2795
2796 *nr_scanned = sc.nr_scanned;
2797 return sc.nr_reclaimed;
2798 }
2799
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)2800 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2801 unsigned long nr_pages,
2802 gfp_t gfp_mask,
2803 bool may_swap)
2804 {
2805 struct zonelist *zonelist;
2806 unsigned long nr_reclaimed;
2807 int nid;
2808 struct scan_control sc = {
2809 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2810 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2811 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2812 .target_mem_cgroup = memcg,
2813 .priority = DEF_PRIORITY,
2814 .may_writepage = !laptop_mode,
2815 .may_unmap = 1,
2816 .may_swap = may_swap,
2817 };
2818
2819 /*
2820 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2821 * take care of from where we get pages. So the node where we start the
2822 * scan does not need to be the current node.
2823 */
2824 nid = mem_cgroup_select_victim_node(memcg);
2825
2826 zonelist = NODE_DATA(nid)->node_zonelists;
2827
2828 trace_mm_vmscan_memcg_reclaim_begin(0,
2829 sc.may_writepage,
2830 sc.gfp_mask);
2831
2832 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2833
2834 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2835
2836 return nr_reclaimed;
2837 }
2838 #endif
2839
age_active_anon(struct zone * zone,struct scan_control * sc)2840 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2841 {
2842 struct mem_cgroup *memcg;
2843
2844 if (!total_swap_pages)
2845 return;
2846
2847 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2848 do {
2849 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2850
2851 if (inactive_anon_is_low(lruvec))
2852 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2853 sc, LRU_ACTIVE_ANON);
2854
2855 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2856 } while (memcg);
2857 }
2858
zone_balanced(struct zone * zone,int order,unsigned long balance_gap,int classzone_idx)2859 static bool zone_balanced(struct zone *zone, int order,
2860 unsigned long balance_gap, int classzone_idx)
2861 {
2862 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2863 balance_gap, classzone_idx, 0))
2864 return false;
2865
2866 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2867 compaction_suitable(zone, order) == COMPACT_SKIPPED)
2868 return false;
2869
2870 return true;
2871 }
2872
2873 /*
2874 * pgdat_balanced() is used when checking if a node is balanced.
2875 *
2876 * For order-0, all zones must be balanced!
2877 *
2878 * For high-order allocations only zones that meet watermarks and are in a
2879 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2880 * total of balanced pages must be at least 25% of the zones allowed by
2881 * classzone_idx for the node to be considered balanced. Forcing all zones to
2882 * be balanced for high orders can cause excessive reclaim when there are
2883 * imbalanced zones.
2884 * The choice of 25% is due to
2885 * o a 16M DMA zone that is balanced will not balance a zone on any
2886 * reasonable sized machine
2887 * o On all other machines, the top zone must be at least a reasonable
2888 * percentage of the middle zones. For example, on 32-bit x86, highmem
2889 * would need to be at least 256M for it to be balance a whole node.
2890 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2891 * to balance a node on its own. These seemed like reasonable ratios.
2892 */
pgdat_balanced(pg_data_t * pgdat,int order,int classzone_idx)2893 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2894 {
2895 unsigned long managed_pages = 0;
2896 unsigned long balanced_pages = 0;
2897 int i;
2898
2899 /* Check the watermark levels */
2900 for (i = 0; i <= classzone_idx; i++) {
2901 struct zone *zone = pgdat->node_zones + i;
2902
2903 if (!populated_zone(zone))
2904 continue;
2905
2906 managed_pages += zone->managed_pages;
2907
2908 /*
2909 * A special case here:
2910 *
2911 * balance_pgdat() skips over all_unreclaimable after
2912 * DEF_PRIORITY. Effectively, it considers them balanced so
2913 * they must be considered balanced here as well!
