• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/of.h>
14 #include <linux/of_pci.h>
15 #include <linux/pci.h>
16 #include <linux/pm.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/log2.h>
22 #include <linux/pci-aspm.h>
23 #include <linux/pm_wakeup.h>
24 #include <linux/interrupt.h>
25 #include <linux/device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pci_hotplug.h>
28 #include <asm-generic/pci-bridge.h>
29 #include <asm/setup.h>
30 #include "pci.h"
31 
32 const char *pci_power_names[] = {
33 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
34 };
35 EXPORT_SYMBOL_GPL(pci_power_names);
36 
37 int isa_dma_bridge_buggy;
38 EXPORT_SYMBOL(isa_dma_bridge_buggy);
39 
40 int pci_pci_problems;
41 EXPORT_SYMBOL(pci_pci_problems);
42 
43 unsigned int pci_pm_d3_delay;
44 
45 static void pci_pme_list_scan(struct work_struct *work);
46 
47 static LIST_HEAD(pci_pme_list);
48 static DEFINE_MUTEX(pci_pme_list_mutex);
49 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
50 
51 struct pci_pme_device {
52 	struct list_head list;
53 	struct pci_dev *dev;
54 };
55 
56 #define PME_TIMEOUT 1000 /* How long between PME checks */
57 
pci_dev_d3_sleep(struct pci_dev * dev)58 static void pci_dev_d3_sleep(struct pci_dev *dev)
59 {
60 	unsigned int delay = dev->d3_delay;
61 
62 	if (delay < pci_pm_d3_delay)
63 		delay = pci_pm_d3_delay;
64 
65 	msleep(delay);
66 }
67 
68 #ifdef CONFIG_PCI_DOMAINS
69 int pci_domains_supported = 1;
70 #endif
71 
72 #define DEFAULT_CARDBUS_IO_SIZE		(256)
73 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
74 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
75 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
76 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
77 
78 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
79 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
80 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
81 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
82 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
83 
84 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
85 
86 /*
87  * The default CLS is used if arch didn't set CLS explicitly and not
88  * all pci devices agree on the same value.  Arch can override either
89  * the dfl or actual value as it sees fit.  Don't forget this is
90  * measured in 32-bit words, not bytes.
91  */
92 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
93 u8 pci_cache_line_size;
94 
95 /*
96  * If we set up a device for bus mastering, we need to check the latency
97  * timer as certain BIOSes forget to set it properly.
98  */
99 unsigned int pcibios_max_latency = 255;
100 
101 /* If set, the PCIe ARI capability will not be used. */
102 static bool pcie_ari_disabled;
103 
104 /**
105  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
106  * @bus: pointer to PCI bus structure to search
107  *
108  * Given a PCI bus, returns the highest PCI bus number present in the set
109  * including the given PCI bus and its list of child PCI buses.
110  */
pci_bus_max_busnr(struct pci_bus * bus)111 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
112 {
113 	struct pci_bus *tmp;
114 	unsigned char max, n;
115 
116 	max = bus->busn_res.end;
117 	list_for_each_entry(tmp, &bus->children, node) {
118 		n = pci_bus_max_busnr(tmp);
119 		if (n > max)
120 			max = n;
121 	}
122 	return max;
123 }
124 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
125 
126 #ifdef CONFIG_HAS_IOMEM
pci_ioremap_bar(struct pci_dev * pdev,int bar)127 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
128 {
129 	/*
130 	 * Make sure the BAR is actually a memory resource, not an IO resource
131 	 */
132 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
133 		WARN_ON(1);
134 		return NULL;
135 	}
136 	return ioremap_nocache(pci_resource_start(pdev, bar),
137 				     pci_resource_len(pdev, bar));
138 }
139 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
140 #endif
141 
142 #define PCI_FIND_CAP_TTL	48
143 
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)144 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
145 				   u8 pos, int cap, int *ttl)
146 {
147 	u8 id;
148 
149 	while ((*ttl)--) {
150 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
151 		if (pos < 0x40)
152 			break;
153 		pos &= ~3;
154 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
155 					 &id);
156 		if (id == 0xff)
157 			break;
158 		if (id == cap)
159 			return pos;
160 		pos += PCI_CAP_LIST_NEXT;
161 	}
162 	return 0;
163 }
164 
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)165 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
166 			       u8 pos, int cap)
167 {
168 	int ttl = PCI_FIND_CAP_TTL;
169 
170 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
171 }
172 
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)173 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
174 {
175 	return __pci_find_next_cap(dev->bus, dev->devfn,
176 				   pos + PCI_CAP_LIST_NEXT, cap);
177 }
178 EXPORT_SYMBOL_GPL(pci_find_next_capability);
179 
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)180 static int __pci_bus_find_cap_start(struct pci_bus *bus,
181 				    unsigned int devfn, u8 hdr_type)
182 {
183 	u16 status;
184 
185 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
186 	if (!(status & PCI_STATUS_CAP_LIST))
187 		return 0;
188 
189 	switch (hdr_type) {
190 	case PCI_HEADER_TYPE_NORMAL:
191 	case PCI_HEADER_TYPE_BRIDGE:
192 		return PCI_CAPABILITY_LIST;
193 	case PCI_HEADER_TYPE_CARDBUS:
194 		return PCI_CB_CAPABILITY_LIST;
195 	default:
196 		return 0;
197 	}
198 
199 	return 0;
200 }
201 
202 /**
203  * pci_find_capability - query for devices' capabilities
204  * @dev: PCI device to query
205  * @cap: capability code
206  *
207  * Tell if a device supports a given PCI capability.
208  * Returns the address of the requested capability structure within the
209  * device's PCI configuration space or 0 in case the device does not
210  * support it.  Possible values for @cap:
211  *
212  *  %PCI_CAP_ID_PM           Power Management
213  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
214  *  %PCI_CAP_ID_VPD          Vital Product Data
215  *  %PCI_CAP_ID_SLOTID       Slot Identification
216  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
217  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
218  *  %PCI_CAP_ID_PCIX         PCI-X
219  *  %PCI_CAP_ID_EXP          PCI Express
220  */
pci_find_capability(struct pci_dev * dev,int cap)221 int pci_find_capability(struct pci_dev *dev, int cap)
222 {
223 	int pos;
224 
225 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
226 	if (pos)
227 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
228 
229 	return pos;
230 }
231 EXPORT_SYMBOL(pci_find_capability);
232 
233 /**
234  * pci_bus_find_capability - query for devices' capabilities
235  * @bus:   the PCI bus to query
236  * @devfn: PCI device to query
237  * @cap:   capability code
238  *
239  * Like pci_find_capability() but works for pci devices that do not have a
240  * pci_dev structure set up yet.
241  *
242  * Returns the address of the requested capability structure within the
243  * device's PCI configuration space or 0 in case the device does not
244  * support it.
245  */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)246 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
247 {
248 	int pos;
249 	u8 hdr_type;
250 
251 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
252 
253 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
254 	if (pos)
255 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
256 
257 	return pos;
258 }
259 EXPORT_SYMBOL(pci_bus_find_capability);
260 
261 /**
262  * pci_find_next_ext_capability - Find an extended capability
263  * @dev: PCI device to query
264  * @start: address at which to start looking (0 to start at beginning of list)
265  * @cap: capability code
266  *
267  * Returns the address of the next matching extended capability structure
268  * within the device's PCI configuration space or 0 if the device does
269  * not support it.  Some capabilities can occur several times, e.g., the
270  * vendor-specific capability, and this provides a way to find them all.
271  */
pci_find_next_ext_capability(struct pci_dev * dev,int start,int cap)272 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
273 {
274 	u32 header;
275 	int ttl;
276 	int pos = PCI_CFG_SPACE_SIZE;
277 
278 	/* minimum 8 bytes per capability */
279 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
280 
281 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
282 		return 0;
283 
284 	if (start)
285 		pos = start;
286 
287 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
288 		return 0;
289 
290 	/*
291 	 * If we have no capabilities, this is indicated by cap ID,
292 	 * cap version and next pointer all being 0.
293 	 */
294 	if (header == 0)
295 		return 0;
296 
297 	while (ttl-- > 0) {
298 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
299 			return pos;
300 
301 		pos = PCI_EXT_CAP_NEXT(header);
302 		if (pos < PCI_CFG_SPACE_SIZE)
303 			break;
304 
305 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
306 			break;
307 	}
308 
309 	return 0;
310 }
311 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
312 
313 /**
314  * pci_find_ext_capability - Find an extended capability
315  * @dev: PCI device to query
316  * @cap: capability code
317  *
318  * Returns the address of the requested extended capability structure
319  * within the device's PCI configuration space or 0 if the device does
320  * not support it.  Possible values for @cap:
321  *
322  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
323  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
324  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
325  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
326  */
pci_find_ext_capability(struct pci_dev * dev,int cap)327 int pci_find_ext_capability(struct pci_dev *dev, int cap)
328 {
329 	return pci_find_next_ext_capability(dev, 0, cap);
330 }
331 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
332 
__pci_find_next_ht_cap(struct pci_dev * dev,int pos,int ht_cap)333 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
334 {
335 	int rc, ttl = PCI_FIND_CAP_TTL;
336 	u8 cap, mask;
337 
338 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
339 		mask = HT_3BIT_CAP_MASK;
340 	else
341 		mask = HT_5BIT_CAP_MASK;
342 
343 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
344 				      PCI_CAP_ID_HT, &ttl);
345 	while (pos) {
346 		rc = pci_read_config_byte(dev, pos + 3, &cap);
347 		if (rc != PCIBIOS_SUCCESSFUL)
348 			return 0;
349 
350 		if ((cap & mask) == ht_cap)
351 			return pos;
352 
353 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
354 					      pos + PCI_CAP_LIST_NEXT,
355 					      PCI_CAP_ID_HT, &ttl);
356 	}
357 
358 	return 0;
359 }
360 /**
361  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
362  * @dev: PCI device to query
363  * @pos: Position from which to continue searching
364  * @ht_cap: Hypertransport capability code
365  *
366  * To be used in conjunction with pci_find_ht_capability() to search for
367  * all capabilities matching @ht_cap. @pos should always be a value returned
368  * from pci_find_ht_capability().
369  *
370  * NB. To be 100% safe against broken PCI devices, the caller should take
371  * steps to avoid an infinite loop.
372  */
pci_find_next_ht_capability(struct pci_dev * dev,int pos,int ht_cap)373 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
374 {
375 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
376 }
377 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
378 
379 /**
380  * pci_find_ht_capability - query a device's Hypertransport capabilities
381  * @dev: PCI device to query
382  * @ht_cap: Hypertransport capability code
383  *
384  * Tell if a device supports a given Hypertransport capability.
385  * Returns an address within the device's PCI configuration space
386  * or 0 in case the device does not support the request capability.
387  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
388  * which has a Hypertransport capability matching @ht_cap.
389  */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)390 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
391 {
392 	int pos;
393 
394 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
395 	if (pos)
396 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
397 
398 	return pos;
399 }
400 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
401 
402 /**
403  * pci_find_parent_resource - return resource region of parent bus of given region
404  * @dev: PCI device structure contains resources to be searched
405  * @res: child resource record for which parent is sought
406  *
407  *  For given resource region of given device, return the resource
408  *  region of parent bus the given region is contained in.
409  */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)410 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
411 					  struct resource *res)
412 {
413 	const struct pci_bus *bus = dev->bus;
414 	struct resource *r;
415 	int i;
416 
417 	pci_bus_for_each_resource(bus, r, i) {
418 		if (!r)
419 			continue;
420 		if (res->start && resource_contains(r, res)) {
421 
422 			/*
423 			 * If the window is prefetchable but the BAR is
424 			 * not, the allocator made a mistake.
425 			 */
426 			if (r->flags & IORESOURCE_PREFETCH &&
427 			    !(res->flags & IORESOURCE_PREFETCH))
428 				return NULL;
429 
430 			/*
431 			 * If we're below a transparent bridge, there may
432 			 * be both a positively-decoded aperture and a
433 			 * subtractively-decoded region that contain the BAR.
434 			 * We want the positively-decoded one, so this depends
435 			 * on pci_bus_for_each_resource() giving us those
436 			 * first.
437 			 */
438 			return r;
439 		}
440 	}
441 	return NULL;
442 }
443 EXPORT_SYMBOL(pci_find_parent_resource);
444 
445 /**
446  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
447  * @dev: the PCI device to operate on
448  * @pos: config space offset of status word
449  * @mask: mask of bit(s) to care about in status word
450  *
451  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
452  */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)453 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
454 {
455 	int i;
456 
457 	/* Wait for Transaction Pending bit clean */
458 	for (i = 0; i < 4; i++) {
459 		u16 status;
460 		if (i)
461 			msleep((1 << (i - 1)) * 100);
462 
463 		pci_read_config_word(dev, pos, &status);
464 		if (!(status & mask))
465 			return 1;
466 	}
467 
468 	return 0;
469 }
470 
471 /**
472  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
473  * @dev: PCI device to have its BARs restored
474  *
475  * Restore the BAR values for a given device, so as to make it
476  * accessible by its driver.
477  */
pci_restore_bars(struct pci_dev * dev)478 static void pci_restore_bars(struct pci_dev *dev)
479 {
480 	int i;
481 
482 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
483 		pci_update_resource(dev, i);
484 }
485 
486 static struct pci_platform_pm_ops *pci_platform_pm;
487 
pci_set_platform_pm(struct pci_platform_pm_ops * ops)488 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
489 {
490 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
491 	    || !ops->sleep_wake)
492 		return -EINVAL;
493 	pci_platform_pm = ops;
494 	return 0;
495 }
496 
platform_pci_power_manageable(struct pci_dev * dev)497 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
498 {
499 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
500 }
501 
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)502 static inline int platform_pci_set_power_state(struct pci_dev *dev,
503 					       pci_power_t t)
504 {
505 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
506 }
507 
platform_pci_choose_state(struct pci_dev * dev)508 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
509 {
510 	return pci_platform_pm ?
511 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
512 }
513 
platform_pci_sleep_wake(struct pci_dev * dev,bool enable)514 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
515 {
516 	return pci_platform_pm ?
517 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
518 }
519 
platform_pci_run_wake(struct pci_dev * dev,bool enable)520 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
521 {
522 	return pci_platform_pm ?
523 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
524 }
525 
526 /**
527  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
528  *                           given PCI device
529  * @dev: PCI device to handle.
530  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
531  *
532  * RETURN VALUE:
533  * -EINVAL if the requested state is invalid.
534  * -EIO if device does not support PCI PM or its PM capabilities register has a
535  * wrong version, or device doesn't support the requested state.
536  * 0 if device already is in the requested state.
537  * 0 if device's power state has been successfully changed.
538  */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)539 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
540 {
541 	u16 pmcsr;
542 	bool need_restore = false;
543 
544 	/* Check if we're already there */
545 	if (dev->current_state == state)
546 		return 0;
547 
548 	if (!dev->pm_cap)
549 		return -EIO;
550 
551 	if (state < PCI_D0 || state > PCI_D3hot)
552 		return -EINVAL;
553 
554 	/* Validate current state:
555 	 * Can enter D0 from any state, but if we can only go deeper
556 	 * to sleep if we're already in a low power state
557 	 */
558 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
559 	    && dev->current_state > state) {
560 		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
561 			dev->current_state, state);
562 		return -EINVAL;
563 	}
564 
565 	/* check if this device supports the desired state */
566 	if ((state == PCI_D1 && !dev->d1_support)
567 	   || (state == PCI_D2 && !dev->d2_support))
568 		return -EIO;
569 
570 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
571 
572 	/* If we're (effectively) in D3, force entire word to 0.
