1 /*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57
58 /* A bitmap, two bits for every 256MB of physical memory. These two
59 * bits determine what page size we use for kernel linear
60 * translations. They form an index into kern_linear_pte_xor[]. The
61 * value in the indexed slot is XOR'd with the TLB miss virtual
62 * address to form the resulting TTE. The mapping is:
63 *
64 * 0 ==> 4MB
65 * 1 ==> 256MB
66 * 2 ==> 2GB
67 * 3 ==> 16GB
68 *
69 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
70 * support 2GB pages, and hopefully future cpus will support the 16GB
71 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
72 * if these larger page sizes are not supported by the cpu.
73 *
74 * It would be nice to determine this from the machine description
75 * 'cpu' properties, but we need to have this table setup before the
76 * MDESC is initialized.
77 */
78
79 #ifndef CONFIG_DEBUG_PAGEALLOC
80 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
81 * Space is allocated for this right after the trap table in
82 * arch/sparc64/kernel/head.S
83 */
84 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
85 #endif
86 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
87
88 static unsigned long cpu_pgsz_mask;
89
90 #define MAX_BANKS 1024
91
92 static struct linux_prom64_registers pavail[MAX_BANKS];
93 static int pavail_ents;
94
cmp_p64(const void * a,const void * b)95 static int cmp_p64(const void *a, const void *b)
96 {
97 const struct linux_prom64_registers *x = a, *y = b;
98
99 if (x->phys_addr > y->phys_addr)
100 return 1;
101 if (x->phys_addr < y->phys_addr)
102 return -1;
103 return 0;
104 }
105
read_obp_memory(const char * property,struct linux_prom64_registers * regs,int * num_ents)106 static void __init read_obp_memory(const char *property,
107 struct linux_prom64_registers *regs,
108 int *num_ents)
109 {
110 phandle node = prom_finddevice("/memory");
111 int prop_size = prom_getproplen(node, property);
112 int ents, ret, i;
113
114 ents = prop_size / sizeof(struct linux_prom64_registers);
115 if (ents > MAX_BANKS) {
116 prom_printf("The machine has more %s property entries than "
117 "this kernel can support (%d).\n",
118 property, MAX_BANKS);
119 prom_halt();
120 }
121
122 ret = prom_getproperty(node, property, (char *) regs, prop_size);
123 if (ret == -1) {
124 prom_printf("Couldn't get %s property from /memory.\n",
125 property);
126 prom_halt();
127 }
128
129 /* Sanitize what we got from the firmware, by page aligning
130 * everything.
131 */
132 for (i = 0; i < ents; i++) {
133 unsigned long base, size;
134
135 base = regs[i].phys_addr;
136 size = regs[i].reg_size;
137
138 size &= PAGE_MASK;
139 if (base & ~PAGE_MASK) {
140 unsigned long new_base = PAGE_ALIGN(base);
141
142 size -= new_base - base;
143 if ((long) size < 0L)
144 size = 0UL;
145 base = new_base;
146 }
147 if (size == 0UL) {
148 /* If it is empty, simply get rid of it.
149 * This simplifies the logic of the other
150 * functions that process these arrays.
151 */
152 memmove(®s[i], ®s[i + 1],
153 (ents - i - 1) * sizeof(regs[0]));
154 i--;
155 ents--;
156 continue;
157 }
158 regs[i].phys_addr = base;
159 regs[i].reg_size = size;
160 }
161
162 *num_ents = ents;
163
164 sort(regs, ents, sizeof(struct linux_prom64_registers),
165 cmp_p64, NULL);
166 }
167
168 /* Kernel physical address base and size in bytes. */
169 unsigned long kern_base __read_mostly;
170 unsigned long kern_size __read_mostly;
171
172 /* Initial ramdisk setup */
173 extern unsigned long sparc_ramdisk_image64;
174 extern unsigned int sparc_ramdisk_image;
175 extern unsigned int sparc_ramdisk_size;
176
177 struct page *mem_map_zero __read_mostly;
178 EXPORT_SYMBOL(mem_map_zero);
179
180 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
181
182 unsigned long sparc64_kern_pri_context __read_mostly;
183 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
184 unsigned long sparc64_kern_sec_context __read_mostly;
185
186 int num_kernel_image_mappings;
187
188 #ifdef CONFIG_DEBUG_DCFLUSH
189 atomic_t dcpage_flushes = ATOMIC_INIT(0);
190 #ifdef CONFIG_SMP
191 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
192 #endif
193 #endif
194
flush_dcache_page_impl(struct page * page)195 inline void flush_dcache_page_impl(struct page *page)
196 {
197 BUG_ON(tlb_type == hypervisor);
198 #ifdef CONFIG_DEBUG_DCFLUSH
199 atomic_inc(&dcpage_flushes);
200 #endif
201
202 #ifdef DCACHE_ALIASING_POSSIBLE
203 __flush_dcache_page(page_address(page),
204 ((tlb_type == spitfire) &&
205 page_mapping(page) != NULL));
206 #else
207 if (page_mapping(page) != NULL &&
208 tlb_type == spitfire)
209 __flush_icache_page(__pa(page_address(page)));
210 #endif
211 }
212
213 #define PG_dcache_dirty PG_arch_1
214 #define PG_dcache_cpu_shift 32UL
215 #define PG_dcache_cpu_mask \
216 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
217
218 #define dcache_dirty_cpu(page) \
219 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
220
set_dcache_dirty(struct page * page,int this_cpu)221 static inline void set_dcache_dirty(struct page *page, int this_cpu)
222 {
223 unsigned long mask = this_cpu;
224 unsigned long non_cpu_bits;
225
226 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
227 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
228
229 __asm__ __volatile__("1:\n\t"
230 "ldx [%2], %%g7\n\t"
231 "and %%g7, %1, %%g1\n\t"
232 "or %%g1, %0, %%g1\n\t"
233 "casx [%2], %%g7, %%g1\n\t"
234 "cmp %%g7, %%g1\n\t"
235 "bne,pn %%xcc, 1b\n\t"
236 " nop"
237 : /* no outputs */
238 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
239 : "g1", "g7");
240 }
241
clear_dcache_dirty_cpu(struct page * page,unsigned long cpu)242 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
243 {
244 unsigned long mask = (1UL << PG_dcache_dirty);
245
246 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
247 "1:\n\t"
248 "ldx [%2], %%g7\n\t"
249 "srlx %%g7, %4, %%g1\n\t"
250 "and %%g1, %3, %%g1\n\t"
251 "cmp %%g1, %0\n\t"
252 "bne,pn %%icc, 2f\n\t"
253 " andn %%g7, %1, %%g1\n\t"
254 "casx [%2], %%g7, %%g1\n\t"
255 "cmp %%g7, %%g1\n\t"
256 "bne,pn %%xcc, 1b\n\t"
257 " nop\n"
258 "2:"
259 : /* no outputs */
260 : "r" (cpu), "r" (mask), "r" (&page->flags),
261 "i" (PG_dcache_cpu_mask),
262 "i" (PG_dcache_cpu_shift)
263 : "g1", "g7");
264 }
265
tsb_insert(struct tsb * ent,unsigned long tag,unsigned long pte)266 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
267 {
268 unsigned long tsb_addr = (unsigned long) ent;
269
270 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
271 tsb_addr = __pa(tsb_addr);
272
273 __tsb_insert(tsb_addr, tag, pte);
274 }
275
276 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
277
flush_dcache(unsigned long pfn)278 static void flush_dcache(unsigned long pfn)
279 {
280 struct page *page;
281
282 page = pfn_to_page(pfn);
283 if (page) {
284 unsigned long pg_flags;
285
286 pg_flags = page->flags;
287 if (pg_flags & (1UL << PG_dcache_dirty)) {
288 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
289 PG_dcache_cpu_mask);
290 int this_cpu = get_cpu();
291
292 /* This is just to optimize away some function calls
293 * in the SMP case.
294 */
295 if (cpu == this_cpu)
296 flush_dcache_page_impl(page);
297 else
298 smp_flush_dcache_page_impl(page, cpu);
299
300 clear_dcache_dirty_cpu(page, cpu);
301
302 put_cpu();
303 }
304 }
305 }
306
307 /* mm->context.lock must be held */
__update_mmu_tsb_insert(struct mm_struct * mm,unsigned long tsb_index,unsigned long tsb_hash_shift,unsigned long address,unsigned long tte)308 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
309 unsigned long tsb_hash_shift, unsigned long address,
310 unsigned long tte)
311 {
312 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
313 unsigned long tag;
314
315 if (unlikely(!tsb))
316 return;
317
318 tsb += ((address >> tsb_hash_shift) &
319 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
320 tag = (address >> 22UL);
321 tsb_insert(tsb, tag, tte);
322 }
323
324 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
is_hugetlb_pte(pte_t pte)325 static inline bool is_hugetlb_pte(pte_t pte)
326 {
327 if ((tlb_type == hypervisor &&
328 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
329 (tlb_type != hypervisor &&
330 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
331 return true;
332 return false;
333 }
334 #endif
335
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)336 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
337 {
338 struct mm_struct *mm;
339 unsigned long flags;
340 pte_t pte = *ptep;
341
342 if (tlb_type != hypervisor) {
343 unsigned long pfn = pte_pfn(pte);
344
345 if (pfn_valid(pfn))
346 flush_dcache(pfn);
347 }
348
349 mm = vma->vm_mm;
350
351 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
352 if (!pte_accessible(mm, pte))
353 return;
354
355 spin_lock_irqsave(&mm->context.lock, flags);
356
357 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
358 if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
359 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
360 address, pte_val(pte));
361 else
362 #endif
363 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
364 address, pte_val(pte));
365
366 spin_unlock_irqrestore(&mm->context.lock, flags);
367 }
368
flush_dcache_page(struct page * page)369 void flush_dcache_page(struct page *page)
370 {
371 struct address_space *mapping;
372 int this_cpu;
373
374 if (tlb_type == hypervisor)
375 return;
376
377 /* Do not bother with the expensive D-cache flush if it
378 * is merely the zero page. The 'bigcore' testcase in GDB
379 * causes this case to run millions of times.
380 */
381 if (page == ZERO_PAGE(0))
382 return;
383
384 this_cpu = get_cpu();
385
386 mapping = page_mapping(page);
387 if (mapping && !mapping_mapped(mapping)) {
388 int dirty = test_bit(PG_dcache_dirty, &page->flags);
389 if (dirty) {
390 int dirty_cpu = dcache_dirty_cpu(page);
391
392 if (dirty_cpu == this_cpu)
393 goto out;
394 smp_flush_dcache_page_impl(page, dirty_cpu);
395 }
396 set_dcache_dirty(page, this_cpu);
397 } else {
398 /* We could delay the flush for the !page_mapping
399 * case too. But that case is for exec env/arg
400 * pages and those are %99 certainly going to get
401 * faulted into the tlb (and thus flushed) anyways.