2914 */
2915 if (!zone_reclaimable(zone)) {
2916 balanced_pages += zone->managed_pages;
2917 continue;
2918 }
2919
2920 if (zone_balanced(zone, order, 0, i))
2921 balanced_pages += zone->managed_pages;
2922 else if (!order)
2923 return false;
2924 }
2925
2926 if (order)
2927 return balanced_pages >= (managed_pages >> 2);
2928 else
2929 return true;
2930 }
2931
2932 /*
2933 * Prepare kswapd for sleeping. This verifies that there are no processes
2934 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2935 *
2936 * Returns true if kswapd is ready to sleep
2937 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,long remaining,int classzone_idx)2938 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2939 int classzone_idx)
2940 {
2941 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2942 if (remaining)
2943 return false;
2944
2945 /*
2946 * The throttled processes are normally woken up in balance_pgdat() as
2947 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2948 * race between when kswapd checks the watermarks and a process gets
2949 * throttled. There is also a potential race if processes get
2950 * throttled, kswapd wakes, a large process exits thereby balancing the
2951 * zones, which causes kswapd to exit balance_pgdat() before reaching
2952 * the wake up checks. If kswapd is going to sleep, no process should
2953 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2954 * the wake up is premature, processes will wake kswapd and get
2955 * throttled again. The difference from wake ups in balance_pgdat() is
2956 * that here we are under prepare_to_wait().
2957 */
2958 if (waitqueue_active(&pgdat->pfmemalloc_wait))
2959 wake_up_all(&pgdat->pfmemalloc_wait);
2960
2961 return pgdat_balanced(pgdat, order, classzone_idx);
2962 }
2963
2964 /*
2965 * kswapd shrinks the zone by the number of pages required to reach
2966 * the high watermark.
2967 *
2968 * Returns true if kswapd scanned at least the requested number of pages to
2969 * reclaim or if the lack of progress was due to pages under writeback.
2970 * This is used to determine if the scanning priority needs to be raised.
2971 */
kswapd_shrink_zone(struct zone * zone,int classzone_idx,struct scan_control * sc,unsigned long lru_pages,unsigned long * nr_attempted)2972 static bool kswapd_shrink_zone(struct zone *zone,
2973 int classzone_idx,
2974 struct scan_control *sc,
2975 unsigned long lru_pages,
2976 unsigned long *nr_attempted)
2977 {
2978 int testorder = sc->order;
2979 unsigned long balance_gap;
2980 struct reclaim_state *reclaim_state = current->reclaim_state;
2981 struct shrink_control shrink = {
2982 .gfp_mask = sc->gfp_mask,
2983 };
2984 bool lowmem_pressure;
2985
2986 /* Reclaim above the high watermark. */
2987 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2988
2989 /*
2990 * Kswapd reclaims only single pages with compaction enabled. Trying
2991 * too hard to reclaim until contiguous free pages have become
2992 * available can hurt performance by evicting too much useful data
2993 * from memory. Do not reclaim more than needed for compaction.
2994 */
2995 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2996 compaction_suitable(zone, sc->order) !=
2997 COMPACT_SKIPPED)
2998 testorder = 0;
2999
3000 /*
3001 * We put equal pressure on every zone, unless one zone has way too
3002 * many pages free already. The "too many pages" is defined as the
3003 * high wmark plus a "gap" where the gap is either the low
3004 * watermark or 1% of the zone, whichever is smaller.
3005 */
3006 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3007 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3008
3009 /*
3010 * If there is no low memory pressure or the zone is balanced then no
3011 * reclaim is necessary
3012 */
3013 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3014 if (!lowmem_pressure && zone_balanced(zone, testorder,
3015 balance_gap, classzone_idx))
3016 return true;
3017
3018 shrink_zone(zone, sc);
3019 nodes_clear(shrink.nodes_to_scan);
3020 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3021
3022 reclaim_state->reclaimed_slab = 0;
3023 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
3024 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3025
3026 /* Account for the number of pages attempted to reclaim */
3027 *nr_attempted += sc->nr_to_reclaim;
3028
3029 clear_bit(ZONE_WRITEBACK, &zone->flags);
3030
3031 /*
3032 * If a zone reaches its high watermark, consider it to be no longer
3033 * congested. It's possible there are dirty pages backed by congested
3034 * BDIs but as pressure is relieved, speculatively avoid congestion
3035 * waits.
3036 */
3037 if (zone_reclaimable(zone) &&
3038 zone_balanced(zone, testorder, 0, classzone_idx)) {
3039 clear_bit(ZONE_CONGESTED, &zone->flags);
3040 clear_bit(ZONE_DIRTY, &zone->flags);
3041 }
3042
3043 return sc->nr_scanned >= sc->nr_to_reclaim;
3044 }
3045
3046 /*
3047 * For kswapd, balance_pgdat() will work across all this node's zones until
3048 * they are all at high_wmark_pages(zone).