573 	 * This doesn't affect PME_Status, disables PME_En, and
574 	 * sets PowerState to 0.
575 	 */
576 	switch (dev->current_state) {
577 	case PCI_D0:
578 	case PCI_D1:
579 	case PCI_D2:
580 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
581 		pmcsr |= state;
582 		break;
583 	case PCI_D3hot:
584 	case PCI_D3cold:
585 	case PCI_UNKNOWN: /* Boot-up */
586 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
587 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
588 			need_restore = true;
589 		/* Fall-through: force to D0 */
590 	default:
591 		pmcsr = 0;
592 		break;
593 	}
594 
595 	/* enter specified state */
596 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
597 
598 	/* Mandatory power management transition delays */
599 	/* see PCI PM 1.1 5.6.1 table 18 */
600 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
601 		pci_dev_d3_sleep(dev);
602 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
603 		udelay(PCI_PM_D2_DELAY);
604 
605 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
606 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
607 	if (dev->current_state != state && printk_ratelimit())
608 		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
609 			 dev->current_state);
610 
611 	/*
612 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
613 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
614 	 * from D3hot to D0 _may_ perform an internal reset, thereby
615 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
616 	 * For example, at least some versions of the 3c905B and the
617 	 * 3c556B exhibit this behaviour.
618 	 *
619 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
620 	 * devices in a D3hot state at boot.  Consequently, we need to
621 	 * restore at least the BARs so that the device will be
622 	 * accessible to its driver.
623 	 */
624 	if (need_restore)
625 		pci_restore_bars(dev);
626 
627 	if (dev->bus->self)
628 		pcie_aspm_pm_state_change(dev->bus->self);
629 
630 	return 0;
631 }
632 
633 /**
634  * pci_update_current_state - Read PCI power state of given device from its
635  *                            PCI PM registers and cache it
636  * @dev: PCI device to handle.
637  * @state: State to cache in case the device doesn't have the PM capability
638  */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)639 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
640 {
641 	if (dev->pm_cap) {
642 		u16 pmcsr;
643 
644 		/*
645 		 * Configuration space is not accessible for device in
646 		 * D3cold, so just keep or set D3cold for safety
647 		 */
648 		if (dev->current_state == PCI_D3cold)
649 			return;
650 		if (state == PCI_D3cold) {
651 			dev->current_state = PCI_D3cold;
652 			return;
653 		}
654 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
655 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
656 	} else {
657 		dev->current_state = state;
658 	}
659 }
660 
661 /**
662  * pci_power_up - Put the given device into D0 forcibly
663  * @dev: PCI device to power up
664  */
pci_power_up(struct pci_dev * dev)665 void pci_power_up(struct pci_dev *dev)
666 {
667 	if (platform_pci_power_manageable(dev))
668 		platform_pci_set_power_state(dev, PCI_D0);
669 
670 	pci_raw_set_power_state(dev, PCI_D0);
671 	pci_update_current_state(dev, PCI_D0);
672 }
673 
674 /**
675  * pci_platform_power_transition - Use platform to change device power state
676  * @dev: PCI device to handle.
677  * @state: State to put the device into.
678  */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)679 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
680 {
681 	int error;
682 
683 	if (platform_pci_power_manageable(dev)) {
684 		error = platform_pci_set_power_state(dev, state);
685 		if (!error)
686 			pci_update_current_state(dev, state);
687 	} else
688 		error = -ENODEV;
689 
690 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
691 		dev->current_state = PCI_D0;
692 
693 	return error;
694 }
695 
696 /**
697  * pci_wakeup - Wake up a PCI device
698  * @pci_dev: Device to handle.
699  * @ign: ignored parameter
700  */
pci_wakeup(struct pci_dev * pci_dev,void * ign)701 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
702 {
703 	pci_wakeup_event(pci_dev);
704 	pm_request_resume(&pci_dev->dev);
705 	return 0;
706 }
707 
708 /**
709  * pci_wakeup_bus - Walk given bus and wake up devices on it
710  * @bus: Top bus of the subtree to walk.
711  */
pci_wakeup_bus(struct pci_bus * bus)712 static void pci_wakeup_bus(struct pci_bus *bus)
713 {
714 	if (bus)
715 		pci_walk_bus(bus, pci_wakeup, NULL);
716 }
717 
718 /**
719  * __pci_start_power_transition - Start power transition of a PCI device
720  * @dev: PCI device to handle.
721  * @state: State to put the device into.
722  */
__pci_start_power_transition(struct pci_dev * dev,pci_power_t state)723 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
724 {
725 	if (state == PCI_D0) {
726 		pci_platform_power_transition(dev, PCI_D0);
727 		/*
728 		 * Mandatory power management transition delays, see
729 		 * PCI Express Base Specification Revision 2.0 Section
730 		 * 6.6.1: Conventional Reset.  Do not delay for
731 		 * devices powered on/off by corresponding bridge,
732 		 * because have already delayed for the bridge.
733 		 */
734 		if (dev->runtime_d3cold) {
735 			msleep(dev->d3cold_delay);
736 			/*
737 			 * When powering on a bridge from D3cold, the
738 			 * whole hierarchy may be powered on into
739 			 * D0uninitialized state, resume them to give
740 			 * them a chance to suspend again
741 			 */
742 			pci_wakeup_bus(dev->subordinate);
743 		}
744 	}
745 }
746 
747 /**
748  * __pci_dev_set_current_state - Set current state of a PCI device
749  * @dev: Device to handle
750  * @data: pointer to state to be set
751  */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)752 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
753 {
754 	pci_power_t state = *(pci_power_t *)data;
755 
756 	dev->current_state = state;
757 	return 0;
758 }
759 
760 /**
761  * __pci_bus_set_current_state - Walk given bus and set current state of devices
762  * @bus: Top bus of the subtree to walk.
763  * @state: state to be set
764  */
__pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)765 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
766 {
767 	if (bus)
768 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
769 }
770 
771 /**
772  * __pci_complete_power_transition - Complete power transition of a PCI device
773  * @dev: PCI device to handle.
774  * @state: State to put the device into.
775  *
776  * This function should not be called directly by device drivers.
777  */
__pci_complete_power_transition(struct pci_dev * dev,pci_power_t state)778 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
779 {
780 	int ret;
781 
782 	if (state <= PCI_D0)
783 		return -EINVAL;
784 	ret = pci_platform_power_transition(dev, state);
785 	/* Power off the bridge may power off the whole hierarchy */
786 	if (!ret && state == PCI_D3cold)
787 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
788 	return ret;
789 }
790 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
791 
792 /**
793  * pci_set_power_state - Set the power state of a PCI device
794  * @dev: PCI device to handle.
795  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
796  *
797  * Transition a device to a new power state, using the platform firmware and/or
798  * the device's PCI PM registers.
799  *
800  * RETURN VALUE:
801  * -EINVAL if the requested state is invalid.
802  * -EIO if device does not support PCI PM or its PM capabilities register has a
803  * wrong version, or device doesn't support the requested state.
804  * 0 if device already is in the requested state.
805  * 0 if device's power state has been successfully changed.
806  */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)807 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
808 {
809 	int error;
810 
811 	/* bound the state we're entering */
812 	if (state > PCI_D3cold)
813 		state = PCI_D3cold;
814 	else if (state < PCI_D0)
815 		state = PCI_D0;
816 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
817 		/*
818 		 * If the device or the parent bridge do not support PCI PM,
819 		 * ignore the request if we're doing anything other than putting
820 		 * it into D0 (which would only happen on boot).
821 		 */
822 		return 0;
823 
824 	/* Check if we're already there */
825 	if (dev->current_state == state)
826 		return 0;
827 
828 	__pci_start_power_transition(dev, state);
829 
830 	/* This device is quirked not to be put into D3, so
831 	   don't put it in D3 */
832 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
833 		return 0;
834 
835 	/*
836 	 * To put device in D3cold, we put device into D3hot in native
837 	 * way, then put device into D3cold with platform ops
838 	 */
839 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
840 					PCI_D3hot : state);
841 
842 	if (!__pci_complete_power_transition(dev, state))
843 		error = 0;
844 
845 	return error;
846 }
847 EXPORT_SYMBOL(pci_set_power_state);
848 
849 /**
850  * pci_choose_state - Choose the power state of a PCI device
851  * @dev: PCI device to be suspended
852  * @state: target sleep state for the whole system. This is the value
853  *	that is passed to suspend() function.
854  *
855  * Returns PCI power state suitable for given device and given system
856  * message.
857  */
858 
pci_choose_state(struct pci_dev * dev,pm_message_t state)859 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
860 {
861 	pci_power_t ret;
862 
863 	if (!dev->pm_cap)
864 		return PCI_D0;
865 
866 	ret = platform_pci_choose_state(dev);
867 	if (ret != PCI_POWER_ERROR)
868 		return ret;
869 
870 	switch (state.event) {
871 	case PM_EVENT_ON:
872 		return PCI_D0;
873 	case PM_EVENT_FREEZE:
874 	case PM_EVENT_PRETHAW:
875 		/* REVISIT both freeze and pre-thaw "should" use D0 */
876 	case PM_EVENT_SUSPEND:
877 	case PM_EVENT_HIBERNATE:
878 		return PCI_D3hot;
879 	default:
880 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
881 			 state.event);
882 		BUG();
883 	}
884 	return PCI_D0;
885 }
886 EXPORT_SYMBOL(pci_choose_state);
887 
888 #define PCI_EXP_SAVE_REGS	7
889 
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)890 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
891 						       u16 cap, bool extended)
892 {
893 	struct pci_cap_saved_state *tmp;
894 
895 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
896 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
897 			return tmp;
898 	}
899 	return NULL;
900 }
901 
pci_find_saved_cap(struct pci_dev * dev,char cap)902 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
903 {
904 	return _pci_find_saved_cap(dev, cap, false);
905 }
906 
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)907 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
908 {
909 	return _pci_find_saved_cap(dev, cap, true);
910 }
911 
pci_save_pcie_state(struct pci_dev * dev)912 static int pci_save_pcie_state(struct pci_dev *dev)
913 {
914 	int i = 0;
915 	struct pci_cap_saved_state *save_state;
916 	u16 *cap;
917 
918 	if (!pci_is_pcie(dev))
919 		return 0;
920 
921 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
922 	if (!save_state) {
923 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
924 		return -ENOMEM;
925 	}
926 
927 	cap = (u16 *)&save_state->cap.data[0];
928 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
929 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
930 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
931 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
932 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
933 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
934 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
935 
936 	return 0;
937 }
938 
pci_restore_pcie_state(struct pci_dev * dev)939 static void pci_restore_pcie_state(struct pci_dev *dev)
940 {
941 	int i = 0;
942 	struct pci_cap_saved_state *save_state;
943 	u16 *cap;
944 
945 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
946 	if (!save_state)
947 		return;
948 
949 	cap = (u16 *)&save_state->cap.data[0];
950 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
951 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
952 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
953 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
954 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
955 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
956 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
957 }
958 
959 
pci_save_pcix_state(struct pci_dev * dev)960 static int pci_save_pcix_state(struct pci_dev *dev)
961 {
962 	int pos;
963 	struct pci_cap_saved_state *save_state;
964 
965 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
966 	if (pos <= 0)
967 		return 0;
968 
969 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
970 	if (!save_state) {
971 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
972 		return -ENOMEM;
973 	}
974 
975 	pci_read_config_word(dev, pos + PCI_X_CMD,
976 			     (u16 *)save_state->cap.data);
977 
978 	return 0;
979 }
980 
pci_restore_pcix_state(struct pci_dev * dev)981 static void pci_restore_pcix_state(struct pci_dev *dev)
982 {
983 	int i = 0, pos;
984 	struct pci_cap_saved_state *save_state;
985 	u16 *cap;
986 
987 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
988 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
989 	if (!save_state || pos <= 0)
990 		return;
991 	cap = (u16 *)&save_state->cap.data[0];
992 
993 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
994 }
995 
996 
997 /**
998  * pci_save_state - save the PCI configuration space of a device before suspending
999  * @dev: - PCI device that we're dealing with
1000  */
pci_save_state(struct pci_dev * dev)1001 int pci_save_state(struct pci_dev *dev)
1002 {
1003 	int i;
1004 	/* XXX: 100% dword access ok here? */
1005 	for (i = 0; i < 16; i++)
1006 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1007 	dev->state_saved = true;
1008 
1009 	i = pci_save_pcie_state(dev);
1010 	if (i != 0)
1011 		return i;
1012 
1013 	i = pci_save_pcix_state(dev);
1014 	if (i != 0)
1015 		return i;
1016 
1017 	i = pci_save_vc_state(dev);
1018 	if (i != 0)
1019 		return i;
1020 
1021 	return 0;
1022 }
1023 EXPORT_SYMBOL(pci_save_state);
1024 
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry)1025 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1026 				     u32 saved_val, int retry)
1027 {
1028 	u32 val;
1029 
1030 	pci_read_config_dword(pdev, offset, &val);
1031 	if (val == saved_val)
1032 		return;
1033 
1034 	for (;;) {
1035 		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1036 			offset, val, saved_val);
1037 		pci_write_config_dword(pdev, offset, saved_val);
1038 		if (retry-- <= 0)
1039 			return;
1040 
1041 		pci_read_config_dword(pdev, offset, &val);
1042 		if (val == saved_val)
1043 			return;
1044 
1045 		mdelay(1);
1046 	}
1047 }
1048 
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry)1049 static void pci_restore_config_space_range(struct pci_dev *pdev,
1050 					   int start, int end, int retry)
1051 {
1052 	int index;
1053 
1054 	for (index = end; index >= start; index--)
1055 		pci_restore_config_dword(pdev, 4 * index,
1056 					 pdev->saved_config_space[index],
1057 					 retry);
1058 }
1059 
pci_restore_config_space(struct pci_dev * pdev)1060 static void pci_restore_config_space(struct pci_dev *pdev)
1061 {
1062 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1063 		pci_restore_config_space_range(pdev, 10, 15, 0);
1064 		/* Restore BARs before the command register. */
1065 		pci_restore_config_space_range(pdev, 4, 9, 10);
1066 		pci_restore_config_space_range(pdev, 0, 3, 0);
1067 	} else {
1068 		pci_restore_config_space_range(pdev, 0, 15, 0);
1069 	}
1070 }
1071 
1072 /**
1073  * pci_restore_state - Restore the saved state of a PCI device
1074  * @dev: - PCI device that we're dealing with
1075  */
pci_restore_state(struct pci_dev * dev)1076 void pci_restore_state(struct pci_dev *dev)
1077 {
1078 	if (!dev->state_saved)
1079 		return;
1080 
1081 	/* PCI Express register must be restored first */
1082 	pci_restore_pcie_state(dev);
1083 	pci_restore_ats_state(dev);
1084 	pci_restore_vc_state(dev);
1085 
1086 	pci_restore_config_space(dev);
1087 
1088 	pci_restore_pcix_state(dev);
1089 	pci_restore_msi_state(dev);
1090 	pci_restore_iov_state(dev);
1091 
1092 	dev->state_saved = false;
1093 }
1094 EXPORT_SYMBOL(pci_restore_state);
1095 
1096 struct pci_saved_state {
1097 	u32 config_space[16];
1098 	struct pci_cap_saved_data cap[0];
1099 };
1100 
1101 /**
1102  * pci_store_saved_state - Allocate and return an opaque struct containing
1103  *			   the device saved state.
