• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53 
54 #include "init_64.h"
55 
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 
58 /* A bitmap, two bits for every 256MB of physical memory.  These two
59  * bits determine what page size we use for kernel linear
60  * translations.  They form an index into kern_linear_pte_xor[].  The
61  * value in the indexed slot is XOR'd with the TLB miss virtual
62  * address to form the resulting TTE.  The mapping is:
63  *
64  *	0	==>	4MB
65  *	1	==>	256MB
66  *	2	==>	2GB
67  *	3	==>	16GB
68  *
69  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
70  * support 2GB pages, and hopefully future cpus will support the 16GB
71  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
72  * if these larger page sizes are not supported by the cpu.
73  *
74  * It would be nice to determine this from the machine description
75  * 'cpu' properties, but we need to have this table setup before the
76  * MDESC is initialized.
77  */
78 
79 #ifndef CONFIG_DEBUG_PAGEALLOC
80 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
81  * Space is allocated for this right after the trap table in
82  * arch/sparc64/kernel/head.S
83  */
84 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
85 #endif
86 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
87 
88 static unsigned long cpu_pgsz_mask;
89 
90 #define MAX_BANKS	1024
91 
92 static struct linux_prom64_registers pavail[MAX_BANKS];
93 static int pavail_ents;
94 
cmp_p64(const void * a,const void * b)95 static int cmp_p64(const void *a, const void *b)
96 {
97 	const struct linux_prom64_registers *x = a, *y = b;
98 
99 	if (x->phys_addr > y->phys_addr)
100 		return 1;
101 	if (x->phys_addr < y->phys_addr)
102 		return -1;
103 	return 0;
104 }
105 
read_obp_memory(const char * property,struct linux_prom64_registers * regs,int * num_ents)106 static void __init read_obp_memory(const char *property,
107 				   struct linux_prom64_registers *regs,
108 				   int *num_ents)
109 {
110 	phandle node = prom_finddevice("/memory");
111 	int prop_size = prom_getproplen(node, property);
112 	int ents, ret, i;
113 
114 	ents = prop_size / sizeof(struct linux_prom64_registers);
115 	if (ents > MAX_BANKS) {
116 		prom_printf("The machine has more %s property entries than "
117 			    "this kernel can support (%d).\n",
118 			    property, MAX_BANKS);
119 		prom_halt();
120 	}
121 
122 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
123 	if (ret == -1) {
124 		prom_printf("Couldn't get %s property from /memory.\n",
125 				property);
126 		prom_halt();
127 	}
128 
129 	/* Sanitize what we got from the firmware, by page aligning
130 	 * everything.
131 	 */
132 	for (i = 0; i < ents; i++) {
133 		unsigned long base, size;
134 
135 		base = regs[i].phys_addr;
136 		size = regs[i].reg_size;
137 
138 		size &= PAGE_MASK;
139 		if (base & ~PAGE_MASK) {
140 			unsigned long new_base = PAGE_ALIGN(base);
141 
142 			size -= new_base - base;
143 			if ((long) size < 0L)
144 				size = 0UL;
145 			base = new_base;
146 		}
147 		if (size == 0UL) {
148 			/* If it is empty, simply get rid of it.
149 			 * This simplifies the logic of the other
150 			 * functions that process these arrays.
151 			 */
152 			memmove(&regs[i], &regs[i + 1],
153 				(ents - i - 1) * sizeof(regs[0]));
154 			i--;
155 			ents--;
156 			continue;
157 		}
158 		regs[i].phys_addr = base;
159 		regs[i].reg_size = size;
160 	}
161 
162 	*num_ents = ents;
163 
164 	sort(regs, ents, sizeof(struct linux_prom64_registers),
165 	     cmp_p64, NULL);
166 }
167 
168 /* Kernel physical address base and size in bytes.  */
169 unsigned long kern_base __read_mostly;
170 unsigned long kern_size __read_mostly;
171 
172 /* Initial ramdisk setup */
173 extern unsigned long sparc_ramdisk_image64;
174 extern unsigned int sparc_ramdisk_image;
175 extern unsigned int sparc_ramdisk_size;
176 
177 struct page *mem_map_zero __read_mostly;
178 EXPORT_SYMBOL(mem_map_zero);
179 
180 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
181 
182 unsigned long sparc64_kern_pri_context __read_mostly;
183 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
184 unsigned long sparc64_kern_sec_context __read_mostly;
185 
186 int num_kernel_image_mappings;
187 
188 #ifdef CONFIG_DEBUG_DCFLUSH
189 atomic_t dcpage_flushes = ATOMIC_INIT(0);
190 #ifdef CONFIG_SMP
191 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
192 #endif
193 #endif
194 
flush_dcache_page_impl(struct page * page)195 inline void flush_dcache_page_impl(struct page *page)
196 {
197 	BUG_ON(tlb_type == hypervisor);
198 #ifdef CONFIG_DEBUG_DCFLUSH
199 	atomic_inc(&dcpage_flushes);
200 #endif
201 
202 #ifdef DCACHE_ALIASING_POSSIBLE
203 	__flush_dcache_page(page_address(page),
204 			    ((tlb_type == spitfire) &&
205 			     page_mapping(page) != NULL));
206 #else
207 	if (page_mapping(page) != NULL &&
208 	    tlb_type == spitfire)
209 		__flush_icache_page(__pa(page_address(page)));
210 #endif
211 }
212 
213 #define PG_dcache_dirty		PG_arch_1
214 #define PG_dcache_cpu_shift	32UL
215 #define PG_dcache_cpu_mask	\
216 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
217 
218 #define dcache_dirty_cpu(page) \
219 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
220 
set_dcache_dirty(struct page * page,int this_cpu)221 static inline void set_dcache_dirty(struct page *page, int this_cpu)
222 {
223 	unsigned long mask = this_cpu;
224 	unsigned long non_cpu_bits;
225 
226 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
227 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
228 
229 	__asm__ __volatile__("1:\n\t"
230 			     "ldx	[%2], %%g7\n\t"
231 			     "and	%%g7, %1, %%g1\n\t"
232 			     "or	%%g1, %0, %%g1\n\t"
233 			     "casx	[%2], %%g7, %%g1\n\t"
234 			     "cmp	%%g7, %%g1\n\t"
235 			     "bne,pn	%%xcc, 1b\n\t"
236 			     " nop"
237 			     : /* no outputs */
238 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
239 			     : "g1", "g7");
240 }
241 
clear_dcache_dirty_cpu(struct page * page,unsigned long cpu)242 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
243 {
244 	unsigned long mask = (1UL << PG_dcache_dirty);
245 
246 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
247 			     "1:\n\t"
248 			     "ldx	[%2], %%g7\n\t"
249 			     "srlx	%%g7, %4, %%g1\n\t"
250 			     "and	%%g1, %3, %%g1\n\t"
251 			     "cmp	%%g1, %0\n\t"
252 			     "bne,pn	%%icc, 2f\n\t"
253 			     " andn	%%g7, %1, %%g1\n\t"
254 			     "casx	[%2], %%g7, %%g1\n\t"
255 			     "cmp	%%g7, %%g1\n\t"
256 			     "bne,pn	%%xcc, 1b\n\t"
257 			     " nop\n"
258 			     "2:"
259 			     : /* no outputs */
260 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
261 			       "i" (PG_dcache_cpu_mask),
262 			       "i" (PG_dcache_cpu_shift)
263 			     : "g1", "g7");
264 }
265 
tsb_insert(struct tsb * ent,unsigned long tag,unsigned long pte)266 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
267 {
268 	unsigned long tsb_addr = (unsigned long) ent;
269 
270 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
271 		tsb_addr = __pa(tsb_addr);
272 
273 	__tsb_insert(tsb_addr, tag, pte);
274 }
275 
276 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
277 
flush_dcache(unsigned long pfn)278 static void flush_dcache(unsigned long pfn)
279 {
280 	struct page *page;
281 
282 	page = pfn_to_page(pfn);
283 	if (page) {
284 		unsigned long pg_flags;
285 
286 		pg_flags = page->flags;
287 		if (pg_flags & (1UL << PG_dcache_dirty)) {
288 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
289 				   PG_dcache_cpu_mask);
290 			int this_cpu = get_cpu();
291 
292 			/* This is just to optimize away some function calls
293 			 * in the SMP case.
294 			 */
295 			if (cpu == this_cpu)
296 				flush_dcache_page_impl(page);
297 			else
298 				smp_flush_dcache_page_impl(page, cpu);
299 
300 			clear_dcache_dirty_cpu(page, cpu);
301 
302 			put_cpu();
303 		}
304 	}
305 }
306 
307 /* mm->context.lock must be held */
__update_mmu_tsb_insert(struct mm_struct * mm,unsigned long tsb_index,unsigned long tsb_hash_shift,unsigned long address,unsigned long tte)308 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
309 				    unsigned long tsb_hash_shift, unsigned long address,
310 				    unsigned long tte)
311 {
312 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
313 	unsigned long tag;
314 
315 	if (unlikely(!tsb))
316 		return;
317 
318 	tsb += ((address >> tsb_hash_shift) &
319 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
320 	tag = (address >> 22UL);
321 	tsb_insert(tsb, tag, tte);
322 }
323 
324 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
is_hugetlb_pte(pte_t pte)325 static inline bool is_hugetlb_pte(pte_t pte)
326 {
327 	if ((tlb_type == hypervisor &&
328 	     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
329 	    (tlb_type != hypervisor &&
330 	     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
331 		return true;
332 	return false;
333 }
334 #endif
335 
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)336 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
337 {
338 	struct mm_struct *mm;
339 	unsigned long flags;
340 	pte_t pte = *ptep;
341 
342 	if (tlb_type != hypervisor) {
343 		unsigned long pfn = pte_pfn(pte);
344 
345 		if (pfn_valid(pfn))
346 			flush_dcache(pfn);
347 	}
348 
349 	mm = vma->vm_mm;
350 
351 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
352 	if (!pte_accessible(mm, pte))
353 		return;
354 
355 	spin_lock_irqsave(&mm->context.lock, flags);
356 
357 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
358 	if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
359 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
360 					address, pte_val(pte));
361 	else
362 #endif
363 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
364 					address, pte_val(pte));
365 
366 	spin_unlock_irqrestore(&mm->context.lock, flags);
367 }
368 
flush_dcache_page(struct page * page)369 void flush_dcache_page(struct page *page)
370 {
371 	struct address_space *mapping;
372 	int this_cpu;
373 
374 	if (tlb_type == hypervisor)
375 		return;
376 
377 	/* Do not bother with the expensive D-cache flush if it
378 	 * is merely the zero page.  The 'bigcore' testcase in GDB
379 	 * causes this case to run millions of times.
380 	 */
381 	if (page == ZERO_PAGE(0))
382 		return;
383 
384 	this_cpu = get_cpu();
385 
386 	mapping = page_mapping(page);
387 	if (mapping && !mapping_mapped(mapping)) {
388 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
389 		if (dirty) {
390 			int dirty_cpu = dcache_dirty_cpu(page);
391 
392 			if (dirty_cpu == this_cpu)
393 				goto out;
394 			smp_flush_dcache_page_impl(page, dirty_cpu);
395 		}
396 		set_dcache_dirty(page, this_cpu);
397 	} else {
398 		/* We could delay the flush for the !page_mapping
399 		 * case too.  But that case is for exec env/arg
400 		 * pages and those are %99 certainly going to get
401 		 * faulted into the tlb (and thus flushed) anyways.