402 */
403 flush_dcache_page_impl(page);
404 }
405
406 out:
407 put_cpu();
408 }
409 EXPORT_SYMBOL(flush_dcache_page);
410
flush_icache_range(unsigned long start,unsigned long end)411 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
412 {
413 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
414 if (tlb_type == spitfire) {
415 unsigned long kaddr;
416
417 /* This code only runs on Spitfire cpus so this is
418 * why we can assume _PAGE_PADDR_4U.
419 */
420 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
421 unsigned long paddr, mask = _PAGE_PADDR_4U;
422
423 if (kaddr >= PAGE_OFFSET)
424 paddr = kaddr & mask;
425 else {
426 pgd_t *pgdp = pgd_offset_k(kaddr);
427 pud_t *pudp = pud_offset(pgdp, kaddr);
428 pmd_t *pmdp = pmd_offset(pudp, kaddr);
429 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
430
431 paddr = pte_val(*ptep) & mask;
432 }
433 __flush_icache_page(paddr);
434 }
435 }
436 }
437 EXPORT_SYMBOL(flush_icache_range);
438
mmu_info(struct seq_file * m)439 void mmu_info(struct seq_file *m)
440 {
441 static const char *pgsz_strings[] = {
442 "8K", "64K", "512K", "4MB", "32MB",
443 "256MB", "2GB", "16GB",
444 };
445 int i, printed;
446
447 if (tlb_type == cheetah)
448 seq_printf(m, "MMU Type\t: Cheetah\n");
449 else if (tlb_type == cheetah_plus)
450 seq_printf(m, "MMU Type\t: Cheetah+\n");
451 else if (tlb_type == spitfire)
452 seq_printf(m, "MMU Type\t: Spitfire\n");
453 else if (tlb_type == hypervisor)
454 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
455 else
456 seq_printf(m, "MMU Type\t: ???\n");
457
458 seq_printf(m, "MMU PGSZs\t: ");
459 printed = 0;
460 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
461 if (cpu_pgsz_mask & (1UL << i)) {
462 seq_printf(m, "%s%s",
463 printed ? "," : "", pgsz_strings[i]);
464 printed++;
465 }
466 }
467 seq_putc(m, '\n');
468
469 #ifdef CONFIG_DEBUG_DCFLUSH
470 seq_printf(m, "DCPageFlushes\t: %d\n",
471 atomic_read(&dcpage_flushes));
472 #ifdef CONFIG_SMP
473 seq_printf(m, "DCPageFlushesXC\t: %d\n",
474 atomic_read(&dcpage_flushes_xcall));
475 #endif /* CONFIG_SMP */
476 #endif /* CONFIG_DEBUG_DCFLUSH */
477 }
478
479 struct linux_prom_translation prom_trans[512] __read_mostly;
480 unsigned int prom_trans_ents __read_mostly;
481
482 unsigned long kern_locked_tte_data;
483
484 /* The obp translations are saved based on 8k pagesize, since obp can
485 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
486 * HI_OBP_ADDRESS range are handled in ktlb.S.
487 */
in_obp_range(unsigned long vaddr)488 static inline int in_obp_range(unsigned long vaddr)
489 {
490 return (vaddr >= LOW_OBP_ADDRESS &&
491 vaddr < HI_OBP_ADDRESS);
492 }
493
cmp_ptrans(const void * a,const void * b)494 static int cmp_ptrans(const void *a, const void *b)
495 {
496 const struct linux_prom_translation *x = a, *y = b;
497
498 if (x->virt > y->virt)
499 return 1;
500 if (x->virt < y->virt)
501 return -1;
502 return 0;
503 }
504
505 /* Read OBP translations property into 'prom_trans[]'. */
read_obp_translations(void)506 static void __init read_obp_translations(void)
507 {
508 int n, node, ents, first, last, i;
509
510 node = prom_finddevice("/virtual-memory");
511 n = prom_getproplen(node, "translations");
512 if (unlikely(n == 0 || n == -1)) {
513 prom_printf("prom_mappings: Couldn't get size.\n");
514 prom_halt();
515 }
516 if (unlikely(n > sizeof(prom_trans))) {
517 prom_printf("prom_mappings: Size %d is too big.\n", n);
518 prom_halt();
519 }
520
521 if ((n = prom_getproperty(node, "translations",
522 (char *)&prom_trans[0],
523 sizeof(prom_trans))) == -1) {
524 prom_printf("prom_mappings: Couldn't get property.\n");
525 prom_halt();
526 }
527
528 n = n / sizeof(struct linux_prom_translation);
529
530 ents = n;
531
532 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
533 cmp_ptrans, NULL);
534
535 /* Now kick out all the non-OBP entries. */
536 for (i = 0; i < ents; i++) {
537 if (in_obp_range(prom_trans[i].virt))
538 break;
539 }
540 first = i;
541 for (; i < ents; i++) {
542 if (!in_obp_range(prom_trans[i].virt))
543 break;
544 }
545 last = i;
546
547 for (i = 0; i < (last - first); i++) {
548 struct linux_prom_translation *src = &prom_trans[i + first];
549 struct linux_prom_translation *dest = &prom_trans[i];
550
551 *dest = *src;
552 }
553 for (; i < ents; i++) {
554 struct linux_prom_translation *dest = &prom_trans[i];
555 dest->virt = dest->size = dest->data = 0x0UL;
556 }
557
558 prom_trans_ents = last - first;
559
560 if (tlb_type == spitfire) {
561 /* Clear diag TTE bits. */
562 for (i = 0; i < prom_trans_ents; i++)
563 prom_trans[i].data &= ~0x0003fe0000000000UL;
564 }
565
566 /* Force execute bit on. */
567 for (i = 0; i < prom_trans_ents; i++)
568 prom_trans[i].data |= (tlb_type == hypervisor ?
569 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
570 }
571
hypervisor_tlb_lock(unsigned long vaddr,unsigned long pte,unsigned long mmu)572 static void __init hypervisor_tlb_lock(unsigned long vaddr,
573 unsigned long pte,
574 unsigned long mmu)
575 {
576 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
577
578 if (ret != 0) {
579 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
580 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
581 prom_halt();
582 }
583 }
584
585 static unsigned long kern_large_tte(unsigned long paddr);
586
remap_kernel(void)587 static void __init remap_kernel(void)
588 {
589 unsigned long phys_page, tte_vaddr, tte_data;
590 int i, tlb_ent = sparc64_highest_locked_tlbent();
591
592 tte_vaddr = (unsigned long) KERNBASE;
593 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
594 tte_data = kern_large_tte(phys_page);
595
596 kern_locked_tte_data = tte_data;
597
598 /* Now lock us into the TLBs via Hypervisor or OBP. */
599 if (tlb_type == hypervisor) {
600 for (i = 0; i < num_kernel_image_mappings; i++) {
601 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
602 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
603 tte_vaddr += 0x400000;
604 tte_data += 0x400000;
605 }
606 } else {
607 for (i = 0; i < num_kernel_image_mappings; i++) {
608 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
609 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
610 tte_vaddr += 0x400000;
611 tte_data += 0x400000;
612 }
613 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
614 }
615 if (tlb_type == cheetah_plus) {
616 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
617 CTX_CHEETAH_PLUS_NUC);
618 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
619 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
620 }
621 }
622
623
inherit_prom_mappings(void)624 static void __init inherit_prom_mappings(void)
625 {
626 /* Now fixup OBP's idea about where we really are mapped. */
627 printk("Remapping the kernel... ");
628 remap_kernel();
629 printk("done.\n");
630 }
631
prom_world(int enter)632 void prom_world(int enter)
633 {
634 if (!enter)
635 set_fs(get_fs());
636
637 __asm__ __volatile__("flushw");
638 }
639
__flush_dcache_range(unsigned long start,unsigned long end)640 void __flush_dcache_range(unsigned long start, unsigned long end)
641 {
642 unsigned long va;
643
644 if (tlb_type == spitfire) {
645 int n = 0;
646
647 for (va = start; va < end; va += 32) {
648 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
649 if (++n >= 512)
650 break;
651 }
652 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
653 start = __pa(start);
654 end = __pa(end);
655 for (va = start; va < end; va += 32)
656 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
657 "membar #Sync"
658 : /* no outputs */
659 : "r" (va),
660 "i" (ASI_DCACHE_INVALIDATE));
661 }
662 }
663 EXPORT_SYMBOL(__flush_dcache_range);
664
665 /* get_new_mmu_context() uses "cache + 1". */
666 DEFINE_SPINLOCK(ctx_alloc_lock);
667 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
668 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
669 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
670 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
671
672 /* Caller does TLB context flushing on local CPU if necessary.
673 * The caller also ensures that CTX_VALID(mm->context) is false.
674 *
675 * We must be careful about boundary cases so that we never
676 * let the user have CTX 0 (nucleus) or we ever use a CTX
677 * version of zero (and thus NO_CONTEXT would not be caught
678 * by version mis-match tests in mmu_context.h).
679 *
680 * Always invoked with interrupts disabled.
681 */
get_new_mmu_context(struct mm_struct * mm)682 void get_new_mmu_context(struct mm_struct *mm)
683 {
684 unsigned long ctx, new_ctx;
685 unsigned long orig_pgsz_bits;
686 int new_version;
687
688 spin_lock(&ctx_alloc_lock);
689 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
690 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
691 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
692 new_version = 0;
693 if (new_ctx >= (1 << CTX_NR_BITS)) {
694 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
695 if (new_ctx >= ctx) {
696 int i;
697 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
698 CTX_FIRST_VERSION;
699 if (new_ctx == 1)
700 new_ctx = CTX_FIRST_VERSION;
701
702 /* Don't call memset, for 16 entries that's just
703 * plain silly...