3049 *
3050 * Returns the final order kswapd was reclaiming at
3051 *
3052 * There is special handling here for zones which are full of pinned pages.
3053 * This can happen if the pages are all mlocked, or if they are all used by
3054 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3055 * What we do is to detect the case where all pages in the zone have been
3056 * scanned twice and there has been zero successful reclaim. Mark the zone as
3057 * dead and from now on, only perform a short scan. Basically we're polling
3058 * the zone for when the problem goes away.
3059 *
3060 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3061 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3062 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3063 * lower zones regardless of the number of free pages in the lower zones. This
3064 * interoperates with the page allocator fallback scheme to ensure that aging
3065 * of pages is balanced across the zones.
3066 */
balance_pgdat(pg_data_t * pgdat,int order,int * classzone_idx)3067 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3068 int *classzone_idx)
3069 {
3070 int i;
3071 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3072 unsigned long nr_soft_reclaimed;
3073 unsigned long nr_soft_scanned;
3074 struct scan_control sc = {
3075 .gfp_mask = GFP_KERNEL,
3076 .order = order,
3077 .priority = DEF_PRIORITY,
3078 .may_writepage = !laptop_mode,
3079 .may_unmap = 1,
3080 .may_swap = 1,
3081 };
3082 count_vm_event(PAGEOUTRUN);
3083
3084 do {
3085 unsigned long lru_pages = 0;
3086 unsigned long nr_attempted = 0;
3087 bool raise_priority = true;
3088 bool pgdat_needs_compaction = (order > 0);
3089
3090 sc.nr_reclaimed = 0;
3091
3092 /*
3093 * Scan in the highmem->dma direction for the highest
3094 * zone which needs scanning
3095 */
3096 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3097 struct zone *zone = pgdat->node_zones + i;
3098
3099 if (!populated_zone(zone))
3100 continue;
3101
3102 if (sc.priority != DEF_PRIORITY &&
3103 !zone_reclaimable(zone))
3104 continue;
3105
3106 /*
3107 * Do some background aging of the anon list, to give
3108 * pages a chance to be referenced before reclaiming.
3109 */
3110 age_active_anon(zone, &sc);
3111
3112 /*
3113 * If the number of buffer_heads in the machine
3114 * exceeds the maximum allowed level and this node
3115 * has a highmem zone, force kswapd to reclaim from
3116 * it to relieve lowmem pressure.
3117 */
3118 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3119 end_zone = i;
3120 break;
3121 }
3122
3123 if (!zone_balanced(zone, order, 0, 0)) {
3124 end_zone = i;
3125 break;
3126 } else {
3127 /*
3128 * If balanced, clear the dirty and congested
3129 * flags
3130 */
3131 clear_bit(ZONE_CONGESTED, &zone->flags);
3132 clear_bit(ZONE_DIRTY, &zone->flags);
3133 }
3134 }
3135
3136 if (i < 0)
3137 goto out;
3138
3139 for (i = 0; i <= end_zone; i++) {
3140 struct zone *zone = pgdat->node_zones + i;
3141
3142 if (!populated_zone(zone))
3143 continue;
3144
3145 lru_pages += zone_reclaimable_pages(zone);
3146
3147 /*
3148 * If any zone is currently balanced then kswapd will
3149 * not call compaction as it is expected that the
3150 * necessary pages are already available.
3151 */
3152 if (pgdat_needs_compaction &&
3153 zone_watermark_ok(zone, order,
3154 low_wmark_pages(zone),
3155 *classzone_idx, 0))
3156 pgdat_needs_compaction = false;
3157 }
3158
3159 /*
3160 * If we're getting trouble reclaiming, start doing writepage
3161 * even in laptop mode.
3162 */
3163 if (sc.priority < DEF_PRIORITY - 2)
3164 sc.may_writepage = 1;
3165
3166 /*
3167 * Now scan the zone in the dma->highmem direction, stopping
3168 * at the last zone which needs scanning.
3169 *
3170 * We do this because the page allocator works in the opposite
3171 * direction. This prevents the page allocator from allocating
3172 * pages behind kswapd's direction of progress, which would
3173 * cause too much scanning of the lower zones.