1104  * @dev: PCI device that we're dealing with
1105  *
1106  * Return NULL if no state or error.
1107  */
pci_store_saved_state(struct pci_dev * dev)1108 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1109 {
1110 	struct pci_saved_state *state;
1111 	struct pci_cap_saved_state *tmp;
1112 	struct pci_cap_saved_data *cap;
1113 	size_t size;
1114 
1115 	if (!dev->state_saved)
1116 		return NULL;
1117 
1118 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1119 
1120 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1121 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1122 
1123 	state = kzalloc(size, GFP_KERNEL);
1124 	if (!state)
1125 		return NULL;
1126 
1127 	memcpy(state->config_space, dev->saved_config_space,
1128 	       sizeof(state->config_space));
1129 
1130 	cap = state->cap;
1131 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1132 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1133 		memcpy(cap, &tmp->cap, len);
1134 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1135 	}
1136 	/* Empty cap_save terminates list */
1137 
1138 	return state;
1139 }
1140 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1141 
1142 /**
1143  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1144  * @dev: PCI device that we're dealing with
1145  * @state: Saved state returned from pci_store_saved_state()
1146  */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1147 static int pci_load_saved_state(struct pci_dev *dev,
1148 				struct pci_saved_state *state)
1149 {
1150 	struct pci_cap_saved_data *cap;
1151 
1152 	dev->state_saved = false;
1153 
1154 	if (!state)
1155 		return 0;
1156 
1157 	memcpy(dev->saved_config_space, state->config_space,
1158 	       sizeof(state->config_space));
1159 
1160 	cap = state->cap;
1161 	while (cap->size) {
1162 		struct pci_cap_saved_state *tmp;
1163 
1164 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1165 		if (!tmp || tmp->cap.size != cap->size)
1166 			return -EINVAL;
1167 
1168 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1169 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1170 		       sizeof(struct pci_cap_saved_data) + cap->size);
1171 	}
1172 
1173 	dev->state_saved = true;
1174 	return 0;
1175 }
1176 
1177 /**
1178  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1179  *				   and free the memory allocated for it.
1180  * @dev: PCI device that we're dealing with
1181  * @state: Pointer to saved state returned from pci_store_saved_state()
1182  */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1183 int pci_load_and_free_saved_state(struct pci_dev *dev,
1184 				  struct pci_saved_state **state)
1185 {
1186 	int ret = pci_load_saved_state(dev, *state);
1187 	kfree(*state);
1188 	*state = NULL;
1189 	return ret;
1190 }
1191 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1192 
pcibios_enable_device(struct pci_dev * dev,int bars)1193 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1194 {
1195 	return pci_enable_resources(dev, bars);
1196 }
1197 
do_pci_enable_device(struct pci_dev * dev,int bars)1198 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1199 {
1200 	int err;
1201 	struct pci_dev *bridge;
1202 	u16 cmd;
1203 	u8 pin;
1204 
1205 	err = pci_set_power_state(dev, PCI_D0);
1206 	if (err < 0 && err != -EIO)
1207 		return err;
1208 
1209 	bridge = pci_upstream_bridge(dev);
1210 	if (bridge)
1211 		pcie_aspm_powersave_config_link(bridge);
1212 
1213 	err = pcibios_enable_device(dev, bars);
1214 	if (err < 0)
1215 		return err;
1216 	pci_fixup_device(pci_fixup_enable, dev);
1217 
1218 	if (dev->msi_enabled || dev->msix_enabled)
1219 		return 0;
1220 
1221 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1222 	if (pin) {
1223 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1224 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1225 			pci_write_config_word(dev, PCI_COMMAND,
1226 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1227 	}
1228 
1229 	return 0;
1230 }
1231 
1232 /**
1233  * pci_reenable_device - Resume abandoned device
1234  * @dev: PCI device to be resumed
1235  *
1236  *  Note this function is a backend of pci_default_resume and is not supposed
1237  *  to be called by normal code, write proper resume handler and use it instead.
1238  */
pci_reenable_device(struct pci_dev * dev)1239 int pci_reenable_device(struct pci_dev *dev)
1240 {
1241 	if (pci_is_enabled(dev))
1242 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1243 	return 0;
1244 }
1245 EXPORT_SYMBOL(pci_reenable_device);
1246 
pci_enable_bridge(struct pci_dev * dev)1247 static void pci_enable_bridge(struct pci_dev *dev)
1248 {
1249 	struct pci_dev *bridge;
1250 	int retval;
1251 
1252 	bridge = pci_upstream_bridge(dev);
1253 	if (bridge)
1254 		pci_enable_bridge(bridge);
1255 
1256 	if (pci_is_enabled(dev)) {
1257 		if (!dev->is_busmaster)
1258 			pci_set_master(dev);
1259 		return;
1260 	}
1261 
1262 	retval = pci_enable_device(dev);
1263 	if (retval)
1264 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1265 			retval);
1266 	pci_set_master(dev);
1267 }
1268 
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)1269 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1270 {
1271 	struct pci_dev *bridge;
1272 	int err;
1273 	int i, bars = 0;
1274 
1275 	/*
1276 	 * Power state could be unknown at this point, either due to a fresh
1277 	 * boot or a device removal call.  So get the current power state
1278 	 * so that things like MSI message writing will behave as expected
1279 	 * (e.g. if the device really is in D0 at enable time).
1280 	 */
1281 	if (dev->pm_cap) {
1282 		u16 pmcsr;
1283 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1284 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1285 	}
1286 
1287 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1288 		return 0;		/* already enabled */
1289 
1290 	bridge = pci_upstream_bridge(dev);
1291 	if (bridge)
1292 		pci_enable_bridge(bridge);
1293 
1294 	/* only skip sriov related */
1295 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1296 		if (dev->resource[i].flags & flags)
1297 			bars |= (1 << i);
1298 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1299 		if (dev->resource[i].flags & flags)
1300 			bars |= (1 << i);
1301 
1302 	err = do_pci_enable_device(dev, bars);
1303 	if (err < 0)
1304 		atomic_dec(&dev->enable_cnt);
1305 	return err;
1306 }
1307 
1308 /**
1309  * pci_enable_device_io - Initialize a device for use with IO space
1310  * @dev: PCI device to be initialized
1311  *
1312  *  Initialize device before it's used by a driver. Ask low-level code
1313  *  to enable I/O resources. Wake up the device if it was suspended.
1314  *  Beware, this function can fail.
1315  */
pci_enable_device_io(struct pci_dev * dev)1316 int pci_enable_device_io(struct pci_dev *dev)
1317 {
1318 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1319 }
1320 EXPORT_SYMBOL(pci_enable_device_io);
1321 
1322 /**
1323  * pci_enable_device_mem - Initialize a device for use with Memory space
1324  * @dev: PCI device to be initialized
1325  *
1326  *  Initialize device before it's used by a driver. Ask low-level code
1327  *  to enable Memory resources. Wake up the device if it was suspended.
1328  *  Beware, this function can fail.
1329  */
pci_enable_device_mem(struct pci_dev * dev)1330 int pci_enable_device_mem(struct pci_dev *dev)
1331 {
1332 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1333 }
1334 EXPORT_SYMBOL(pci_enable_device_mem);
1335 
1336 /**
1337  * pci_enable_device - Initialize device before it's used by a driver.
1338  * @dev: PCI device to be initialized
1339  *
1340  *  Initialize device before it's used by a driver. Ask low-level code
1341  *  to enable I/O and memory. Wake up the device if it was suspended.
1342  *  Beware, this function can fail.
1343  *
1344  *  Note we don't actually enable the device many times if we call
1345  *  this function repeatedly (we just increment the count).
1346  */
pci_enable_device(struct pci_dev * dev)1347 int pci_enable_device(struct pci_dev *dev)
1348 {
1349 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1350 }
1351 EXPORT_SYMBOL(pci_enable_device);
1352 
1353 /*
1354  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1355  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1356  * there's no need to track it separately.  pci_devres is initialized
1357  * when a device is enabled using managed PCI device enable interface.
1358  */
1359 struct pci_devres {
1360 	unsigned int enabled:1;
1361 	unsigned int pinned:1;
1362 	unsigned int orig_intx:1;
1363 	unsigned int restore_intx:1;
1364 	u32 region_mask;
1365 };
1366 
pcim_release(struct device * gendev,void * res)1367 static void pcim_release(struct device *gendev, void *res)
1368 {
1369 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1370 	struct pci_devres *this = res;
1371 	int i;
1372 
1373 	if (dev->msi_enabled)
1374 		pci_disable_msi(dev);
1375 	if (dev->msix_enabled)
1376 		pci_disable_msix(dev);
1377 
1378 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1379 		if (this->region_mask & (1 << i))
1380 			pci_release_region(dev, i);
1381 
1382 	if (this->restore_intx)
1383 		pci_intx(dev, this->orig_intx);
1384 
1385 	if (this->enabled && !this->pinned)
1386 		pci_disable_device(dev);
1387 }
1388 
get_pci_dr(struct pci_dev * pdev)1389 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1390 {
1391 	struct pci_devres *dr, *new_dr;
1392 
1393 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1394 	if (dr)
1395 		return dr;
1396 
1397 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1398 	if (!new_dr)
1399 		return NULL;
1400 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1401 }
1402 
find_pci_dr(struct pci_dev * pdev)1403 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1404 {
1405 	if (pci_is_managed(pdev))
1406 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1407 	return NULL;
1408 }
1409 
1410 /**
1411  * pcim_enable_device - Managed pci_enable_device()
1412  * @pdev: PCI device to be initialized
1413  *
1414  * Managed pci_enable_device().
1415  */
pcim_enable_device(struct pci_dev * pdev)1416 int pcim_enable_device(struct pci_dev *pdev)
1417 {
1418 	struct pci_devres *dr;
1419 	int rc;
1420 
1421 	dr = get_pci_dr(pdev);
1422 	if (unlikely(!dr))
1423 		return -ENOMEM;
1424 	if (dr->enabled)
1425 		return 0;
1426 
1427 	rc = pci_enable_device(pdev);
1428 	if (!rc) {
1429 		pdev->is_managed = 1;
1430 		dr->enabled = 1;
1431 	}
1432 	return rc;
1433 }
1434 EXPORT_SYMBOL(pcim_enable_device);
1435 
1436 /**
1437  * pcim_pin_device - Pin managed PCI device
1438  * @pdev: PCI device to pin
1439  *
1440  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1441  * driver detach.  @pdev must have been enabled with
1442  * pcim_enable_device().
1443  */
pcim_pin_device(struct pci_dev * pdev)1444 void pcim_pin_device(struct pci_dev *pdev)
1445 {
1446 	struct pci_devres *dr;
1447 
1448 	dr = find_pci_dr(pdev);
1449 	WARN_ON(!dr || !dr->enabled);
1450 	if (dr)
1451 		dr->pinned = 1;
1452 }
1453 EXPORT_SYMBOL(pcim_pin_device);
1454 
1455 /*
1456  * pcibios_add_device - provide arch specific hooks when adding device dev
1457  * @dev: the PCI device being added
1458  *
1459  * Permits the platform to provide architecture specific functionality when
1460  * devices are added. This is the default implementation. Architecture
1461  * implementations can override this.
1462  */
pcibios_add_device(struct pci_dev * dev)1463 int __weak pcibios_add_device(struct pci_dev *dev)
1464 {
1465 	return 0;
1466 }
1467 
1468 /**
1469  * pcibios_release_device - provide arch specific hooks when releasing device dev
1470  * @dev: the PCI device being released
1471  *
1472  * Permits the platform to provide architecture specific functionality when
1473  * devices are released. This is the default implementation. Architecture
1474  * implementations can override this.
1475  */
pcibios_release_device(struct pci_dev * dev)1476 void __weak pcibios_release_device(struct pci_dev *dev) {}
1477 
1478 /**
1479  * pcibios_disable_device - disable arch specific PCI resources for device dev
1480  * @dev: the PCI device to disable
1481  *
1482  * Disables architecture specific PCI resources for the device. This
1483  * is the default implementation. Architecture implementations can
1484  * override this.
1485  */
pcibios_disable_device(struct pci_dev * dev)1486 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1487 
1488 /**
1489  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1490  * @irq: ISA IRQ to penalize
1491  * @active: IRQ active or not
1492  *
1493  * Permits the platform to provide architecture-specific functionality when
1494  * penalizing ISA IRQs. This is the default implementation. Architecture
1495  * implementations can override this.
1496  */
pcibios_penalize_isa_irq(int irq,int active)1497 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1498 
do_pci_disable_device(struct pci_dev * dev)1499 static void do_pci_disable_device(struct pci_dev *dev)
1500 {
1501 	u16 pci_command;
1502 
1503 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1504 	if (pci_command & PCI_COMMAND_MASTER) {
1505 		pci_command &= ~PCI_COMMAND_MASTER;
1506 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1507 	}
1508 
1509 	pcibios_disable_device(dev);
1510 }
1511 
1512 /**
1513  * pci_disable_enabled_device - Disable device without updating enable_cnt
1514  * @dev: PCI device to disable
1515  *
1516  * NOTE: This function is a backend of PCI power management routines and is
1517  * not supposed to be called drivers.
1518  */
pci_disable_enabled_device(struct pci_dev * dev)1519 void pci_disable_enabled_device(struct pci_dev *dev)
1520 {
1521 	if (pci_is_enabled(dev))
1522 		do_pci_disable_device(dev);
1523 }
1524 
1525 /**
1526  * pci_disable_device - Disable PCI device after use
1527  * @dev: PCI device to be disabled
1528  *
1529  * Signal to the system that the PCI device is not in use by the system
1530  * anymore.  This only involves disabling PCI bus-mastering, if active.
1531  *
1532  * Note we don't actually disable the device until all callers of
1533  * pci_enable_device() have called pci_disable_device().
1534  */
pci_disable_device(struct pci_dev * dev)1535 void pci_disable_device(struct pci_dev *dev)
1536 {
1537 	struct pci_devres *dr;
1538 
1539 	dr = find_pci_dr(dev);
1540 	if (dr)
1541 		dr->enabled = 0;
1542 
1543 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1544 		      "disabling already-disabled device");
1545 
1546 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1547 		return;
1548 
1549 	do_pci_disable_device(dev);
1550 
1551 	dev->is_busmaster = 0;
1552 }
1553 EXPORT_SYMBOL(pci_disable_device);
1554 
1555 /**
1556  * pcibios_set_pcie_reset_state - set reset state for device dev
1557  * @dev: the PCIe device reset
1558  * @state: Reset state to enter into
1559  *
1560  *
1561  * Sets the PCIe reset state for the device. This is the default
1562  * implementation. Architecture implementations can override this.