402 		 */
403 		flush_dcache_page_impl(page);
404 	}
405 
406 out:
407 	put_cpu();
408 }
409 EXPORT_SYMBOL(flush_dcache_page);
410 
flush_icache_range(unsigned long start,unsigned long end)411 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
412 {
413 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
414 	if (tlb_type == spitfire) {
415 		unsigned long kaddr;
416 
417 		/* This code only runs on Spitfire cpus so this is
418 		 * why we can assume _PAGE_PADDR_4U.
419 		 */
420 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
421 			unsigned long paddr, mask = _PAGE_PADDR_4U;
422 
423 			if (kaddr >= PAGE_OFFSET)
424 				paddr = kaddr & mask;
425 			else {
426 				pgd_t *pgdp = pgd_offset_k(kaddr);
427 				pud_t *pudp = pud_offset(pgdp, kaddr);
428 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
429 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
430 
431 				paddr = pte_val(*ptep) & mask;
432 			}
433 			__flush_icache_page(paddr);
434 		}
435 	}
436 }
437 EXPORT_SYMBOL(flush_icache_range);
438 
mmu_info(struct seq_file * m)439 void mmu_info(struct seq_file *m)
440 {
441 	static const char *pgsz_strings[] = {
442 		"8K", "64K", "512K", "4MB", "32MB",
443 		"256MB", "2GB", "16GB",
444 	};
445 	int i, printed;
446 
447 	if (tlb_type == cheetah)
448 		seq_printf(m, "MMU Type\t: Cheetah\n");
449 	else if (tlb_type == cheetah_plus)
450 		seq_printf(m, "MMU Type\t: Cheetah+\n");
451 	else if (tlb_type == spitfire)
452 		seq_printf(m, "MMU Type\t: Spitfire\n");
453 	else if (tlb_type == hypervisor)
454 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
455 	else
456 		seq_printf(m, "MMU Type\t: ???\n");
457 
458 	seq_printf(m, "MMU PGSZs\t: ");
459 	printed = 0;
460 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
461 		if (cpu_pgsz_mask & (1UL << i)) {
462 			seq_printf(m, "%s%s",
463 				   printed ? "," : "", pgsz_strings[i]);
464 			printed++;
465 		}
466 	}
467 	seq_putc(m, '\n');
468 
469 #ifdef CONFIG_DEBUG_DCFLUSH
470 	seq_printf(m, "DCPageFlushes\t: %d\n",
471 		   atomic_read(&dcpage_flushes));
472 #ifdef CONFIG_SMP
473 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
474 		   atomic_read(&dcpage_flushes_xcall));
475 #endif /* CONFIG_SMP */
476 #endif /* CONFIG_DEBUG_DCFLUSH */
477 }
478 
479 struct linux_prom_translation prom_trans[512] __read_mostly;
480 unsigned int prom_trans_ents __read_mostly;
481 
482 unsigned long kern_locked_tte_data;
483 
484 /* The obp translations are saved based on 8k pagesize, since obp can
485  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
486  * HI_OBP_ADDRESS range are handled in ktlb.S.
487  */
in_obp_range(unsigned long vaddr)488 static inline int in_obp_range(unsigned long vaddr)
489 {
490 	return (vaddr >= LOW_OBP_ADDRESS &&
491 		vaddr < HI_OBP_ADDRESS);
492 }
493 
cmp_ptrans(const void * a,const void * b)494 static int cmp_ptrans(const void *a, const void *b)
495 {
496 	const struct linux_prom_translation *x = a, *y = b;
497 
498 	if (x->virt > y->virt)
499 		return 1;
500 	if (x->virt < y->virt)
501 		return -1;
502 	return 0;
503 }
504 
505 /* Read OBP translations property into 'prom_trans[]'.  */
read_obp_translations(void)506 static void __init read_obp_translations(void)
507 {
508 	int n, node, ents, first, last, i;
509 
510 	node = prom_finddevice("/virtual-memory");
511 	n = prom_getproplen(node, "translations");
512 	if (unlikely(n == 0 || n == -1)) {
513 		prom_printf("prom_mappings: Couldn't get size.\n");
514 		prom_halt();
515 	}
516 	if (unlikely(n > sizeof(prom_trans))) {
517 		prom_printf("prom_mappings: Size %d is too big.\n", n);
518 		prom_halt();
519 	}
520 
521 	if ((n = prom_getproperty(node, "translations",
522 				  (char *)&prom_trans[0],
523 				  sizeof(prom_trans))) == -1) {
524 		prom_printf("prom_mappings: Couldn't get property.\n");
525 		prom_halt();
526 	}
527 
528 	n = n / sizeof(struct linux_prom_translation);
529 
530 	ents = n;
531 
532 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
533 	     cmp_ptrans, NULL);
534 
535 	/* Now kick out all the non-OBP entries.  */
536 	for (i = 0; i < ents; i++) {
537 		if (in_obp_range(prom_trans[i].virt))
538 			break;
539 	}
540 	first = i;
541 	for (; i < ents; i++) {
542 		if (!in_obp_range(prom_trans[i].virt))
543 			break;
544 	}
545 	last = i;
546 
547 	for (i = 0; i < (last - first); i++) {
548 		struct linux_prom_translation *src = &prom_trans[i + first];
549 		struct linux_prom_translation *dest = &prom_trans[i];
550 
551 		*dest = *src;
552 	}
553 	for (; i < ents; i++) {
554 		struct linux_prom_translation *dest = &prom_trans[i];
555 		dest->virt = dest->size = dest->data = 0x0UL;
556 	}
557 
558 	prom_trans_ents = last - first;
559 
560 	if (tlb_type == spitfire) {
561 		/* Clear diag TTE bits. */
562 		for (i = 0; i < prom_trans_ents; i++)
563 			prom_trans[i].data &= ~0x0003fe0000000000UL;
564 	}
565 
566 	/* Force execute bit on.  */
567 	for (i = 0; i < prom_trans_ents; i++)
568 		prom_trans[i].data |= (tlb_type == hypervisor ?
569 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
570 }
571 
hypervisor_tlb_lock(unsigned long vaddr,unsigned long pte,unsigned long mmu)572 static void __init hypervisor_tlb_lock(unsigned long vaddr,
573 				       unsigned long pte,
574 				       unsigned long mmu)
575 {
576 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
577 
578 	if (ret != 0) {
579 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
580 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
581 		prom_halt();
582 	}
583 }
584 
585 static unsigned long kern_large_tte(unsigned long paddr);
586 
remap_kernel(void)587 static void __init remap_kernel(void)
588 {
589 	unsigned long phys_page, tte_vaddr, tte_data;
590 	int i, tlb_ent = sparc64_highest_locked_tlbent();
591 
592 	tte_vaddr = (unsigned long) KERNBASE;
593 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
594 	tte_data = kern_large_tte(phys_page);
595 
596 	kern_locked_tte_data = tte_data;
597 
598 	/* Now lock us into the TLBs via Hypervisor or OBP. */
599 	if (tlb_type == hypervisor) {
600 		for (i = 0; i < num_kernel_image_mappings; i++) {
601 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
602 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
603 			tte_vaddr += 0x400000;
604 			tte_data += 0x400000;
605 		}
606 	} else {
607 		for (i = 0; i < num_kernel_image_mappings; i++) {
608 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
609 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
610 			tte_vaddr += 0x400000;
611 			tte_data += 0x400000;
612 		}
613 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
614 	}
615 	if (tlb_type == cheetah_plus) {
616 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
617 					    CTX_CHEETAH_PLUS_NUC);
618 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
619 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
620 	}
621 }
622 
623 
inherit_prom_mappings(void)624 static void __init inherit_prom_mappings(void)
625 {
626 	/* Now fixup OBP's idea about where we really are mapped. */
627 	printk("Remapping the kernel... ");
628 	remap_kernel();
629 	printk("done.\n");
630 }
631 
prom_world(int enter)632 void prom_world(int enter)
633 {
634 	if (!enter)
635 		set_fs(get_fs());
636 
637 	__asm__ __volatile__("flushw");
638 }
639 
__flush_dcache_range(unsigned long start,unsigned long end)640 void __flush_dcache_range(unsigned long start, unsigned long end)
641 {
642 	unsigned long va;
643 
644 	if (tlb_type == spitfire) {
645 		int n = 0;
646 
647 		for (va = start; va < end; va += 32) {
648 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
649 			if (++n >= 512)
650 				break;
651 		}
652 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
653 		start = __pa(start);
654 		end = __pa(end);
655 		for (va = start; va < end; va += 32)
656 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
657 					     "membar #Sync"
658 					     : /* no outputs */
659 					     : "r" (va),
660 					       "i" (ASI_DCACHE_INVALIDATE));
661 	}
662 }
663 EXPORT_SYMBOL(__flush_dcache_range);
664 
665 /* get_new_mmu_context() uses "cache + 1".  */
666 DEFINE_SPINLOCK(ctx_alloc_lock);
667 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
668 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
669 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
670 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
671 
672 /* Caller does TLB context flushing on local CPU if necessary.
673  * The caller also ensures that CTX_VALID(mm->context) is false.
674  *
675  * We must be careful about boundary cases so that we never
676  * let the user have CTX 0 (nucleus) or we ever use a CTX
677  * version of zero (and thus NO_CONTEXT would not be caught
678  * by version mis-match tests in mmu_context.h).
679  *
680  * Always invoked with interrupts disabled.
681  */
get_new_mmu_context(struct mm_struct * mm)682 void get_new_mmu_context(struct mm_struct *mm)
683 {
684 	unsigned long ctx, new_ctx;
685 	unsigned long orig_pgsz_bits;
686 	int new_version;
687 
688 	spin_lock(&ctx_alloc_lock);
689 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
690 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
691 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
692 	new_version = 0;
693 	if (new_ctx >= (1 << CTX_NR_BITS)) {
694 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
695 		if (new_ctx >= ctx) {
696 			int i;
697 			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
698 				CTX_FIRST_VERSION;
699 			if (new_ctx == 1)
700 				new_ctx = CTX_FIRST_VERSION;
701 
702 			/* Don't call memset, for 16 entries that's just
703 			 * plain silly...