3174 */
3175 for (i = 0; i <= end_zone; i++) {
3176 struct zone *zone = pgdat->node_zones + i;
3177
3178 if (!populated_zone(zone))
3179 continue;
3180
3181 if (sc.priority != DEF_PRIORITY &&
3182 !zone_reclaimable(zone))
3183 continue;
3184
3185 sc.nr_scanned = 0;
3186
3187 nr_soft_scanned = 0;
3188 /*
3189 * Call soft limit reclaim before calling shrink_zone.
3190 */
3191 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3192 order, sc.gfp_mask,
3193 &nr_soft_scanned);
3194 sc.nr_reclaimed += nr_soft_reclaimed;
3195
3196 /*
3197 * There should be no need to raise the scanning
3198 * priority if enough pages are already being scanned
3199 * that that high watermark would be met at 100%
3200 * efficiency.
3201 */
3202 if (kswapd_shrink_zone(zone, end_zone, &sc,
3203 lru_pages, &nr_attempted))
3204 raise_priority = false;
3205 }
3206
3207 /*
3208 * If the low watermark is met there is no need for processes
3209 * to be throttled on pfmemalloc_wait as they should not be
3210 * able to safely make forward progress. Wake them
3211 */
3212 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3213 pfmemalloc_watermark_ok(pgdat))
3214 wake_up(&pgdat->pfmemalloc_wait);
3215
3216 /*
3217 * Fragmentation may mean that the system cannot be rebalanced
3218 * for high-order allocations in all zones. If twice the
3219 * allocation size has been reclaimed and the zones are still
3220 * not balanced then recheck the watermarks at order-0 to
3221 * prevent kswapd reclaiming excessively. Assume that a
3222 * process requested a high-order can direct reclaim/compact.
3223 */
3224 if (order && sc.nr_reclaimed >= 2UL << order)
3225 order = sc.order = 0;
3226
3227 /* Check if kswapd should be suspending */
3228 if (try_to_freeze() || kthread_should_stop())
3229 break;
3230
3231 /*
3232 * Compact if necessary and kswapd is reclaiming at least the
3233 * high watermark number of pages as requsted
3234 */
3235 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3236 compact_pgdat(pgdat, order);
3237
3238 /*
3239 * Raise priority if scanning rate is too low or there was no
3240 * progress in reclaiming pages
3241 */
3242 if (raise_priority || !sc.nr_reclaimed)
3243 sc.priority--;
3244 } while (sc.priority >= 1 &&
3245 !pgdat_balanced(pgdat, order, *classzone_idx));
3246
3247 out:
3248 /*
3249 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3250 * makes a decision on the order we were last reclaiming at. However,
3251 * if another caller entered the allocator slow path while kswapd
3252 * was awake, order will remain at the higher level
3253 */
3254 *classzone_idx = end_zone;
3255 return order;
3256 }
3257
kswapd_try_to_sleep(pg_data_t * pgdat,int order,int classzone_idx)3258 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3259 {
3260 long remaining = 0;
3261 DEFINE_WAIT(wait);
3262
3263 if (freezing(current) || kthread_should_stop())
3264 return;
3265
3266 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3267
3268 /* Try to sleep for a short interval */
3269 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3270 remaining = schedule_timeout(HZ/10);
3271 finish_wait(&pgdat->kswapd_wait, &wait);
3272 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3273 }
3274
3275 /*
3276 * After a short sleep, check if it was a premature sleep. If not, then
3277 * go fully to sleep until explicitly woken up.
3278 */
3279 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3280 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3281
3282 /*
3283 * vmstat counters are not perfectly accurate and the estimated
3284 * value for counters such as NR_FREE_PAGES can deviate from the
3285 * true value by nr_online_cpus * threshold. To avoid the zone
3286 * watermarks being breached while under pressure, we reduce the
3287 * per-cpu vmstat threshold while kswapd is awake and restore
3288 * them before going back to sleep.
3289 */
3290 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3291
3292 /*
3293 * Compaction records what page blocks it recently failed to
3294 * isolate pages from and skips them in the future scanning.
3295 * When kswapd is going to sleep, it is reasonable to assume
3296 * that pages and compaction may succeed so reset the cache.