704 */
705 mmu_context_bmap[0] = 3;
706 mmu_context_bmap[1] = 0;
707 mmu_context_bmap[2] = 0;
708 mmu_context_bmap[3] = 0;
709 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
710 mmu_context_bmap[i + 0] = 0;
711 mmu_context_bmap[i + 1] = 0;
712 mmu_context_bmap[i + 2] = 0;
713 mmu_context_bmap[i + 3] = 0;
714 }
715 new_version = 1;
716 goto out;
717 }
718 }
719 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
720 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
721 out:
722 tlb_context_cache = new_ctx;
723 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
724 spin_unlock(&ctx_alloc_lock);
725
726 if (unlikely(new_version))
727 smp_new_mmu_context_version();
728 }
729
730 static int numa_enabled = 1;
731 static int numa_debug;
732
early_numa(char * p)733 static int __init early_numa(char *p)
734 {
735 if (!p)
736 return 0;
737
738 if (strstr(p, "off"))
739 numa_enabled = 0;
740
741 if (strstr(p, "debug"))
742 numa_debug = 1;
743
744 return 0;
745 }
746 early_param("numa", early_numa);
747
748 #define numadbg(f, a...) \
749 do { if (numa_debug) \
750 printk(KERN_INFO f, ## a); \
751 } while (0)
752
find_ramdisk(unsigned long phys_base)753 static void __init find_ramdisk(unsigned long phys_base)
754 {
755 #ifdef CONFIG_BLK_DEV_INITRD
756 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
757 unsigned long ramdisk_image;
758
759 /* Older versions of the bootloader only supported a
760 * 32-bit physical address for the ramdisk image
761 * location, stored at sparc_ramdisk_image. Newer
762 * SILO versions set sparc_ramdisk_image to zero and
763 * provide a full 64-bit physical address at
764 * sparc_ramdisk_image64.
765 */
766 ramdisk_image = sparc_ramdisk_image;
767 if (!ramdisk_image)
768 ramdisk_image = sparc_ramdisk_image64;
769
770 /* Another bootloader quirk. The bootloader normalizes
771 * the physical address to KERNBASE, so we have to
772 * factor that back out and add in the lowest valid
773 * physical page address to get the true physical address.
774 */
775 ramdisk_image -= KERNBASE;
776 ramdisk_image += phys_base;
777
778 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
779 ramdisk_image, sparc_ramdisk_size);
780
781 initrd_start = ramdisk_image;
782 initrd_end = ramdisk_image + sparc_ramdisk_size;
783
784 memblock_reserve(initrd_start, sparc_ramdisk_size);
785
786 initrd_start += PAGE_OFFSET;
787 initrd_end += PAGE_OFFSET;
788 }
789 #endif
790 }
791
792 struct node_mem_mask {
793 unsigned long mask;
794 unsigned long val;
795 };
796 static struct node_mem_mask node_masks[MAX_NUMNODES];
797 static int num_node_masks;
798
799 #ifdef CONFIG_NEED_MULTIPLE_NODES
800
801 int numa_cpu_lookup_table[NR_CPUS];
802 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
803
804 struct mdesc_mblock {
805 u64 base;
806 u64 size;
807 u64 offset; /* RA-to-PA */
808 };
809 static struct mdesc_mblock *mblocks;
810 static int num_mblocks;
811
ra_to_pa(unsigned long addr)812 static unsigned long ra_to_pa(unsigned long addr)
813 {
814 int i;
815
816 for (i = 0; i < num_mblocks; i++) {
817 struct mdesc_mblock *m = &mblocks[i];
818
819 if (addr >= m->base &&
820 addr < (m->base + m->size)) {
821 addr += m->offset;
822 break;
823 }
824 }
825 return addr;
826 }
827
find_node(unsigned long addr)828 static int find_node(unsigned long addr)
829 {
830 int i;
831
832 addr = ra_to_pa(addr);
833 for (i = 0; i < num_node_masks; i++) {
834 struct node_mem_mask *p = &node_masks[i];
835
836 if ((addr & p->mask) == p->val)
837 return i;
838 }
839 /* The following condition has been observed on LDOM guests.*/
840 WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
841 " rule. Some physical memory will be owned by node 0.");
842 return 0;
843 }
844
memblock_nid_range(u64 start,u64 end,int * nid)845 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
846 {
847 *nid = find_node(start);
848 start += PAGE_SIZE;
849 while (start < end) {
850 int n = find_node(start);
851
852 if (n != *nid)
853 break;
854 start += PAGE_SIZE;
855 }
856
857 if (start > end)
858 start = end;
859
860 return start;
861 }
862 #endif
863
864 /* This must be invoked after performing all of the necessary
865 * memblock_set_node() calls for 'nid'. We need to be able to get
866 * correct data from get_pfn_range_for_nid().
867 */
allocate_node_data(int nid)868 static void __init allocate_node_data(int nid)
869 {
870 struct pglist_data *p;
871 unsigned long start_pfn, end_pfn;
872 #ifdef CONFIG_NEED_MULTIPLE_NODES
873 unsigned long paddr;
874
875 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
876 if (!paddr) {
877 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
878 prom_halt();
879 }
880 NODE_DATA(nid) = __va(paddr);
881 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
882
883 NODE_DATA(nid)->node_id = nid;
884 #endif
885
886 p = NODE_DATA(nid);
887
888 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
889 p->node_start_pfn = start_pfn;
890 p->node_spanned_pages = end_pfn - start_pfn;
891 }
892
init_node_masks_nonnuma(void)893 static void init_node_masks_nonnuma(void)
894 {
895 #ifdef CONFIG_NEED_MULTIPLE_NODES
896 int i;
897 #endif
898
899 numadbg("Initializing tables for non-numa.\n");
900
901 node_masks[0].mask = node_masks[0].val = 0;
902 num_node_masks = 1;
903
904 #ifdef CONFIG_NEED_MULTIPLE_NODES
905 for (i = 0; i < NR_CPUS; i++)
906 numa_cpu_lookup_table[i] = 0;
907
908 cpumask_setall(&numa_cpumask_lookup_table[0]);
909 #endif
910 }
911
912 #ifdef CONFIG_NEED_MULTIPLE_NODES
913 struct pglist_data *node_data[MAX_NUMNODES];
914
915 EXPORT_SYMBOL(numa_cpu_lookup_table);
916 EXPORT_SYMBOL(numa_cpumask_lookup_table);
917 EXPORT_SYMBOL(node_data);
918
919 struct mdesc_mlgroup {
920 u64 node;
921 u64 latency;
922 u64 match;
923 u64 mask;
924 };
925 static struct mdesc_mlgroup *mlgroups;
926 static int num_mlgroups;
927
scan_pio_for_cfg_handle(struct mdesc_handle * md,u64 pio,u32 cfg_handle)928 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
929 u32 cfg_handle)
930 {
931 u64 arc;
932
933 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
934 u64 target = mdesc_arc_target(md, arc);
935 const u64 *val;
936
937 val = mdesc_get_property(md, target,
938 "cfg-handle", NULL);
939 if (val && *val == cfg_handle)
940 return 0;
941 }
942 return -ENODEV;
943 }
944
scan_arcs_for_cfg_handle(struct mdesc_handle * md,u64 grp,u32 cfg_handle)945 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
946 u32 cfg_handle)
947 {
948 u64 arc, candidate, best_latency = ~(u64)0;
949
950 candidate = MDESC_NODE_NULL;
951 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
952 u64 target = mdesc_arc_target(md, arc);
953 const char *name = mdesc_node_name(md, target);
954 const u64 *val;
955
956 if (strcmp(name, "pio-latency-group"))
957 continue;
958
959 val = mdesc_get_property(md, target, "latency", NULL);
960 if (!val)
961 continue;
962
963 if (*val < best_latency) {
964 candidate = target;
965 best_latency = *val;
966 }
967 }
968
969 if (candidate == MDESC_NODE_NULL)
970 return -ENODEV;
971
972 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
973 }
974
of_node_to_nid(struct device_node * dp)975 int of_node_to_nid(struct device_node *dp)
976 {
977 const struct linux_prom64_registers *regs;
978 struct mdesc_handle *md;
979 u32 cfg_handle;
980 int count, nid;
981 u64 grp;
982
983 /* This is the right thing to do on currently supported
984 * SUN4U NUMA platforms as well, as the PCI controller does
985 * not sit behind any particular memory controller.
986 */
987 if (!mlgroups)
988 return -1;
989
990 regs = of_get_property(dp, "reg", NULL);
991 if (!regs)
992 return -1;
993
994 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
995
996 md = mdesc_grab();
997
998 count = 0;
999 nid = -1;
1000 mdesc_for_each_node_by_name(md, grp, "group") {
1001 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1002 nid = count;
1003 break;
1004 }
1005 count++;
1006 }
1007
1008 mdesc_release(md);
1009
1010 return nid;
1011 }
1012
add_node_ranges(void)1013 static void __init add_node_ranges(void)
1014 {
1015 struct memblock_region *reg;
1016
1017 for_each_memblock(memory, reg) {
1018 unsigned long size = reg->size;
1019 unsigned long start, end;
1020
1021 start = reg->base;
1022 end = start + size;
1023 while (start < end) {
1024 unsigned long this_end;
1025 int nid;
1026
1027 this_end = memblock_nid_range(start, end, &nid);
1028
1029 numadbg("Setting memblock NUMA node nid[%d] "
1030 "start[%lx] end[%lx]\n",
1031 nid, start, this_end);
1032
1033 memblock_set_node(start, this_end - start,
1034 &memblock.memory, nid);
1035 start = this_end;
1036 }
1037 }
1038 }
1039
grab_mlgroups(struct mdesc_handle * md)1040 static int __init grab_mlgroups(struct mdesc_handle *md)
1041 {
1042 unsigned long paddr;
1043 int count = 0;
1044 u64 node;
1045
1046 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1047 count++;
1048 if (!count)
1049 return -ENOENT;
1050
1051 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1052 SMP_CACHE_BYTES);
1053 if (!paddr)
1054 return -ENOMEM;
1055
1056 mlgroups = __va(paddr);
1057 num_mlgroups = count;
1058
1059 count = 0;
1060 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1061 struct mdesc_mlgroup *m = &mlgroups[count++];
1062 const u64 *val;
1063
1064 m->node = node;
1065
1066 val = mdesc_get_property(md, node, "latency", NULL);
1067 m->latency = *val;
1068 val = mdesc_get_property(md, node, "address-match", NULL);
1069 m->match = *val;
1070 val = mdesc_get_property(md, node, "address-mask", NULL);
1071 m->mask = *val;
1072
1073 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1074 "match[%llx] mask[%llx]\n",
1075 count - 1, m->node, m->latency, m->match, m->mask);
1076 }
1077
1078 return 0;
1079 }
1080
grab_mblocks(struct mdesc_handle * md)1081 static int __init grab_mblocks(struct mdesc_handle *md)
1082 {
1083 unsigned long paddr;
1084 int count = 0;
1085 u64 node;
1086
1087 mdesc_for_each_node_by_name(md, node, "mblock")
1088 count++;
1089 if (!count)
1090 return -ENOENT;
1091
1092 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1093 SMP_CACHE_BYTES);
1094 if (!paddr)
1095 return -ENOMEM;
1096
1097 mblocks = __va(paddr);
1098 num_mblocks = count;
1099
1100 count = 0;
1101 mdesc_for_each_node_by_name(md, node, "mblock") {
1102 struct mdesc_mblock *m = &mblocks[count++];
1103 const u64 *val;
1104
1105 val = mdesc_get_property(md, node, "base", NULL);
1106 m->base = *val;
1107 val = mdesc_get_property(md, node, "size", NULL);
1108 m->size = *val;
1109 val = mdesc_get_property(md, node,
1110 "address-congruence-offset", NULL);
1111
1112 /* The address-congruence-offset property is optional.
