• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * drivers/pci/pci-driver.c
3  *
4  * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5  * (C) Copyright 2007 Novell Inc.
6  *
7  * Released under the GPL v2 only.
8  *
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24 
25 struct pci_dynid {
26 	struct list_head node;
27 	struct pci_device_id id;
28 };
29 
30 /**
31  * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32  * @drv: target pci driver
33  * @vendor: PCI vendor ID
34  * @device: PCI device ID
35  * @subvendor: PCI subvendor ID
36  * @subdevice: PCI subdevice ID
37  * @class: PCI class
38  * @class_mask: PCI class mask
39  * @driver_data: private driver data
40  *
41  * Adds a new dynamic pci device ID to this driver and causes the
42  * driver to probe for all devices again.  @drv must have been
43  * registered prior to calling this function.
44  *
45  * CONTEXT:
46  * Does GFP_KERNEL allocation.
47  *
48  * RETURNS:
49  * 0 on success, -errno on failure.
50  */
pci_add_dynid(struct pci_driver * drv,unsigned int vendor,unsigned int device,unsigned int subvendor,unsigned int subdevice,unsigned int class,unsigned int class_mask,unsigned long driver_data)51 int pci_add_dynid(struct pci_driver *drv,
52 		  unsigned int vendor, unsigned int device,
53 		  unsigned int subvendor, unsigned int subdevice,
54 		  unsigned int class, unsigned int class_mask,
55 		  unsigned long driver_data)
56 {
57 	struct pci_dynid *dynid;
58 
59 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60 	if (!dynid)
61 		return -ENOMEM;
62 
63 	dynid->id.vendor = vendor;
64 	dynid->id.device = device;
65 	dynid->id.subvendor = subvendor;
66 	dynid->id.subdevice = subdevice;
67 	dynid->id.class = class;
68 	dynid->id.class_mask = class_mask;
69 	dynid->id.driver_data = driver_data;
70 
71 	spin_lock(&drv->dynids.lock);
72 	list_add_tail(&dynid->node, &drv->dynids.list);
73 	spin_unlock(&drv->dynids.lock);
74 
75 	return driver_attach(&drv->driver);
76 }
77 EXPORT_SYMBOL_GPL(pci_add_dynid);
78 
pci_free_dynids(struct pci_driver * drv)79 static void pci_free_dynids(struct pci_driver *drv)
80 {
81 	struct pci_dynid *dynid, *n;
82 
83 	spin_lock(&drv->dynids.lock);
84 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85 		list_del(&dynid->node);
86 		kfree(dynid);
87 	}
88 	spin_unlock(&drv->dynids.lock);
89 }
90 
91 /**
92  * store_new_id - sysfs frontend to pci_add_dynid()
93  * @driver: target device driver
94  * @buf: buffer for scanning device ID data
95  * @count: input size
96  *
97  * Allow PCI IDs to be added to an existing driver via sysfs.
98  */
store_new_id(struct device_driver * driver,const char * buf,size_t count)99 static ssize_t store_new_id(struct device_driver *driver, const char *buf,
100 			    size_t count)
101 {
102 	struct pci_driver *pdrv = to_pci_driver(driver);
103 	const struct pci_device_id *ids = pdrv->id_table;
104 	__u32 vendor, device, subvendor = PCI_ANY_ID,
105 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106 	unsigned long driver_data = 0;
107 	int fields = 0;
108 	int retval = 0;
109 
110 	fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111 			&vendor, &device, &subvendor, &subdevice,
112 			&class, &class_mask, &driver_data);
113 	if (fields < 2)
114 		return -EINVAL;
115 
116 	if (fields != 7) {
117 		struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118 		if (!pdev)
119 			return -ENOMEM;
120 
121 		pdev->vendor = vendor;
122 		pdev->device = device;
123 		pdev->subsystem_vendor = subvendor;
124 		pdev->subsystem_device = subdevice;
125 		pdev->class = class;
126 
127 		if (pci_match_id(pdrv->id_table, pdev))
128 			retval = -EEXIST;
129 
130 		kfree(pdev);
131 
132 		if (retval)
133 			return retval;
134 	}
135 
136 	/* Only accept driver_data values that match an existing id_table
137 	   entry */
138 	if (ids) {
139 		retval = -EINVAL;
140 		while (ids->vendor || ids->subvendor || ids->class_mask) {
141 			if (driver_data == ids->driver_data) {
142 				retval = 0;
143 				break;
144 			}
145 			ids++;
146 		}
147 		if (retval)	/* No match */
148 			return retval;
149 	}
150 
151 	retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152 			       class, class_mask, driver_data);
153 	if (retval)
154 		return retval;
155 	return count;
156 }
157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
158 
159 /**
160  * store_remove_id - remove a PCI device ID from this driver
161  * @driver: target device driver
162  * @buf: buffer for scanning device ID data
163  * @count: input size
164  *
165  * Removes a dynamic pci device ID to this driver.
166  */
store_remove_id(struct device_driver * driver,const char * buf,size_t count)167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf,
168 			       size_t count)
169 {
170 	struct pci_dynid *dynid, *n;
171 	struct pci_driver *pdrv = to_pci_driver(driver);
172 	__u32 vendor, device, subvendor = PCI_ANY_ID,
173 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174 	int fields = 0;
175 	int retval = -ENODEV;
176 
177 	fields = sscanf(buf, "%x %x %x %x %x %x",
178 			&vendor, &device, &subvendor, &subdevice,
179 			&class, &class_mask);
180 	if (fields < 2)
181 		return -EINVAL;
182 
183 	spin_lock(&pdrv->dynids.lock);
184 	list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185 		struct pci_device_id *id = &dynid->id;
186 		if ((id->vendor == vendor) &&
187 		    (id->device == device) &&
188 		    (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189 		    (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190 		    !((id->class ^ class) & class_mask)) {
191 			list_del(&dynid->node);
192 			kfree(dynid);
193 			retval = 0;
194 			break;
195 		}
196 	}
197 	spin_unlock(&pdrv->dynids.lock);
198 
199 	if (retval)
200 		return retval;
201 	return count;
202 }
203 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
204 
205 static struct attribute *pci_drv_attrs[] = {
206 	&driver_attr_new_id.attr,
207 	&driver_attr_remove_id.attr,
208 	NULL,
209 };
210 ATTRIBUTE_GROUPS(pci_drv);
211 
212 /**
213  * pci_match_id - See if a pci device matches a given pci_id table
214  * @ids: array of PCI device id structures to search in
215  * @dev: the PCI device structure to match against.