3297 */
3298 reset_isolation_suitable(pgdat);
3299
3300 if (!kthread_should_stop())
3301 schedule();
3302
3303 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3304 } else {
3305 if (remaining)
3306 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3307 else
3308 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3309 }
3310 finish_wait(&pgdat->kswapd_wait, &wait);
3311 }
3312
3313 /*
3314 * The background pageout daemon, started as a kernel thread
3315 * from the init process.
3316 *
3317 * This basically trickles out pages so that we have _some_
3318 * free memory available even if there is no other activity
3319 * that frees anything up. This is needed for things like routing
3320 * etc, where we otherwise might have all activity going on in
3321 * asynchronous contexts that cannot page things out.
3322 *
3323 * If there are applications that are active memory-allocators
3324 * (most normal use), this basically shouldn't matter.
3325 */
kswapd(void * p)3326 static int kswapd(void *p)
3327 {
3328 unsigned long order, new_order;
3329 unsigned balanced_order;
3330 int classzone_idx, new_classzone_idx;
3331 int balanced_classzone_idx;
3332 pg_data_t *pgdat = (pg_data_t*)p;
3333 struct task_struct *tsk = current;
3334
3335 struct reclaim_state reclaim_state = {
3336 .reclaimed_slab = 0,
3337 };
3338 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3339
3340 lockdep_set_current_reclaim_state(GFP_KERNEL);
3341
3342 if (!cpumask_empty(cpumask))
3343 set_cpus_allowed_ptr(tsk, cpumask);
3344 current->reclaim_state = &reclaim_state;
3345
3346 /*
3347 * Tell the memory management that we're a "memory allocator",
3348 * and that if we need more memory we should get access to it
3349 * regardless (see "__alloc_pages()"). "kswapd" should
3350 * never get caught in the normal page freeing logic.
3351 *
3352 * (Kswapd normally doesn't need memory anyway, but sometimes
3353 * you need a small amount of memory in order to be able to
3354 * page out something else, and this flag essentially protects
3355 * us from recursively trying to free more memory as we're
3356 * trying to free the first piece of memory in the first place).
3357 */
3358 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3359 set_freezable();
3360
3361 order = new_order = 0;
3362 balanced_order = 0;
3363 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3364 balanced_classzone_idx = classzone_idx;
3365 for ( ; ; ) {
3366 bool ret;
3367
3368 /*
3369 * If the last balance_pgdat was unsuccessful it's unlikely a
3370 * new request of a similar or harder type will succeed soon
3371 * so consider going to sleep on the basis we reclaimed at
3372 */
3373 if (balanced_classzone_idx >= new_classzone_idx &&
3374 balanced_order == new_order) {
3375 new_order = pgdat->kswapd_max_order;
3376 new_classzone_idx = pgdat->classzone_idx;
3377 pgdat->kswapd_max_order = 0;
3378 pgdat->classzone_idx = pgdat->nr_zones - 1;
3379 }
3380
3381 if (order < new_order || classzone_idx > new_classzone_idx) {
3382 /*
3383 * Don't sleep if someone wants a larger 'order'
3384 * allocation or has tigher zone constraints
3385 */
3386 order = new_order;
3387 classzone_idx = new_classzone_idx;
3388 } else {
3389 kswapd_try_to_sleep(pgdat, balanced_order,
3390 balanced_classzone_idx);
3391 order = pgdat->kswapd_max_order;
3392 classzone_idx = pgdat->classzone_idx;
3393 new_order = order;
3394 new_classzone_idx = classzone_idx;
3395 pgdat->kswapd_max_order = 0;
3396 pgdat->classzone_idx = pgdat->nr_zones - 1;
3397 }
3398
3399 ret = try_to_freeze();
3400 if (kthread_should_stop())
3401 break;
3402
3403 /*
3404 * We can speed up thawing tasks if we don't call balance_pgdat
3405 * after returning from the refrigerator
3406 */
3407 if (!ret) {
3408 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3409 balanced_classzone_idx = classzone_idx;
3410 balanced_order = balance_pgdat(pgdat, order,
3411 &balanced_classzone_idx);
3412 }
3413 }
3414
3415 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3416 current->reclaim_state = NULL;
3417 lockdep_clear_current_reclaim_state();
3418
3419 return 0;
3420 }
3421
3422 /*
3423 * A zone is low on free memory, so wake its kswapd task to service it.