1563  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1564 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1565 					enum pcie_reset_state state)
1566 {
1567 	return -EINVAL;
1568 }
1569 
1570 /**
1571  * pci_set_pcie_reset_state - set reset state for device dev
1572  * @dev: the PCIe device reset
1573  * @state: Reset state to enter into
1574  *
1575  *
1576  * Sets the PCI reset state for the device.
1577  */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1578 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1579 {
1580 	return pcibios_set_pcie_reset_state(dev, state);
1581 }
1582 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1583 
1584 /**
1585  * pci_check_pme_status - Check if given device has generated PME.
1586  * @dev: Device to check.
1587  *
1588  * Check the PME status of the device and if set, clear it and clear PME enable
1589  * (if set).  Return 'true' if PME status and PME enable were both set or
1590  * 'false' otherwise.
1591  */
pci_check_pme_status(struct pci_dev * dev)1592 bool pci_check_pme_status(struct pci_dev *dev)
1593 {
1594 	int pmcsr_pos;
1595 	u16 pmcsr;
1596 	bool ret = false;
1597 
1598 	if (!dev->pm_cap)
1599 		return false;
1600 
1601 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1602 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1603 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1604 		return false;
1605 
1606 	/* Clear PME status. */
1607 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1608 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1609 		/* Disable PME to avoid interrupt flood. */
1610 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1611 		ret = true;
1612 	}
1613 
1614 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1615 
1616 	return ret;
1617 }
1618 
1619 /**
1620  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1621  * @dev: Device to handle.
1622  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1623  *
1624  * Check if @dev has generated PME and queue a resume request for it in that
1625  * case.
1626  */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)1627 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1628 {
1629 	if (pme_poll_reset && dev->pme_poll)
1630 		dev->pme_poll = false;
1631 
1632 	if (pci_check_pme_status(dev)) {
1633 		pci_wakeup_event(dev);
1634 		pm_request_resume(&dev->dev);
1635 	}
1636 	return 0;
1637 }
1638 
1639 /**
1640  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1641  * @bus: Top bus of the subtree to walk.
1642  */
pci_pme_wakeup_bus(struct pci_bus * bus)1643 void pci_pme_wakeup_bus(struct pci_bus *bus)
1644 {
1645 	if (bus)
1646 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1647 }
1648 
1649 
1650 /**
1651  * pci_pme_capable - check the capability of PCI device to generate PME#
1652  * @dev: PCI device to handle.
1653  * @state: PCI state from which device will issue PME#.
1654  */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)1655 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1656 {
1657 	if (!dev->pm_cap)
1658 		return false;
1659 
1660 	return !!(dev->pme_support & (1 << state));
1661 }
1662 EXPORT_SYMBOL(pci_pme_capable);
1663 
pci_pme_list_scan(struct work_struct * work)1664 static void pci_pme_list_scan(struct work_struct *work)
1665 {
1666 	struct pci_pme_device *pme_dev, *n;
1667 
1668 	mutex_lock(&pci_pme_list_mutex);
1669 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1670 		if (pme_dev->dev->pme_poll) {
1671 			struct pci_dev *bridge;
1672 
1673 			bridge = pme_dev->dev->bus->self;
1674 			/*
1675 			 * If bridge is in low power state, the
1676 			 * configuration space of subordinate devices
1677 			 * may be not accessible
1678 			 */
1679 			if (bridge && bridge->current_state != PCI_D0)
1680 				continue;
1681 			pci_pme_wakeup(pme_dev->dev, NULL);
1682 		} else {
1683 			list_del(&pme_dev->list);
1684 			kfree(pme_dev);
1685 		}
1686 	}
1687 	if (!list_empty(&pci_pme_list))
1688 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
1689 				   msecs_to_jiffies(PME_TIMEOUT));
1690 	mutex_unlock(&pci_pme_list_mutex);
1691 }
1692 
1693 /**
1694  * pci_pme_active - enable or disable PCI device's PME# function
1695  * @dev: PCI device to handle.
1696  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1697  *
1698  * The caller must verify that the device is capable of generating PME# before
1699  * calling this function with @enable equal to 'true'.
1700  */
pci_pme_active(struct pci_dev * dev,bool enable)1701 void pci_pme_active(struct pci_dev *dev, bool enable)
1702 {
1703 	u16 pmcsr;
1704 
1705 	if (!dev->pme_support)
1706 		return;
1707 
1708 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1709 	/* Clear PME_Status by writing 1 to it and enable PME# */
1710 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1711 	if (!enable)
1712 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1713 
1714 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1715 
1716 	/*
1717 	 * PCI (as opposed to PCIe) PME requires that the device have
1718 	 * its PME# line hooked up correctly. Not all hardware vendors
1719 	 * do this, so the PME never gets delivered and the device
1720 	 * remains asleep. The easiest way around this is to
1721 	 * periodically walk the list of suspended devices and check
1722 	 * whether any have their PME flag set. The assumption is that
1723 	 * we'll wake up often enough anyway that this won't be a huge
1724 	 * hit, and the power savings from the devices will still be a
1725 	 * win.
1726 	 *
1727 	 * Although PCIe uses in-band PME message instead of PME# line
1728 	 * to report PME, PME does not work for some PCIe devices in
1729 	 * reality.  For example, there are devices that set their PME
1730 	 * status bits, but don't really bother to send a PME message;
1731 	 * there are PCI Express Root Ports that don't bother to
1732 	 * trigger interrupts when they receive PME messages from the
1733 	 * devices below.  So PME poll is used for PCIe devices too.
1734 	 */
1735 
1736 	if (dev->pme_poll) {
1737 		struct pci_pme_device *pme_dev;
1738 		if (enable) {
1739 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1740 					  GFP_KERNEL);
1741 			if (!pme_dev) {
1742 				dev_warn(&dev->dev, "can't enable PME#\n");
1743 				return;
1744 			}
1745 			pme_dev->dev = dev;
1746 			mutex_lock(&pci_pme_list_mutex);
1747 			list_add(&pme_dev->list, &pci_pme_list);
1748 			if (list_is_singular(&pci_pme_list))
1749 				queue_delayed_work(system_freezable_wq,
1750 						   &pci_pme_work,
1751 						   msecs_to_jiffies(PME_TIMEOUT));
1752 			mutex_unlock(&pci_pme_list_mutex);
1753 		} else {
1754 			mutex_lock(&pci_pme_list_mutex);
1755 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1756 				if (pme_dev->dev == dev) {
1757 					list_del(&pme_dev->list);
1758 					kfree(pme_dev);
1759 					break;
1760 				}
1761 			}
1762 			mutex_unlock(&pci_pme_list_mutex);
1763 		}
1764 	}
1765 
1766 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1767 }
1768 EXPORT_SYMBOL(pci_pme_active);
1769 
1770 /**
1771  * __pci_enable_wake - enable PCI device as wakeup event source
1772  * @dev: PCI device affected
1773  * @state: PCI state from which device will issue wakeup events
1774  * @runtime: True if the events are to be generated at run time
1775  * @enable: True to enable event generation; false to disable
1776  *
1777  * This enables the device as a wakeup event source, or disables it.
1778  * When such events involves platform-specific hooks, those hooks are
1779  * called automatically by this routine.
1780  *
1781  * Devices with legacy power management (no standard PCI PM capabilities)
1782  * always require such platform hooks.
1783  *
1784  * RETURN VALUE:
1785  * 0 is returned on success
1786  * -EINVAL is returned if device is not supposed to wake up the system
1787  * Error code depending on the platform is returned if both the platform and
1788  * the native mechanism fail to enable the generation of wake-up events
1789  */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool runtime,bool enable)1790 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1791 		      bool runtime, bool enable)
1792 {
1793 	int ret = 0;
1794 
1795 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1796 		return -EINVAL;
1797 
1798 	/* Don't do the same thing twice in a row for one device. */
1799 	if (!!enable == !!dev->wakeup_prepared)
1800 		return 0;
1801 
1802 	/*
1803 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1804 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1805 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1806 	 */
1807 
1808 	if (enable) {
1809 		int error;
1810 
1811 		if (pci_pme_capable(dev, state))
1812 			pci_pme_active(dev, true);
1813 		else
1814 			ret = 1;
1815 		error = runtime ? platform_pci_run_wake(dev, true) :
1816 					platform_pci_sleep_wake(dev, true);
1817 		if (ret)
1818 			ret = error;
1819 		if (!ret)
1820 			dev->wakeup_prepared = true;
1821 	} else {
1822 		if (runtime)
1823 			platform_pci_run_wake(dev, false);
1824 		else
1825 			platform_pci_sleep_wake(dev, false);
1826 		pci_pme_active(dev, false);
1827 		dev->wakeup_prepared = false;
1828 	}
1829 
1830 	return ret;
1831 }
1832 EXPORT_SYMBOL(__pci_enable_wake);
1833 
1834 /**
1835  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1836  * @dev: PCI device to prepare
1837  * @enable: True to enable wake-up event generation; false to disable
1838  *
1839  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1840  * and this function allows them to set that up cleanly - pci_enable_wake()
1841  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1842  * ordering constraints.
1843  *
1844  * This function only returns error code if the device is not capable of
1845  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1846  * enable wake-up power for it.
1847  */
pci_wake_from_d3(struct pci_dev * dev,bool enable)1848 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1849 {
1850 	return pci_pme_capable(dev, PCI_D3cold) ?
1851 			pci_enable_wake(dev, PCI_D3cold, enable) :
1852 			pci_enable_wake(dev, PCI_D3hot, enable);
1853 }
1854 EXPORT_SYMBOL(pci_wake_from_d3);
1855 
1856 /**
1857  * pci_target_state - find an appropriate low power state for a given PCI dev
1858  * @dev: PCI device
1859  *
1860  * Use underlying platform code to find a supported low power state for @dev.
1861  * If the platform can't manage @dev, return the deepest state from which it
1862  * can generate wake events, based on any available PME info.
1863  */
pci_target_state(struct pci_dev * dev)1864 static pci_power_t pci_target_state(struct pci_dev *dev)
1865 {
1866 	pci_power_t target_state = PCI_D3hot;
1867 
1868 	if (platform_pci_power_manageable(dev)) {
1869 		/*
1870 		 * Call the platform to choose the target state of the device
1871 		 * and enable wake-up from this state if supported.
1872 		 */
1873 		pci_power_t state = platform_pci_choose_state(dev);
1874 
1875 		switch (state) {
1876 		case PCI_POWER_ERROR:
1877 		case PCI_UNKNOWN:
1878 			break;
1879 		case PCI_D1:
1880 		case PCI_D2:
1881 			if (pci_no_d1d2(dev))
1882 				break;
1883 		default:
1884 			target_state = state;
1885 		}
1886 	} else if (!dev->pm_cap) {
1887 		target_state = PCI_D0;
1888 	} else if (device_may_wakeup(&dev->dev)) {
1889 		/*
1890 		 * Find the deepest state from which the device can generate
1891 		 * wake-up events, make it the target state and enable device
1892 		 * to generate PME#.
1893 		 */
1894 		if (dev->pme_support) {
1895 			while (target_state
1896 			      && !(dev->pme_support & (1 << target_state)))
1897 				target_state--;
1898 		}
1899 	}
1900 
1901 	return target_state;
1902 }
1903 
1904 /**
1905  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1906  * @dev: Device to handle.
1907  *
1908  * Choose the power state appropriate for the device depending on whether
1909  * it can wake up the system and/or is power manageable by the platform
1910  * (PCI_D3hot is the default) and put the device into that state.
1911  */
pci_prepare_to_sleep(struct pci_dev * dev)1912 int pci_prepare_to_sleep(struct pci_dev *dev)
1913 {
1914 	pci_power_t target_state = pci_target_state(dev);
1915 	int error;
1916 
1917 	if (target_state == PCI_POWER_ERROR)
1918 		return -EIO;
1919 
1920 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1921 
1922 	error = pci_set_power_state(dev, target_state);
1923 
1924 	if (error)
1925 		pci_enable_wake(dev, target_state, false);
1926 
1927 	return error;
1928 }
1929 EXPORT_SYMBOL(pci_prepare_to_sleep);
1930 
1931 /**
1932  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1933  * @dev: Device to handle.
1934  *
1935  * Disable device's system wake-up capability and put it into D0.
1936  */
pci_back_from_sleep(struct pci_dev * dev)1937 int pci_back_from_sleep(struct pci_dev *dev)
1938 {
1939 	pci_enable_wake(dev, PCI_D0, false);
1940 	return pci_set_power_state(dev, PCI_D0);
1941 }
1942 EXPORT_SYMBOL(pci_back_from_sleep);
1943 
1944 /**
1945  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1946  * @dev: PCI device being suspended.
1947  *
1948  * Prepare @dev to generate wake-up events at run time and put it into a low
1949  * power state.
1950  */
pci_finish_runtime_suspend(struct pci_dev * dev)1951 int pci_finish_runtime_suspend(struct pci_dev *dev)
1952 {
1953 	pci_power_t target_state = pci_target_state(dev);
1954 	int error;
1955 
1956 	if (target_state == PCI_POWER_ERROR)
1957 		return -EIO;
1958 
1959 	dev->runtime_d3cold = target_state == PCI_D3cold;
1960 
1961 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1962 
1963 	error = pci_set_power_state(dev, target_state);
1964 
1965 	if (error) {
1966 		__pci_enable_wake(dev, target_state, true, false);
1967 		dev->runtime_d3cold = false;
1968 	}
1969 
1970 	return error;
1971 }
1972 
1973 /**
1974  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1975  * @dev: Device to check.
1976  *
1977  * Return true if the device itself is capable of generating wake-up events
1978  * (through the platform or using the native PCIe PME) or if the device supports
1979  * PME and one of its upstream bridges can generate wake-up events.
1980  */
pci_dev_run_wake(struct pci_dev * dev)1981 bool pci_dev_run_wake(struct pci_dev *dev)
1982 {
1983 	struct pci_bus *bus = dev->bus;
1984 
1985 	if (device_run_wake(&dev->dev))
1986 		return true;
1987 
1988 	if (!dev->pme_support)
1989 		return false;
1990 
1991 	/* PME-capable in principle, but not from the intended sleep state */
1992 	if (!pci_pme_capable(dev, pci_target_state(dev)))
1993 		return false;
1994 
1995 	while (bus->parent) {
1996 		struct pci_dev *bridge = bus->self;
1997 
1998 		if (device_run_wake(&bridge->dev))
1999 			return true;
2000 
2001 		bus = bus->parent;
2002 	}
2003 
2004 	/* We have reached the root bus. */
2005 	if (bus->bridge)
2006 		return device_run_wake(bus->bridge);
2007 
2008 	return false;
2009 }
2010 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2011 
pci_config_pm_runtime_get(struct pci_dev * pdev)2012 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2013 {
2014 	struct device *dev = &pdev->dev;
2015 	struct device *parent = dev->parent;
2016 
2017 	if (parent)
2018 		pm_runtime_get_sync(parent);
2019 	pm_runtime_get_noresume(dev);
2020 	/*
2021 	 * pdev->current_state is set to PCI_D3cold during suspending,
2022 	 * so wait until suspending completes
2023 	 */
2024 	pm_runtime_barrier(dev);
2025 	/*
2026 	 * Only need to resume devices in D3cold, because config
2027 	 * registers are still accessible for devices suspended but
2028 	 * not in D3cold.