216  *
217  * Used by a driver to check whether a PCI device present in the
218  * system is in its list of supported devices.  Returns the matching
219  * pci_device_id structure or %NULL if there is no match.
220  *
221  * Deprecated, don't use this as it will not catch any dynamic ids
222  * that a driver might want to check for.
223  */
pci_match_id(const struct pci_device_id * ids,struct pci_dev * dev)224 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
225 					 struct pci_dev *dev)
226 {
227 	if (ids) {
228 		while (ids->vendor || ids->subvendor || ids->class_mask) {
229 			if (pci_match_one_device(ids, dev))
230 				return ids;
231 			ids++;
232 		}
233 	}
234 	return NULL;
235 }
236 EXPORT_SYMBOL(pci_match_id);
237 
238 static const struct pci_device_id pci_device_id_any = {
239 	.vendor = PCI_ANY_ID,
240 	.device = PCI_ANY_ID,
241 	.subvendor = PCI_ANY_ID,
242 	.subdevice = PCI_ANY_ID,
243 };
244 
245 /**
246  * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
247  * @drv: the PCI driver to match against
248  * @dev: the PCI device structure to match against
249  *
250  * Used by a driver to check whether a PCI device present in the
251  * system is in its list of supported devices.  Returns the matching
252  * pci_device_id structure or %NULL if there is no match.
253  */
pci_match_device(struct pci_driver * drv,struct pci_dev * dev)254 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
255 						    struct pci_dev *dev)
256 {
257 	struct pci_dynid *dynid;
258 	const struct pci_device_id *found_id = NULL;
259 
260 	/* When driver_override is set, only bind to the matching driver */
261 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
262 		return NULL;
263 
264 	/* Look at the dynamic ids first, before the static ones */
265 	spin_lock(&drv->dynids.lock);
266 	list_for_each_entry(dynid, &drv->dynids.list, node) {
267 		if (pci_match_one_device(&dynid->id, dev)) {
268 			found_id = &dynid->id;
269 			break;
270 		}
271 	}
272 	spin_unlock(&drv->dynids.lock);
273 
274 	if (!found_id)
275 		found_id = pci_match_id(drv->id_table, dev);
276 
277 	/* driver_override will always match, send a dummy id */
278 	if (!found_id && dev->driver_override)
279 		found_id = &pci_device_id_any;
280 
281 	return found_id;
282 }
283 
284 struct drv_dev_and_id {
285 	struct pci_driver *drv;
286 	struct pci_dev *dev;
287 	const struct pci_device_id *id;
288 };
289 
local_pci_probe(void * _ddi)290 static long local_pci_probe(void *_ddi)
291 {
292 	struct drv_dev_and_id *ddi = _ddi;
293 	struct pci_dev *pci_dev = ddi->dev;
294 	struct pci_driver *pci_drv = ddi->drv;
295 	struct device *dev = &pci_dev->dev;
296 	int rc;
297 
298 	/*
299 	 * Unbound PCI devices are always put in D0, regardless of
300 	 * runtime PM status.  During probe, the device is set to
301 	 * active and the usage count is incremented.  If the driver
302 	 * supports runtime PM, it should call pm_runtime_put_noidle()
303 	 * in its probe routine and pm_runtime_get_noresume() in its
304 	 * remove routine.
305 	 */
306 	pm_runtime_get_sync(dev);
307 	pci_dev->driver = pci_drv;
308 	rc = pci_drv->probe(pci_dev, ddi->id);
309 	if (!rc)
310 		return rc;
311 	if (rc < 0) {
312 		pci_dev->driver = NULL;
313 		pm_runtime_put_sync(dev);
314 		return rc;
315 	}
316 	/*
317 	 * Probe function should return < 0 for failure, 0 for success
318 	 * Treat values > 0 as success, but warn.
319 	 */
320 	dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
321 	return 0;
322 }
323 
pci_call_probe(struct pci_driver * drv,struct pci_dev * dev,const struct pci_device_id * id)324 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
325 			  const struct pci_device_id *id)
326 {
327 	int error, node;
328 	struct drv_dev_and_id ddi = { drv, dev, id };
329 
330 	/*
331 	 * Execute driver initialization on node where the device is
332 	 * attached.  This way the driver likely allocates its local memory
333 	 * on the right node.
334 	 */
335 	node = dev_to_node(&dev->dev);
336 
337 	/*
338 	 * On NUMA systems, we are likely to call a PF probe function using
339 	 * work_on_cpu().  If that probe calls pci_enable_sriov() (which
340 	 * adds the VF devices via pci_bus_add_device()), we may re-enter
341 	 * this function to call the VF probe function.  Calling
342 	 * work_on_cpu() again will cause a lockdep warning.  Since VFs are
343 	 * always on the same node as the PF, we can work around this by
344 	 * avoiding work_on_cpu() when we're already on the correct node.
345 	 *
346 	 * Preemption is enabled, so it's theoretically unsafe to use
347 	 * numa_node_id(), but even if we run the probe function on the
348 	 * wrong node, it should be functionally correct.
349 	 */
350 	if (node >= 0 && node != numa_node_id()) {
351 		int cpu;
352 
353 		get_online_cpus();
354 		cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
355 		if (cpu < nr_cpu_ids)
356 			error = work_on_cpu(cpu, local_pci_probe, &ddi);
357 		else
358 			error = local_pci_probe(&ddi);
359 		put_online_cpus();
360 	} else
361 		error = local_pci_probe(&ddi);
362 
363 	return error;
364 }
365 
366 /**
367  * __pci_device_probe - check if a driver wants to claim a specific PCI device
368  * @drv: driver to call to check if it wants the PCI device
369  * @pci_dev: PCI device being probed
370  *
371  * returns 0 on success, else error.