704 			 */
705 			mmu_context_bmap[0] = 3;
706 			mmu_context_bmap[1] = 0;
707 			mmu_context_bmap[2] = 0;
708 			mmu_context_bmap[3] = 0;
709 			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
710 				mmu_context_bmap[i + 0] = 0;
711 				mmu_context_bmap[i + 1] = 0;
712 				mmu_context_bmap[i + 2] = 0;
713 				mmu_context_bmap[i + 3] = 0;
714 			}
715 			new_version = 1;
716 			goto out;
717 		}
718 	}
719 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
720 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
721 out:
722 	tlb_context_cache = new_ctx;
723 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
724 	spin_unlock(&ctx_alloc_lock);
725 
726 	if (unlikely(new_version))
727 		smp_new_mmu_context_version();
728 }
729 
730 static int numa_enabled = 1;
731 static int numa_debug;
732 
early_numa(char * p)733 static int __init early_numa(char *p)
734 {
735 	if (!p)
736 		return 0;
737 
738 	if (strstr(p, "off"))
739 		numa_enabled = 0;
740 
741 	if (strstr(p, "debug"))
742 		numa_debug = 1;
743 
744 	return 0;
745 }
746 early_param("numa", early_numa);
747 
748 #define numadbg(f, a...) \
749 do {	if (numa_debug) \
750 		printk(KERN_INFO f, ## a); \
751 } while (0)
752 
find_ramdisk(unsigned long phys_base)753 static void __init find_ramdisk(unsigned long phys_base)
754 {
755 #ifdef CONFIG_BLK_DEV_INITRD
756 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
757 		unsigned long ramdisk_image;
758 
759 		/* Older versions of the bootloader only supported a
760 		 * 32-bit physical address for the ramdisk image
761 		 * location, stored at sparc_ramdisk_image.  Newer
762 		 * SILO versions set sparc_ramdisk_image to zero and
763 		 * provide a full 64-bit physical address at
764 		 * sparc_ramdisk_image64.
765 		 */
766 		ramdisk_image = sparc_ramdisk_image;
767 		if (!ramdisk_image)
768 			ramdisk_image = sparc_ramdisk_image64;
769 
770 		/* Another bootloader quirk.  The bootloader normalizes
771 		 * the physical address to KERNBASE, so we have to
772 		 * factor that back out and add in the lowest valid
773 		 * physical page address to get the true physical address.
774 		 */
775 		ramdisk_image -= KERNBASE;
776 		ramdisk_image += phys_base;
777 
778 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
779 			ramdisk_image, sparc_ramdisk_size);
780 
781 		initrd_start = ramdisk_image;
782 		initrd_end = ramdisk_image + sparc_ramdisk_size;
783 
784 		memblock_reserve(initrd_start, sparc_ramdisk_size);
785 
786 		initrd_start += PAGE_OFFSET;
787 		initrd_end += PAGE_OFFSET;
788 	}
789 #endif
790 }
791 
792 struct node_mem_mask {
793 	unsigned long mask;
794 	unsigned long val;
795 };
796 static struct node_mem_mask node_masks[MAX_NUMNODES];
797 static int num_node_masks;
798 
799 #ifdef CONFIG_NEED_MULTIPLE_NODES
800 
801 int numa_cpu_lookup_table[NR_CPUS];
802 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
803 
804 struct mdesc_mblock {
805 	u64	base;
806 	u64	size;
807 	u64	offset; /* RA-to-PA */
808 };
809 static struct mdesc_mblock *mblocks;
810 static int num_mblocks;
811 
ra_to_pa(unsigned long addr)812 static unsigned long ra_to_pa(unsigned long addr)
813 {
814 	int i;
815 
816 	for (i = 0; i < num_mblocks; i++) {
817 		struct mdesc_mblock *m = &mblocks[i];
818 
819 		if (addr >= m->base &&
820 		    addr < (m->base + m->size)) {
821 			addr += m->offset;
822 			break;
823 		}
824 	}
825 	return addr;
826 }
827 
find_node(unsigned long addr)828 static int find_node(unsigned long addr)
829 {
830 	int i;
831 
832 	addr = ra_to_pa(addr);
833 	for (i = 0; i < num_node_masks; i++) {
834 		struct node_mem_mask *p = &node_masks[i];
835 
836 		if ((addr & p->mask) == p->val)
837 			return i;
838 	}
839 	/* The following condition has been observed on LDOM guests.*/
840 	WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
841 		" rule. Some physical memory will be owned by node 0.");
842 	return 0;
843 }
844 
memblock_nid_range(u64 start,u64 end,int * nid)845 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
846 {
847 	*nid = find_node(start);
848 	start += PAGE_SIZE;
849 	while (start < end) {
850 		int n = find_node(start);
851 
852 		if (n != *nid)
853 			break;
854 		start += PAGE_SIZE;
855 	}
856 
857 	if (start > end)
858 		start = end;
859 
860 	return start;
861 }
862 #endif
863 
864 /* This must be invoked after performing all of the necessary
865  * memblock_set_node() calls for 'nid'.  We need to be able to get
866  * correct data from get_pfn_range_for_nid().
867  */
allocate_node_data(int nid)868 static void __init allocate_node_data(int nid)
869 {
870 	struct pglist_data *p;
871 	unsigned long start_pfn, end_pfn;
872 #ifdef CONFIG_NEED_MULTIPLE_NODES
873 	unsigned long paddr;
874 
875 	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
876 	if (!paddr) {
877 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
878 		prom_halt();
879 	}
880 	NODE_DATA(nid) = __va(paddr);
881 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
882 
883 	NODE_DATA(nid)->node_id = nid;
884 #endif
885 
886 	p = NODE_DATA(nid);
887 
888 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
889 	p->node_start_pfn = start_pfn;
890 	p->node_spanned_pages = end_pfn - start_pfn;
891 }
892 
init_node_masks_nonnuma(void)893 static void init_node_masks_nonnuma(void)
894 {
895 #ifdef CONFIG_NEED_MULTIPLE_NODES
896 	int i;
897 #endif
898 
899 	numadbg("Initializing tables for non-numa.\n");
900 
901 	node_masks[0].mask = node_masks[0].val = 0;
902 	num_node_masks = 1;
903 
904 #ifdef CONFIG_NEED_MULTIPLE_NODES
905 	for (i = 0; i < NR_CPUS; i++)
906 		numa_cpu_lookup_table[i] = 0;
907 
908 	cpumask_setall(&numa_cpumask_lookup_table[0]);
909 #endif
910 }
911 
912 #ifdef CONFIG_NEED_MULTIPLE_NODES
913 struct pglist_data *node_data[MAX_NUMNODES];
914 
915 EXPORT_SYMBOL(numa_cpu_lookup_table);
916 EXPORT_SYMBOL(numa_cpumask_lookup_table);
917 EXPORT_SYMBOL(node_data);
918 
919 struct mdesc_mlgroup {
920 	u64	node;
921 	u64	latency;
922 	u64	match;
923 	u64	mask;
924 };
925 static struct mdesc_mlgroup *mlgroups;
926 static int num_mlgroups;
927 
scan_pio_for_cfg_handle(struct mdesc_handle * md,u64 pio,u32 cfg_handle)928 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
929 				   u32 cfg_handle)
930 {
931 	u64 arc;
932 
933 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
934 		u64 target = mdesc_arc_target(md, arc);
935 		const u64 *val;
936 
937 		val = mdesc_get_property(md, target,
938 					 "cfg-handle", NULL);
939 		if (val && *val == cfg_handle)
940 			return 0;
941 	}
942 	return -ENODEV;
943 }
944 
scan_arcs_for_cfg_handle(struct mdesc_handle * md,u64 grp,u32 cfg_handle)945 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
946 				    u32 cfg_handle)
947 {
948 	u64 arc, candidate, best_latency = ~(u64)0;
949 
950 	candidate = MDESC_NODE_NULL;
951 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
952 		u64 target = mdesc_arc_target(md, arc);
953 		const char *name = mdesc_node_name(md, target);
954 		const u64 *val;
955 
956 		if (strcmp(name, "pio-latency-group"))
957 			continue;
958 
959 		val = mdesc_get_property(md, target, "latency", NULL);
960 		if (!val)
961 			continue;
962 
963 		if (*val < best_latency) {
964 			candidate = target;
965 			best_latency = *val;
966 		}
967 	}
968 
969 	if (candidate == MDESC_NODE_NULL)
970 		return -ENODEV;
971 
972 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
973 }
974 
of_node_to_nid(struct device_node * dp)975 int of_node_to_nid(struct device_node *dp)
976 {
977 	const struct linux_prom64_registers *regs;
978 	struct mdesc_handle *md;
979 	u32 cfg_handle;
980 	int count, nid;
981 	u64 grp;
982 
983 	/* This is the right thing to do on currently supported
984 	 * SUN4U NUMA platforms as well, as the PCI controller does
985 	 * not sit behind any particular memory controller.
986 	 */
987 	if (!mlgroups)
988 		return -1;
989 
990 	regs = of_get_property(dp, "reg", NULL);
991 	if (!regs)
992 		return -1;
993 
994 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
995 
996 	md = mdesc_grab();
997 
998 	count = 0;
999 	nid = -1;
1000 	mdesc_for_each_node_by_name(md, grp, "group") {
1001 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1002 			nid = count;
1003 			break;
1004 		}
1005 		count++;
1006 	}
1007 
1008 	mdesc_release(md);
1009 
1010 	return nid;
1011 }
1012 
add_node_ranges(void)1013 static void __init add_node_ranges(void)
1014 {
1015 	struct memblock_region *reg;
1016 
1017 	for_each_memblock(memory, reg) {
1018 		unsigned long size = reg->size;
1019 		unsigned long start, end;
1020 
1021 		start = reg->base;
1022 		end = start + size;
1023 		while (start < end) {
1024 			unsigned long this_end;
1025 			int nid;
1026 
1027 			this_end = memblock_nid_range(start, end, &nid);
1028 
1029 			numadbg("Setting memblock NUMA node nid[%d] "
1030 				"start[%lx] end[%lx]\n",
1031 				nid, start, this_end);
1032 
1033 			memblock_set_node(start, this_end - start,
1034 					  &memblock.memory, nid);
1035 			start = this_end;
1036 		}
1037 	}
1038 }
1039 
grab_mlgroups(struct mdesc_handle * md)1040 static int __init grab_mlgroups(struct mdesc_handle *md)
1041 {
1042 	unsigned long paddr;
1043 	int count = 0;
1044 	u64 node;
1045 
1046 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1047 		count++;
1048 	if (!count)
1049 		return -ENOENT;
1050 
1051 	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1052 			  SMP_CACHE_BYTES);
1053 	if (!paddr)
1054 		return -ENOMEM;
1055 
1056 	mlgroups = __va(paddr);
1057 	num_mlgroups = count;
1058 
1059 	count = 0;
1060 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1061 		struct mdesc_mlgroup *m = &mlgroups[count++];
1062 		const u64 *val;
1063 
1064 		m->node = node;
1065 
1066 		val = mdesc_get_property(md, node, "latency", NULL);
1067 		m->latency = *val;
1068 		val = mdesc_get_property(md, node, "address-match", NULL);
1069 		m->match = *val;
1070 		val = mdesc_get_property(md, node, "address-mask", NULL);
1071 		m->mask = *val;
1072 
1073 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1074 			"match[%llx] mask[%llx]\n",
1075 			count - 1, m->node, m->latency, m->match, m->mask);
1076 	}
1077 
1078 	return 0;
1079 }
1080 
grab_mblocks(struct mdesc_handle * md)1081 static int __init grab_mblocks(struct mdesc_handle *md)
1082 {
1083 	unsigned long paddr;
1084 	int count = 0;
1085 	u64 node;
1086 
1087 	mdesc_for_each_node_by_name(md, node, "mblock")
1088 		count++;
1089 	if (!count)
1090 		return -ENOENT;
1091 
1092 	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1093 			  SMP_CACHE_BYTES);
1094 	if (!paddr)
1095 		return -ENOMEM;
1096 
1097 	mblocks = __va(paddr);
1098 	num_mblocks = count;
1099 
1100 	count = 0;
1101 	mdesc_for_each_node_by_name(md, node, "mblock") {
1102 		struct mdesc_mblock *m = &mblocks[count++];
1103 		const u64 *val;
1104 
1105 		val = mdesc_get_property(md, node, "base", NULL);
1106 		m->base = *val;
1107 		val = mdesc_get_property(md, node, "size", NULL);
1108 		m->size = *val;
1109 		val = mdesc_get_property(md, node,
1110 					 "address-congruence-offset", NULL);
1111 
1112 		/* The address-congruence-offset property is optional.