2029 	 */
2030 	if (pdev->current_state == PCI_D3cold)
2031 		pm_runtime_resume(dev);
2032 }
2033 
pci_config_pm_runtime_put(struct pci_dev * pdev)2034 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2035 {
2036 	struct device *dev = &pdev->dev;
2037 	struct device *parent = dev->parent;
2038 
2039 	pm_runtime_put(dev);
2040 	if (parent)
2041 		pm_runtime_put_sync(parent);
2042 }
2043 
2044 /**
2045  * pci_pm_init - Initialize PM functions of given PCI device
2046  * @dev: PCI device to handle.
2047  */
pci_pm_init(struct pci_dev * dev)2048 void pci_pm_init(struct pci_dev *dev)
2049 {
2050 	int pm;
2051 	u16 pmc;
2052 
2053 	pm_runtime_forbid(&dev->dev);
2054 	pm_runtime_set_active(&dev->dev);
2055 	pm_runtime_enable(&dev->dev);
2056 	device_enable_async_suspend(&dev->dev);
2057 	dev->wakeup_prepared = false;
2058 
2059 	dev->pm_cap = 0;
2060 	dev->pme_support = 0;
2061 
2062 	/* find PCI PM capability in list */
2063 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2064 	if (!pm)
2065 		return;
2066 	/* Check device's ability to generate PME# */
2067 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2068 
2069 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2070 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2071 			pmc & PCI_PM_CAP_VER_MASK);
2072 		return;
2073 	}
2074 
2075 	dev->pm_cap = pm;
2076 	dev->d3_delay = PCI_PM_D3_WAIT;
2077 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2078 	dev->d3cold_allowed = true;
2079 
2080 	dev->d1_support = false;
2081 	dev->d2_support = false;
2082 	if (!pci_no_d1d2(dev)) {
2083 		if (pmc & PCI_PM_CAP_D1)
2084 			dev->d1_support = true;
2085 		if (pmc & PCI_PM_CAP_D2)
2086 			dev->d2_support = true;
2087 
2088 		if (dev->d1_support || dev->d2_support)
2089 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2090 				   dev->d1_support ? " D1" : "",
2091 				   dev->d2_support ? " D2" : "");
2092 	}
2093 
2094 	pmc &= PCI_PM_CAP_PME_MASK;
2095 	if (pmc) {
2096 		dev_printk(KERN_DEBUG, &dev->dev,
2097 			 "PME# supported from%s%s%s%s%s\n",
2098 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2099 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2100 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2101 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2102 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2103 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2104 		dev->pme_poll = true;
2105 		/*
2106 		 * Make device's PM flags reflect the wake-up capability, but
2107 		 * let the user space enable it to wake up the system as needed.
2108 		 */
2109 		device_set_wakeup_capable(&dev->dev, true);
2110 		/* Disable the PME# generation functionality */
2111 		pci_pme_active(dev, false);
2112 	}
2113 }
2114 
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)2115 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2116 	struct pci_cap_saved_state *new_cap)
2117 {
2118 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2119 }
2120 
2121 /**
2122  * _pci_add_cap_save_buffer - allocate buffer for saving given
2123  *                            capability registers
2124  * @dev: the PCI device
2125  * @cap: the capability to allocate the buffer for
2126  * @extended: Standard or Extended capability ID
2127  * @size: requested size of the buffer
2128  */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)2129 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2130 				    bool extended, unsigned int size)
2131 {
2132 	int pos;
2133 	struct pci_cap_saved_state *save_state;
2134 
2135 	if (extended)
2136 		pos = pci_find_ext_capability(dev, cap);
2137 	else
2138 		pos = pci_find_capability(dev, cap);
2139 
2140 	if (pos <= 0)
2141 		return 0;
2142 
2143 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2144 	if (!save_state)
2145 		return -ENOMEM;
2146 
2147 	save_state->cap.cap_nr = cap;
2148 	save_state->cap.cap_extended = extended;
2149 	save_state->cap.size = size;
2150 	pci_add_saved_cap(dev, save_state);
2151 
2152 	return 0;
2153 }
2154 
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)2155 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2156 {
2157 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2158 }
2159 
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)2160 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2161 {
2162 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2163 }
2164 
2165 /**
2166  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2167  * @dev: the PCI device
2168  */
pci_allocate_cap_save_buffers(struct pci_dev * dev)2169 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2170 {
2171 	int error;
2172 
2173 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2174 					PCI_EXP_SAVE_REGS * sizeof(u16));
2175 	if (error)
2176 		dev_err(&dev->dev,
2177 			"unable to preallocate PCI Express save buffer\n");
2178 
2179 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2180 	if (error)
2181 		dev_err(&dev->dev,
2182 			"unable to preallocate PCI-X save buffer\n");
2183 
2184 	pci_allocate_vc_save_buffers(dev);
2185 }
2186 
pci_free_cap_save_buffers(struct pci_dev * dev)2187 void pci_free_cap_save_buffers(struct pci_dev *dev)
2188 {
2189 	struct pci_cap_saved_state *tmp;
2190 	struct hlist_node *n;
2191 
2192 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2193 		kfree(tmp);
2194 }
2195 
2196 /**
2197  * pci_configure_ari - enable or disable ARI forwarding
2198  * @dev: the PCI device
2199  *
2200  * If @dev and its upstream bridge both support ARI, enable ARI in the
2201  * bridge.  Otherwise, disable ARI in the bridge.
2202  */
pci_configure_ari(struct pci_dev * dev)2203 void pci_configure_ari(struct pci_dev *dev)
2204 {
2205 	u32 cap;
2206 	struct pci_dev *bridge;
2207 
2208 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2209 		return;
2210 
2211 	bridge = dev->bus->self;
2212 	if (!bridge)
2213 		return;
2214 
2215 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2216 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2217 		return;
2218 
2219 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2220 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2221 					 PCI_EXP_DEVCTL2_ARI);
2222 		bridge->ari_enabled = 1;
2223 	} else {
2224 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2225 					   PCI_EXP_DEVCTL2_ARI);
2226 		bridge->ari_enabled = 0;
2227 	}
2228 }
2229 
2230 static int pci_acs_enable;
2231 
2232 /**
2233  * pci_request_acs - ask for ACS to be enabled if supported
2234  */
pci_request_acs(void)2235 void pci_request_acs(void)
2236 {
2237 	pci_acs_enable = 1;
2238 }
2239 
2240 /**
2241  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2242  * @dev: the PCI device
2243  */
pci_std_enable_acs(struct pci_dev * dev)2244 static int pci_std_enable_acs(struct pci_dev *dev)
2245 {
2246 	int pos;
2247 	u16 cap;
2248 	u16 ctrl;
2249 
2250 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2251 	if (!pos)
2252 		return -ENODEV;
2253 
2254 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2255 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2256 
2257 	/* Source Validation */
2258 	ctrl |= (cap & PCI_ACS_SV);
2259 
2260 	/* P2P Request Redirect */
2261 	ctrl |= (cap & PCI_ACS_RR);
2262 
2263 	/* P2P Completion Redirect */
2264 	ctrl |= (cap & PCI_ACS_CR);
2265 
2266 	/* Upstream Forwarding */
2267 	ctrl |= (cap & PCI_ACS_UF);
2268 
2269 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2270 
2271 	return 0;
2272 }
2273 
2274 /**
2275  * pci_enable_acs - enable ACS if hardware support it
2276  * @dev: the PCI device
2277  */
pci_enable_acs(struct pci_dev * dev)2278 void pci_enable_acs(struct pci_dev *dev)
2279 {
2280 	if (!pci_acs_enable)
2281 		return;
2282 
2283 	if (!pci_std_enable_acs(dev))
2284 		return;
2285 
2286 	pci_dev_specific_enable_acs(dev);
2287 }
2288 
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)2289 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2290 {
2291 	int pos;
2292 	u16 cap, ctrl;
2293 
2294 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2295 	if (!pos)
2296 		return false;
2297 
2298 	/*
2299 	 * Except for egress control, capabilities are either required
2300 	 * or only required if controllable.  Features missing from the
2301 	 * capability field can therefore be assumed as hard-wired enabled.
2302 	 */
2303 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2304 	acs_flags &= (cap | PCI_ACS_EC);
2305 
2306 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2307 	return (ctrl & acs_flags) == acs_flags;
2308 }
2309 
2310 /**
2311  * pci_acs_enabled - test ACS against required flags for a given device
2312  * @pdev: device to test
2313  * @acs_flags: required PCI ACS flags
2314  *
2315  * Return true if the device supports the provided flags.  Automatically
2316  * filters out flags that are not implemented on multifunction devices.
2317  *
2318  * Note that this interface checks the effective ACS capabilities of the
2319  * device rather than the actual capabilities.  For instance, most single
2320  * function endpoints are not required to support ACS because they have no
2321  * opportunity for peer-to-peer access.  We therefore return 'true'
2322  * regardless of whether the device exposes an ACS capability.  This makes
2323  * it much easier for callers of this function to ignore the actual type
2324  * or topology of the device when testing ACS support.
2325  */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)2326 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2327 {
2328 	int ret;
2329 
2330 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2331 	if (ret >= 0)
2332 		return ret > 0;
2333 
2334 	/*
2335 	 * Conventional PCI and PCI-X devices never support ACS, either
2336 	 * effectively or actually.  The shared bus topology implies that
2337 	 * any device on the bus can receive or snoop DMA.
2338 	 */
2339 	if (!pci_is_pcie(pdev))
2340 		return false;
2341 
2342 	switch (pci_pcie_type(pdev)) {
2343 	/*
2344 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2345 	 * but since their primary interface is PCI/X, we conservatively
2346 	 * handle them as we would a non-PCIe device.
2347 	 */
2348 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2349 	/*
2350 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2351 	 * applicable... must never implement an ACS Extended Capability...".
2352 	 * This seems arbitrary, but we take a conservative interpretation
2353 	 * of this statement.
2354 	 */
2355 	case PCI_EXP_TYPE_PCI_BRIDGE:
2356 	case PCI_EXP_TYPE_RC_EC:
2357 		return false;
2358 	/*
2359 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2360 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2361 	 * regardless of whether they are single- or multi-function devices.
2362 	 */
2363 	case PCI_EXP_TYPE_DOWNSTREAM:
2364 	case PCI_EXP_TYPE_ROOT_PORT:
2365 		return pci_acs_flags_enabled(pdev, acs_flags);
2366 	/*
2367 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2368 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2369 	 * capabilities, but only when they are part of a multifunction
2370 	 * device.  The footnote for section 6.12 indicates the specific
2371 	 * PCIe types included here.
2372 	 */
2373 	case PCI_EXP_TYPE_ENDPOINT:
2374 	case PCI_EXP_TYPE_UPSTREAM:
2375 	case PCI_EXP_TYPE_LEG_END:
2376 	case PCI_EXP_TYPE_RC_END:
2377 		if (!pdev->multifunction)
2378 			break;
2379 
2380 		return pci_acs_flags_enabled(pdev, acs_flags);
2381 	}
2382 
2383 	/*
2384 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2385 	 * to single function devices with the exception of downstream ports.
2386 	 */
2387 	return true;
2388 }
2389 
2390 /**
2391  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2392  * @start: starting downstream device
2393  * @end: ending upstream device or NULL to search to the root bus
2394  * @acs_flags: required flags
2395  *
2396  * Walk up a device tree from start to end testing PCI ACS support.  If
2397  * any step along the way does not support the required flags, return false.
2398  */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)2399 bool pci_acs_path_enabled(struct pci_dev *start,
2400 			  struct pci_dev *end, u16 acs_flags)
2401 {
2402 	struct pci_dev *pdev, *parent = start;
2403 
2404 	do {
2405 		pdev = parent;
2406 
2407 		if (!pci_acs_enabled(pdev, acs_flags))
2408 			return false;
2409 
2410 		if (pci_is_root_bus(pdev->bus))
2411 			return (end == NULL);
2412 
2413 		parent = pdev->bus->self;
2414 	} while (pdev != end);
2415 
2416 	return true;
2417 }
2418 
2419 /**
2420  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2421  * @dev: the PCI device
2422  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2423  *
2424  * Perform INTx swizzling for a device behind one level of bridge.  This is
2425  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2426  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2427  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2428  * the PCI Express Base Specification, Revision 2.1)
2429  */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)2430 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2431 {
2432 	int slot;
2433 
2434 	if (pci_ari_enabled(dev->bus))
2435 		slot = 0;
2436 	else
2437 		slot = PCI_SLOT(dev->devfn);
2438 
2439 	return (((pin - 1) + slot) % 4) + 1;
2440 }
2441 
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)2442 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2443 {
2444 	u8 pin;
2445 
2446 	pin = dev->pin;
2447 	if (!pin)
2448 		return -1;
2449 
2450 	while (!pci_is_root_bus(dev->bus)) {
2451 		pin = pci_swizzle_interrupt_pin(dev, pin);
2452 		dev = dev->bus->self;
2453 	}
2454 	*bridge = dev;
2455 	return pin;
2456 }
2457 
2458 /**
2459  * pci_common_swizzle - swizzle INTx all the way to root bridge
2460  * @dev: the PCI device
2461  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2462  *
2463  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2464  * bridges all the way up to a PCI root bus.
2465  */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)2466 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2467 {
2468 	u8 pin = *pinp;
2469 
2470 	while (!pci_is_root_bus(dev->bus)) {
2471 		pin = pci_swizzle_interrupt_pin(dev, pin);
2472 		dev = dev->bus->self;
2473 	}
2474 	*pinp = pin;
2475 	return PCI_SLOT(dev->devfn);
2476 }
2477 
2478 /**
2479  *	pci_release_region - Release a PCI bar
2480  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2481  *	@bar: BAR to release
2482  *
2483  *	Releases the PCI I/O and memory resources previously reserved by a
2484  *	successful call to pci_request_region.  Call this function only
2485  *	after all use of the PCI regions has ceased.
2486  */
pci_release_region(struct pci_dev * pdev,int bar)2487 void pci_release_region(struct pci_dev *pdev, int bar)
2488 {
2489 	struct pci_devres *dr;
2490 
2491 	if (pci_resource_len(pdev, bar) == 0)
2492 		return;
2493 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2494 		release_region(pci_resource_start(pdev, bar),
2495 				pci_resource_len(pdev, bar));
2496 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2497 		release_mem_region(pci_resource_start(pdev, bar),
2498 				pci_resource_len(pdev, bar));
2499 
2500 	dr = find_pci_dr(pdev);
2501 	if (dr)
2502 		dr->region_mask &= ~(1 << bar);
2503 }
2504 EXPORT_SYMBOL(pci_release_region);
2505 
2506 /**
2507  *	__pci_request_region - Reserved PCI I/O and memory resource
2508  *	@pdev: PCI device whose resources are to be reserved
2509  *	@bar: BAR to be reserved
2510  *	@res_name: Name to be associated with resource.
2511  *	@exclusive: whether the region access is exclusive or not
2512  *
2513  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2514  *	being reserved by owner @res_name.  Do not access any
2515  *	address inside the PCI regions unless this call returns
2516  *	successfully.