372  * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
373  */
__pci_device_probe(struct pci_driver * drv,struct pci_dev * pci_dev)374 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
375 {
376 	const struct pci_device_id *id;
377 	int error = 0;
378 
379 	if (!pci_dev->driver && drv->probe) {
380 		error = -ENODEV;
381 
382 		id = pci_match_device(drv, pci_dev);
383 		if (id)
384 			error = pci_call_probe(drv, pci_dev, id);
385 		if (error >= 0)
386 			error = 0;
387 	}
388 	return error;
389 }
390 
pci_device_probe(struct device * dev)391 static int pci_device_probe(struct device *dev)
392 {
393 	int error = 0;
394 	struct pci_driver *drv;
395 	struct pci_dev *pci_dev;
396 
397 	drv = to_pci_driver(dev->driver);
398 	pci_dev = to_pci_dev(dev);
399 	pci_dev_get(pci_dev);
400 	error = __pci_device_probe(drv, pci_dev);
401 	if (error)
402 		pci_dev_put(pci_dev);
403 
404 	return error;
405 }
406 
pci_device_remove(struct device * dev)407 static int pci_device_remove(struct device *dev)
408 {
409 	struct pci_dev *pci_dev = to_pci_dev(dev);
410 	struct pci_driver *drv = pci_dev->driver;
411 
412 	if (drv) {
413 		if (drv->remove) {
414 			pm_runtime_get_sync(dev);
415 			drv->remove(pci_dev);
416 			pm_runtime_put_noidle(dev);
417 		}
418 		pci_dev->driver = NULL;
419 	}
420 
421 	/* Undo the runtime PM settings in local_pci_probe() */
422 	pm_runtime_put_sync(dev);
423 
424 	/*
425 	 * If the device is still on, set the power state as "unknown",
426 	 * since it might change by the next time we load the driver.
427 	 */
428 	if (pci_dev->current_state == PCI_D0)
429 		pci_dev->current_state = PCI_UNKNOWN;
430 
431 	/*
432 	 * We would love to complain here if pci_dev->is_enabled is set, that
433 	 * the driver should have called pci_disable_device(), but the
434 	 * unfortunate fact is there are too many odd BIOS and bridge setups
435 	 * that don't like drivers doing that all of the time.
436 	 * Oh well, we can dream of sane hardware when we sleep, no matter how
437 	 * horrible the crap we have to deal with is when we are awake...
438 	 */
439 
440 	pci_dev_put(pci_dev);
441 	return 0;
442 }
443 
pci_device_shutdown(struct device * dev)444 static void pci_device_shutdown(struct device *dev)
445 {
446 	struct pci_dev *pci_dev = to_pci_dev(dev);
447 	struct pci_driver *drv = pci_dev->driver;
448 
449 	pm_runtime_resume(dev);
450 
451 	if (drv && drv->shutdown)
452 		drv->shutdown(pci_dev);
453 	pci_msi_shutdown(pci_dev);
454 	pci_msix_shutdown(pci_dev);
455 
456 #ifdef CONFIG_KEXEC
457 	/*
458 	 * If this is a kexec reboot, turn off Bus Master bit on the
459 	 * device to tell it to not continue to do DMA. Don't touch
460 	 * devices in D3cold or unknown states.
461 	 * If it is not a kexec reboot, firmware will hit the PCI
462 	 * devices with big hammer and stop their DMA any way.
463 	 */
464 	if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
465 		pci_clear_master(pci_dev);
466 #endif
467 }
468 
469 #ifdef CONFIG_PM
470 
471 /* Auxiliary functions used for system resume and run-time resume. */
472 
473 /**
474  * pci_restore_standard_config - restore standard config registers of PCI device
475  * @pci_dev: PCI device to handle
476  */
pci_restore_standard_config(struct pci_dev * pci_dev)477 static int pci_restore_standard_config(struct pci_dev *pci_dev)
478 {
479 	pci_update_current_state(pci_dev, PCI_UNKNOWN);
480 
481 	if (pci_dev->current_state != PCI_D0) {
482 		int error = pci_set_power_state(pci_dev, PCI_D0);
483 		if (error)
484 			return error;
485 	}
486 
487 	pci_restore_state(pci_dev);
488 	return 0;
489 }
490 
491 #endif
492 
493 #ifdef CONFIG_PM_SLEEP
494 
pci_pm_default_resume_early(struct pci_dev * pci_dev)495 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
496 {
497 	pci_power_up(pci_dev);
498 	pci_restore_state(pci_dev);
499 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
500 }
501 
502 /*
503  * Default "suspend" method for devices that have no driver provided suspend,
504  * or not even a driver at all (second part).
505  */
pci_pm_set_unknown_state(struct pci_dev * pci_dev)506 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
507 {
508 	/*
509 	 * mark its power state as "unknown", since we don't know if
510 	 * e.g. the BIOS will change its device state when we suspend.
511 	 */
512 	if (pci_dev->current_state == PCI_D0)
513 		pci_dev->current_state = PCI_UNKNOWN;
514 }
515 
516 /*
517  * Default "resume" method for devices that have no driver provided resume,
518  * or not even a driver at all (second part).