3424 */
wakeup_kswapd(struct zone * zone,int order,enum zone_type classzone_idx)3425 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3426 {
3427 pg_data_t *pgdat;
3428
3429 if (!populated_zone(zone))
3430 return;
3431
3432 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3433 return;
3434 pgdat = zone->zone_pgdat;
3435 if (pgdat->kswapd_max_order < order) {
3436 pgdat->kswapd_max_order = order;
3437 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3438 }
3439 if (!waitqueue_active(&pgdat->kswapd_wait))
3440 return;
3441 if (zone_balanced(zone, order, 0, 0))
3442 return;
3443
3444 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3445 wake_up_interruptible(&pgdat->kswapd_wait);
3446 }
3447
3448 #ifdef CONFIG_HIBERNATION
3449 /*
3450 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3451 * freed pages.
3452 *
3453 * Rather than trying to age LRUs the aim is to preserve the overall
3454 * LRU order by reclaiming preferentially
3455 * inactive > active > active referenced > active mapped
3456 */
shrink_all_memory(unsigned long nr_to_reclaim)3457 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3458 {
3459 struct reclaim_state reclaim_state;
3460 struct scan_control sc = {
3461 .nr_to_reclaim = nr_to_reclaim,
3462 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3463 .priority = DEF_PRIORITY,
3464 .may_writepage = 1,
3465 .may_unmap = 1,
3466 .may_swap = 1,
3467 .hibernation_mode = 1,
3468 };
3469 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3470 struct task_struct *p = current;
3471 unsigned long nr_reclaimed;
3472
3473 p->flags |= PF_MEMALLOC;
3474 lockdep_set_current_reclaim_state(sc.gfp_mask);
3475 reclaim_state.reclaimed_slab = 0;
3476 p->reclaim_state = &reclaim_state;
3477
3478 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3479
3480 p->reclaim_state = NULL;
3481 lockdep_clear_current_reclaim_state();
3482 p->flags &= ~PF_MEMALLOC;
3483
3484 return nr_reclaimed;
3485 }
3486 #endif /* CONFIG_HIBERNATION */
3487
3488 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3489 not required for correctness. So if the last cpu in a node goes
3490 away, we get changed to run anywhere: as the first one comes back,
3491 restore their cpu bindings. */
cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)3492 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3493 void *hcpu)
3494 {
3495 int nid;
3496
3497 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3498 for_each_node_state(nid, N_MEMORY) {
3499 pg_data_t *pgdat = NODE_DATA(nid);
3500 const struct cpumask *mask;
3501
3502 mask = cpumask_of_node(pgdat->node_id);
3503
3504 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3505 /* One of our CPUs online: restore mask */
3506 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3507 }
3508 }
3509 return NOTIFY_OK;
3510 }
3511
3512 /*
3513 * This kswapd start function will be called by init and node-hot-add.
3514 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3515 */
kswapd_run(int nid)3516 int kswapd_run(int nid)
3517 {
3518 pg_data_t *pgdat = NODE_DATA(nid);
3519 int ret = 0;
3520
3521 if (pgdat->kswapd)
3522 return 0;
3523
3524 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3525 if (IS_ERR(pgdat->kswapd)) {
3526 /* failure at boot is fatal */
3527 BUG_ON(system_state == SYSTEM_BOOTING);
3528 pr_err("Failed to start kswapd on node %d\n", nid);
3529 ret = PTR_ERR(pgdat->kswapd);
3530 pgdat->kswapd = NULL;
3531 }
3532 return ret;
3533 }
3534
3535 /*
3536 * Called by memory hotplug when all memory in a node is offlined. Caller must
3537 * hold mem_hotplug_begin/end().
3538 */
kswapd_stop(int nid)3539 void kswapd_stop(int nid)
3540 {
3541 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3542
3543 if (kswapd) {
3544 kthread_stop(kswapd);
3545 NODE_DATA(nid)->kswapd = NULL;
3546 }
3547 }
3548
kswapd_init(void)3549 static int __init kswapd_init(void)
3550 {
3551 int nid;
3552
3553 swap_setup();
3554 for_each_node_state(nid, N_MEMORY)
3555 kswapd_run(nid);
3556 hotcpu_notifier(cpu_callback, 0);
3557 return 0;
3558 }
3559
3560 module_init(kswapd_init)
3561
3562 #ifdef CONFIG_NUMA
3563 /*
3564 * Zone reclaim mode
3565 *
3566 * If non-zero call zone_reclaim when the number of free pages falls below
3567 * the watermarks.