2517  *
2518  *	If @exclusive is set, then the region is marked so that userspace
2519  *	is explicitly not allowed to map the resource via /dev/mem or
2520  *	sysfs MMIO access.
2521  *
2522  *	Returns 0 on success, or %EBUSY on error.  A warning
2523  *	message is also printed on failure.
2524  */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)2525 static int __pci_request_region(struct pci_dev *pdev, int bar,
2526 				const char *res_name, int exclusive)
2527 {
2528 	struct pci_devres *dr;
2529 
2530 	if (pci_resource_len(pdev, bar) == 0)
2531 		return 0;
2532 
2533 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2534 		if (!request_region(pci_resource_start(pdev, bar),
2535 			    pci_resource_len(pdev, bar), res_name))
2536 			goto err_out;
2537 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2538 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2539 					pci_resource_len(pdev, bar), res_name,
2540 					exclusive))
2541 			goto err_out;
2542 	}
2543 
2544 	dr = find_pci_dr(pdev);
2545 	if (dr)
2546 		dr->region_mask |= 1 << bar;
2547 
2548 	return 0;
2549 
2550 err_out:
2551 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2552 		 &pdev->resource[bar]);
2553 	return -EBUSY;
2554 }
2555 
2556 /**
2557  *	pci_request_region - Reserve PCI I/O and memory resource
2558  *	@pdev: PCI device whose resources are to be reserved
2559  *	@bar: BAR to be reserved
2560  *	@res_name: Name to be associated with resource
2561  *
2562  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2563  *	being reserved by owner @res_name.  Do not access any
2564  *	address inside the PCI regions unless this call returns
2565  *	successfully.
2566  *
2567  *	Returns 0 on success, or %EBUSY on error.  A warning
2568  *	message is also printed on failure.
2569  */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)2570 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2571 {
2572 	return __pci_request_region(pdev, bar, res_name, 0);
2573 }
2574 EXPORT_SYMBOL(pci_request_region);
2575 
2576 /**
2577  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2578  *	@pdev: PCI device whose resources are to be reserved
2579  *	@bar: BAR to be reserved
2580  *	@res_name: Name to be associated with resource.
2581  *
2582  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2583  *	being reserved by owner @res_name.  Do not access any
2584  *	address inside the PCI regions unless this call returns
2585  *	successfully.
2586  *
2587  *	Returns 0 on success, or %EBUSY on error.  A warning
2588  *	message is also printed on failure.
2589  *
2590  *	The key difference that _exclusive makes it that userspace is
2591  *	explicitly not allowed to map the resource via /dev/mem or
2592  *	sysfs.
2593  */
pci_request_region_exclusive(struct pci_dev * pdev,int bar,const char * res_name)2594 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2595 				 const char *res_name)
2596 {
2597 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2598 }
2599 EXPORT_SYMBOL(pci_request_region_exclusive);
2600 
2601 /**
2602  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2603  * @pdev: PCI device whose resources were previously reserved
2604  * @bars: Bitmask of BARs to be released
2605  *
2606  * Release selected PCI I/O and memory resources previously reserved.
2607  * Call this function only after all use of the PCI regions has ceased.
2608  */
pci_release_selected_regions(struct pci_dev * pdev,int bars)2609 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2610 {
2611 	int i;
2612 
2613 	for (i = 0; i < 6; i++)
2614 		if (bars & (1 << i))
2615 			pci_release_region(pdev, i);
2616 }
2617 EXPORT_SYMBOL(pci_release_selected_regions);
2618 
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)2619 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2620 					  const char *res_name, int excl)
2621 {
2622 	int i;
2623 
2624 	for (i = 0; i < 6; i++)
2625 		if (bars & (1 << i))
2626 			if (__pci_request_region(pdev, i, res_name, excl))
2627 				goto err_out;
2628 	return 0;
2629 
2630 err_out:
2631 	while (--i >= 0)
2632 		if (bars & (1 << i))
2633 			pci_release_region(pdev, i);
2634 
2635 	return -EBUSY;
2636 }
2637 
2638 
2639 /**
2640  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2641  * @pdev: PCI device whose resources are to be reserved
2642  * @bars: Bitmask of BARs to be requested
2643  * @res_name: Name to be associated with resource
2644  */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)2645 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2646 				 const char *res_name)
2647 {
2648 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2649 }
2650 EXPORT_SYMBOL(pci_request_selected_regions);
2651 
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)2652 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2653 					   const char *res_name)
2654 {
2655 	return __pci_request_selected_regions(pdev, bars, res_name,
2656 			IORESOURCE_EXCLUSIVE);
2657 }
2658 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2659 
2660 /**
2661  *	pci_release_regions - Release reserved PCI I/O and memory resources
2662  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2663  *
2664  *	Releases all PCI I/O and memory resources previously reserved by a
2665  *	successful call to pci_request_regions.  Call this function only
2666  *	after all use of the PCI regions has ceased.
2667  */
2668 
pci_release_regions(struct pci_dev * pdev)2669 void pci_release_regions(struct pci_dev *pdev)
2670 {
2671 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2672 }
2673 EXPORT_SYMBOL(pci_release_regions);
2674 
2675 /**
2676  *	pci_request_regions - Reserved PCI I/O and memory resources
2677  *	@pdev: PCI device whose resources are to be reserved
2678  *	@res_name: Name to be associated with resource.
2679  *
2680  *	Mark all PCI regions associated with PCI device @pdev as
2681  *	being reserved by owner @res_name.  Do not access any
2682  *	address inside the PCI regions unless this call returns
2683  *	successfully.
2684  *
2685  *	Returns 0 on success, or %EBUSY on error.  A warning
2686  *	message is also printed on failure.
2687  */
pci_request_regions(struct pci_dev * pdev,const char * res_name)2688 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2689 {
2690 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2691 }
2692 EXPORT_SYMBOL(pci_request_regions);
2693 
2694 /**
2695  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2696  *	@pdev: PCI device whose resources are to be reserved
2697  *	@res_name: Name to be associated with resource.
2698  *
2699  *	Mark all PCI regions associated with PCI device @pdev as
2700  *	being reserved by owner @res_name.  Do not access any
2701  *	address inside the PCI regions unless this call returns
2702  *	successfully.
2703  *
2704  *	pci_request_regions_exclusive() will mark the region so that
2705  *	/dev/mem and the sysfs MMIO access will not be allowed.
2706  *
2707  *	Returns 0 on success, or %EBUSY on error.  A warning
2708  *	message is also printed on failure.
2709  */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)2710 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2711 {
2712 	return pci_request_selected_regions_exclusive(pdev,
2713 					((1 << 6) - 1), res_name);
2714 }
2715 EXPORT_SYMBOL(pci_request_regions_exclusive);
2716 
2717 /**
2718  *	pci_remap_iospace - Remap the memory mapped I/O space
2719  *	@res: Resource describing the I/O space
2720  *	@phys_addr: physical address of range to be mapped
2721  *
2722  *	Remap the memory mapped I/O space described by the @res
2723  *	and the CPU physical address @phys_addr into virtual address space.
2724  *	Only architectures that have memory mapped IO functions defined
2725  *	(and the PCI_IOBASE value defined) should call this function.
2726  */
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)2727 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
2728 {
2729 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
2730 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
2731 
2732 	if (!(res->flags & IORESOURCE_IO))
2733 		return -EINVAL;
2734 
2735 	if (res->end > IO_SPACE_LIMIT)
2736 		return -EINVAL;
2737 
2738 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
2739 				  pgprot_device(PAGE_KERNEL));
2740 #else
2741 	/* this architecture does not have memory mapped I/O space,
2742 	   so this function should never be called */
2743 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
2744 	return -ENODEV;
2745 #endif
2746 }
2747 
__pci_set_master(struct pci_dev * dev,bool enable)2748 static void __pci_set_master(struct pci_dev *dev, bool enable)
2749 {
2750 	u16 old_cmd, cmd;
2751 
2752 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2753 	if (enable)
2754 		cmd = old_cmd | PCI_COMMAND_MASTER;
2755 	else
2756 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2757 	if (cmd != old_cmd) {
2758 		dev_dbg(&dev->dev, "%s bus mastering\n",
2759 			enable ? "enabling" : "disabling");
2760 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2761 	}
2762 	dev->is_busmaster = enable;
2763 }
2764 
2765 /**
2766  * pcibios_setup - process "pci=" kernel boot arguments
2767  * @str: string used to pass in "pci=" kernel boot arguments
2768  *
2769  * Process kernel boot arguments.  This is the default implementation.
2770  * Architecture specific implementations can override this as necessary.
2771  */
pcibios_setup(char * str)2772 char * __weak __init pcibios_setup(char *str)
2773 {
2774 	return str;
2775 }
2776 
2777 /**
2778  * pcibios_set_master - enable PCI bus-mastering for device dev
2779  * @dev: the PCI device to enable
2780  *
2781  * Enables PCI bus-mastering for the device.  This is the default
2782  * implementation.  Architecture specific implementations can override
2783  * this if necessary.
2784  */
pcibios_set_master(struct pci_dev * dev)2785 void __weak pcibios_set_master(struct pci_dev *dev)
2786 {
2787 	u8 lat;
2788 
2789 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2790 	if (pci_is_pcie(dev))
2791 		return;
2792 
2793 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2794 	if (lat < 16)
2795 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2796 	else if (lat > pcibios_max_latency)
2797 		lat = pcibios_max_latency;
2798 	else
2799 		return;
2800 
2801 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2802 }
2803 
2804 /**
2805  * pci_set_master - enables bus-mastering for device dev
2806  * @dev: the PCI device to enable
2807  *
2808  * Enables bus-mastering on the device and calls pcibios_set_master()
2809  * to do the needed arch specific settings.
2810  */
pci_set_master(struct pci_dev * dev)2811 void pci_set_master(struct pci_dev *dev)
2812 {
2813 	__pci_set_master(dev, true);
2814 	pcibios_set_master(dev);
2815 }
2816 EXPORT_SYMBOL(pci_set_master);
2817 
2818 /**
2819  * pci_clear_master - disables bus-mastering for device dev
2820  * @dev: the PCI device to disable
2821  */
pci_clear_master(struct pci_dev * dev)2822 void pci_clear_master(struct pci_dev *dev)
2823 {
2824 	__pci_set_master(dev, false);
2825 }
2826 EXPORT_SYMBOL(pci_clear_master);
2827 
2828 /**
2829  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2830  * @dev: the PCI device for which MWI is to be enabled
2831  *
2832  * Helper function for pci_set_mwi.
2833  * Originally copied from drivers/net/acenic.c.
2834  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2835  *
2836  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2837  */
pci_set_cacheline_size(struct pci_dev * dev)2838 int pci_set_cacheline_size(struct pci_dev *dev)
2839 {
2840 	u8 cacheline_size;
2841 
2842 	if (!pci_cache_line_size)
2843 		return -EINVAL;
2844 
2845 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2846 	   equal to or multiple of the right value. */
2847 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2848 	if (cacheline_size >= pci_cache_line_size &&
2849 	    (cacheline_size % pci_cache_line_size) == 0)
2850 		return 0;
2851 
2852 	/* Write the correct value. */
2853 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2854 	/* Read it back. */
2855 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2856 	if (cacheline_size == pci_cache_line_size)
2857 		return 0;
2858 
2859 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
2860 		   pci_cache_line_size << 2);
2861 
2862 	return -EINVAL;
2863 }
2864 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2865 
2866 /**
2867  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2868  * @dev: the PCI device for which MWI is enabled
2869  *
2870  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2871  *
2872  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2873  */
pci_set_mwi(struct pci_dev * dev)2874 int pci_set_mwi(struct pci_dev *dev)
2875 {
2876 #ifdef PCI_DISABLE_MWI
2877 	return 0;
2878 #else
2879 	int rc;
2880 	u16 cmd;
2881 
2882 	rc = pci_set_cacheline_size(dev);
2883 	if (rc)
2884 		return rc;
2885 
2886 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2887 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
2888 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2889 		cmd |= PCI_COMMAND_INVALIDATE;
2890 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2891 	}
2892 	return 0;
2893 #endif
2894 }
2895 EXPORT_SYMBOL(pci_set_mwi);
2896 
2897 /**
2898  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2899  * @dev: the PCI device for which MWI is enabled
2900  *
2901  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2902  * Callers are not required to check the return value.
2903  *
2904  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2905  */
pci_try_set_mwi(struct pci_dev * dev)2906 int pci_try_set_mwi(struct pci_dev *dev)
2907 {
2908 #ifdef PCI_DISABLE_MWI
2909 	return 0;
2910 #else
2911 	return pci_set_mwi(dev);
2912 #endif
2913 }
2914 EXPORT_SYMBOL(pci_try_set_mwi);
2915 
2916 /**
2917  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2918  * @dev: the PCI device to disable
2919  *
2920  * Disables PCI Memory-Write-Invalidate transaction on the device
2921  */
pci_clear_mwi(struct pci_dev * dev)2922 void pci_clear_mwi(struct pci_dev *dev)
2923 {
2924 #ifndef PCI_DISABLE_MWI
2925 	u16 cmd;
2926 
2927 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2928 	if (cmd & PCI_COMMAND_INVALIDATE) {
2929 		cmd &= ~PCI_COMMAND_INVALIDATE;
2930 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2931 	}
2932 #endif
2933 }
2934 EXPORT_SYMBOL(pci_clear_mwi);
2935 
2936 /**
2937  * pci_intx - enables/disables PCI INTx for device dev
2938  * @pdev: the PCI device to operate on
2939  * @enable: boolean: whether to enable or disable PCI INTx
2940  *
2941  * Enables/disables PCI INTx for device dev
2942  */
pci_intx(struct pci_dev * pdev,int enable)2943 void pci_intx(struct pci_dev *pdev, int enable)
2944 {
2945 	u16 pci_command, new;
2946 
2947 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2948 
2949 	if (enable)
2950 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2951 	else
2952 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2953 
2954 	if (new != pci_command) {
2955 		struct pci_devres *dr;
2956 
2957 		pci_write_config_word(pdev, PCI_COMMAND, new);
2958 
2959 		dr = find_pci_dr(pdev);
2960 		if (dr && !dr->restore_intx) {
2961 			dr->restore_intx = 1;
2962 			dr->orig_intx = !enable;
2963 		}
2964 	}
2965 }
2966 EXPORT_SYMBOL_GPL(pci_intx);
2967 
2968 /**
2969  * pci_intx_mask_supported - probe for INTx masking support
2970  * @dev: the PCI device to operate on
2971  *
2972  * Check if the device dev support INTx masking via the config space
2973  * command word.
2974  */
pci_intx_mask_supported(struct pci_dev * dev)2975 bool pci_intx_mask_supported(struct pci_dev *dev)
2976 {
2977 	bool mask_supported = false;
2978 	u16 orig, new;
2979 
2980 	if (dev->broken_intx_masking)
2981 		return false;
2982 
2983 	pci_cfg_access_lock(dev);
2984 
2985 	pci_read_config_word(dev, PCI_COMMAND, &orig);
2986 	pci_write_config_word(dev, PCI_COMMAND,
2987 			      orig ^ PCI_COMMAND_INTX_DISABLE);
2988 	pci_read_config_word(dev, PCI_COMMAND, &new);
2989 
2990 	/*
2991 	 * There's no way to protect against hardware bugs or detect them
2992 	 * reliably, but as long as we know what the value should be, let's
2993 	 * go ahead and check it.