1113 * Explicity zero it be identifty this.
1114 */
1115 if (val)
1116 m->offset = *val;
1117 else
1118 m->offset = 0UL;
1119
1120 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1121 count - 1, m->base, m->size, m->offset);
1122 }
1123
1124 return 0;
1125 }
1126
numa_parse_mdesc_group_cpus(struct mdesc_handle * md,u64 grp,cpumask_t * mask)1127 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1128 u64 grp, cpumask_t *mask)
1129 {
1130 u64 arc;
1131
1132 cpumask_clear(mask);
1133
1134 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1135 u64 target = mdesc_arc_target(md, arc);
1136 const char *name = mdesc_node_name(md, target);
1137 const u64 *id;
1138
1139 if (strcmp(name, "cpu"))
1140 continue;
1141 id = mdesc_get_property(md, target, "id", NULL);
1142 if (*id < nr_cpu_ids)
1143 cpumask_set_cpu(*id, mask);
1144 }
1145 }
1146
find_mlgroup(u64 node)1147 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1148 {
1149 int i;
1150
1151 for (i = 0; i < num_mlgroups; i++) {
1152 struct mdesc_mlgroup *m = &mlgroups[i];
1153 if (m->node == node)
1154 return m;
1155 }
1156 return NULL;
1157 }
1158
numa_attach_mlgroup(struct mdesc_handle * md,u64 grp,int index)1159 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1160 int index)
1161 {
1162 struct mdesc_mlgroup *candidate = NULL;
1163 u64 arc, best_latency = ~(u64)0;
1164 struct node_mem_mask *n;
1165
1166 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1167 u64 target = mdesc_arc_target(md, arc);
1168 struct mdesc_mlgroup *m = find_mlgroup(target);
1169 if (!m)
1170 continue;
1171 if (m->latency < best_latency) {
1172 candidate = m;
1173 best_latency = m->latency;
1174 }
1175 }
1176 if (!candidate)
1177 return -ENOENT;
1178
1179 if (num_node_masks != index) {
1180 printk(KERN_ERR "Inconsistent NUMA state, "
1181 "index[%d] != num_node_masks[%d]\n",
1182 index, num_node_masks);
1183 return -EINVAL;
1184 }
1185
1186 n = &node_masks[num_node_masks++];
1187
1188 n->mask = candidate->mask;
1189 n->val = candidate->match;
1190
1191 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1192 index, n->mask, n->val, candidate->latency);
1193
1194 return 0;
1195 }
1196
numa_parse_mdesc_group(struct mdesc_handle * md,u64 grp,int index)1197 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1198 int index)
1199 {
1200 cpumask_t mask;
1201 int cpu;
1202
1203 numa_parse_mdesc_group_cpus(md, grp, &mask);
1204
1205 for_each_cpu(cpu, &mask)
1206 numa_cpu_lookup_table[cpu] = index;
1207 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1208
1209 if (numa_debug) {
1210 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1211 for_each_cpu(cpu, &mask)
1212 printk("%d ", cpu);
1213 printk("]\n");
1214 }
1215
1216 return numa_attach_mlgroup(md, grp, index);
1217 }
1218
numa_parse_mdesc(void)1219 static int __init numa_parse_mdesc(void)
1220 {
1221 struct mdesc_handle *md = mdesc_grab();
1222 int i, err, count;
1223 u64 node;
1224
1225 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1226 if (node == MDESC_NODE_NULL) {
1227 mdesc_release(md);
1228 return -ENOENT;
1229 }
1230
1231 err = grab_mblocks(md);
1232 if (err < 0)
1233 goto out;
1234
1235 err = grab_mlgroups(md);
1236 if (err < 0)
1237 goto out;
1238
1239 count = 0;
1240 mdesc_for_each_node_by_name(md, node, "group") {
1241 err = numa_parse_mdesc_group(md, node, count);
1242 if (err < 0)
1243 break;
1244 count++;
1245 }
1246
1247 add_node_ranges();
1248
1249 for (i = 0; i < num_node_masks; i++) {
1250 allocate_node_data(i);
1251 node_set_online(i);
1252 }
1253
1254 err = 0;
1255 out:
1256 mdesc_release(md);
1257 return err;
1258 }
1259
numa_parse_jbus(void)1260 static int __init numa_parse_jbus(void)
1261 {
1262 unsigned long cpu, index;
1263
1264 /* NUMA node id is encoded in bits 36 and higher, and there is
1265 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1266 */
1267 index = 0;
1268 for_each_present_cpu(cpu) {
1269 numa_cpu_lookup_table[cpu] = index;
1270 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1271 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1272 node_masks[index].val = cpu << 36UL;
1273
1274 index++;
1275 }
1276 num_node_masks = index;
1277
1278 add_node_ranges();
1279
1280 for (index = 0; index < num_node_masks; index++) {
1281 allocate_node_data(index);
1282 node_set_online(index);
1283 }
1284
1285 return 0;
1286 }
1287
numa_parse_sun4u(void)1288 static int __init numa_parse_sun4u(void)
1289 {
1290 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1291 unsigned long ver;
1292
1293 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1294 if ((ver >> 32UL) == __JALAPENO_ID ||
1295 (ver >> 32UL) == __SERRANO_ID)
1296 return numa_parse_jbus();
1297 }
1298 return -1;
1299 }
1300
bootmem_init_numa(void)1301 static int __init bootmem_init_numa(void)
1302 {
1303 int err = -1;
1304
1305 numadbg("bootmem_init_numa()\n");
1306
1307 if (numa_enabled) {
1308 if (tlb_type == hypervisor)
1309 err = numa_parse_mdesc();
1310 else
1311 err = numa_parse_sun4u();
1312 }
1313 return err;
1314 }
1315
1316 #else
1317
bootmem_init_numa(void)1318 static int bootmem_init_numa(void)
1319 {
1320 return -1;
1321 }
1322
1323 #endif
1324
bootmem_init_nonnuma(void)1325 static void __init bootmem_init_nonnuma(void)
1326 {
1327 unsigned long top_of_ram = memblock_end_of_DRAM();
1328 unsigned long total_ram = memblock_phys_mem_size();
1329
1330 numadbg("bootmem_init_nonnuma()\n");
1331
1332 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1333 top_of_ram, total_ram);
1334 printk(KERN_INFO "Memory hole size: %ldMB\n",
1335 (top_of_ram - total_ram) >> 20);
1336
1337 init_node_masks_nonnuma();
1338 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1339 allocate_node_data(0);
1340 node_set_online(0);
1341 }
1342
bootmem_init(unsigned long phys_base)1343 static unsigned long __init bootmem_init(unsigned long phys_base)
1344 {
1345 unsigned long end_pfn;
1346
1347 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1348 max_pfn = max_low_pfn = end_pfn;
1349 min_low_pfn = (phys_base >> PAGE_SHIFT);
1350
1351 if (bootmem_init_numa() < 0)
1352 bootmem_init_nonnuma();
1353
1354 /* Dump memblock with node info. */
1355 memblock_dump_all();
1356
1357 /* XXX cpu notifier XXX */
1358
1359 sparse_memory_present_with_active_regions(MAX_NUMNODES);
1360 sparse_init();
1361
1362 return end_pfn;
1363 }
1364
1365 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1366 static int pall_ents __initdata;
1367
1368 static unsigned long max_phys_bits = 40;
1369
kern_addr_valid(unsigned long addr)1370 bool kern_addr_valid(unsigned long addr)
1371 {
1372 pgd_t *pgd;
1373 pud_t *pud;
1374 pmd_t *pmd;
1375 pte_t *pte;
1376
1377 if ((long)addr < 0L) {
1378 unsigned long pa = __pa(addr);
1379
1380 if ((pa >> max_phys_bits) != 0UL)
1381 return false;
1382
1383 return pfn_valid(pa >> PAGE_SHIFT);
1384 }
1385
1386 if (addr >= (unsigned long) KERNBASE &&
1387 addr < (unsigned long)&_end)
1388 return true;
1389
1390 pgd = pgd_offset_k(addr);
1391 if (pgd_none(*pgd))
1392 return 0;
1393
1394 pud = pud_offset(pgd, addr);
1395 if (pud_none(*pud))
1396 return 0;
1397
1398 if (pud_large(*pud))
1399 return pfn_valid(pud_pfn(*pud));
1400
1401 pmd = pmd_offset(pud, addr);
1402 if (pmd_none(*pmd))
1403 return 0;
1404
1405 if (pmd_large(*pmd))
1406 return pfn_valid(pmd_pfn(*pmd));
1407
1408 pte = pte_offset_kernel(pmd, addr);
1409 if (pte_none(*pte))
1410 return 0;
1411
1412 return pfn_valid(pte_pfn(*pte));
1413 }
1414 EXPORT_SYMBOL(kern_addr_valid);
1415
kernel_map_hugepud(unsigned long vstart,unsigned long vend,pud_t * pud)1416 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1417 unsigned long vend,
1418 pud_t *pud)
1419 {
1420 const unsigned long mask16gb = (1UL << 34) - 1UL;
1421 u64 pte_val = vstart;
1422
1423 /* Each PUD is 8GB */
1424 if ((vstart & mask16gb) ||
1425 (vend - vstart <= mask16gb)) {
1426 pte_val ^= kern_linear_pte_xor[2];
1427 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1428
1429 return vstart + PUD_SIZE;
1430 }
1431
1432 pte_val ^= kern_linear_pte_xor[3];
1433 pte_val |= _PAGE_PUD_HUGE;
1434
1435 vend = vstart + mask16gb + 1UL;
1436 while (vstart < vend) {
1437 pud_val(*pud) = pte_val;
1438
1439 pte_val += PUD_SIZE;
1440 vstart += PUD_SIZE;
1441 pud++;
1442 }
1443 return vstart;
1444 }
1445
kernel_can_map_hugepud(unsigned long vstart,unsigned long vend,bool guard)1446 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1447 bool guard)
1448 {
1449 if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1450 return true;
1451
1452 return false;
1453 }
1454
kernel_map_hugepmd(unsigned long vstart,unsigned long vend,pmd_t * pmd)1455 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1456 unsigned long vend,
1457 pmd_t *pmd)
1458 {
1459 const unsigned long mask256mb = (1UL << 28) - 1UL;
1460 const unsigned long mask2gb = (1UL << 31) - 1UL;
1461 u64 pte_val = vstart;
1462
1463 /* Each PMD is 8MB */
1464 if ((vstart & mask256mb) ||
1465 (vend - vstart <= mask256mb)) {
1466 pte_val ^= kern_linear_pte_xor[0];
1467 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1468