3568 */
3569 int zone_reclaim_mode __read_mostly;
3570
3571 #define RECLAIM_OFF 0
3572 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3573 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3574 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3575
3576 /*
3577 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3578 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3579 * a zone.
3580 */
3581 #define ZONE_RECLAIM_PRIORITY 4
3582
3583 /*
3584 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3585 * occur.
3586 */
3587 int sysctl_min_unmapped_ratio = 1;
3588
3589 /*
3590 * If the number of slab pages in a zone grows beyond this percentage then
3591 * slab reclaim needs to occur.
3592 */
3593 int sysctl_min_slab_ratio = 5;
3594
zone_unmapped_file_pages(struct zone * zone)3595 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3596 {
3597 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3598 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3599 zone_page_state(zone, NR_ACTIVE_FILE);
3600
3601 /*
3602 * It's possible for there to be more file mapped pages than
3603 * accounted for by the pages on the file LRU lists because
3604 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3605 */
3606 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3607 }
3608
3609 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
zone_pagecache_reclaimable(struct zone * zone)3610 static long zone_pagecache_reclaimable(struct zone *zone)
3611 {
3612 long nr_pagecache_reclaimable;
3613 long delta = 0;
3614
3615 /*
3616 * If RECLAIM_SWAP is set, then all file pages are considered
3617 * potentially reclaimable. Otherwise, we have to worry about
3618 * pages like swapcache and zone_unmapped_file_pages() provides
3619 * a better estimate
3620 */
3621 if (zone_reclaim_mode & RECLAIM_SWAP)
3622 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3623 else
3624 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3625
3626 /* If we can't clean pages, remove dirty pages from consideration */
3627 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3628 delta += zone_page_state(zone, NR_FILE_DIRTY);
3629
3630 /* Watch for any possible underflows due to delta */
3631 if (unlikely(delta > nr_pagecache_reclaimable))
3632 delta = nr_pagecache_reclaimable;
3633
3634 return nr_pagecache_reclaimable - delta;
3635 }
3636
3637 /*
3638 * Try to free up some pages from this zone through reclaim.
3639 */
__zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)3640 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3641 {
3642 /* Minimum pages needed in order to stay on node */
3643 const unsigned long nr_pages = 1 << order;
3644 struct task_struct *p = current;
3645 struct reclaim_state reclaim_state;
3646 struct scan_control sc = {
3647 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3648 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3649 .order = order,
3650 .priority = ZONE_RECLAIM_PRIORITY,
3651 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3652 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3653 .may_swap = 1,
3654 };
3655 struct shrink_control shrink = {
3656 .gfp_mask = sc.gfp_mask,
3657 };
3658 unsigned long nr_slab_pages0, nr_slab_pages1;
3659
3660 cond_resched();
3661 /*
3662 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3663 * and we also need to be able to write out pages for RECLAIM_WRITE
3664 * and RECLAIM_SWAP.
3665 */
3666 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3667 lockdep_set_current_reclaim_state(gfp_mask);
3668 reclaim_state.reclaimed_slab = 0;
3669 p->reclaim_state = &reclaim_state;
3670
3671 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3672 /*
3673 * Free memory by calling shrink zone with increasing
3674 * priorities until we have enough memory freed.
3675 */
3676 do {
3677 shrink_zone(zone, &sc);
3678 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3679 }
3680
3681 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3682 if (nr_slab_pages0 > zone->min_slab_pages) {
3683 /*
3684 * shrink_slab() does not currently allow us to determine how
3685 * many pages were freed in this zone. So we take the current
3686 * number of slab pages and shake the slab until it is reduced
3687 * by the same nr_pages that we used for reclaiming unmapped
3688 * pages.
3689 */
3690 nodes_clear(shrink.nodes_to_scan);
3691 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3692 for (;;) {
3693 unsigned long lru_pages = zone_reclaimable_pages(zone);
3694
3695 /* No reclaimable slab or very low memory pressure */
3696 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3697 break;
3698
3699 /* Freed enough memory */
3700 nr_slab_pages1 = zone_page_state(zone,
3701 NR_SLAB_RECLAIMABLE);
3702 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3703 break;
3704 }
3705
3706 /*
3707 * Update nr_reclaimed by the number of slab pages we
3708 * reclaimed from this zone.