2994 	 */
2995 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2996 		dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
2997 			orig, new);
2998 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2999 		mask_supported = true;
3000 		pci_write_config_word(dev, PCI_COMMAND, orig);
3001 	}
3002 
3003 	pci_cfg_access_unlock(dev);
3004 	return mask_supported;
3005 }
3006 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3007 
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)3008 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3009 {
3010 	struct pci_bus *bus = dev->bus;
3011 	bool mask_updated = true;
3012 	u32 cmd_status_dword;
3013 	u16 origcmd, newcmd;
3014 	unsigned long flags;
3015 	bool irq_pending;
3016 
3017 	/*
3018 	 * We do a single dword read to retrieve both command and status.
3019 	 * Document assumptions that make this possible.
3020 	 */
3021 	BUILD_BUG_ON(PCI_COMMAND % 4);
3022 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3023 
3024 	raw_spin_lock_irqsave(&pci_lock, flags);
3025 
3026 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3027 
3028 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3029 
3030 	/*
3031 	 * Check interrupt status register to see whether our device
3032 	 * triggered the interrupt (when masking) or the next IRQ is
3033 	 * already pending (when unmasking).
3034 	 */
3035 	if (mask != irq_pending) {
3036 		mask_updated = false;
3037 		goto done;
3038 	}
3039 
3040 	origcmd = cmd_status_dword;
3041 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3042 	if (mask)
3043 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3044 	if (newcmd != origcmd)
3045 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3046 
3047 done:
3048 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3049 
3050 	return mask_updated;
3051 }
3052 
3053 /**
3054  * pci_check_and_mask_intx - mask INTx on pending interrupt
3055  * @dev: the PCI device to operate on
3056  *
3057  * Check if the device dev has its INTx line asserted, mask it and
3058  * return true in that case. False is returned if not interrupt was
3059  * pending.
3060  */
pci_check_and_mask_intx(struct pci_dev * dev)3061 bool pci_check_and_mask_intx(struct pci_dev *dev)
3062 {
3063 	return pci_check_and_set_intx_mask(dev, true);
3064 }
3065 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3066 
3067 /**
3068  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3069  * @dev: the PCI device to operate on
3070  *
3071  * Check if the device dev has its INTx line asserted, unmask it if not
3072  * and return true. False is returned and the mask remains active if
3073  * there was still an interrupt pending.
3074  */
pci_check_and_unmask_intx(struct pci_dev * dev)3075 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3076 {
3077 	return pci_check_and_set_intx_mask(dev, false);
3078 }
3079 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3080 
3081 /**
3082  * pci_msi_off - disables any MSI or MSI-X capabilities
3083  * @dev: the PCI device to operate on
3084  *
3085  * If you want to use MSI, see pci_enable_msi() and friends.
3086  * This is a lower-level primitive that allows us to disable
3087  * MSI operation at the device level.
3088  */
pci_msi_off(struct pci_dev * dev)3089 void pci_msi_off(struct pci_dev *dev)
3090 {
3091 	int pos;
3092 	u16 control;
3093 
3094 	/*
3095 	 * This looks like it could go in msi.c, but we need it even when
3096 	 * CONFIG_PCI_MSI=n.  For the same reason, we can't use
3097 	 * dev->msi_cap or dev->msix_cap here.
3098 	 */
3099 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3100 	if (pos) {
3101 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3102 		control &= ~PCI_MSI_FLAGS_ENABLE;
3103 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3104 	}
3105 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3106 	if (pos) {
3107 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3108 		control &= ~PCI_MSIX_FLAGS_ENABLE;
3109 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3110 	}
3111 }
3112 EXPORT_SYMBOL_GPL(pci_msi_off);
3113 
pci_set_dma_max_seg_size(struct pci_dev * dev,unsigned int size)3114 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3115 {
3116 	return dma_set_max_seg_size(&dev->dev, size);
3117 }
3118 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3119 
pci_set_dma_seg_boundary(struct pci_dev * dev,unsigned long mask)3120 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3121 {
3122 	return dma_set_seg_boundary(&dev->dev, mask);
3123 }
3124 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3125 
3126 /**
3127  * pci_wait_for_pending_transaction - waits for pending transaction
3128  * @dev: the PCI device to operate on
3129  *
3130  * Return 0 if transaction is pending 1 otherwise.
3131  */
pci_wait_for_pending_transaction(struct pci_dev * dev)3132 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3133 {
3134 	if (!pci_is_pcie(dev))
3135 		return 1;
3136 
3137 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3138 				    PCI_EXP_DEVSTA_TRPND);
3139 }
3140 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3141 
pcie_flr(struct pci_dev * dev,int probe)3142 static int pcie_flr(struct pci_dev *dev, int probe)
3143 {
3144 	u32 cap;
3145 
3146 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3147 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3148 		return -ENOTTY;
3149 
3150 	if (probe)
3151 		return 0;
3152 
3153 	if (!pci_wait_for_pending_transaction(dev))
3154 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3155 
3156 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3157 
3158 	msleep(100);
3159 
3160 	return 0;
3161 }
3162 
pci_af_flr(struct pci_dev * dev,int probe)3163 static int pci_af_flr(struct pci_dev *dev, int probe)
3164 {
3165 	int pos;
3166 	u8 cap;
3167 
3168 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3169 	if (!pos)
3170 		return -ENOTTY;
3171 
3172 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3173 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3174 		return -ENOTTY;
3175 
3176 	if (probe)
3177 		return 0;
3178 
3179 	/*
3180 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3181 	 * is used, so we use the conrol offset rather than status and shift
3182 	 * the test bit to match.
3183 	 */
3184 	if (pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3185 				 PCI_AF_STATUS_TP << 8))
3186 		goto clear;
3187 
3188 	dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3189 
3190 clear:
3191 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3192 	msleep(100);
3193 
3194 	return 0;
3195 }
3196 
3197 /**
3198  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3199  * @dev: Device to reset.
3200  * @probe: If set, only check if the device can be reset this way.
3201  *
3202  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3203  * unset, it will be reinitialized internally when going from PCI_D3hot to
3204  * PCI_D0.  If that's the case and the device is not in a low-power state
3205  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3206  *
3207  * NOTE: This causes the caller to sleep for twice the device power transition
3208  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3209  * by default (i.e. unless the @dev's d3_delay field has a different value).
3210  * Moreover, only devices in D0 can be reset by this function.
3211  */
pci_pm_reset(struct pci_dev * dev,int probe)3212 static int pci_pm_reset(struct pci_dev *dev, int probe)
3213 {
3214 	u16 csr;
3215 
3216 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3217 		return -ENOTTY;
3218 
3219 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3220 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3221 		return -ENOTTY;
3222 
3223 	if (probe)
3224 		return 0;
3225 
3226 	if (dev->current_state != PCI_D0)
3227 		return -EINVAL;
3228 
3229 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3230 	csr |= PCI_D3hot;
3231 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3232 	pci_dev_d3_sleep(dev);
3233 
3234 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3235 	csr |= PCI_D0;
3236 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3237 	pci_dev_d3_sleep(dev);
3238 
3239 	return 0;
3240 }
3241 
pci_reset_secondary_bus(struct pci_dev * dev)3242 void pci_reset_secondary_bus(struct pci_dev *dev)
3243 {
3244 	u16 ctrl;
3245 
3246 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3247 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3248 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3249 	/*
3250 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3251 	 * this to 2ms to ensure that we meet the minimum requirement.
3252 	 */
3253 	msleep(2);
3254 
3255 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3256 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3257 
3258 	/*
3259 	 * Trhfa for conventional PCI is 2^25 clock cycles.
3260 	 * Assuming a minimum 33MHz clock this results in a 1s
3261 	 * delay before we can consider subordinate devices to
3262 	 * be re-initialized.  PCIe has some ways to shorten this,
3263 	 * but we don't make use of them yet.
3264 	 */
3265 	ssleep(1);
3266 }
3267 
pcibios_reset_secondary_bus(struct pci_dev * dev)3268 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3269 {
3270 	pci_reset_secondary_bus(dev);
3271 }
3272 
3273 /**
3274  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3275  * @dev: Bridge device
3276  *
3277  * Use the bridge control register to assert reset on the secondary bus.
3278  * Devices on the secondary bus are left in power-on state.
3279  */
pci_reset_bridge_secondary_bus(struct pci_dev * dev)3280 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3281 {
3282 	pcibios_reset_secondary_bus(dev);
3283 }
3284 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3285 
pci_parent_bus_reset(struct pci_dev * dev,int probe)3286 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3287 {
3288 	struct pci_dev *pdev;
3289 
3290 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3291 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3292 		return -ENOTTY;
3293 
3294 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3295 		if (pdev != dev)
3296 			return -ENOTTY;
3297 
3298 	if (probe)
3299 		return 0;
3300 
3301 	pci_reset_bridge_secondary_bus(dev->bus->self);
3302 
3303 	return 0;
3304 }
3305 
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,int probe)3306 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3307 {
3308 	int rc = -ENOTTY;
3309 
3310 	if (!hotplug || !try_module_get(hotplug->ops->owner))
3311 		return rc;
3312 
3313 	if (hotplug->ops->reset_slot)
3314 		rc = hotplug->ops->reset_slot(hotplug, probe);
3315 
3316 	module_put(hotplug->ops->owner);
3317 
3318 	return rc;
3319 }
3320 
pci_dev_reset_slot_function(struct pci_dev * dev,int probe)3321 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3322 {
3323 	struct pci_dev *pdev;
3324 
3325 	if (dev->subordinate || !dev->slot ||
3326 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3327 		return -ENOTTY;
3328 
3329 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3330 		if (pdev != dev && pdev->slot == dev->slot)
3331 			return -ENOTTY;
3332 
3333 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3334 }
3335 
__pci_dev_reset(struct pci_dev * dev,int probe)3336 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3337 {
3338 	int rc;
3339 
3340 	might_sleep();
3341 
3342 	rc = pci_dev_specific_reset(dev, probe);
3343 	if (rc != -ENOTTY)
3344 		goto done;
3345 
3346 	rc = pcie_flr(dev, probe);
3347 	if (rc != -ENOTTY)
3348 		goto done;
3349 
3350 	rc = pci_af_flr(dev, probe);
3351 	if (rc != -ENOTTY)
3352 		goto done;
3353 
3354 	rc = pci_pm_reset(dev, probe);
3355 	if (rc != -ENOTTY)
3356 		goto done;
3357 
3358 	rc = pci_dev_reset_slot_function(dev, probe);
3359 	if (rc != -ENOTTY)
3360 		goto done;
3361 
3362 	rc = pci_parent_bus_reset(dev, probe);
3363 done:
3364 	return rc;
3365 }
3366 
pci_dev_lock(struct pci_dev * dev)3367 static void pci_dev_lock(struct pci_dev *dev)
3368 {
3369 	pci_cfg_access_lock(dev);
3370 	/* block PM suspend, driver probe, etc. */
3371 	device_lock(&dev->dev);
3372 }
3373 
3374 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)3375 static int pci_dev_trylock(struct pci_dev *dev)
3376 {
3377 	if (pci_cfg_access_trylock(dev)) {
3378 		if (device_trylock(&dev->dev))
3379 			return 1;
3380 		pci_cfg_access_unlock(dev);
3381 	}
3382 
3383 	return 0;
3384 }
3385 
pci_dev_unlock(struct pci_dev * dev)3386 static void pci_dev_unlock(struct pci_dev *dev)
3387 {
3388 	device_unlock(&dev->dev);
3389 	pci_cfg_access_unlock(dev);
3390 }
3391 
3392 /**
3393  * pci_reset_notify - notify device driver of reset
3394  * @dev: device to be notified of reset
3395  * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3396  *           completed
3397  *
3398  * Must be called prior to device access being disabled and after device
3399  * access is restored.
3400  */
pci_reset_notify(struct pci_dev * dev,bool prepare)3401 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3402 {
3403 	const struct pci_error_handlers *err_handler =
3404 			dev->driver ? dev->driver->err_handler : NULL;
3405 	if (err_handler && err_handler->reset_notify)
3406 		err_handler->reset_notify(dev, prepare);
3407 }
3408 
pci_dev_save_and_disable(struct pci_dev * dev)3409 static void pci_dev_save_and_disable(struct pci_dev *dev)
3410 {
3411 	pci_reset_notify(dev, true);
3412 
3413 	/*
3414 	 * Wake-up device prior to save.  PM registers default to D0 after
3415 	 * reset and a simple register restore doesn't reliably return
3416 	 * to a non-D0 state anyway.
3417 	 */
3418 	pci_set_power_state(dev, PCI_D0);
3419 
3420 	pci_save_state(dev);
3421 	/*
3422 	 * Disable the device by clearing the Command register, except for
3423 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
3424 	 * BARs, but also prevents the device from being Bus Master, preventing
3425 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3426 	 * compliant devices, INTx-disable prevents legacy interrupts.
3427 	 */
3428 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3429 }
3430 
pci_dev_restore(struct pci_dev * dev)3431 static void pci_dev_restore(struct pci_dev *dev)
3432 {
3433 	pci_restore_state(dev);
3434 	pci_reset_notify(dev, false);
3435 }
3436 
pci_dev_reset(struct pci_dev * dev,int probe)3437 static int pci_dev_reset(struct pci_dev *dev, int probe)
3438 {
3439 	int rc;
3440 
3441 	if (!probe)
3442 		pci_dev_lock(dev);
3443 
3444 	rc = __pci_dev_reset(dev, probe);
3445 
3446 	if (!probe)
3447 		pci_dev_unlock(dev);
3448 
3449 	return rc;
3450 }
3451 
3452 /**
3453  * __pci_reset_function - reset a PCI device function
3454  * @dev: PCI device to reset
3455  *
3456  * Some devices allow an individual function to be reset without affecting
3457  * other functions in the same device.  The PCI device must be responsive
3458  * to PCI config space in order to use this function.
3459  *
3460  * The device function is presumed to be unused when this function is called.
3461  * Resetting the device will make the contents of PCI configuration space
3462  * random, so any caller of this must be prepared to reinitialise the
3463  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3464  * etc.
3465  *
3466  * Returns 0 if the device function was successfully reset or negative if the
3467  * device doesn't support resetting a single function.
3468  */
__pci_reset_function(struct pci_dev * dev)3469 int __pci_reset_function(struct pci_dev *dev)
3470 {
3471 	return pci_dev_reset(dev, 0);
3472 }
3473 EXPORT_SYMBOL_GPL(__pci_reset_function);
3474 
3475 /**
3476  * __pci_reset_function_locked - reset a PCI device function while holding
3477  * the @dev mutex lock.
3478  * @dev: PCI device to reset
3479  *
3480  * Some devices allow an individual function to be reset without affecting
3481  * other functions in the same device.  The PCI device must be responsive
3482  * to PCI config space in order to use this function.
3483  *
3484  * The device function is presumed to be unused and the caller is holding
3485  * the device mutex lock when this function is called.
3486  * Resetting the device will make the contents of PCI configuration space
3487  * random, so any caller of this must be prepared to reinitialise the
3488  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3489  * etc.
3490  *
3491  * Returns 0 if the device function was successfully reset or negative if the
3492  * device doesn't support resetting a single function.