1113 		 * Explicity zero it be identifty this.
1114 		 */
1115 		if (val)
1116 			m->offset = *val;
1117 		else
1118 			m->offset = 0UL;
1119 
1120 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1121 			count - 1, m->base, m->size, m->offset);
1122 	}
1123 
1124 	return 0;
1125 }
1126 
numa_parse_mdesc_group_cpus(struct mdesc_handle * md,u64 grp,cpumask_t * mask)1127 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1128 					       u64 grp, cpumask_t *mask)
1129 {
1130 	u64 arc;
1131 
1132 	cpumask_clear(mask);
1133 
1134 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1135 		u64 target = mdesc_arc_target(md, arc);
1136 		const char *name = mdesc_node_name(md, target);
1137 		const u64 *id;
1138 
1139 		if (strcmp(name, "cpu"))
1140 			continue;
1141 		id = mdesc_get_property(md, target, "id", NULL);
1142 		if (*id < nr_cpu_ids)
1143 			cpumask_set_cpu(*id, mask);
1144 	}
1145 }
1146 
find_mlgroup(u64 node)1147 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1148 {
1149 	int i;
1150 
1151 	for (i = 0; i < num_mlgroups; i++) {
1152 		struct mdesc_mlgroup *m = &mlgroups[i];
1153 		if (m->node == node)
1154 			return m;
1155 	}
1156 	return NULL;
1157 }
1158 
numa_attach_mlgroup(struct mdesc_handle * md,u64 grp,int index)1159 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1160 				      int index)
1161 {
1162 	struct mdesc_mlgroup *candidate = NULL;
1163 	u64 arc, best_latency = ~(u64)0;
1164 	struct node_mem_mask *n;
1165 
1166 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1167 		u64 target = mdesc_arc_target(md, arc);
1168 		struct mdesc_mlgroup *m = find_mlgroup(target);
1169 		if (!m)
1170 			continue;
1171 		if (m->latency < best_latency) {
1172 			candidate = m;
1173 			best_latency = m->latency;
1174 		}
1175 	}
1176 	if (!candidate)
1177 		return -ENOENT;
1178 
1179 	if (num_node_masks != index) {
1180 		printk(KERN_ERR "Inconsistent NUMA state, "
1181 		       "index[%d] != num_node_masks[%d]\n",
1182 		       index, num_node_masks);
1183 		return -EINVAL;
1184 	}
1185 
1186 	n = &node_masks[num_node_masks++];
1187 
1188 	n->mask = candidate->mask;
1189 	n->val = candidate->match;
1190 
1191 	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1192 		index, n->mask, n->val, candidate->latency);
1193 
1194 	return 0;
1195 }
1196 
numa_parse_mdesc_group(struct mdesc_handle * md,u64 grp,int index)1197 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1198 					 int index)
1199 {
1200 	cpumask_t mask;
1201 	int cpu;
1202 
1203 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1204 
1205 	for_each_cpu(cpu, &mask)
1206 		numa_cpu_lookup_table[cpu] = index;
1207 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1208 
1209 	if (numa_debug) {
1210 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1211 		for_each_cpu(cpu, &mask)
1212 			printk("%d ", cpu);
1213 		printk("]\n");
1214 	}
1215 
1216 	return numa_attach_mlgroup(md, grp, index);
1217 }
1218 
numa_parse_mdesc(void)1219 static int __init numa_parse_mdesc(void)
1220 {
1221 	struct mdesc_handle *md = mdesc_grab();
1222 	int i, err, count;
1223 	u64 node;
1224 
1225 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1226 	if (node == MDESC_NODE_NULL) {
1227 		mdesc_release(md);
1228 		return -ENOENT;
1229 	}
1230 
1231 	err = grab_mblocks(md);
1232 	if (err < 0)
1233 		goto out;
1234 
1235 	err = grab_mlgroups(md);
1236 	if (err < 0)
1237 		goto out;
1238 
1239 	count = 0;
1240 	mdesc_for_each_node_by_name(md, node, "group") {
1241 		err = numa_parse_mdesc_group(md, node, count);
1242 		if (err < 0)
1243 			break;
1244 		count++;
1245 	}
1246 
1247 	add_node_ranges();
1248 
1249 	for (i = 0; i < num_node_masks; i++) {
1250 		allocate_node_data(i);
1251 		node_set_online(i);
1252 	}
1253 
1254 	err = 0;
1255 out:
1256 	mdesc_release(md);
1257 	return err;
1258 }
1259 
numa_parse_jbus(void)1260 static int __init numa_parse_jbus(void)
1261 {
1262 	unsigned long cpu, index;
1263 
1264 	/* NUMA node id is encoded in bits 36 and higher, and there is
1265 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1266 	 */
1267 	index = 0;
1268 	for_each_present_cpu(cpu) {
1269 		numa_cpu_lookup_table[cpu] = index;
1270 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1271 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1272 		node_masks[index].val = cpu << 36UL;
1273 
1274 		index++;
1275 	}
1276 	num_node_masks = index;
1277 
1278 	add_node_ranges();
1279 
1280 	for (index = 0; index < num_node_masks; index++) {
1281 		allocate_node_data(index);
1282 		node_set_online(index);
1283 	}
1284 
1285 	return 0;
1286 }
1287 
numa_parse_sun4u(void)1288 static int __init numa_parse_sun4u(void)
1289 {
1290 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1291 		unsigned long ver;
1292 
1293 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1294 		if ((ver >> 32UL) == __JALAPENO_ID ||
1295 		    (ver >> 32UL) == __SERRANO_ID)
1296 			return numa_parse_jbus();
1297 	}
1298 	return -1;
1299 }
1300 
bootmem_init_numa(void)1301 static int __init bootmem_init_numa(void)
1302 {
1303 	int err = -1;
1304 
1305 	numadbg("bootmem_init_numa()\n");
1306 
1307 	if (numa_enabled) {
1308 		if (tlb_type == hypervisor)
1309 			err = numa_parse_mdesc();
1310 		else
1311 			err = numa_parse_sun4u();
1312 	}
1313 	return err;
1314 }
1315 
1316 #else
1317 
bootmem_init_numa(void)1318 static int bootmem_init_numa(void)
1319 {
1320 	return -1;
1321 }
1322 
1323 #endif
1324 
bootmem_init_nonnuma(void)1325 static void __init bootmem_init_nonnuma(void)
1326 {
1327 	unsigned long top_of_ram = memblock_end_of_DRAM();
1328 	unsigned long total_ram = memblock_phys_mem_size();
1329 
1330 	numadbg("bootmem_init_nonnuma()\n");
1331 
1332 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1333 	       top_of_ram, total_ram);
1334 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1335 	       (top_of_ram - total_ram) >> 20);
1336 
1337 	init_node_masks_nonnuma();
1338 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1339 	allocate_node_data(0);
1340 	node_set_online(0);
1341 }
1342 
bootmem_init(unsigned long phys_base)1343 static unsigned long __init bootmem_init(unsigned long phys_base)
1344 {
1345 	unsigned long end_pfn;
1346 
1347 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1348 	max_pfn = max_low_pfn = end_pfn;
1349 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1350 
1351 	if (bootmem_init_numa() < 0)
1352 		bootmem_init_nonnuma();
1353 
1354 	/* Dump memblock with node info. */
1355 	memblock_dump_all();
1356 
1357 	/* XXX cpu notifier XXX */
1358 
1359 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1360 	sparse_init();
1361 
1362 	return end_pfn;
1363 }
1364 
1365 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1366 static int pall_ents __initdata;
1367 
1368 static unsigned long max_phys_bits = 40;
1369 
kern_addr_valid(unsigned long addr)1370 bool kern_addr_valid(unsigned long addr)
1371 {
1372 	pgd_t *pgd;
1373 	pud_t *pud;
1374 	pmd_t *pmd;
1375 	pte_t *pte;
1376 
1377 	if ((long)addr < 0L) {
1378 		unsigned long pa = __pa(addr);
1379 
1380 		if ((pa >> max_phys_bits) != 0UL)
1381 			return false;
1382 
1383 		return pfn_valid(pa >> PAGE_SHIFT);
1384 	}
1385 
1386 	if (addr >= (unsigned long) KERNBASE &&
1387 	    addr < (unsigned long)&_end)
1388 		return true;
1389 
1390 	pgd = pgd_offset_k(addr);
1391 	if (pgd_none(*pgd))
1392 		return 0;
1393 
1394 	pud = pud_offset(pgd, addr);
1395 	if (pud_none(*pud))
1396 		return 0;
1397 
1398 	if (pud_large(*pud))
1399 		return pfn_valid(pud_pfn(*pud));
1400 
1401 	pmd = pmd_offset(pud, addr);
1402 	if (pmd_none(*pmd))
1403 		return 0;
1404 
1405 	if (pmd_large(*pmd))
1406 		return pfn_valid(pmd_pfn(*pmd));
1407 
1408 	pte = pte_offset_kernel(pmd, addr);
1409 	if (pte_none(*pte))
1410 		return 0;
1411 
1412 	return pfn_valid(pte_pfn(*pte));
1413 }
1414 EXPORT_SYMBOL(kern_addr_valid);
1415 
kernel_map_hugepud(unsigned long vstart,unsigned long vend,pud_t * pud)1416 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1417 					      unsigned long vend,
1418 					      pud_t *pud)
1419 {
1420 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1421 	u64 pte_val = vstart;
1422 
1423 	/* Each PUD is 8GB */
1424 	if ((vstart & mask16gb) ||
1425 	    (vend - vstart <= mask16gb)) {
1426 		pte_val ^= kern_linear_pte_xor[2];
1427 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1428 
1429 		return vstart + PUD_SIZE;
1430 	}
1431 
1432 	pte_val ^= kern_linear_pte_xor[3];
1433 	pte_val |= _PAGE_PUD_HUGE;
1434 
1435 	vend = vstart + mask16gb + 1UL;
1436 	while (vstart < vend) {
1437 		pud_val(*pud) = pte_val;
1438 
1439 		pte_val += PUD_SIZE;
1440 		vstart += PUD_SIZE;
1441 		pud++;
1442 	}
1443 	return vstart;
1444 }
1445 
kernel_can_map_hugepud(unsigned long vstart,unsigned long vend,bool guard)1446 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1447 				   bool guard)
1448 {
1449 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1450 		return true;
1451 
1452 	return false;
1453 }
1454 
kernel_map_hugepmd(unsigned long vstart,unsigned long vend,pmd_t * pmd)1455 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1456 					      unsigned long vend,
1457 					      pmd_t *pmd)
1458 {
1459 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1460 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1461 	u64 pte_val = vstart;
1462 
1463 	/* Each PMD is 8MB */
1464 	if ((vstart & mask256mb) ||
1465 	    (vend - vstart <= mask256mb)) {
1466 		pte_val ^= kern_linear_pte_xor[0];
1467 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1468 