1469 return vstart + PMD_SIZE;
1470 }
1471
1472 if ((vstart & mask2gb) ||
1473 (vend - vstart <= mask2gb)) {
1474 pte_val ^= kern_linear_pte_xor[1];
1475 pte_val |= _PAGE_PMD_HUGE;
1476 vend = vstart + mask256mb + 1UL;
1477 } else {
1478 pte_val ^= kern_linear_pte_xor[2];
1479 pte_val |= _PAGE_PMD_HUGE;
1480 vend = vstart + mask2gb + 1UL;
1481 }
1482
1483 while (vstart < vend) {
1484 pmd_val(*pmd) = pte_val;
1485
1486 pte_val += PMD_SIZE;
1487 vstart += PMD_SIZE;
1488 pmd++;
1489 }
1490
1491 return vstart;
1492 }
1493
kernel_can_map_hugepmd(unsigned long vstart,unsigned long vend,bool guard)1494 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1495 bool guard)
1496 {
1497 if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1498 return true;
1499
1500 return false;
1501 }
1502
kernel_map_range(unsigned long pstart,unsigned long pend,pgprot_t prot,bool use_huge)1503 static unsigned long __ref kernel_map_range(unsigned long pstart,
1504 unsigned long pend, pgprot_t prot,
1505 bool use_huge)
1506 {
1507 unsigned long vstart = PAGE_OFFSET + pstart;
1508 unsigned long vend = PAGE_OFFSET + pend;
1509 unsigned long alloc_bytes = 0UL;
1510
1511 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1512 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1513 vstart, vend);
1514 prom_halt();
1515 }
1516
1517 while (vstart < vend) {
1518 unsigned long this_end, paddr = __pa(vstart);
1519 pgd_t *pgd = pgd_offset_k(vstart);
1520 pud_t *pud;
1521 pmd_t *pmd;
1522 pte_t *pte;
1523
1524 if (pgd_none(*pgd)) {
1525 pud_t *new;
1526
1527 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1528 alloc_bytes += PAGE_SIZE;
1529 pgd_populate(&init_mm, pgd, new);
1530 }
1531 pud = pud_offset(pgd, vstart);
1532 if (pud_none(*pud)) {
1533 pmd_t *new;
1534
1535 if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1536 vstart = kernel_map_hugepud(vstart, vend, pud);
1537 continue;
1538 }
1539 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1540 alloc_bytes += PAGE_SIZE;
1541 pud_populate(&init_mm, pud, new);
1542 }
1543
1544 pmd = pmd_offset(pud, vstart);
1545 if (pmd_none(*pmd)) {
1546 pte_t *new;
1547
1548 if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1549 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1550 continue;
1551 }
1552 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1553 alloc_bytes += PAGE_SIZE;
1554 pmd_populate_kernel(&init_mm, pmd, new);
1555 }
1556
1557 pte = pte_offset_kernel(pmd, vstart);
1558 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1559 if (this_end > vend)
1560 this_end = vend;
1561
1562 while (vstart < this_end) {
1563 pte_val(*pte) = (paddr | pgprot_val(prot));
1564
1565 vstart += PAGE_SIZE;
1566 paddr += PAGE_SIZE;
1567 pte++;
1568 }
1569 }
1570
1571 return alloc_bytes;
1572 }
1573
flush_all_kernel_tsbs(void)1574 static void __init flush_all_kernel_tsbs(void)
1575 {
1576 int i;
1577
1578 for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1579 struct tsb *ent = &swapper_tsb[i];
1580
1581 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1582 }
1583 #ifndef CONFIG_DEBUG_PAGEALLOC
1584 for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1585 struct tsb *ent = &swapper_4m_tsb[i];
1586
1587 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1588 }
1589 #endif
1590 }
1591
1592 extern unsigned int kvmap_linear_patch[1];
1593
kernel_physical_mapping_init(void)1594 static void __init kernel_physical_mapping_init(void)
1595 {
1596 unsigned long i, mem_alloced = 0UL;
1597 bool use_huge = true;
1598
1599 #ifdef CONFIG_DEBUG_PAGEALLOC
1600 use_huge = false;
1601 #endif
1602 for (i = 0; i < pall_ents; i++) {
1603 unsigned long phys_start, phys_end;
1604
1605 phys_start = pall[i].phys_addr;
1606 phys_end = phys_start + pall[i].reg_size;
1607
1608 mem_alloced += kernel_map_range(phys_start, phys_end,
1609 PAGE_KERNEL, use_huge);
1610 }
1611
1612 printk("Allocated %ld bytes for kernel page tables.\n",
1613 mem_alloced);
1614
1615 kvmap_linear_patch[0] = 0x01000000; /* nop */
1616 flushi(&kvmap_linear_patch[0]);
1617
1618 flush_all_kernel_tsbs();
1619
1620 __flush_tlb_all();
1621 }
1622
1623 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_pages(struct page * page,int numpages,int enable)1624 void kernel_map_pages(struct page *page, int numpages, int enable)
1625 {
1626 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1627 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1628
1629 kernel_map_range(phys_start, phys_end,
1630 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1631
1632 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1633 PAGE_OFFSET + phys_end);
1634
1635 /* we should perform an IPI and flush all tlbs,
1636 * but that can deadlock->flush only current cpu.
1637 */
1638 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1639 PAGE_OFFSET + phys_end);
1640 }
1641 #endif
1642
find_ecache_flush_span(unsigned long size)1643 unsigned long __init find_ecache_flush_span(unsigned long size)
1644 {
1645 int i;
1646
1647 for (i = 0; i < pavail_ents; i++) {
1648 if (pavail[i].reg_size >= size)
1649 return pavail[i].phys_addr;
1650 }
1651
1652 return ~0UL;
1653 }
1654
1655 unsigned long PAGE_OFFSET;
1656 EXPORT_SYMBOL(PAGE_OFFSET);
1657
1658 unsigned long VMALLOC_END = 0x0000010000000000UL;
1659 EXPORT_SYMBOL(VMALLOC_END);
1660
1661 unsigned long sparc64_va_hole_top = 0xfffff80000000000UL;
1662 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1663
setup_page_offset(void)1664 static void __init setup_page_offset(void)
1665 {
1666 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1667 /* Cheetah/Panther support a full 64-bit virtual
1668 * address, so we can use all that our page tables
1669 * support.
1670 */
1671 sparc64_va_hole_top = 0xfff0000000000000UL;
1672 sparc64_va_hole_bottom = 0x0010000000000000UL;
1673
1674 max_phys_bits = 42;
1675 } else if (tlb_type == hypervisor) {
1676 switch (sun4v_chip_type) {
1677 case SUN4V_CHIP_NIAGARA1:
1678 case SUN4V_CHIP_NIAGARA2:
1679 /* T1 and T2 support 48-bit virtual addresses. */
1680 sparc64_va_hole_top = 0xffff800000000000UL;
1681 sparc64_va_hole_bottom = 0x0000800000000000UL;
1682
1683 max_phys_bits = 39;
1684 break;
1685 case SUN4V_CHIP_NIAGARA3:
1686 /* T3 supports 48-bit virtual addresses. */
1687 sparc64_va_hole_top = 0xffff800000000000UL;
1688 sparc64_va_hole_bottom = 0x0000800000000000UL;
1689
1690 max_phys_bits = 43;
1691 break;
1692 case SUN4V_CHIP_NIAGARA4:
1693 case SUN4V_CHIP_NIAGARA5:
1694 case SUN4V_CHIP_SPARC64X:
1695 case SUN4V_CHIP_SPARC_M6:
1696 /* T4 and later support 52-bit virtual addresses. */
1697 sparc64_va_hole_top = 0xfff8000000000000UL;
1698 sparc64_va_hole_bottom = 0x0008000000000000UL;
1699 max_phys_bits = 47;
1700 break;
1701 case SUN4V_CHIP_SPARC_M7:
1702 default:
1703 /* M7 and later support 52-bit virtual addresses. */
1704 sparc64_va_hole_top = 0xfff8000000000000UL;
1705 sparc64_va_hole_bottom = 0x0008000000000000UL;
1706 max_phys_bits = 49;
1707 break;
1708 }
1709 }
1710
1711 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1712 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1713 max_phys_bits);
1714 prom_halt();
1715 }
1716
1717 PAGE_OFFSET = sparc64_va_hole_top;
1718 VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1719 (sparc64_va_hole_bottom >> 2));
1720
1721 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1722 PAGE_OFFSET, max_phys_bits);
1723 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1724 VMALLOC_START, VMALLOC_END);
1725 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1726 VMEMMAP_BASE, VMEMMAP_BASE << 1);
1727 }
1728
tsb_phys_patch(void)1729 static void __init tsb_phys_patch(void)
1730 {
1731 struct tsb_ldquad_phys_patch_entry *pquad;
1732 struct tsb_phys_patch_entry *p;
1733
1734 pquad = &__tsb_ldquad_phys_patch;
1735 while (pquad < &__tsb_ldquad_phys_patch_end) {
1736 unsigned long addr = pquad->addr;
1737
1738 if (tlb_type == hypervisor)
1739 *(unsigned int *) addr = pquad->sun4v_insn;
1740 else
1741 *(unsigned int *) addr = pquad->sun4u_insn;
1742 wmb();
1743 __asm__ __volatile__("flush %0"
1744 : /* no outputs */
1745 : "r" (addr));
1746
1747 pquad++;
1748 }
1749
1750 p = &__tsb_phys_patch;
1751 while (p < &__tsb_phys_patch_end) {
1752 unsigned long addr = p->addr;
1753
1754 *(unsigned int *) addr = p->insn;
1755 wmb();
1756 __asm__ __volatile__("flush %0"
1757 : /* no outputs */
1758 : "r" (addr));
1759
1760 p++;
1761 }
1762 }
1763
1764 /* Don't mark as init, we give this to the Hypervisor. */
1765 #ifndef CONFIG_DEBUG_PAGEALLOC
1766 #define NUM_KTSB_DESCR 2
1767 #else
1768 #define NUM_KTSB_DESCR 1
1769 #endif
1770 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1771
1772 /* The swapper TSBs are loaded with a base sequence of:
1773 *
1774 * sethi %uhi(SYMBOL), REG1
1775 * sethi %hi(SYMBOL), REG2
1776 * or REG1, %ulo(SYMBOL), REG1
1777 * or REG2, %lo(SYMBOL), REG2
1778 * sllx REG1, 32, REG1
1779 * or REG1, REG2, REG1
1780 *
1781 * When we use physical addressing for the TSB accesses, we patch the
1782 * first four instructions in the above sequence.