519  */
pci_pm_reenable_device(struct pci_dev * pci_dev)520 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
521 {
522 	int retval;
523 
524 	/* if the device was enabled before suspend, reenable */
525 	retval = pci_reenable_device(pci_dev);
526 	/*
527 	 * if the device was busmaster before the suspend, make it busmaster
528 	 * again
529 	 */
530 	if (pci_dev->is_busmaster)
531 		pci_set_master(pci_dev);
532 
533 	return retval;
534 }
535 
pci_legacy_suspend(struct device * dev,pm_message_t state)536 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
537 {
538 	struct pci_dev *pci_dev = to_pci_dev(dev);
539 	struct pci_driver *drv = pci_dev->driver;
540 
541 	if (drv && drv->suspend) {
542 		pci_power_t prev = pci_dev->current_state;
543 		int error;
544 
545 		error = drv->suspend(pci_dev, state);
546 		suspend_report_result(drv->suspend, error);
547 		if (error)
548 			return error;
549 
550 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
551 		    && pci_dev->current_state != PCI_UNKNOWN) {
552 			WARN_ONCE(pci_dev->current_state != prev,
553 				"PCI PM: Device state not saved by %pF\n",
554 				drv->suspend);
555 		}
556 	}
557 
558 	pci_fixup_device(pci_fixup_suspend, pci_dev);
559 
560 	return 0;
561 }
562 
pci_legacy_suspend_late(struct device * dev,pm_message_t state)563 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
564 {
565 	struct pci_dev *pci_dev = to_pci_dev(dev);
566 	struct pci_driver *drv = pci_dev->driver;
567 
568 	if (drv && drv->suspend_late) {
569 		pci_power_t prev = pci_dev->current_state;
570 		int error;
571 
572 		error = drv->suspend_late(pci_dev, state);
573 		suspend_report_result(drv->suspend_late, error);
574 		if (error)
575 			return error;
576 
577 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
578 		    && pci_dev->current_state != PCI_UNKNOWN) {
579 			WARN_ONCE(pci_dev->current_state != prev,
580 				"PCI PM: Device state not saved by %pF\n",
581 				drv->suspend_late);
582 			goto Fixup;
583 		}
584 	}
585 
586 	if (!pci_dev->state_saved)
587 		pci_save_state(pci_dev);
588 
589 	pci_pm_set_unknown_state(pci_dev);
590 
591 Fixup:
592 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
593 
594 	return 0;
595 }
596 
pci_legacy_resume_early(struct device * dev)597 static int pci_legacy_resume_early(struct device *dev)
598 {
599 	struct pci_dev *pci_dev = to_pci_dev(dev);
600 	struct pci_driver *drv = pci_dev->driver;
601 
602 	return drv && drv->resume_early ?
603 			drv->resume_early(pci_dev) : 0;
604 }
605 
pci_legacy_resume(struct device * dev)606 static int pci_legacy_resume(struct device *dev)
607 {
608 	struct pci_dev *pci_dev = to_pci_dev(dev);
609 	struct pci_driver *drv = pci_dev->driver;
610 
611 	pci_fixup_device(pci_fixup_resume, pci_dev);
612 
613 	return drv && drv->resume ?
614 			drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
615 }
616 
617 /* Auxiliary functions used by the new power management framework */
618 
pci_pm_default_resume(struct pci_dev * pci_dev)619 static void pci_pm_default_resume(struct pci_dev *pci_dev)
620 {
621 	pci_fixup_device(pci_fixup_resume, pci_dev);
622 
623 	if (!pci_has_subordinate(pci_dev))
624 		pci_enable_wake(pci_dev, PCI_D0, false);
625 }
626 
pci_pm_default_suspend(struct pci_dev * pci_dev)627 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
628 {
629 	/* Disable non-bridge devices without PM support */
630 	if (!pci_has_subordinate(pci_dev))
631 		pci_disable_enabled_device(pci_dev);
632 }
633 
pci_has_legacy_pm_support(struct pci_dev * pci_dev)634 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
635 {
636 	struct pci_driver *drv = pci_dev->driver;
637 	bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
638 		|| drv->resume_early);
639 
640 	/*
641 	 * Legacy PM support is used by default, so warn if the new framework is
642 	 * supported as well.  Drivers are supposed to support either the
643 	 * former, or the latter, but not both at the same time.
644 	 */
645 	WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
646 		drv->name, pci_dev->vendor, pci_dev->device);
647 
648 	return ret;
649 }
650 
651 /* New power management framework */
652 
pci_pm_prepare(struct device * dev)653 static int pci_pm_prepare(struct device *dev)
654 {
655 	struct device_driver *drv = dev->driver;
656 	int error = 0;
657 
658 	/*
659 	 * Devices having power.ignore_children set may still be necessary for
660 	 * suspending their children in the next phase of device suspend.
661 	 */
662 	if (dev->power.ignore_children)
663 		pm_runtime_resume(dev);
664 
665 	if (drv && drv->pm && drv->pm->prepare)
666 		error = drv->pm->prepare(dev);
667 
668 	return error;
669 }
670 
671 
672 #else /* !CONFIG_PM_SLEEP */
673 
674 #define pci_pm_prepare	NULL
675 
676 #endif /* !CONFIG_PM_SLEEP */
677 
678 #ifdef CONFIG_SUSPEND
679 
pci_pm_suspend(struct device * dev)680 static int pci_pm_suspend(struct device *dev)
681 {
682 	struct pci_dev *pci_dev = to_pci_dev(dev);
683 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
684 
685 	if (pci_has_legacy_pm_support(pci_dev))
686 		return pci_legacy_suspend(dev, PMSG_SUSPEND);
687 
688 	if (!pm) {
689 		pci_pm_default_suspend(pci_dev);
690 		goto Fixup;
691 	}
692 
693 	/*
694 	 * PCI devices suspended at run time need to be resumed at this point,
695 	 * because in general it is necessary to reconfigure them for system
696 	 * suspend.  Namely, if the device is supposed to wake up the system
697 	 * from the sleep state, we may need to reconfigure it for this purpose.
698 	 * In turn, if the device is not supposed to wake up the system from the
699 	 * sleep state, we'll have to prevent it from signaling wake-up.