1469 		return vstart + PMD_SIZE;
1470 	}
1471 
1472 	if ((vstart & mask2gb) ||
1473 	    (vend - vstart <= mask2gb)) {
1474 		pte_val ^= kern_linear_pte_xor[1];
1475 		pte_val |= _PAGE_PMD_HUGE;
1476 		vend = vstart + mask256mb + 1UL;
1477 	} else {
1478 		pte_val ^= kern_linear_pte_xor[2];
1479 		pte_val |= _PAGE_PMD_HUGE;
1480 		vend = vstart + mask2gb + 1UL;
1481 	}
1482 
1483 	while (vstart < vend) {
1484 		pmd_val(*pmd) = pte_val;
1485 
1486 		pte_val += PMD_SIZE;
1487 		vstart += PMD_SIZE;
1488 		pmd++;
1489 	}
1490 
1491 	return vstart;
1492 }
1493 
kernel_can_map_hugepmd(unsigned long vstart,unsigned long vend,bool guard)1494 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1495 				   bool guard)
1496 {
1497 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1498 		return true;
1499 
1500 	return false;
1501 }
1502 
kernel_map_range(unsigned long pstart,unsigned long pend,pgprot_t prot,bool use_huge)1503 static unsigned long __ref kernel_map_range(unsigned long pstart,
1504 					    unsigned long pend, pgprot_t prot,
1505 					    bool use_huge)
1506 {
1507 	unsigned long vstart = PAGE_OFFSET + pstart;
1508 	unsigned long vend = PAGE_OFFSET + pend;
1509 	unsigned long alloc_bytes = 0UL;
1510 
1511 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1512 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1513 			    vstart, vend);
1514 		prom_halt();
1515 	}
1516 
1517 	while (vstart < vend) {
1518 		unsigned long this_end, paddr = __pa(vstart);
1519 		pgd_t *pgd = pgd_offset_k(vstart);
1520 		pud_t *pud;
1521 		pmd_t *pmd;
1522 		pte_t *pte;
1523 
1524 		if (pgd_none(*pgd)) {
1525 			pud_t *new;
1526 
1527 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1528 			alloc_bytes += PAGE_SIZE;
1529 			pgd_populate(&init_mm, pgd, new);
1530 		}
1531 		pud = pud_offset(pgd, vstart);
1532 		if (pud_none(*pud)) {
1533 			pmd_t *new;
1534 
1535 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1536 				vstart = kernel_map_hugepud(vstart, vend, pud);
1537 				continue;
1538 			}
1539 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1540 			alloc_bytes += PAGE_SIZE;
1541 			pud_populate(&init_mm, pud, new);
1542 		}
1543 
1544 		pmd = pmd_offset(pud, vstart);
1545 		if (pmd_none(*pmd)) {
1546 			pte_t *new;
1547 
1548 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1549 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1550 				continue;
1551 			}
1552 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1553 			alloc_bytes += PAGE_SIZE;
1554 			pmd_populate_kernel(&init_mm, pmd, new);
1555 		}
1556 
1557 		pte = pte_offset_kernel(pmd, vstart);
1558 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1559 		if (this_end > vend)
1560 			this_end = vend;
1561 
1562 		while (vstart < this_end) {
1563 			pte_val(*pte) = (paddr | pgprot_val(prot));
1564 
1565 			vstart += PAGE_SIZE;
1566 			paddr += PAGE_SIZE;
1567 			pte++;
1568 		}
1569 	}
1570 
1571 	return alloc_bytes;
1572 }
1573 
flush_all_kernel_tsbs(void)1574 static void __init flush_all_kernel_tsbs(void)
1575 {
1576 	int i;
1577 
1578 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1579 		struct tsb *ent = &swapper_tsb[i];
1580 
1581 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1582 	}
1583 #ifndef CONFIG_DEBUG_PAGEALLOC
1584 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1585 		struct tsb *ent = &swapper_4m_tsb[i];
1586 
1587 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1588 	}
1589 #endif
1590 }
1591 
1592 extern unsigned int kvmap_linear_patch[1];
1593 
kernel_physical_mapping_init(void)1594 static void __init kernel_physical_mapping_init(void)
1595 {
1596 	unsigned long i, mem_alloced = 0UL;
1597 	bool use_huge = true;
1598 
1599 #ifdef CONFIG_DEBUG_PAGEALLOC
1600 	use_huge = false;
1601 #endif
1602 	for (i = 0; i < pall_ents; i++) {
1603 		unsigned long phys_start, phys_end;
1604 
1605 		phys_start = pall[i].phys_addr;
1606 		phys_end = phys_start + pall[i].reg_size;
1607 
1608 		mem_alloced += kernel_map_range(phys_start, phys_end,
1609 						PAGE_KERNEL, use_huge);
1610 	}
1611 
1612 	printk("Allocated %ld bytes for kernel page tables.\n",
1613 	       mem_alloced);
1614 
1615 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1616 	flushi(&kvmap_linear_patch[0]);
1617 
1618 	flush_all_kernel_tsbs();
1619 
1620 	__flush_tlb_all();
1621 }
1622 
1623 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_pages(struct page * page,int numpages,int enable)1624 void kernel_map_pages(struct page *page, int numpages, int enable)
1625 {
1626 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1627 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1628 
1629 	kernel_map_range(phys_start, phys_end,
1630 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1631 
1632 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1633 			       PAGE_OFFSET + phys_end);
1634 
1635 	/* we should perform an IPI and flush all tlbs,
1636 	 * but that can deadlock->flush only current cpu.
1637 	 */
1638 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1639 				 PAGE_OFFSET + phys_end);
1640 }
1641 #endif
1642 
find_ecache_flush_span(unsigned long size)1643 unsigned long __init find_ecache_flush_span(unsigned long size)
1644 {
1645 	int i;
1646 
1647 	for (i = 0; i < pavail_ents; i++) {
1648 		if (pavail[i].reg_size >= size)
1649 			return pavail[i].phys_addr;
1650 	}
1651 
1652 	return ~0UL;
1653 }
1654 
1655 unsigned long PAGE_OFFSET;
1656 EXPORT_SYMBOL(PAGE_OFFSET);
1657 
1658 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1659 EXPORT_SYMBOL(VMALLOC_END);
1660 
1661 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1662 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1663 
setup_page_offset(void)1664 static void __init setup_page_offset(void)
1665 {
1666 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1667 		/* Cheetah/Panther support a full 64-bit virtual
1668 		 * address, so we can use all that our page tables
1669 		 * support.
1670 		 */
1671 		sparc64_va_hole_top =    0xfff0000000000000UL;
1672 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1673 
1674 		max_phys_bits = 42;
1675 	} else if (tlb_type == hypervisor) {
1676 		switch (sun4v_chip_type) {
1677 		case SUN4V_CHIP_NIAGARA1:
1678 		case SUN4V_CHIP_NIAGARA2:
1679 			/* T1 and T2 support 48-bit virtual addresses.  */
1680 			sparc64_va_hole_top =    0xffff800000000000UL;
1681 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1682 
1683 			max_phys_bits = 39;
1684 			break;
1685 		case SUN4V_CHIP_NIAGARA3:
1686 			/* T3 supports 48-bit virtual addresses.  */
1687 			sparc64_va_hole_top =    0xffff800000000000UL;
1688 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1689 
1690 			max_phys_bits = 43;
1691 			break;
1692 		case SUN4V_CHIP_NIAGARA4:
1693 		case SUN4V_CHIP_NIAGARA5:
1694 		case SUN4V_CHIP_SPARC64X:
1695 		case SUN4V_CHIP_SPARC_M6:
1696 			/* T4 and later support 52-bit virtual addresses.  */
1697 			sparc64_va_hole_top =    0xfff8000000000000UL;
1698 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1699 			max_phys_bits = 47;
1700 			break;
1701 		case SUN4V_CHIP_SPARC_M7:
1702 		default:
1703 			/* M7 and later support 52-bit virtual addresses.  */
1704 			sparc64_va_hole_top =    0xfff8000000000000UL;
1705 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1706 			max_phys_bits = 49;
1707 			break;
1708 		}
1709 	}
1710 
1711 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1712 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1713 			    max_phys_bits);
1714 		prom_halt();
1715 	}
1716 
1717 	PAGE_OFFSET = sparc64_va_hole_top;
1718 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1719 		       (sparc64_va_hole_bottom >> 2));
1720 
1721 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1722 		PAGE_OFFSET, max_phys_bits);
1723 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1724 		VMALLOC_START, VMALLOC_END);
1725 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1726 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
1727 }
1728 
tsb_phys_patch(void)1729 static void __init tsb_phys_patch(void)
1730 {
1731 	struct tsb_ldquad_phys_patch_entry *pquad;
1732 	struct tsb_phys_patch_entry *p;
1733 
1734 	pquad = &__tsb_ldquad_phys_patch;
1735 	while (pquad < &__tsb_ldquad_phys_patch_end) {
1736 		unsigned long addr = pquad->addr;
1737 
1738 		if (tlb_type == hypervisor)
1739 			*(unsigned int *) addr = pquad->sun4v_insn;
1740 		else
1741 			*(unsigned int *) addr = pquad->sun4u_insn;
1742 		wmb();
1743 		__asm__ __volatile__("flush	%0"
1744 				     : /* no outputs */
1745 				     : "r" (addr));
1746 
1747 		pquad++;
1748 	}
1749 
1750 	p = &__tsb_phys_patch;
1751 	while (p < &__tsb_phys_patch_end) {
1752 		unsigned long addr = p->addr;
1753 
1754 		*(unsigned int *) addr = p->insn;
1755 		wmb();
1756 		__asm__ __volatile__("flush	%0"
1757 				     : /* no outputs */
1758 				     : "r" (addr));
1759 
1760 		p++;
1761 	}
1762 }
1763 
1764 /* Don't mark as init, we give this to the Hypervisor.  */
1765 #ifndef CONFIG_DEBUG_PAGEALLOC
1766 #define NUM_KTSB_DESCR	2
1767 #else
1768 #define NUM_KTSB_DESCR	1
1769 #endif
1770 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1771 
1772 /* The swapper TSBs are loaded with a base sequence of:
1773  *
1774  *	sethi	%uhi(SYMBOL), REG1
1775  *	sethi	%hi(SYMBOL), REG2
1776  *	or	REG1, %ulo(SYMBOL), REG1
1777  *	or	REG2, %lo(SYMBOL), REG2
1778  *	sllx	REG1, 32, REG1
1779  *	or	REG1, REG2, REG1
1780  *
1781  * When we use physical addressing for the TSB accesses, we patch the
1782  * first four instructions in the above sequence.