3709 */
3710 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3711 if (nr_slab_pages1 < nr_slab_pages0)
3712 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3713 }
3714
3715 p->reclaim_state = NULL;
3716 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3717 lockdep_clear_current_reclaim_state();
3718 return sc.nr_reclaimed >= nr_pages;
3719 }
3720
zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)3721 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3722 {
3723 int node_id;
3724 int ret;
3725
3726 /*
3727 * Zone reclaim reclaims unmapped file backed pages and
3728 * slab pages if we are over the defined limits.
3729 *
3730 * A small portion of unmapped file backed pages is needed for
3731 * file I/O otherwise pages read by file I/O will be immediately
3732 * thrown out if the zone is overallocated. So we do not reclaim
3733 * if less than a specified percentage of the zone is used by
3734 * unmapped file backed pages.
3735 */
3736 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3737 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3738 return ZONE_RECLAIM_FULL;
3739
3740 if (!zone_reclaimable(zone))
3741 return ZONE_RECLAIM_FULL;
3742
3743 /*
3744 * Do not scan if the allocation should not be delayed.
3745 */
3746 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3747 return ZONE_RECLAIM_NOSCAN;
3748
3749 /*
3750 * Only run zone reclaim on the local zone or on zones that do not
3751 * have associated processors. This will favor the local processor
3752 * over remote processors and spread off node memory allocations
3753 * as wide as possible.
3754 */
3755 node_id = zone_to_nid(zone);
3756 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3757 return ZONE_RECLAIM_NOSCAN;
3758
3759 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3760 return ZONE_RECLAIM_NOSCAN;
3761
3762 ret = __zone_reclaim(zone, gfp_mask, order);
3763 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3764
3765 if (!ret)
3766 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3767
3768 return ret;
3769 }
3770 #endif
3771
3772 /*
3773 * page_evictable - test whether a page is evictable
3774 * @page: the page to test
3775 *
3776 * Test whether page is evictable--i.e., should be placed on active/inactive
3777 * lists vs unevictable list.
3778 *
3779 * Reasons page might not be evictable:
3780 * (1) page's mapping marked unevictable
3781 * (2) page is part of an mlocked VMA
3782 *
3783 */
page_evictable(struct page * page)3784 int page_evictable(struct page *page)
3785 {
3786 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3787 }
3788
3789 #ifdef CONFIG_SHMEM
3790 /**
3791 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3792 * @pages: array of pages to check
3793 * @nr_pages: number of pages to check
3794 *
3795 * Checks pages for evictability and moves them to the appropriate lru list.
3796 *
3797 * This function is only used for SysV IPC SHM_UNLOCK.
3798 */
check_move_unevictable_pages(struct page ** pages,int nr_pages)3799 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3800 {
3801 struct lruvec *lruvec;
3802 struct zone *zone = NULL;
3803 int pgscanned = 0;
3804 int pgrescued = 0;
3805 int i;
3806
3807 for (i = 0; i < nr_pages; i++) {
3808 struct page *page = pages[i];
3809 struct zone *pagezone;
3810
3811 pgscanned++;
3812 pagezone = page_zone(page);
3813 if (pagezone != zone) {
3814 if (zone)
3815 spin_unlock_irq(&zone->lru_lock);
3816 zone = pagezone;
3817 spin_lock_irq(&zone->lru_lock);
3818 }
3819 lruvec = mem_cgroup_page_lruvec(page, zone);
3820
3821 if (!PageLRU(page) || !PageUnevictable(page))
3822 continue;
3823
3824 if (page_evictable(page)) {
3825 enum lru_list lru = page_lru_base_type(page);
3826
3827 VM_BUG_ON_PAGE(PageActive(page), page);
3828 ClearPageUnevictable(page);
3829 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3830 add_page_to_lru_list(page, lruvec, lru);
3831 pgrescued++;
3832 }
3833 }
3834
3835 if (zone) {
3836 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3837 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3838 spin_unlock_irq(&zone->lru_lock);
3839 }
3840 }
3841 #endif /* CONFIG_SHMEM */
3842