700 	 */
701 	pm_runtime_resume(dev);
702 
703 	pci_dev->state_saved = false;
704 	if (pm->suspend) {
705 		pci_power_t prev = pci_dev->current_state;
706 		int error;
707 
708 		error = pm->suspend(dev);
709 		suspend_report_result(pm->suspend, error);
710 		if (error)
711 			return error;
712 
713 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
714 		    && pci_dev->current_state != PCI_UNKNOWN) {
715 			WARN_ONCE(pci_dev->current_state != prev,
716 				"PCI PM: State of device not saved by %pF\n",
717 				pm->suspend);
718 		}
719 	}
720 
721  Fixup:
722 	pci_fixup_device(pci_fixup_suspend, pci_dev);
723 
724 	return 0;
725 }
726 
pci_pm_suspend_noirq(struct device * dev)727 static int pci_pm_suspend_noirq(struct device *dev)
728 {
729 	struct pci_dev *pci_dev = to_pci_dev(dev);
730 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
731 
732 	if (pci_has_legacy_pm_support(pci_dev))
733 		return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
734 
735 	if (!pm) {
736 		pci_save_state(pci_dev);
737 		goto Fixup;
738 	}
739 
740 	if (pm->suspend_noirq) {
741 		pci_power_t prev = pci_dev->current_state;
742 		int error;
743 
744 		error = pm->suspend_noirq(dev);
745 		suspend_report_result(pm->suspend_noirq, error);
746 		if (error)
747 			return error;
748 
749 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
750 		    && pci_dev->current_state != PCI_UNKNOWN) {
751 			WARN_ONCE(pci_dev->current_state != prev,
752 				"PCI PM: State of device not saved by %pF\n",
753 				pm->suspend_noirq);
754 			goto Fixup;
755 		}
756 	}
757 
758 	if (!pci_dev->state_saved) {
759 		pci_save_state(pci_dev);
760 		if (!pci_has_subordinate(pci_dev))
761 			pci_prepare_to_sleep(pci_dev);
762 	}
763 
764 	pci_pm_set_unknown_state(pci_dev);
765 
766 	/*
767 	 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
768 	 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
769 	 * hasn't been quiesced and tries to turn it off.  If the controller
770 	 * is already in D3, this can hang or cause memory corruption.
771 	 *
772 	 * Since the value of the COMMAND register doesn't matter once the
773 	 * device has been suspended, we can safely set it to 0 here.
774 	 */
775 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
776 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
777 
778 Fixup:
779 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
780 
781 	return 0;
782 }
783 
pci_pm_resume_noirq(struct device * dev)784 static int pci_pm_resume_noirq(struct device *dev)
785 {
786 	struct pci_dev *pci_dev = to_pci_dev(dev);
787 	struct device_driver *drv = dev->driver;
788 	int error = 0;
789 
790 	pci_pm_default_resume_early(pci_dev);
791 
792 	if (pci_has_legacy_pm_support(pci_dev))
793 		return pci_legacy_resume_early(dev);
794 
795 	if (drv && drv->pm && drv->pm->resume_noirq)
796 		error = drv->pm->resume_noirq(dev);
797 
798 	return error;
799 }
800 
pci_pm_resume(struct device * dev)801 static int pci_pm_resume(struct device *dev)
802 {
803 	struct pci_dev *pci_dev = to_pci_dev(dev);
804 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
805 	int error = 0;
806 
807 	/*
808 	 * This is necessary for the suspend error path in which resume is
809 	 * called without restoring the standard config registers of the device.
810 	 */
811 	if (pci_dev->state_saved)
812 		pci_restore_standard_config(pci_dev);
813 
814 	if (pci_has_legacy_pm_support(pci_dev))
815 		return pci_legacy_resume(dev);
816 
817 	pci_pm_default_resume(pci_dev);
818 
819 	if (pm) {
820 		if (pm->resume)
821 			error = pm->resume(dev);
822 	} else {
823 		pci_pm_reenable_device(pci_dev);
824 	}
825 
826 	return error;
827 }
828 
829 #else /* !CONFIG_SUSPEND */
830 
831 #define pci_pm_suspend		NULL
832 #define pci_pm_suspend_noirq	NULL
833 #define pci_pm_resume		NULL
834 #define pci_pm_resume_noirq	NULL
835 
836 #endif /* !CONFIG_SUSPEND */
837 
838 #ifdef CONFIG_HIBERNATE_CALLBACKS
839 
840 
841 /*
842  * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
843  * a hibernate transition
844  */
845 struct dev_pm_ops __weak pcibios_pm_ops;
846 
pci_pm_freeze(struct device * dev)847 static int pci_pm_freeze(struct device *dev)
848 {
849 	struct pci_dev *pci_dev = to_pci_dev(dev);
850 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
851 
852 	if (pci_has_legacy_pm_support(pci_dev))
853 		return pci_legacy_suspend(dev, PMSG_FREEZE);
854 
855 	if (!pm) {
856 		pci_pm_default_suspend(pci_dev);
857 		return 0;
858 	}
859 
860 	/*
861 	 * This used to be done in pci_pm_prepare() for all devices and some
862 	 * drivers may depend on it, so do it here.  Ideally, runtime-suspended
863 	 * devices should not be touched during freeze/thaw transitions,
864 	 * however.
865 	 */
866 	pm_runtime_resume(dev);
867 
868 	pci_dev->state_saved = false;
869 	if (pm->freeze) {
870 		int error;
871 
872 		error = pm->freeze(dev);
873 		suspend_report_result(pm->freeze, error);
874 		if (error)
875 			return error;
876 	}
877 
878 	if (pcibios_pm_ops.freeze)
879 		return pcibios_pm_ops.freeze(dev);
880 
881 	return 0;
882 }
883 
pci_pm_freeze_noirq(struct device * dev)884 static int pci_pm_freeze_noirq(struct device *dev)
885 {
886 	struct pci_dev *pci_dev = to_pci_dev(dev);
887 	struct device_driver *drv = dev->driver;
888 
889 	if (pci_has_legacy_pm_support(pci_dev))
890 		return pci_legacy_suspend_late(dev, PMSG_FREEZE);
891 
892 	if (drv && drv->pm && drv->pm->freeze_noirq) {
893 		int error;
894 
895 		error = drv->pm->freeze_noirq(dev);
896 		suspend_report_result(drv->pm->freeze_noirq, error);
897 		if (error)
898 			return error;
899 	}
900 
901 	if (!pci_dev->state_saved)
902 		pci_save_state(pci_dev);
903 
904 	pci_pm_set_unknown_state(pci_dev);
905 
906 	if (pcibios_pm_ops.freeze_noirq)
907 		return pcibios_pm_ops.freeze_noirq(dev);
908 
909 	return 0;
910 }
911 
pci_pm_thaw_noirq(struct device * dev)912 static int pci_pm_thaw_noirq(struct device *dev)
913 {
914 	struct pci_dev *pci_dev = to_pci_dev(dev);
915 	struct device_driver *drv = dev->driver;
916 	int error = 0;
917 
918 	if (pcibios_pm_ops.thaw_noirq) {
919 		error = pcibios_pm_ops.thaw_noirq(dev);
920 		if (error)
921 			return error;
922 	}
923 
924 	if (pci_has_legacy_pm_support(pci_dev))
925 		return pci_legacy_resume_early(dev);
926 
927 	/*
928 	 * pci_restore_state() requires the device to be in D0 (because of MSI
929 	 * restoration among other things), so force it into D0 in case the
930 	 * driver's "freeze" callbacks put it into a low-power state directly.