1783  */
1784 
patch_one_ktsb_phys(unsigned int * start,unsigned int * end,unsigned long pa)1785 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1786 {
1787 	unsigned long high_bits, low_bits;
1788 
1789 	high_bits = (pa >> 32) & 0xffffffff;
1790 	low_bits = (pa >> 0) & 0xffffffff;
1791 
1792 	while (start < end) {
1793 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1794 
1795 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1796 		__asm__ __volatile__("flush	%0" : : "r" (ia));
1797 
1798 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1799 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1800 
1801 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1802 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
1803 
1804 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1805 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
1806 
1807 		start++;
1808 	}
1809 }
1810 
ktsb_phys_patch(void)1811 static void ktsb_phys_patch(void)
1812 {
1813 	extern unsigned int __swapper_tsb_phys_patch;
1814 	extern unsigned int __swapper_tsb_phys_patch_end;
1815 	unsigned long ktsb_pa;
1816 
1817 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1818 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1819 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1820 #ifndef CONFIG_DEBUG_PAGEALLOC
1821 	{
1822 	extern unsigned int __swapper_4m_tsb_phys_patch;
1823 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1824 	ktsb_pa = (kern_base +
1825 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1826 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1827 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1828 	}
1829 #endif
1830 }
1831 
sun4v_ktsb_init(void)1832 static void __init sun4v_ktsb_init(void)
1833 {
1834 	unsigned long ktsb_pa;
1835 
1836 	/* First KTSB for PAGE_SIZE mappings.  */
1837 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1838 
1839 	switch (PAGE_SIZE) {
1840 	case 8 * 1024:
1841 	default:
1842 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1843 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1844 		break;
1845 
1846 	case 64 * 1024:
1847 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1848 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1849 		break;
1850 
1851 	case 512 * 1024:
1852 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1853 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1854 		break;
1855 
1856 	case 4 * 1024 * 1024:
1857 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1858 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1859 		break;
1860 	}
1861 
1862 	ktsb_descr[0].assoc = 1;
1863 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1864 	ktsb_descr[0].ctx_idx = 0;
1865 	ktsb_descr[0].tsb_base = ktsb_pa;
1866 	ktsb_descr[0].resv = 0;
1867 
1868 #ifndef CONFIG_DEBUG_PAGEALLOC
1869 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1870 	ktsb_pa = (kern_base +
1871 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1872 
1873 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1874 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1875 				    HV_PGSZ_MASK_256MB |
1876 				    HV_PGSZ_MASK_2GB |
1877 				    HV_PGSZ_MASK_16GB) &
1878 				   cpu_pgsz_mask);
1879 	ktsb_descr[1].assoc = 1;
1880 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1881 	ktsb_descr[1].ctx_idx = 0;
1882 	ktsb_descr[1].tsb_base = ktsb_pa;
1883 	ktsb_descr[1].resv = 0;
1884 #endif
1885 }
1886 
sun4v_ktsb_register(void)1887 void sun4v_ktsb_register(void)
1888 {
1889 	unsigned long pa, ret;
1890 
1891 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1892 
1893 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1894 	if (ret != 0) {
1895 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1896 			    "errors with %lx\n", pa, ret);
1897 		prom_halt();
1898 	}
1899 }
1900 
sun4u_linear_pte_xor_finalize(void)1901 static void __init sun4u_linear_pte_xor_finalize(void)
1902 {
1903 #ifndef CONFIG_DEBUG_PAGEALLOC
1904 	/* This is where we would add Panther support for
1905 	 * 32MB and 256MB pages.
1906 	 */
1907 #endif
1908 }
1909 
sun4v_linear_pte_xor_finalize(void)1910 static void __init sun4v_linear_pte_xor_finalize(void)
1911 {
1912 #ifndef CONFIG_DEBUG_PAGEALLOC
1913 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1914 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1915 			PAGE_OFFSET;
1916 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1917 					   _PAGE_P_4V | _PAGE_W_4V);
1918 	} else {
1919 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1920 	}
1921 
1922 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1923 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1924 			PAGE_OFFSET;
1925 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1926 					   _PAGE_P_4V | _PAGE_W_4V);
1927 	} else {
1928 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1929 	}
1930 
1931 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1932 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1933 			PAGE_OFFSET;
1934 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1935 					   _PAGE_P_4V | _PAGE_W_4V);
1936 	} else {
1937 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1938 	}
1939 #endif
1940 }
1941 
1942 /* paging_init() sets up the page tables */
1943 
1944 static unsigned long last_valid_pfn;
1945 
1946 static void sun4u_pgprot_init(void);
1947 static void sun4v_pgprot_init(void);
1948 
available_memory(void)1949 static phys_addr_t __init available_memory(void)
1950 {
1951 	phys_addr_t available = 0ULL;
1952 	phys_addr_t pa_start, pa_end;
1953 	u64 i;
1954 
1955 	for_each_free_mem_range(i, NUMA_NO_NODE, &pa_start, &pa_end, NULL)
1956 		available = available + (pa_end  - pa_start);
1957 
1958 	return available;
1959 }
1960 
1961 /* We need to exclude reserved regions. This exclusion will include
1962  * vmlinux and initrd. To be more precise the initrd size could be used to
1963  * compute a new lower limit because it is freed later during initialization.
1964  */
reduce_memory(phys_addr_t limit_ram)1965 static void __init reduce_memory(phys_addr_t limit_ram)
1966 {
1967 	phys_addr_t avail_ram = available_memory();
1968 	phys_addr_t pa_start, pa_end;
1969 	u64 i;
1970 
1971 	if (limit_ram >= avail_ram)
1972 		return;
1973 
1974 	for_each_free_mem_range(i, NUMA_NO_NODE, &pa_start, &pa_end, NULL) {
1975 		phys_addr_t region_size = pa_end - pa_start;
1976 		phys_addr_t clip_start = pa_start;
1977 
1978 		avail_ram = avail_ram - region_size;
1979 		/* Are we consuming too much? */
1980 		if (avail_ram < limit_ram) {
1981 			phys_addr_t give_back = limit_ram - avail_ram;
1982 
1983 			region_size = region_size - give_back;
1984 			clip_start = clip_start + give_back;
1985 		}
1986 
1987 		memblock_remove(clip_start, region_size);
1988 
1989 		if (avail_ram <= limit_ram)
1990 			break;
1991 		i = 0UL;
1992 	}
1993 }
1994 
paging_init(void)1995 void __init paging_init(void)
1996 {
1997 	unsigned long end_pfn, shift, phys_base;
1998 	unsigned long real_end, i;
1999 	int node;
2000 
2001 	setup_page_offset();
2002 
2003 	/* These build time checkes make sure that the dcache_dirty_cpu()
2004 	 * page->flags usage will work.
2005 	 *
2006 	 * When a page gets marked as dcache-dirty, we store the
2007 	 * cpu number starting at bit 32 in the page->flags.  Also,
2008 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2009 	 * in 13-bit signed-immediate instruction fields.
2010 	 */
2011 
2012 	/*
2013 	 * Page flags must not reach into upper 32 bits that are used
2014 	 * for the cpu number
2015 	 */
2016 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2017 
2018 	/*
2019 	 * The bit fields placed in the high range must not reach below
2020 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2021 	 * at the 32 bit boundary.
2022 	 */
2023 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2024 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2025 
2026 	BUILD_BUG_ON(NR_CPUS > 4096);
2027 
2028 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2029 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2030 
2031 	/* Invalidate both kernel TSBs.  */
2032 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2033 #ifndef CONFIG_DEBUG_PAGEALLOC
2034 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2035 #endif
2036 
2037 	if (tlb_type == hypervisor)
2038 		sun4v_pgprot_init();
2039 	else
2040 		sun4u_pgprot_init();
2041 
2042 	if (tlb_type == cheetah_plus ||
2043 	    tlb_type == hypervisor) {
2044 		tsb_phys_patch();
2045 		ktsb_phys_patch();
2046 	}
2047 
2048 	if (tlb_type == hypervisor)
2049 		sun4v_patch_tlb_handlers();
2050 
2051 	/* Find available physical memory...
2052 	 *
2053 	 * Read it twice in order to work around a bug in openfirmware.
2054 	 * The call to grab this table itself can cause openfirmware to
2055 	 * allocate memory, which in turn can take away some space from
2056 	 * the list of available memory.  Reading it twice makes sure
2057 	 * we really do get the final value.
2058 	 */
2059 	read_obp_translations();
2060 	read_obp_memory("reg", &pall[0], &pall_ents);
2061 	read_obp_memory("available", &pavail[0], &pavail_ents);
2062 	read_obp_memory("available", &pavail[0], &pavail_ents);
2063 
2064 	phys_base = 0xffffffffffffffffUL;
2065 	for (i = 0; i < pavail_ents; i++) {
2066 		phys_base = min(phys_base, pavail[i].phys_addr);
2067 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2068 	}
2069 
2070 	memblock_reserve(kern_base, kern_size);
2071 
2072 	find_ramdisk(phys_base);
2073 
2074 	if (cmdline_memory_size)
2075 		reduce_memory(cmdline_memory_size);
2076 
2077 	memblock_allow_resize();
2078 	memblock_dump_all();
2079 
2080 	set_bit(0, mmu_context_bmap);
2081 
2082 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2083 
2084 	real_end = (unsigned long)_end;
2085 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2086 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2087 	       num_kernel_image_mappings);
2088 
2089 	/* Set kernel pgd to upper alias so physical page computations
2090 	 * work.
2091 	 */
2092 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2093 
2094 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2095 
2096 	inherit_prom_mappings();
2097 
2098 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2099 	setup_tba();
2100 
2101 	__flush_tlb_all();
2102 
2103 	prom_build_devicetree();
2104 	of_populate_present_mask();
2105 #ifndef CONFIG_SMP
2106 	of_fill_in_cpu_data();
2107 #endif
2108 
2109 	if (tlb_type == hypervisor) {
2110 		sun4v_mdesc_init();
2111 		mdesc_populate_present_mask(cpu_all_mask);
2112 #ifndef CONFIG_SMP
2113 		mdesc_fill_in_cpu_data(cpu_all_mask);
2114 #endif
2115 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2116 
2117 		sun4v_linear_pte_xor_finalize();
2118 
2119 		sun4v_ktsb_init();
2120 		sun4v_ktsb_register();
2121 	} else {
2122 		unsigned long impl, ver;
2123 
2124 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2125 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2126 
2127 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2128 		impl = ((ver >> 32) & 0xffff);
2129 		if (impl == PANTHER_IMPL)
2130 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2131 					  HV_PGSZ_MASK_256MB);
2132 
2133 		sun4u_linear_pte_xor_finalize();
2134 	}
2135 
2136 	/* Flush the TLBs and the 4M TSB so that the updated linear
2137 	 * pte XOR settings are realized for all mappings.