1783 */
1784
patch_one_ktsb_phys(unsigned int * start,unsigned int * end,unsigned long pa)1785 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1786 {
1787 unsigned long high_bits, low_bits;
1788
1789 high_bits = (pa >> 32) & 0xffffffff;
1790 low_bits = (pa >> 0) & 0xffffffff;
1791
1792 while (start < end) {
1793 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1794
1795 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1796 __asm__ __volatile__("flush %0" : : "r" (ia));
1797
1798 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1799 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1800
1801 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1802 __asm__ __volatile__("flush %0" : : "r" (ia + 2));
1803
1804 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1805 __asm__ __volatile__("flush %0" : : "r" (ia + 3));
1806
1807 start++;
1808 }
1809 }
1810
ktsb_phys_patch(void)1811 static void ktsb_phys_patch(void)
1812 {
1813 extern unsigned int __swapper_tsb_phys_patch;
1814 extern unsigned int __swapper_tsb_phys_patch_end;
1815 unsigned long ktsb_pa;
1816
1817 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1818 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1819 &__swapper_tsb_phys_patch_end, ktsb_pa);
1820 #ifndef CONFIG_DEBUG_PAGEALLOC
1821 {
1822 extern unsigned int __swapper_4m_tsb_phys_patch;
1823 extern unsigned int __swapper_4m_tsb_phys_patch_end;
1824 ktsb_pa = (kern_base +
1825 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1826 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1827 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1828 }
1829 #endif
1830 }
1831
sun4v_ktsb_init(void)1832 static void __init sun4v_ktsb_init(void)
1833 {
1834 unsigned long ktsb_pa;
1835
1836 /* First KTSB for PAGE_SIZE mappings. */
1837 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1838
1839 switch (PAGE_SIZE) {
1840 case 8 * 1024:
1841 default:
1842 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1843 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1844 break;
1845
1846 case 64 * 1024:
1847 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1848 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1849 break;
1850
1851 case 512 * 1024:
1852 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1853 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1854 break;
1855
1856 case 4 * 1024 * 1024:
1857 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1858 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1859 break;
1860 }
1861
1862 ktsb_descr[0].assoc = 1;
1863 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1864 ktsb_descr[0].ctx_idx = 0;
1865 ktsb_descr[0].tsb_base = ktsb_pa;
1866 ktsb_descr[0].resv = 0;
1867
1868 #ifndef CONFIG_DEBUG_PAGEALLOC
1869 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
1870 ktsb_pa = (kern_base +
1871 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1872
1873 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1874 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1875 HV_PGSZ_MASK_256MB |
1876 HV_PGSZ_MASK_2GB |
1877 HV_PGSZ_MASK_16GB) &
1878 cpu_pgsz_mask);
1879 ktsb_descr[1].assoc = 1;
1880 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1881 ktsb_descr[1].ctx_idx = 0;
1882 ktsb_descr[1].tsb_base = ktsb_pa;
1883 ktsb_descr[1].resv = 0;
1884 #endif
1885 }
1886
sun4v_ktsb_register(void)1887 void sun4v_ktsb_register(void)
1888 {
1889 unsigned long pa, ret;
1890
1891 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1892
1893 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1894 if (ret != 0) {
1895 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1896 "errors with %lx\n", pa, ret);
1897 prom_halt();
1898 }
1899 }
1900
sun4u_linear_pte_xor_finalize(void)1901 static void __init sun4u_linear_pte_xor_finalize(void)
1902 {
1903 #ifndef CONFIG_DEBUG_PAGEALLOC
1904 /* This is where we would add Panther support for
1905 * 32MB and 256MB pages.
1906 */
1907 #endif
1908 }
1909
sun4v_linear_pte_xor_finalize(void)1910 static void __init sun4v_linear_pte_xor_finalize(void)
1911 {
1912 #ifndef CONFIG_DEBUG_PAGEALLOC
1913 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1914 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1915 PAGE_OFFSET;
1916 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1917 _PAGE_P_4V | _PAGE_W_4V);
1918 } else {
1919 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1920 }
1921
1922 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1923 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1924 PAGE_OFFSET;
1925 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1926 _PAGE_P_4V | _PAGE_W_4V);
1927 } else {
1928 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1929 }
1930
1931 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1932 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1933 PAGE_OFFSET;
1934 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1935 _PAGE_P_4V | _PAGE_W_4V);
1936 } else {
1937 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1938 }
1939 #endif
1940 }
1941
1942 /* paging_init() sets up the page tables */
1943
1944 static unsigned long last_valid_pfn;
1945
1946 static void sun4u_pgprot_init(void);
1947 static void sun4v_pgprot_init(void);
1948
available_memory(void)1949 static phys_addr_t __init available_memory(void)
1950 {
1951 phys_addr_t available = 0ULL;
1952 phys_addr_t pa_start, pa_end;
1953 u64 i;
1954
1955 for_each_free_mem_range(i, NUMA_NO_NODE, &pa_start, &pa_end, NULL)
1956 available = available + (pa_end - pa_start);
1957
1958 return available;
1959 }
1960
1961 /* We need to exclude reserved regions. This exclusion will include
1962 * vmlinux and initrd. To be more precise the initrd size could be used to
1963 * compute a new lower limit because it is freed later during initialization.
1964 */
reduce_memory(phys_addr_t limit_ram)1965 static void __init reduce_memory(phys_addr_t limit_ram)
1966 {
1967 phys_addr_t avail_ram = available_memory();
1968 phys_addr_t pa_start, pa_end;
1969 u64 i;
1970
1971 if (limit_ram >= avail_ram)
1972 return;
1973
1974 for_each_free_mem_range(i, NUMA_NO_NODE, &pa_start, &pa_end, NULL) {
1975 phys_addr_t region_size = pa_end - pa_start;
1976 phys_addr_t clip_start = pa_start;
1977
1978 avail_ram = avail_ram - region_size;
1979 /* Are we consuming too much? */
1980 if (avail_ram < limit_ram) {
1981 phys_addr_t give_back = limit_ram - avail_ram;
1982
1983 region_size = region_size - give_back;
1984 clip_start = clip_start + give_back;
1985 }
1986
1987 memblock_remove(clip_start, region_size);
1988
1989 if (avail_ram <= limit_ram)
1990 break;
1991 i = 0UL;
1992 }
1993 }
1994
paging_init(void)1995 void __init paging_init(void)
1996 {
1997 unsigned long end_pfn, shift, phys_base;
1998 unsigned long real_end, i;
1999 int node;
2000
2001 setup_page_offset();
2002
2003 /* These build time checkes make sure that the dcache_dirty_cpu()
2004 * page->flags usage will work.
2005 *
2006 * When a page gets marked as dcache-dirty, we store the
2007 * cpu number starting at bit 32 in the page->flags. Also,
2008 * functions like clear_dcache_dirty_cpu use the cpu mask
2009 * in 13-bit signed-immediate instruction fields.
2010 */
2011
2012 /*
2013 * Page flags must not reach into upper 32 bits that are used
2014 * for the cpu number
2015 */
2016 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2017
2018 /*
2019 * The bit fields placed in the high range must not reach below
2020 * the 32 bit boundary. Otherwise we cannot place the cpu field
2021 * at the 32 bit boundary.
2022 */
2023 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2024 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2025
2026 BUILD_BUG_ON(NR_CPUS > 4096);
2027
2028 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2029 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2030
2031 /* Invalidate both kernel TSBs. */
2032 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2033 #ifndef CONFIG_DEBUG_PAGEALLOC
2034 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2035 #endif
2036
2037 if (tlb_type == hypervisor)
2038 sun4v_pgprot_init();
2039 else
2040 sun4u_pgprot_init();
2041
2042 if (tlb_type == cheetah_plus ||
2043 tlb_type == hypervisor) {
2044 tsb_phys_patch();
2045 ktsb_phys_patch();
2046 }
2047
2048 if (tlb_type == hypervisor)
2049 sun4v_patch_tlb_handlers();
2050
2051 /* Find available physical memory...
2052 *
2053 * Read it twice in order to work around a bug in openfirmware.
2054 * The call to grab this table itself can cause openfirmware to
2055 * allocate memory, which in turn can take away some space from
2056 * the list of available memory. Reading it twice makes sure
2057 * we really do get the final value.
2058 */
2059 read_obp_translations();
2060 read_obp_memory("reg", &pall[0], &pall_ents);
2061 read_obp_memory("available", &pavail[0], &pavail_ents);
2062 read_obp_memory("available", &pavail[0], &pavail_ents);
2063
2064 phys_base = 0xffffffffffffffffUL;
2065 for (i = 0; i < pavail_ents; i++) {
2066 phys_base = min(phys_base, pavail[i].phys_addr);
2067 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2068 }
2069
2070 memblock_reserve(kern_base, kern_size);
2071
2072 find_ramdisk(phys_base);
2073
2074 if (cmdline_memory_size)
2075 reduce_memory(cmdline_memory_size);
2076
2077 memblock_allow_resize();
2078 memblock_dump_all();
2079
2080 set_bit(0, mmu_context_bmap);
2081
2082 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2083
2084 real_end = (unsigned long)_end;
2085 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2086 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2087 num_kernel_image_mappings);
2088
2089 /* Set kernel pgd to upper alias so physical page computations
2090 * work.
2091 */
2092 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2093
2094 memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2095
2096 inherit_prom_mappings();
2097
2098 /* Ok, we can use our TLB miss and window trap handlers safely. */
2099 setup_tba();
2100
2101 __flush_tlb_all();
2102
2103 prom_build_devicetree();
2104 of_populate_present_mask();
2105 #ifndef CONFIG_SMP
2106 of_fill_in_cpu_data();
2107 #endif
2108
2109 if (tlb_type == hypervisor) {
2110 sun4v_mdesc_init();
2111 mdesc_populate_present_mask(cpu_all_mask);
2112 #ifndef CONFIG_SMP
2113 mdesc_fill_in_cpu_data(cpu_all_mask);
2114 #endif
2115 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2116
2117 sun4v_linear_pte_xor_finalize();
2118
2119 sun4v_ktsb_init();
2120 sun4v_ktsb_register();
2121 } else {
2122 unsigned long impl, ver;
2123
2124 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2125 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2126
2127 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2128 impl = ((ver >> 32) & 0xffff);
2129 if (impl == PANTHER_IMPL)
2130 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2131 HV_PGSZ_MASK_256MB);
2132
2133 sun4u_linear_pte_xor_finalize();
2134 }
2135
2136 /* Flush the TLBs and the 4M TSB so that the updated linear
2137 * pte XOR settings are realized for all mappings.