931 	 */
932 	pci_set_power_state(pci_dev, PCI_D0);
933 	pci_restore_state(pci_dev);
934 
935 	if (drv && drv->pm && drv->pm->thaw_noirq)
936 		error = drv->pm->thaw_noirq(dev);
937 
938 	return error;
939 }
940 
pci_pm_thaw(struct device * dev)941 static int pci_pm_thaw(struct device *dev)
942 {
943 	struct pci_dev *pci_dev = to_pci_dev(dev);
944 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
945 	int error = 0;
946 
947 	if (pcibios_pm_ops.thaw) {
948 		error = pcibios_pm_ops.thaw(dev);
949 		if (error)
950 			return error;
951 	}
952 
953 	if (pci_has_legacy_pm_support(pci_dev))
954 		return pci_legacy_resume(dev);
955 
956 	if (pm) {
957 		if (pm->thaw)
958 			error = pm->thaw(dev);
959 	} else {
960 		pci_pm_reenable_device(pci_dev);
961 	}
962 
963 	pci_dev->state_saved = false;
964 
965 	return error;
966 }
967 
pci_pm_poweroff(struct device * dev)968 static int pci_pm_poweroff(struct device *dev)
969 {
970 	struct pci_dev *pci_dev = to_pci_dev(dev);
971 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
972 
973 	if (pci_has_legacy_pm_support(pci_dev))
974 		return pci_legacy_suspend(dev, PMSG_HIBERNATE);
975 
976 	if (!pm) {
977 		pci_pm_default_suspend(pci_dev);
978 		goto Fixup;
979 	}
980 
981 	/* The reason to do that is the same as in pci_pm_suspend(). */
982 	pm_runtime_resume(dev);
983 
984 	pci_dev->state_saved = false;
985 	if (pm->poweroff) {
986 		int error;
987 
988 		error = pm->poweroff(dev);
989 		suspend_report_result(pm->poweroff, error);
990 		if (error)
991 			return error;
992 	}
993 
994  Fixup:
995 	pci_fixup_device(pci_fixup_suspend, pci_dev);
996 
997 	if (pcibios_pm_ops.poweroff)
998 		return pcibios_pm_ops.poweroff(dev);
999 
1000 	return 0;
1001 }
1002 
pci_pm_poweroff_noirq(struct device * dev)1003 static int pci_pm_poweroff_noirq(struct device *dev)
1004 {
1005 	struct pci_dev *pci_dev = to_pci_dev(dev);
1006 	struct device_driver *drv = dev->driver;
1007 
1008 	if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1009 		return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1010 
1011 	if (!drv || !drv->pm) {
1012 		pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1013 		return 0;
1014 	}
1015 
1016 	if (drv->pm->poweroff_noirq) {
1017 		int error;
1018 
1019 		error = drv->pm->poweroff_noirq(dev);
1020 		suspend_report_result(drv->pm->poweroff_noirq, error);
1021 		if (error)
1022 			return error;
1023 	}
1024 
1025 	if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1026 		pci_prepare_to_sleep(pci_dev);
1027 
1028 	/*
1029 	 * The reason for doing this here is the same as for the analogous code
1030 	 * in pci_pm_suspend_noirq().
1031 	 */
1032 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1033 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1034 
1035 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1036 
1037 	if (pcibios_pm_ops.poweroff_noirq)
1038 		return pcibios_pm_ops.poweroff_noirq(dev);
1039 
1040 	return 0;
1041 }
1042 
pci_pm_restore_noirq(struct device * dev)1043 static int pci_pm_restore_noirq(struct device *dev)
1044 {
1045 	struct pci_dev *pci_dev = to_pci_dev(dev);
1046 	struct device_driver *drv = dev->driver;
1047 	int error = 0;
1048 
1049 	if (pcibios_pm_ops.restore_noirq) {
1050 		error = pcibios_pm_ops.restore_noirq(dev);
1051 		if (error)
1052 			return error;
1053 	}
1054 
1055 	pci_pm_default_resume_early(pci_dev);
1056 
1057 	if (pci_has_legacy_pm_support(pci_dev))
1058 		return pci_legacy_resume_early(dev);
1059 
1060 	if (drv && drv->pm && drv->pm->restore_noirq)
1061 		error = drv->pm->restore_noirq(dev);
1062 
1063 	return error;
1064 }
1065 
pci_pm_restore(struct device * dev)1066 static int pci_pm_restore(struct device *dev)
1067 {
1068 	struct pci_dev *pci_dev = to_pci_dev(dev);
1069 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1070 	int error = 0;
1071 
1072 	if (pcibios_pm_ops.restore) {
1073 		error = pcibios_pm_ops.restore(dev);
1074 		if (error)
1075 			return error;
1076 	}
1077 
1078 	/*
1079 	 * This is necessary for the hibernation error path in which restore is
1080 	 * called without restoring the standard config registers of the device.