2138 	 */
2139 	__flush_tlb_all();
2140 #ifndef CONFIG_DEBUG_PAGEALLOC
2141 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2142 #endif
2143 	__flush_tlb_all();
2144 
2145 	/* Setup bootmem... */
2146 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2147 
2148 	/* Once the OF device tree and MDESC have been setup, we know
2149 	 * the list of possible cpus.  Therefore we can allocate the
2150 	 * IRQ stacks.
2151 	 */
2152 	for_each_possible_cpu(i) {
2153 		node = cpu_to_node(i);
2154 
2155 		softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2156 							THREAD_SIZE,
2157 							THREAD_SIZE, 0);
2158 		hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2159 							THREAD_SIZE,
2160 							THREAD_SIZE, 0);
2161 	}
2162 
2163 	kernel_physical_mapping_init();
2164 
2165 	{
2166 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2167 
2168 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2169 
2170 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2171 
2172 		free_area_init_nodes(max_zone_pfns);
2173 	}
2174 
2175 	printk("Booting Linux...\n");
2176 }
2177 
page_in_phys_avail(unsigned long paddr)2178 int page_in_phys_avail(unsigned long paddr)
2179 {
2180 	int i;
2181 
2182 	paddr &= PAGE_MASK;
2183 
2184 	for (i = 0; i < pavail_ents; i++) {
2185 		unsigned long start, end;
2186 
2187 		start = pavail[i].phys_addr;
2188 		end = start + pavail[i].reg_size;
2189 
2190 		if (paddr >= start && paddr < end)
2191 			return 1;
2192 	}
2193 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2194 		return 1;
2195 #ifdef CONFIG_BLK_DEV_INITRD
2196 	if (paddr >= __pa(initrd_start) &&
2197 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2198 		return 1;
2199 #endif
2200 
2201 	return 0;
2202 }
2203 
register_page_bootmem_info(void)2204 static void __init register_page_bootmem_info(void)
2205 {
2206 #ifdef CONFIG_NEED_MULTIPLE_NODES
2207 	int i;
2208 
2209 	for_each_online_node(i)
2210 		if (NODE_DATA(i)->node_spanned_pages)
2211 			register_page_bootmem_info_node(NODE_DATA(i));
2212 #endif
2213 }
mem_init(void)2214 void __init mem_init(void)
2215 {
2216 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2217 
2218 	free_all_bootmem();
2219 
2220 	/*
2221 	 * Must be done after boot memory is put on freelist, because here we
2222 	 * might set fields in deferred struct pages that have not yet been
2223 	 * initialized, and free_all_bootmem() initializes all the reserved
2224 	 * deferred pages for us.
2225 	 */
2226 	register_page_bootmem_info();
2227 
2228 	/*
2229 	 * Set up the zero page, mark it reserved, so that page count
2230 	 * is not manipulated when freeing the page from user ptes.
2231 	 */
2232 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2233 	if (mem_map_zero == NULL) {
2234 		prom_printf("paging_init: Cannot alloc zero page.\n");
2235 		prom_halt();
2236 	}
2237 	mark_page_reserved(mem_map_zero);
2238 
2239 	mem_init_print_info(NULL);
2240 
2241 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2242 		cheetah_ecache_flush_init();
2243 }
2244 
free_initmem(void)2245 void free_initmem(void)
2246 {
2247 	unsigned long addr, initend;
2248 	int do_free = 1;
2249 
2250 	/* If the physical memory maps were trimmed by kernel command
2251 	 * line options, don't even try freeing this initmem stuff up.
2252 	 * The kernel image could have been in the trimmed out region
2253 	 * and if so the freeing below will free invalid page structs.
2254 	 */
2255 	if (cmdline_memory_size)
2256 		do_free = 0;
2257 
2258 	/*
2259 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2260 	 */
2261 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2262 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2263 	for (; addr < initend; addr += PAGE_SIZE) {
2264 		unsigned long page;
2265 
2266 		page = (addr +
2267 			((unsigned long) __va(kern_base)) -
2268 			((unsigned long) KERNBASE));
2269 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2270 
2271 		if (do_free)
2272 			free_reserved_page(virt_to_page(page));
2273 	}
2274 }
2275 
2276 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)2277 void free_initrd_mem(unsigned long start, unsigned long end)
2278 {
2279 	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2280 			   "initrd");
2281 }
2282 #endif
2283 
2284 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2285 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2286 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2287 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2288 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2289 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2290 
2291 pgprot_t PAGE_KERNEL __read_mostly;
2292 EXPORT_SYMBOL(PAGE_KERNEL);
2293 
2294 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2295 pgprot_t PAGE_COPY __read_mostly;
2296 
2297 pgprot_t PAGE_SHARED __read_mostly;
2298 EXPORT_SYMBOL(PAGE_SHARED);
2299 
2300 unsigned long pg_iobits __read_mostly;
2301 
2302 unsigned long _PAGE_IE __read_mostly;
2303 EXPORT_SYMBOL(_PAGE_IE);
2304 
2305 unsigned long _PAGE_E __read_mostly;
2306 EXPORT_SYMBOL(_PAGE_E);
2307 
2308 unsigned long _PAGE_CACHE __read_mostly;
2309 EXPORT_SYMBOL(_PAGE_CACHE);
2310 
2311 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmemmap_populate(unsigned long vstart,unsigned long vend,int node)2312 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2313 			       int node)
2314 {
2315 	unsigned long pte_base;
2316 
2317 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2318 		    _PAGE_CP_4U | _PAGE_CV_4U |
2319 		    _PAGE_P_4U | _PAGE_W_4U);
2320 	if (tlb_type == hypervisor)
2321 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2322 			    _PAGE_CP_4V | _PAGE_CV_4V |
2323 			    _PAGE_P_4V | _PAGE_W_4V);
2324 
2325 	pte_base |= _PAGE_PMD_HUGE;
2326 
2327 	vstart = vstart & PMD_MASK;
2328 	vend = ALIGN(vend, PMD_SIZE);
2329 	for (; vstart < vend; vstart += PMD_SIZE) {
2330 		pgd_t *pgd = pgd_offset_k(vstart);
2331 		unsigned long pte;
2332 		pud_t *pud;
2333 		pmd_t *pmd;
2334 
2335 		if (pgd_none(*pgd)) {
2336 			pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2337 
2338 			if (!new)
2339 				return -ENOMEM;
2340 			pgd_populate(&init_mm, pgd, new);
2341 		}
2342 
2343 		pud = pud_offset(pgd, vstart);
2344 		if (pud_none(*pud)) {
2345 			pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2346 
2347 			if (!new)
2348 				return -ENOMEM;
2349 			pud_populate(&init_mm, pud, new);
2350 		}
2351 
2352 		pmd = pmd_offset(pud, vstart);
2353 
2354 		pte = pmd_val(*pmd);
2355 		if (!(pte & _PAGE_VALID)) {
2356 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2357 
2358 			if (!block)
2359 				return -ENOMEM;
2360 
2361 			pmd_val(*pmd) = pte_base | __pa(block);
2362 		}
2363 	}
2364 
2365 	return 0;
2366 }
2367 
vmemmap_free(unsigned long start,unsigned long end)2368 void vmemmap_free(unsigned long start, unsigned long end)
2369 {
2370 }
2371 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2372 
prot_init_common(unsigned long page_none,unsigned long page_shared,unsigned long page_copy,unsigned long page_readonly,unsigned long page_exec_bit)2373 static void prot_init_common(unsigned long page_none,
2374 			     unsigned long page_shared,
2375 			     unsigned long page_copy,
2376 			     unsigned long page_readonly,
2377 			     unsigned long page_exec_bit)
2378 {
2379 	PAGE_COPY = __pgprot(page_copy);
2380 	PAGE_SHARED = __pgprot(page_shared);
2381 
2382 	protection_map[0x0] = __pgprot(page_none);
2383 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2384 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2385 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2386 	protection_map[0x4] = __pgprot(page_readonly);
2387 	protection_map[0x5] = __pgprot(page_readonly);
2388 	protection_map[0x6] = __pgprot(page_copy);
2389 	protection_map[0x7] = __pgprot(page_copy);
2390 	protection_map[0x8] = __pgprot(page_none);
2391 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2392 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2393 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2394 	protection_map[0xc] = __pgprot(page_readonly);
2395 	protection_map[0xd] = __pgprot(page_readonly);
2396 	protection_map[0xe] = __pgprot(page_shared);
2397 	protection_map[0xf] = __pgprot(page_shared);
2398 }
2399 
sun4u_pgprot_init(void)2400 static void __init sun4u_pgprot_init(void)
2401 {
2402 	unsigned long page_none, page_shared, page_copy, page_readonly;
2403 	unsigned long page_exec_bit;
2404 	int i;
2405 
2406 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2407 				_PAGE_CACHE_4U | _PAGE_P_4U |
2408 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2409 				_PAGE_EXEC_4U);
2410 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2411 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2412 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2413 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2414 
2415 	_PAGE_IE = _PAGE_IE_4U;
2416 	_PAGE_E = _PAGE_E_4U;
2417 	_PAGE_CACHE = _PAGE_CACHE_4U;
2418 
2419 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2420 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2421 
2422 #ifdef CONFIG_DEBUG_PAGEALLOC
2423 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2424 #else
2425 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2426 		PAGE_OFFSET;
2427 #endif
2428 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2429 				   _PAGE_P_4U | _PAGE_W_4U);
2430 
2431 	for (i = 1; i < 4; i++)
2432 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2433 
2434 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2435 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2436 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2437 
2438 
2439 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2440 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2441 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2442 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2443 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2444 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2445 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2446 
2447 	page_exec_bit = _PAGE_EXEC_4U;
2448 
2449 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2450 			 page_exec_bit);
2451 }
2452 
sun4v_pgprot_init(void)2453 static void __init sun4v_pgprot_init(void)
2454 {
2455 	unsigned long page_none, page_shared, page_copy, page_readonly;
2456 	unsigned long page_exec_bit;
2457 	int i;
2458 
2459 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2460 				_PAGE_CACHE_4V | _PAGE_P_4V |
2461 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2462 				_PAGE_EXEC_4V);
2463 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2464 
2465 	_PAGE_IE = _PAGE_IE_4V;
2466 	_PAGE_E = _PAGE_E_4V;
2467 	_PAGE_CACHE = _PAGE_CACHE_4V;
2468 
2469 #ifdef CONFIG_DEBUG_PAGEALLOC
2470 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2471 #else
2472 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2473 		PAGE_OFFSET;
2474 #endif
2475 	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2476 				   _PAGE_P_4V | _PAGE_W_4V);
2477 
2478 	for (i = 1; i < 4; i++)
2479 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2480 
2481 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2482 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2483 
2484 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2485 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2486 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2487 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2488 
2489 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2490 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2491 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2492 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2493 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2494 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2495 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2496 
2497 	page_exec_bit = _PAGE_EXEC_4V;
2498 
2499 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2500 			 page_exec_bit);
2501 }
2502 
pte_sz_bits(unsigned long sz)2503 unsigned long pte_sz_bits(unsigned long sz)
2504 {
2505 	if (tlb_type == hypervisor) {
2506 		switch (sz) {
2507 		case 8 * 1024:
2508 		default:
2509 			return _PAGE_SZ8K_4V;
2510 		case 64 * 1024:
2511 			return _PAGE_SZ64K_4V;
2512 		case 512 * 1024:
2513 			return _PAGE_SZ512K_4V;
2514 		case 4 * 1024 * 1024:
2515 			return _PAGE_SZ4MB_4V;
2516 		}
2517 	} else {
2518 		switch (sz) {
2519 		case 8 * 1024:
2520 		default:
2521 			return _PAGE_SZ8K_4U;
2522 		case 64 * 1024:
2523 			return _PAGE_SZ64K_4U;
2524 		case 512 * 1024:
2525 			return _PAGE_SZ512K_4U;
2526 		case 4 * 1024 * 1024:
2527 			return _PAGE_SZ4MB_4U;
2528 		}
2529 	}
2530 }
2531 
mk_pte_io(unsigned long page,pgprot_t prot,int space,unsigned long page_size)2532 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2533 {
2534 	pte_t pte;
2535 
2536 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2537 	pte_val(pte) |= (((unsigned long)space) << 32);
2538 	pte_val(pte) |= pte_sz_bits(page_size);
2539 
2540 	return pte;
2541 }
2542 
kern_large_tte(unsigned long paddr)2543 static unsigned long kern_large_tte(unsigned long paddr)
2544 {
2545 	unsigned long val;
2546 
2547 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2548 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2549 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2550 	if (tlb_type == hypervisor)
2551 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2552 		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2553 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2554 
2555 	return val | paddr;
2556 }
2557 
2558 /* If not locked, zap it. */
__flush_tlb_all(void)2559 void __flush_tlb_all(void)
2560 {
2561 	unsigned long pstate;
2562 	int i;
2563 
2564 	__asm__ __volatile__("flushw\n\t"
2565 			     "rdpr	%%pstate, %0\n\t"
2566 			     "wrpr	%0, %1, %%pstate"
2567 			     : "=r" (pstate)
2568 			     : "i" (PSTATE_IE));
2569 	if (tlb_type == hypervisor) {
2570 		sun4v_mmu_demap_all();
2571 	} else if (tlb_type == spitfire) {
2572 		for (i = 0; i < 64; i++) {
2573 			/* Spitfire Errata #32 workaround */
2574 			/* NOTE: Always runs on spitfire, so no
2575 			 *       cheetah+ page size encodings.