2138 */
2139 __flush_tlb_all();
2140 #ifndef CONFIG_DEBUG_PAGEALLOC
2141 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2142 #endif
2143 __flush_tlb_all();
2144
2145 /* Setup bootmem... */
2146 last_valid_pfn = end_pfn = bootmem_init(phys_base);
2147
2148 /* Once the OF device tree and MDESC have been setup, we know
2149 * the list of possible cpus. Therefore we can allocate the
2150 * IRQ stacks.
2151 */
2152 for_each_possible_cpu(i) {
2153 node = cpu_to_node(i);
2154
2155 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2156 THREAD_SIZE,
2157 THREAD_SIZE, 0);
2158 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2159 THREAD_SIZE,
2160 THREAD_SIZE, 0);
2161 }
2162
2163 kernel_physical_mapping_init();
2164
2165 {
2166 unsigned long max_zone_pfns[MAX_NR_ZONES];
2167
2168 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2169
2170 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2171
2172 free_area_init_nodes(max_zone_pfns);
2173 }
2174
2175 printk("Booting Linux...\n");
2176 }
2177
page_in_phys_avail(unsigned long paddr)2178 int page_in_phys_avail(unsigned long paddr)
2179 {
2180 int i;
2181
2182 paddr &= PAGE_MASK;
2183
2184 for (i = 0; i < pavail_ents; i++) {
2185 unsigned long start, end;
2186
2187 start = pavail[i].phys_addr;
2188 end = start + pavail[i].reg_size;
2189
2190 if (paddr >= start && paddr < end)
2191 return 1;
2192 }
2193 if (paddr >= kern_base && paddr < (kern_base + kern_size))
2194 return 1;
2195 #ifdef CONFIG_BLK_DEV_INITRD
2196 if (paddr >= __pa(initrd_start) &&
2197 paddr < __pa(PAGE_ALIGN(initrd_end)))
2198 return 1;
2199 #endif
2200
2201 return 0;
2202 }
2203
register_page_bootmem_info(void)2204 static void __init register_page_bootmem_info(void)
2205 {
2206 #ifdef CONFIG_NEED_MULTIPLE_NODES
2207 int i;
2208
2209 for_each_online_node(i)
2210 if (NODE_DATA(i)->node_spanned_pages)
2211 register_page_bootmem_info_node(NODE_DATA(i));
2212 #endif
2213 }
mem_init(void)2214 void __init mem_init(void)
2215 {
2216 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2217
2218 free_all_bootmem();
2219
2220 /*
2221 * Must be done after boot memory is put on freelist, because here we
2222 * might set fields in deferred struct pages that have not yet been
2223 * initialized, and free_all_bootmem() initializes all the reserved
2224 * deferred pages for us.
2225 */
2226 register_page_bootmem_info();
2227
2228 /*
2229 * Set up the zero page, mark it reserved, so that page count
2230 * is not manipulated when freeing the page from user ptes.
2231 */
2232 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2233 if (mem_map_zero == NULL) {
2234 prom_printf("paging_init: Cannot alloc zero page.\n");
2235 prom_halt();
2236 }
2237 mark_page_reserved(mem_map_zero);
2238
2239 mem_init_print_info(NULL);
2240
2241 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2242 cheetah_ecache_flush_init();
2243 }
2244
free_initmem(void)2245 void free_initmem(void)
2246 {
2247 unsigned long addr, initend;
2248 int do_free = 1;
2249
2250 /* If the physical memory maps were trimmed by kernel command
2251 * line options, don't even try freeing this initmem stuff up.
2252 * The kernel image could have been in the trimmed out region
2253 * and if so the freeing below will free invalid page structs.
2254 */
2255 if (cmdline_memory_size)
2256 do_free = 0;
2257
2258 /*
2259 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2260 */
2261 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2262 initend = (unsigned long)(__init_end) & PAGE_MASK;
2263 for (; addr < initend; addr += PAGE_SIZE) {
2264 unsigned long page;
2265
2266 page = (addr +
2267 ((unsigned long) __va(kern_base)) -
2268 ((unsigned long) KERNBASE));
2269 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2270
2271 if (do_free)
2272 free_reserved_page(virt_to_page(page));
2273 }
2274 }
2275
2276 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)2277 void free_initrd_mem(unsigned long start, unsigned long end)
2278 {
2279 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2280 "initrd");
2281 }
2282 #endif
2283
2284 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2285 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2286 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2287 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2288 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2289 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2290
2291 pgprot_t PAGE_KERNEL __read_mostly;
2292 EXPORT_SYMBOL(PAGE_KERNEL);
2293
2294 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2295 pgprot_t PAGE_COPY __read_mostly;
2296
2297 pgprot_t PAGE_SHARED __read_mostly;
2298 EXPORT_SYMBOL(PAGE_SHARED);
2299
2300 unsigned long pg_iobits __read_mostly;
2301
2302 unsigned long _PAGE_IE __read_mostly;
2303 EXPORT_SYMBOL(_PAGE_IE);
2304
2305 unsigned long _PAGE_E __read_mostly;
2306 EXPORT_SYMBOL(_PAGE_E);
2307
2308 unsigned long _PAGE_CACHE __read_mostly;
2309 EXPORT_SYMBOL(_PAGE_CACHE);
2310
2311 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmemmap_populate(unsigned long vstart,unsigned long vend,int node)2312 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2313 int node)
2314 {
2315 unsigned long pte_base;
2316
2317 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2318 _PAGE_CP_4U | _PAGE_CV_4U |
2319 _PAGE_P_4U | _PAGE_W_4U);
2320 if (tlb_type == hypervisor)
2321 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2322 _PAGE_CP_4V | _PAGE_CV_4V |
2323 _PAGE_P_4V | _PAGE_W_4V);
2324
2325 pte_base |= _PAGE_PMD_HUGE;
2326
2327 vstart = vstart & PMD_MASK;
2328 vend = ALIGN(vend, PMD_SIZE);
2329 for (; vstart < vend; vstart += PMD_SIZE) {
2330 pgd_t *pgd = pgd_offset_k(vstart);
2331 unsigned long pte;
2332 pud_t *pud;
2333 pmd_t *pmd;
2334
2335 if (pgd_none(*pgd)) {
2336 pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2337
2338 if (!new)
2339 return -ENOMEM;
2340 pgd_populate(&init_mm, pgd, new);
2341 }
2342
2343 pud = pud_offset(pgd, vstart);
2344 if (pud_none(*pud)) {
2345 pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2346
2347 if (!new)
2348 return -ENOMEM;
2349 pud_populate(&init_mm, pud, new);
2350 }
2351
2352 pmd = pmd_offset(pud, vstart);
2353
2354 pte = pmd_val(*pmd);
2355 if (!(pte & _PAGE_VALID)) {
2356 void *block = vmemmap_alloc_block(PMD_SIZE, node);
2357
2358 if (!block)
2359 return -ENOMEM;
2360
2361 pmd_val(*pmd) = pte_base | __pa(block);
2362 }
2363 }
2364
2365 return 0;
2366 }
2367
vmemmap_free(unsigned long start,unsigned long end)2368 void vmemmap_free(unsigned long start, unsigned long end)
2369 {
2370 }
2371 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2372
prot_init_common(unsigned long page_none,unsigned long page_shared,unsigned long page_copy,unsigned long page_readonly,unsigned long page_exec_bit)2373 static void prot_init_common(unsigned long page_none,
2374 unsigned long page_shared,
2375 unsigned long page_copy,
2376 unsigned long page_readonly,
2377 unsigned long page_exec_bit)
2378 {
2379 PAGE_COPY = __pgprot(page_copy);
2380 PAGE_SHARED = __pgprot(page_shared);
2381
2382 protection_map[0x0] = __pgprot(page_none);
2383 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2384 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2385 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2386 protection_map[0x4] = __pgprot(page_readonly);
2387 protection_map[0x5] = __pgprot(page_readonly);
2388 protection_map[0x6] = __pgprot(page_copy);
2389 protection_map[0x7] = __pgprot(page_copy);
2390 protection_map[0x8] = __pgprot(page_none);
2391 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2392 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2393 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2394 protection_map[0xc] = __pgprot(page_readonly);
2395 protection_map[0xd] = __pgprot(page_readonly);
2396 protection_map[0xe] = __pgprot(page_shared);
2397 protection_map[0xf] = __pgprot(page_shared);
2398 }
2399
sun4u_pgprot_init(void)2400 static void __init sun4u_pgprot_init(void)
2401 {
2402 unsigned long page_none, page_shared, page_copy, page_readonly;
2403 unsigned long page_exec_bit;
2404 int i;
2405
2406 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2407 _PAGE_CACHE_4U | _PAGE_P_4U |
2408 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2409 _PAGE_EXEC_4U);
2410 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2411 _PAGE_CACHE_4U | _PAGE_P_4U |
2412 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2413 _PAGE_EXEC_4U | _PAGE_L_4U);
2414
2415 _PAGE_IE = _PAGE_IE_4U;
2416 _PAGE_E = _PAGE_E_4U;
2417 _PAGE_CACHE = _PAGE_CACHE_4U;
2418
2419 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2420 __ACCESS_BITS_4U | _PAGE_E_4U);
2421
2422 #ifdef CONFIG_DEBUG_PAGEALLOC
2423 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2424 #else
2425 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2426 PAGE_OFFSET;
2427 #endif
2428 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2429 _PAGE_P_4U | _PAGE_W_4U);
2430
2431 for (i = 1; i < 4; i++)
2432 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2433
2434 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2435 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2436 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2437
2438
2439 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2440 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2441 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2442 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2443 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2444 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2445 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2446
2447 page_exec_bit = _PAGE_EXEC_4U;
2448
2449 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2450 page_exec_bit);
2451 }
2452
sun4v_pgprot_init(void)2453 static void __init sun4v_pgprot_init(void)
2454 {
2455 unsigned long page_none, page_shared, page_copy, page_readonly;
2456 unsigned long page_exec_bit;
2457 int i;
2458
2459 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2460 _PAGE_CACHE_4V | _PAGE_P_4V |
2461 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2462 _PAGE_EXEC_4V);
2463 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2464
2465 _PAGE_IE = _PAGE_IE_4V;
2466 _PAGE_E = _PAGE_E_4V;
2467 _PAGE_CACHE = _PAGE_CACHE_4V;
2468
2469 #ifdef CONFIG_DEBUG_PAGEALLOC
2470 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2471 #else
2472 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2473 PAGE_OFFSET;
2474 #endif
2475 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2476 _PAGE_P_4V | _PAGE_W_4V);
2477
2478 for (i = 1; i < 4; i++)
2479 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2480
2481 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2482 __ACCESS_BITS_4V | _PAGE_E_4V);
2483
2484 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2485 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2486 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2487 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2488
2489 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2490 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2491 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2492 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2493 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2494 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2495 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2496
2497 page_exec_bit = _PAGE_EXEC_4V;
2498
2499 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2500 page_exec_bit);
2501 }
2502
pte_sz_bits(unsigned long sz)2503 unsigned long pte_sz_bits(unsigned long sz)
2504 {
2505 if (tlb_type == hypervisor) {
2506 switch (sz) {
2507 case 8 * 1024:
2508 default:
2509 return _PAGE_SZ8K_4V;
2510 case 64 * 1024:
2511 return _PAGE_SZ64K_4V;
2512 case 512 * 1024:
2513 return _PAGE_SZ512K_4V;
2514 case 4 * 1024 * 1024:
2515 return _PAGE_SZ4MB_4V;
2516 }
2517 } else {
2518 switch (sz) {
2519 case 8 * 1024:
2520 default:
2521 return _PAGE_SZ8K_4U;
2522 case 64 * 1024:
2523 return _PAGE_SZ64K_4U;
2524 case 512 * 1024:
2525 return _PAGE_SZ512K_4U;
2526 case 4 * 1024 * 1024:
2527 return _PAGE_SZ4MB_4U;
2528 }
2529 }
2530 }
2531
mk_pte_io(unsigned long page,pgprot_t prot,int space,unsigned long page_size)2532 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2533 {
2534 pte_t pte;
2535
2536 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2537 pte_val(pte) |= (((unsigned long)space) << 32);
2538 pte_val(pte) |= pte_sz_bits(page_size);
2539
2540 return pte;
2541 }
2542
kern_large_tte(unsigned long paddr)2543 static unsigned long kern_large_tte(unsigned long paddr)
2544 {
2545 unsigned long val;
2546
2547 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2548 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2549 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2550 if (tlb_type == hypervisor)
2551 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2552 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2553 _PAGE_EXEC_4V | _PAGE_W_4V);
2554
2555 return val | paddr;
2556 }
2557
2558 /* If not locked, zap it. */
__flush_tlb_all(void)2559 void __flush_tlb_all(void)
2560 {
2561 unsigned long pstate;
2562 int i;
2563
2564 __asm__ __volatile__("flushw\n\t"
2565 "rdpr %%pstate, %0\n\t"
2566 "wrpr %0, %1, %%pstate"
2567 : "=r" (pstate)
2568 : "i" (PSTATE_IE));
2569 if (tlb_type == hypervisor) {
2570 sun4v_mmu_demap_all();
2571 } else if (tlb_type == spitfire) {
2572 for (i = 0; i < 64; i++) {
2573 /* Spitfire Errata #32 workaround */
2574 /* NOTE: Always runs on spitfire, so no
2575 * cheetah+ page size encodings.