1081 	 */
1082 	if (pci_dev->state_saved)
1083 		pci_restore_standard_config(pci_dev);
1084 
1085 	if (pci_has_legacy_pm_support(pci_dev))
1086 		return pci_legacy_resume(dev);
1087 
1088 	pci_pm_default_resume(pci_dev);
1089 
1090 	if (pm) {
1091 		if (pm->restore)
1092 			error = pm->restore(dev);
1093 	} else {
1094 		pci_pm_reenable_device(pci_dev);
1095 	}
1096 
1097 	return error;
1098 }
1099 
1100 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1101 
1102 #define pci_pm_freeze		NULL
1103 #define pci_pm_freeze_noirq	NULL
1104 #define pci_pm_thaw		NULL
1105 #define pci_pm_thaw_noirq	NULL
1106 #define pci_pm_poweroff		NULL
1107 #define pci_pm_poweroff_noirq	NULL
1108 #define pci_pm_restore		NULL
1109 #define pci_pm_restore_noirq	NULL
1110 
1111 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1112 
1113 #ifdef CONFIG_PM_RUNTIME
1114 
pci_pm_runtime_suspend(struct device * dev)1115 static int pci_pm_runtime_suspend(struct device *dev)
1116 {
1117 	struct pci_dev *pci_dev = to_pci_dev(dev);
1118 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1119 	pci_power_t prev = pci_dev->current_state;
1120 	int error;
1121 
1122 	/*
1123 	 * If pci_dev->driver is not set (unbound), the device should
1124 	 * always remain in D0 regardless of the runtime PM status
1125 	 */
1126 	if (!pci_dev->driver)
1127 		return 0;
1128 
1129 	if (!pm || !pm->runtime_suspend)
1130 		return -ENOSYS;
1131 
1132 	pci_dev->state_saved = false;
1133 	pci_dev->no_d3cold = false;
1134 	error = pm->runtime_suspend(dev);
1135 	suspend_report_result(pm->runtime_suspend, error);
1136 	if (error)
1137 		return error;
1138 	if (!pci_dev->d3cold_allowed)
1139 		pci_dev->no_d3cold = true;
1140 
1141 	pci_fixup_device(pci_fixup_suspend, pci_dev);
1142 
1143 	if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1144 	    && pci_dev->current_state != PCI_UNKNOWN) {
1145 		WARN_ONCE(pci_dev->current_state != prev,
1146 			"PCI PM: State of device not saved by %pF\n",
1147 			pm->runtime_suspend);
1148 		return 0;
1149 	}
1150 
1151 	if (!pci_dev->state_saved) {
1152 		pci_save_state(pci_dev);
1153 		pci_finish_runtime_suspend(pci_dev);
1154 	}
1155 
1156 	return 0;
1157 }
1158 
pci_pm_runtime_resume(struct device * dev)1159 static int pci_pm_runtime_resume(struct device *dev)
1160 {
1161 	int rc;
1162 	struct pci_dev *pci_dev = to_pci_dev(dev);
1163 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1164 
1165 	/*
1166 	 * If pci_dev->driver is not set (unbound), the device should
1167 	 * always remain in D0 regardless of the runtime PM status
1168 	 */
1169 	if (!pci_dev->driver)
1170 		return 0;
1171 
1172 	if (!pm || !pm->runtime_resume)
1173 		return -ENOSYS;
1174 
1175 	pci_restore_standard_config(pci_dev);
1176 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
1177 	__pci_enable_wake(pci_dev, PCI_D0, true, false);
1178 	pci_fixup_device(pci_fixup_resume, pci_dev);
1179 
1180 	rc = pm->runtime_resume(dev);
1181 
1182 	pci_dev->runtime_d3cold = false;
1183 
1184 	return rc;
1185 }
1186 
pci_pm_runtime_idle(struct device * dev)1187 static int pci_pm_runtime_idle(struct device *dev)
1188 {
1189 	struct pci_dev *pci_dev = to_pci_dev(dev);
1190 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1191 	int ret = 0;
1192 
1193 	/*
1194 	 * If pci_dev->driver is not set (unbound), the device should
1195 	 * always remain in D0 regardless of the runtime PM status
1196 	 */
1197 	if (!pci_dev->driver)
1198 		return 0;
1199 
1200 	if (!pm)
1201 		return -ENOSYS;
1202 
1203 	if (pm->runtime_idle)
1204 		ret = pm->runtime_idle(dev);
1205 
1206 	return ret;
1207 }
1208 
1209 #else /* !CONFIG_PM_RUNTIME */
1210 
1211 #define pci_pm_runtime_suspend	NULL
1212 #define pci_pm_runtime_resume	NULL
1213 #define pci_pm_runtime_idle	NULL
1214 
1215 #endif /* !CONFIG_PM_RUNTIME */
1216 
1217 #ifdef CONFIG_PM
1218 
1219 static const struct dev_pm_ops pci_dev_pm_ops = {
1220 	.prepare = pci_pm_prepare,
1221 	.suspend = pci_pm_suspend,
1222 	.resume = pci_pm_resume,
1223 	.freeze = pci_pm_freeze,
1224 	.thaw = pci_pm_thaw,
1225 	.poweroff = pci_pm_poweroff,
1226 	.restore = pci_pm_restore,
1227 	.suspend_noirq = pci_pm_suspend_noirq,
1228 	.resume_noirq = pci_pm_resume_noirq,
1229 	.freeze_noirq = pci_pm_freeze_noirq,
1230 	.thaw_noirq = pci_pm_thaw_noirq,
1231 	.poweroff_noirq = pci_pm_poweroff_noirq,
1232 	.restore_noirq = pci_pm_restore_noirq,
1233 	.runtime_suspend = pci_pm_runtime_suspend,
1234 	.runtime_resume = pci_pm_runtime_resume,
1235 	.runtime_idle = pci_pm_runtime_idle,
1236 };
1237 
1238 #define PCI_PM_OPS_PTR	(&pci_dev_pm_ops)
1239 
1240 #else /* !COMFIG_PM_OPS */
1241 
1242 #define PCI_PM_OPS_PTR	NULL
1243 
1244 #endif /* !COMFIG_PM_OPS */
1245 
1246 /**
1247  * __pci_register_driver - register a new pci driver
1248  * @drv: the driver structure to register
1249  * @owner: owner module of drv
1250  * @mod_name: module name string
1251  *
1252  * Adds the driver structure to the list of registered drivers.
1253  * Returns a negative value on error, otherwise 0.