2576 			 */
2577 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2578 					     "flush	%%g6"
2579 					     : /* No outputs */
2580 					     : "r" (0),
2581 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2582 
2583 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2584 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2585 						     "membar #Sync"
2586 						     : /* no outputs */
2587 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2588 				spitfire_put_dtlb_data(i, 0x0UL);
2589 			}
2590 
2591 			/* Spitfire Errata #32 workaround */
2592 			/* NOTE: Always runs on spitfire, so no
2593 			 *       cheetah+ page size encodings.
2594 			 */
2595 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2596 					     "flush	%%g6"
2597 					     : /* No outputs */
2598 					     : "r" (0),
2599 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2600 
2601 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2602 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2603 						     "membar #Sync"
2604 						     : /* no outputs */
2605 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2606 				spitfire_put_itlb_data(i, 0x0UL);
2607 			}
2608 		}
2609 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2610 		cheetah_flush_dtlb_all();
2611 		cheetah_flush_itlb_all();
2612 	}
2613 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2614 			     : : "r" (pstate));
2615 }
2616 
pte_alloc_one_kernel(struct mm_struct * mm,unsigned long address)2617 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2618 			    unsigned long address)
2619 {
2620 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2621 				       __GFP_REPEAT | __GFP_ZERO);
2622 	pte_t *pte = NULL;
2623 
2624 	if (page)
2625 		pte = (pte_t *) page_address(page);
2626 
2627 	return pte;
2628 }
2629 
pte_alloc_one(struct mm_struct * mm,unsigned long address)2630 pgtable_t pte_alloc_one(struct mm_struct *mm,
2631 			unsigned long address)
2632 {
2633 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2634 				       __GFP_REPEAT | __GFP_ZERO);
2635 	if (!page)
2636 		return NULL;
2637 	if (!pgtable_page_ctor(page)) {
2638 		free_hot_cold_page(page, 0);
2639 		return NULL;
2640 	}
2641 	return (pte_t *) page_address(page);
2642 }
2643 
pte_free_kernel(struct mm_struct * mm,pte_t * pte)2644 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2645 {
2646 	free_page((unsigned long)pte);
2647 }
2648 
__pte_free(pgtable_t pte)2649 static void __pte_free(pgtable_t pte)
2650 {
2651 	struct page *page = virt_to_page(pte);
2652 
2653 	pgtable_page_dtor(page);
2654 	__free_page(page);
2655 }
2656 
pte_free(struct mm_struct * mm,pgtable_t pte)2657 void pte_free(struct mm_struct *mm, pgtable_t pte)
2658 {
2659 	__pte_free(pte);
2660 }
2661 
pgtable_free(void * table,bool is_page)2662 void pgtable_free(void *table, bool is_page)
2663 {
2664 	if (is_page)
2665 		__pte_free(table);
2666 	else
2667 		kmem_cache_free(pgtable_cache, table);
2668 }
2669 
2670 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)2671 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2672 			  pmd_t *pmd)
2673 {
2674 	unsigned long pte, flags;
2675 	struct mm_struct *mm;
2676 	pmd_t entry = *pmd;
2677 
2678 	if (!pmd_large(entry) || !pmd_young(entry))
2679 		return;
2680 
2681 	pte = pmd_val(entry);
2682 
2683 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2684 	if (!(pte & _PAGE_VALID))
2685 		return;
2686 
2687 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2688 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2689 
2690 	mm = vma->vm_mm;
2691 
2692 	spin_lock_irqsave(&mm->context.lock, flags);
2693 
2694 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2695 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2696 					addr, pte);
2697 
2698 	spin_unlock_irqrestore(&mm->context.lock, flags);
2699 }
2700 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2701 
2702 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
context_reload(void * __data)2703 static void context_reload(void *__data)
2704 {
2705 	struct mm_struct *mm = __data;
2706 
2707 	if (mm == current->mm)
2708 		load_secondary_context(mm);
2709 }
2710 
hugetlb_setup(struct pt_regs * regs)2711 void hugetlb_setup(struct pt_regs *regs)
2712 {
2713 	struct mm_struct *mm = current->mm;
2714 	struct tsb_config *tp;
2715 
2716 	if (in_atomic() || !mm) {
2717 		const struct exception_table_entry *entry;
2718 
2719 		entry = search_exception_tables(regs->tpc);
2720 		if (entry) {
2721 			regs->tpc = entry->fixup;
2722 			regs->tnpc = regs->tpc + 4;
2723 			return;
2724 		}
2725 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2726 		die_if_kernel("HugeTSB in atomic", regs);
2727 	}
2728 
2729 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2730 	if (likely(tp->tsb == NULL))
2731 		tsb_grow(mm, MM_TSB_HUGE, 0);
2732 
2733 	tsb_context_switch(mm);
2734 	smp_tsb_sync(mm);
2735 
2736 	/* On UltraSPARC-III+ and later, configure the second half of
2737 	 * the Data-TLB for huge pages.
2738 	 */
2739 	if (tlb_type == cheetah_plus) {
2740 		bool need_context_reload = false;
2741 		unsigned long ctx;
2742 
2743 		spin_lock_irq(&ctx_alloc_lock);
2744 		ctx = mm->context.sparc64_ctx_val;
2745 		ctx &= ~CTX_PGSZ_MASK;
2746 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2747 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2748 
2749 		if (ctx != mm->context.sparc64_ctx_val) {
2750 			/* When changing the page size fields, we
2751 			 * must perform a context flush so that no
2752 			 * stale entries match.  This flush must
2753 			 * occur with the original context register
2754 			 * settings.
2755 			 */
2756 			do_flush_tlb_mm(mm);
2757 
2758 			/* Reload the context register of all processors
2759 			 * also executing in this address space.
2760 			 */
2761 			mm->context.sparc64_ctx_val = ctx;
2762 			need_context_reload = true;
2763 		}
2764 		spin_unlock_irq(&ctx_alloc_lock);
2765 
2766 		if (need_context_reload)
2767 			on_each_cpu(context_reload, mm, 0);
2768 	}
2769 }
2770 #endif
2771 
2772 static struct resource code_resource = {
2773 	.name	= "Kernel code",
2774 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
2775 };
2776 
2777 static struct resource data_resource = {
2778 	.name	= "Kernel data",
2779 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
2780 };
2781 
2782 static struct resource bss_resource = {
2783 	.name	= "Kernel bss",
2784 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
2785 };
2786 
compute_kern_paddr(void * addr)2787 static inline resource_size_t compute_kern_paddr(void *addr)
2788 {
2789 	return (resource_size_t) (addr - KERNBASE + kern_base);
2790 }
2791 
kernel_lds_init(void)2792 static void __init kernel_lds_init(void)
2793 {
2794 	code_resource.start = compute_kern_paddr(_text);
2795 	code_resource.end   = compute_kern_paddr(_etext - 1);
2796 	data_resource.start = compute_kern_paddr(_etext);
2797 	data_resource.end   = compute_kern_paddr(_edata - 1);
2798 	bss_resource.start  = compute_kern_paddr(__bss_start);
2799 	bss_resource.end    = compute_kern_paddr(_end - 1);
2800 }
2801 
report_memory(void)2802 static int __init report_memory(void)
2803 {
2804 	int i;
2805 	struct resource *res;
2806 
2807 	kernel_lds_init();
2808 
2809 	for (i = 0; i < pavail_ents; i++) {
2810 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2811 
2812 		if (!res) {
2813 			pr_warn("Failed to allocate source.\n");
2814 			break;
2815 		}
2816 
2817 		res->name = "System RAM";
2818 		res->start = pavail[i].phys_addr;
2819 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2820 		res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
2821 
2822 		if (insert_resource(&iomem_resource, res) < 0) {
2823 			pr_warn("Resource insertion failed.\n");
2824 			break;
2825 		}
2826 
2827 		insert_resource(res, &code_resource);
2828 		insert_resource(res, &data_resource);
2829 		insert_resource(res, &bss_resource);
2830 	}
2831 
2832 	return 0;
2833 }
2834 device_initcall(report_memory);
2835 
2836 #ifdef CONFIG_SMP
2837 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
2838 #else
2839 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
2840 #endif
2841 
flush_tlb_kernel_range(unsigned long start,unsigned long end)2842 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2843 {
2844 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2845 		if (start < LOW_OBP_ADDRESS) {
2846 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2847 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2848 		}
2849 		if (end > HI_OBP_ADDRESS) {
2850 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2851 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
2852 		}
2853 	} else {
2854 		flush_tsb_kernel_range(start, end);
2855 		do_flush_tlb_kernel_range(start, end);
2856 	}
2857 }
2858