2576 */
2577 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2578 "flush %%g6"
2579 : /* No outputs */
2580 : "r" (0),
2581 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2582
2583 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2584 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2585 "membar #Sync"
2586 : /* no outputs */
2587 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2588 spitfire_put_dtlb_data(i, 0x0UL);
2589 }
2590
2591 /* Spitfire Errata #32 workaround */
2592 /* NOTE: Always runs on spitfire, so no
2593 * cheetah+ page size encodings.
2594 */
2595 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2596 "flush %%g6"
2597 : /* No outputs */
2598 : "r" (0),
2599 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2600
2601 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2602 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2603 "membar #Sync"
2604 : /* no outputs */
2605 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2606 spitfire_put_itlb_data(i, 0x0UL);
2607 }
2608 }
2609 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2610 cheetah_flush_dtlb_all();
2611 cheetah_flush_itlb_all();
2612 }
2613 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2614 : : "r" (pstate));
2615 }
2616
pte_alloc_one_kernel(struct mm_struct * mm,unsigned long address)2617 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2618 unsigned long address)
2619 {
2620 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2621 __GFP_REPEAT | __GFP_ZERO);
2622 pte_t *pte = NULL;
2623
2624 if (page)
2625 pte = (pte_t *) page_address(page);
2626
2627 return pte;
2628 }
2629
pte_alloc_one(struct mm_struct * mm,unsigned long address)2630 pgtable_t pte_alloc_one(struct mm_struct *mm,
2631 unsigned long address)
2632 {
2633 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2634 __GFP_REPEAT | __GFP_ZERO);
2635 if (!page)
2636 return NULL;
2637 if (!pgtable_page_ctor(page)) {
2638 free_hot_cold_page(page, 0);
2639 return NULL;
2640 }
2641 return (pte_t *) page_address(page);
2642 }
2643
pte_free_kernel(struct mm_struct * mm,pte_t * pte)2644 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2645 {
2646 free_page((unsigned long)pte);
2647 }
2648
__pte_free(pgtable_t pte)2649 static void __pte_free(pgtable_t pte)
2650 {
2651 struct page *page = virt_to_page(pte);
2652
2653 pgtable_page_dtor(page);
2654 __free_page(page);
2655 }
2656
pte_free(struct mm_struct * mm,pgtable_t pte)2657 void pte_free(struct mm_struct *mm, pgtable_t pte)
2658 {
2659 __pte_free(pte);
2660 }
2661
pgtable_free(void * table,bool is_page)2662 void pgtable_free(void *table, bool is_page)
2663 {
2664 if (is_page)
2665 __pte_free(table);
2666 else
2667 kmem_cache_free(pgtable_cache, table);
2668 }
2669
2670 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)2671 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2672 pmd_t *pmd)
2673 {
2674 unsigned long pte, flags;
2675 struct mm_struct *mm;
2676 pmd_t entry = *pmd;
2677
2678 if (!pmd_large(entry) || !pmd_young(entry))
2679 return;
2680
2681 pte = pmd_val(entry);
2682
2683 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2684 if (!(pte & _PAGE_VALID))
2685 return;
2686
2687 /* We are fabricating 8MB pages using 4MB real hw pages. */
2688 pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2689
2690 mm = vma->vm_mm;
2691
2692 spin_lock_irqsave(&mm->context.lock, flags);
2693
2694 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2695 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2696 addr, pte);
2697
2698 spin_unlock_irqrestore(&mm->context.lock, flags);
2699 }
2700 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2701
2702 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
context_reload(void * __data)2703 static void context_reload(void *__data)
2704 {
2705 struct mm_struct *mm = __data;
2706
2707 if (mm == current->mm)
2708 load_secondary_context(mm);
2709 }
2710
hugetlb_setup(struct pt_regs * regs)2711 void hugetlb_setup(struct pt_regs *regs)
2712 {
2713 struct mm_struct *mm = current->mm;
2714 struct tsb_config *tp;
2715
2716 if (in_atomic() || !mm) {
2717 const struct exception_table_entry *entry;
2718
2719 entry = search_exception_tables(regs->tpc);
2720 if (entry) {
2721 regs->tpc = entry->fixup;
2722 regs->tnpc = regs->tpc + 4;
2723 return;
2724 }
2725 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2726 die_if_kernel("HugeTSB in atomic", regs);
2727 }
2728
2729 tp = &mm->context.tsb_block[MM_TSB_HUGE];
2730 if (likely(tp->tsb == NULL))
2731 tsb_grow(mm, MM_TSB_HUGE, 0);
2732
2733 tsb_context_switch(mm);
2734 smp_tsb_sync(mm);
2735
2736 /* On UltraSPARC-III+ and later, configure the second half of
2737 * the Data-TLB for huge pages.
2738 */
2739 if (tlb_type == cheetah_plus) {
2740 bool need_context_reload = false;
2741 unsigned long ctx;
2742
2743 spin_lock_irq(&ctx_alloc_lock);
2744 ctx = mm->context.sparc64_ctx_val;
2745 ctx &= ~CTX_PGSZ_MASK;
2746 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2747 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2748
2749 if (ctx != mm->context.sparc64_ctx_val) {
2750 /* When changing the page size fields, we
2751 * must perform a context flush so that no
2752 * stale entries match. This flush must
2753 * occur with the original context register
2754 * settings.
2755 */
2756 do_flush_tlb_mm(mm);
2757
2758 /* Reload the context register of all processors
2759 * also executing in this address space.
2760 */
2761 mm->context.sparc64_ctx_val = ctx;
2762 need_context_reload = true;
2763 }
2764 spin_unlock_irq(&ctx_alloc_lock);
2765
2766 if (need_context_reload)
2767 on_each_cpu(context_reload, mm, 0);
2768 }
2769 }
2770 #endif
2771
2772 static struct resource code_resource = {
2773 .name = "Kernel code",
2774 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
2775 };
2776
2777 static struct resource data_resource = {
2778 .name = "Kernel data",
2779 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
2780 };
2781
2782 static struct resource bss_resource = {
2783 .name = "Kernel bss",
2784 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
2785 };
2786
compute_kern_paddr(void * addr)2787 static inline resource_size_t compute_kern_paddr(void *addr)
2788 {
2789 return (resource_size_t) (addr - KERNBASE + kern_base);
2790 }
2791
kernel_lds_init(void)2792 static void __init kernel_lds_init(void)
2793 {
2794 code_resource.start = compute_kern_paddr(_text);
2795 code_resource.end = compute_kern_paddr(_etext - 1);
2796 data_resource.start = compute_kern_paddr(_etext);
2797 data_resource.end = compute_kern_paddr(_edata - 1);
2798 bss_resource.start = compute_kern_paddr(__bss_start);
2799 bss_resource.end = compute_kern_paddr(_end - 1);
2800 }
2801
report_memory(void)2802 static int __init report_memory(void)
2803 {
2804 int i;
2805 struct resource *res;
2806
2807 kernel_lds_init();
2808
2809 for (i = 0; i < pavail_ents; i++) {
2810 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2811
2812 if (!res) {
2813 pr_warn("Failed to allocate source.\n");
2814 break;
2815 }
2816
2817 res->name = "System RAM";
2818 res->start = pavail[i].phys_addr;
2819 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2820 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
2821
2822 if (insert_resource(&iomem_resource, res) < 0) {
2823 pr_warn("Resource insertion failed.\n");
2824 break;
2825 }
2826
2827 insert_resource(res, &code_resource);
2828 insert_resource(res, &data_resource);
2829 insert_resource(res, &bss_resource);
2830 }
2831
2832 return 0;
2833 }
2834 device_initcall(report_memory);
2835
2836 #ifdef CONFIG_SMP
2837 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
2838 #else
2839 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range
2840 #endif
2841
flush_tlb_kernel_range(unsigned long start,unsigned long end)2842 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2843 {
2844 if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2845 if (start < LOW_OBP_ADDRESS) {
2846 flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2847 do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2848 }
2849 if (end > HI_OBP_ADDRESS) {
2850 flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2851 do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
2852 }
2853 } else {
2854 flush_tsb_kernel_range(start, end);
2855 do_flush_tlb_kernel_range(start, end);
2856 }
2857 }
2858