1254  * If no error occurred, the driver remains registered even if
1255  * no device was claimed during registration.
1256  */
__pci_register_driver(struct pci_driver * drv,struct module * owner,const char * mod_name)1257 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1258 			  const char *mod_name)
1259 {
1260 	/* initialize common driver fields */
1261 	drv->driver.name = drv->name;
1262 	drv->driver.bus = &pci_bus_type;
1263 	drv->driver.owner = owner;
1264 	drv->driver.mod_name = mod_name;
1265 
1266 	spin_lock_init(&drv->dynids.lock);
1267 	INIT_LIST_HEAD(&drv->dynids.list);
1268 
1269 	/* register with core */
1270 	return driver_register(&drv->driver);
1271 }
1272 EXPORT_SYMBOL(__pci_register_driver);
1273 
1274 /**
1275  * pci_unregister_driver - unregister a pci driver
1276  * @drv: the driver structure to unregister
1277  *
1278  * Deletes the driver structure from the list of registered PCI drivers,
1279  * gives it a chance to clean up by calling its remove() function for
1280  * each device it was responsible for, and marks those devices as
1281  * driverless.
1282  */
1283 
pci_unregister_driver(struct pci_driver * drv)1284 void pci_unregister_driver(struct pci_driver *drv)
1285 {
1286 	driver_unregister(&drv->driver);
1287 	pci_free_dynids(drv);
1288 }
1289 EXPORT_SYMBOL(pci_unregister_driver);
1290 
1291 static struct pci_driver pci_compat_driver = {
1292 	.name = "compat"
1293 };
1294 
1295 /**
1296  * pci_dev_driver - get the pci_driver of a device
1297  * @dev: the device to query
1298  *
1299  * Returns the appropriate pci_driver structure or %NULL if there is no
1300  * registered driver for the device.
1301  */
pci_dev_driver(const struct pci_dev * dev)1302 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1303 {
1304 	if (dev->driver)
1305 		return dev->driver;
1306 	else {
1307 		int i;
1308 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1309 			if (dev->resource[i].flags & IORESOURCE_BUSY)
1310 				return &pci_compat_driver;
1311 	}
1312 	return NULL;
1313 }
1314 EXPORT_SYMBOL(pci_dev_driver);
1315 
1316 /**
1317  * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1318  * @dev: the PCI device structure to match against
1319  * @drv: the device driver to search for matching PCI device id structures
1320  *
1321  * Used by a driver to check whether a PCI device present in the
1322  * system is in its list of supported devices. Returns the matching
1323  * pci_device_id structure or %NULL if there is no match.
1324  */
pci_bus_match(struct device * dev,struct device_driver * drv)1325 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1326 {
1327 	struct pci_dev *pci_dev = to_pci_dev(dev);
1328 	struct pci_driver *pci_drv;
1329 	const struct pci_device_id *found_id;
1330 
1331 	if (!pci_dev->match_driver)
1332 		return 0;
1333 
1334 	pci_drv = to_pci_driver(drv);
1335 	found_id = pci_match_device(pci_drv, pci_dev);
1336 	if (found_id)
1337 		return 1;
1338 
1339 	return 0;
1340 }
1341 
1342 /**
1343  * pci_dev_get - increments the reference count of the pci device structure
1344  * @dev: the device being referenced
1345  *
1346  * Each live reference to a device should be refcounted.
1347  *
1348  * Drivers for PCI devices should normally record such references in
1349  * their probe() methods, when they bind to a device, and release
1350  * them by calling pci_dev_put(), in their disconnect() methods.
1351  *
1352  * A pointer to the device with the incremented reference counter is returned.
1353  */
pci_dev_get(struct pci_dev * dev)1354 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1355 {
1356 	if (dev)
1357 		get_device(&dev->dev);
1358 	return dev;
1359 }
1360 EXPORT_SYMBOL(pci_dev_get);
1361 
1362 /**
1363  * pci_dev_put - release a use of the pci device structure
1364  * @dev: device that's been disconnected
1365  *
1366  * Must be called when a user of a device is finished with it.  When the last
1367  * user of the device calls this function, the memory of the device is freed.
1368  */
pci_dev_put(struct pci_dev * dev)1369 void pci_dev_put(struct pci_dev *dev)
1370 {
1371 	if (dev)
1372 		put_device(&dev->dev);
1373 }
1374 EXPORT_SYMBOL(pci_dev_put);
1375 
pci_uevent(struct device * dev,struct kobj_uevent_env * env)1376 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1377 {
1378 	struct pci_dev *pdev;
1379 
1380 	if (!dev)
1381 		return -ENODEV;
1382 
1383 	pdev = to_pci_dev(dev);
1384 
1385 	if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1386 		return -ENOMEM;
1387 
1388 	if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1389 		return -ENOMEM;
1390 
1391 	if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1392 			   pdev->subsystem_device))
1393 		return -ENOMEM;
1394 
1395 	if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1396 		return -ENOMEM;
1397 
1398 	if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1399 			   pdev->vendor, pdev->device,
1400 			   pdev->subsystem_vendor, pdev->subsystem_device,
1401 			   (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1402 			   (u8)(pdev->class)))
1403 		return -ENOMEM;
1404 
1405 	return 0;
1406 }
1407 
1408 struct bus_type pci_bus_type = {
1409 	.name		= "pci",
1410 	.match		= pci_bus_match,
1411 	.uevent		= pci_uevent,
1412 	.probe		= pci_device_probe,
1413 	.remove		= pci_device_remove,
1414 	.shutdown	= pci_device_shutdown,
1415 	.dev_groups	= pci_dev_groups,
1416 	.bus_groups	= pci_bus_groups,
1417 	.drv_groups	= pci_drv_groups,
1418 	.pm		= PCI_PM_OPS_PTR,
1419 };
1420 EXPORT_SYMBOL(pci_bus_type);
1421 
pci_driver_init(void)1422 static int __init pci_driver_init(void)
1423 {
1424 	return bus_register(&pci_bus_type);
1425 }
1426 postcore_initcall(pci_driver_init);
1427