3493  */
__pci_reset_function_locked(struct pci_dev * dev)3494 int __pci_reset_function_locked(struct pci_dev *dev)
3495 {
3496 	return __pci_dev_reset(dev, 0);
3497 }
3498 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3499 
3500 /**
3501  * pci_probe_reset_function - check whether the device can be safely reset
3502  * @dev: PCI device to reset
3503  *
3504  * Some devices allow an individual function to be reset without affecting
3505  * other functions in the same device.  The PCI device must be responsive
3506  * to PCI config space in order to use this function.
3507  *
3508  * Returns 0 if the device function can be reset or negative if the
3509  * device doesn't support resetting a single function.
3510  */
pci_probe_reset_function(struct pci_dev * dev)3511 int pci_probe_reset_function(struct pci_dev *dev)
3512 {
3513 	return pci_dev_reset(dev, 1);
3514 }
3515 
3516 /**
3517  * pci_reset_function - quiesce and reset a PCI device function
3518  * @dev: PCI device to reset
3519  *
3520  * Some devices allow an individual function to be reset without affecting
3521  * other functions in the same device.  The PCI device must be responsive
3522  * to PCI config space in order to use this function.
3523  *
3524  * This function does not just reset the PCI portion of a device, but
3525  * clears all the state associated with the device.  This function differs
3526  * from __pci_reset_function in that it saves and restores device state
3527  * over the reset.
3528  *
3529  * Returns 0 if the device function was successfully reset or negative if the
3530  * device doesn't support resetting a single function.
3531  */
pci_reset_function(struct pci_dev * dev)3532 int pci_reset_function(struct pci_dev *dev)
3533 {
3534 	int rc;
3535 
3536 	rc = pci_dev_reset(dev, 1);
3537 	if (rc)
3538 		return rc;
3539 
3540 	pci_dev_save_and_disable(dev);
3541 
3542 	rc = pci_dev_reset(dev, 0);
3543 
3544 	pci_dev_restore(dev);
3545 
3546 	return rc;
3547 }
3548 EXPORT_SYMBOL_GPL(pci_reset_function);
3549 
3550 /**
3551  * pci_try_reset_function - quiesce and reset a PCI device function
3552  * @dev: PCI device to reset
3553  *
3554  * Same as above, except return -EAGAIN if unable to lock device.
3555  */
pci_try_reset_function(struct pci_dev * dev)3556 int pci_try_reset_function(struct pci_dev *dev)
3557 {
3558 	int rc;
3559 
3560 	rc = pci_dev_reset(dev, 1);
3561 	if (rc)
3562 		return rc;
3563 
3564 	pci_dev_save_and_disable(dev);
3565 
3566 	if (pci_dev_trylock(dev)) {
3567 		rc = __pci_dev_reset(dev, 0);
3568 		pci_dev_unlock(dev);
3569 	} else
3570 		rc = -EAGAIN;
3571 
3572 	pci_dev_restore(dev);
3573 
3574 	return rc;
3575 }
3576 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3577 
3578 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resetable(struct pci_bus * bus)3579 static bool pci_bus_resetable(struct pci_bus *bus)
3580 {
3581 	struct pci_dev *dev;
3582 
3583 
3584 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
3585 		return false;
3586 
3587 	list_for_each_entry(dev, &bus->devices, bus_list) {
3588 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3589 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3590 			return false;
3591 	}
3592 
3593 	return true;
3594 }
3595 
3596 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)3597 static void pci_bus_lock(struct pci_bus *bus)
3598 {
3599 	struct pci_dev *dev;
3600 
3601 	list_for_each_entry(dev, &bus->devices, bus_list) {
3602 		pci_dev_lock(dev);
3603 		if (dev->subordinate)
3604 			pci_bus_lock(dev->subordinate);
3605 	}
3606 }
3607 
3608 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)3609 static void pci_bus_unlock(struct pci_bus *bus)
3610 {
3611 	struct pci_dev *dev;
3612 
3613 	list_for_each_entry(dev, &bus->devices, bus_list) {
3614 		if (dev->subordinate)
3615 			pci_bus_unlock(dev->subordinate);
3616 		pci_dev_unlock(dev);
3617 	}
3618 }
3619 
3620 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)3621 static int pci_bus_trylock(struct pci_bus *bus)
3622 {
3623 	struct pci_dev *dev;
3624 
3625 	list_for_each_entry(dev, &bus->devices, bus_list) {
3626 		if (!pci_dev_trylock(dev))
3627 			goto unlock;
3628 		if (dev->subordinate) {
3629 			if (!pci_bus_trylock(dev->subordinate)) {
3630 				pci_dev_unlock(dev);
3631 				goto unlock;
3632 			}
3633 		}
3634 	}
3635 	return 1;
3636 
3637 unlock:
3638 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3639 		if (dev->subordinate)
3640 			pci_bus_unlock(dev->subordinate);
3641 		pci_dev_unlock(dev);
3642 	}
3643 	return 0;
3644 }
3645 
3646 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resetable(struct pci_slot * slot)3647 static bool pci_slot_resetable(struct pci_slot *slot)
3648 {
3649 	struct pci_dev *dev;
3650 
3651 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3652 		if (!dev->slot || dev->slot != slot)
3653 			continue;
3654 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3655 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3656 			return false;
3657 	}
3658 
3659 	return true;
3660 }
3661 
3662 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)3663 static void pci_slot_lock(struct pci_slot *slot)
3664 {
3665 	struct pci_dev *dev;
3666 
3667 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3668 		if (!dev->slot || dev->slot != slot)
3669 			continue;
3670 		pci_dev_lock(dev);
3671 		if (dev->subordinate)
3672 			pci_bus_lock(dev->subordinate);
3673 	}
3674 }
3675 
3676 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)3677 static void pci_slot_unlock(struct pci_slot *slot)
3678 {
3679 	struct pci_dev *dev;
3680 
3681 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3682 		if (!dev->slot || dev->slot != slot)
3683 			continue;
3684 		if (dev->subordinate)
3685 			pci_bus_unlock(dev->subordinate);
3686 		pci_dev_unlock(dev);
3687 	}
3688 }
3689 
3690 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)3691 static int pci_slot_trylock(struct pci_slot *slot)
3692 {
3693 	struct pci_dev *dev;
3694 
3695 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3696 		if (!dev->slot || dev->slot != slot)
3697 			continue;
3698 		if (!pci_dev_trylock(dev))
3699 			goto unlock;
3700 		if (dev->subordinate) {
3701 			if (!pci_bus_trylock(dev->subordinate)) {
3702 				pci_dev_unlock(dev);
3703 				goto unlock;
3704 			}
3705 		}
3706 	}
3707 	return 1;
3708 
3709 unlock:
3710 	list_for_each_entry_continue_reverse(dev,
3711 					     &slot->bus->devices, bus_list) {
3712 		if (!dev->slot || dev->slot != slot)
3713 			continue;
3714 		if (dev->subordinate)
3715 			pci_bus_unlock(dev->subordinate);
3716 		pci_dev_unlock(dev);
3717 	}
3718 	return 0;
3719 }
3720 
3721 /* Save and disable devices from the top of the tree down */
pci_bus_save_and_disable(struct pci_bus * bus)3722 static void pci_bus_save_and_disable(struct pci_bus *bus)
3723 {
3724 	struct pci_dev *dev;
3725 
3726 	list_for_each_entry(dev, &bus->devices, bus_list) {
3727 		pci_dev_save_and_disable(dev);
3728 		if (dev->subordinate)
3729 			pci_bus_save_and_disable(dev->subordinate);
3730 	}
3731 }
3732 
3733 /*
3734  * Restore devices from top of the tree down - parent bridges need to be
3735  * restored before we can get to subordinate devices.
3736  */
pci_bus_restore(struct pci_bus * bus)3737 static void pci_bus_restore(struct pci_bus *bus)
3738 {
3739 	struct pci_dev *dev;
3740 
3741 	list_for_each_entry(dev, &bus->devices, bus_list) {
3742 		pci_dev_restore(dev);
3743 		if (dev->subordinate)
3744 			pci_bus_restore(dev->subordinate);
3745 	}
3746 }
3747 
3748 /* Save and disable devices from the top of the tree down */
pci_slot_save_and_disable(struct pci_slot * slot)3749 static void pci_slot_save_and_disable(struct pci_slot *slot)
3750 {
3751 	struct pci_dev *dev;
3752 
3753 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3754 		if (!dev->slot || dev->slot != slot)
3755 			continue;
3756 		pci_dev_save_and_disable(dev);
3757 		if (dev->subordinate)
3758 			pci_bus_save_and_disable(dev->subordinate);
3759 	}
3760 }
3761 
3762 /*
3763  * Restore devices from top of the tree down - parent bridges need to be
3764  * restored before we can get to subordinate devices.
3765  */
pci_slot_restore(struct pci_slot * slot)3766 static void pci_slot_restore(struct pci_slot *slot)
3767 {
3768 	struct pci_dev *dev;
3769 
3770 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3771 		if (!dev->slot || dev->slot != slot)
3772 			continue;
3773 		pci_dev_restore(dev);
3774 		if (dev->subordinate)
3775 			pci_bus_restore(dev->subordinate);
3776 	}
3777 }
3778 
pci_slot_reset(struct pci_slot * slot,int probe)3779 static int pci_slot_reset(struct pci_slot *slot, int probe)
3780 {
3781 	int rc;
3782 
3783 	if (!slot || !pci_slot_resetable(slot))
3784 		return -ENOTTY;
3785 
3786 	if (!probe)
3787 		pci_slot_lock(slot);
3788 
3789 	might_sleep();
3790 
3791 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3792 
3793 	if (!probe)
3794 		pci_slot_unlock(slot);
3795 
3796 	return rc;
3797 }
3798 
3799 /**
3800  * pci_probe_reset_slot - probe whether a PCI slot can be reset
3801  * @slot: PCI slot to probe
3802  *
3803  * Return 0 if slot can be reset, negative if a slot reset is not supported.
3804  */
pci_probe_reset_slot(struct pci_slot * slot)3805 int pci_probe_reset_slot(struct pci_slot *slot)
3806 {
3807 	return pci_slot_reset(slot, 1);
3808 }
3809 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3810 
3811 /**
3812  * pci_reset_slot - reset a PCI slot
3813  * @slot: PCI slot to reset
3814  *
3815  * A PCI bus may host multiple slots, each slot may support a reset mechanism
3816  * independent of other slots.  For instance, some slots may support slot power
3817  * control.  In the case of a 1:1 bus to slot architecture, this function may
3818  * wrap the bus reset to avoid spurious slot related events such as hotplug.
3819  * Generally a slot reset should be attempted before a bus reset.  All of the
3820  * function of the slot and any subordinate buses behind the slot are reset
3821  * through this function.  PCI config space of all devices in the slot and
3822  * behind the slot is saved before and restored after reset.
3823  *
3824  * Return 0 on success, non-zero on error.
3825  */
pci_reset_slot(struct pci_slot * slot)3826 int pci_reset_slot(struct pci_slot *slot)
3827 {
3828 	int rc;
3829 
3830 	rc = pci_slot_reset(slot, 1);
3831 	if (rc)
3832 		return rc;
3833 
3834 	pci_slot_save_and_disable(slot);
3835 
3836 	rc = pci_slot_reset(slot, 0);
3837 
3838 	pci_slot_restore(slot);
3839 
3840 	return rc;
3841 }
3842 EXPORT_SYMBOL_GPL(pci_reset_slot);
3843 
3844 /**
3845  * pci_try_reset_slot - Try to reset a PCI slot
3846  * @slot: PCI slot to reset
3847  *
3848  * Same as above except return -EAGAIN if the slot cannot be locked
3849  */
pci_try_reset_slot(struct pci_slot * slot)3850 int pci_try_reset_slot(struct pci_slot *slot)
3851 {
3852 	int rc;
3853 
3854 	rc = pci_slot_reset(slot, 1);
3855 	if (rc)
3856 		return rc;
3857 
3858 	pci_slot_save_and_disable(slot);
3859 
3860 	if (pci_slot_trylock(slot)) {
3861 		might_sleep();
3862 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3863 		pci_slot_unlock(slot);
3864 	} else
3865 		rc = -EAGAIN;
3866 
3867 	pci_slot_restore(slot);
3868 
3869 	return rc;
3870 }
3871 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3872 
pci_bus_reset(struct pci_bus * bus,int probe)3873 static int pci_bus_reset(struct pci_bus *bus, int probe)
3874 {
3875 	if (!bus->self || !pci_bus_resetable(bus))
3876 		return -ENOTTY;
3877 
3878 	if (probe)
3879 		return 0;
3880 
3881 	pci_bus_lock(bus);
3882 
3883 	might_sleep();
3884 
3885 	pci_reset_bridge_secondary_bus(bus->self);
3886 
3887 	pci_bus_unlock(bus);
3888 
3889 	return 0;
3890 }
3891 
3892 /**
3893  * pci_probe_reset_bus - probe whether a PCI bus can be reset
3894  * @bus: PCI bus to probe
3895  *
3896  * Return 0 if bus can be reset, negative if a bus reset is not supported.
3897  */
pci_probe_reset_bus(struct pci_bus * bus)3898 int pci_probe_reset_bus(struct pci_bus *bus)
3899 {
3900 	return pci_bus_reset(bus, 1);
3901 }
3902 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3903 
3904 /**
3905  * pci_reset_bus - reset a PCI bus
3906  * @bus: top level PCI bus to reset
3907  *
3908  * Do a bus reset on the given bus and any subordinate buses, saving
3909  * and restoring state of all devices.
3910  *
3911  * Return 0 on success, non-zero on error.
3912  */
pci_reset_bus(struct pci_bus * bus)3913 int pci_reset_bus(struct pci_bus *bus)
3914 {
3915 	int rc;
3916 
3917 	rc = pci_bus_reset(bus, 1);
3918 	if (rc)
3919 		return rc;
3920 
3921 	pci_bus_save_and_disable(bus);
3922 
3923 	rc = pci_bus_reset(bus, 0);
3924 
3925 	pci_bus_restore(bus);
3926 
3927 	return rc;
3928 }
3929 EXPORT_SYMBOL_GPL(pci_reset_bus);
3930 
3931 /**
3932  * pci_try_reset_bus - Try to reset a PCI bus
3933  * @bus: top level PCI bus to reset
3934  *
3935  * Same as above except return -EAGAIN if the bus cannot be locked
3936  */
pci_try_reset_bus(struct pci_bus * bus)3937 int pci_try_reset_bus(struct pci_bus *bus)
3938 {
3939 	int rc;
3940 
3941 	rc = pci_bus_reset(bus, 1);
3942 	if (rc)
3943 		return rc;
3944 
3945 	pci_bus_save_and_disable(bus);
3946 
3947 	if (pci_bus_trylock(bus)) {
3948 		might_sleep();
3949 		pci_reset_bridge_secondary_bus(bus->self);
3950 		pci_bus_unlock(bus);
3951 	} else
3952 		rc = -EAGAIN;
3953 
3954 	pci_bus_restore(bus);
3955 
3956 	return rc;
3957 }
3958 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3959 
3960 /**
3961  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3962  * @dev: PCI device to query
3963  *
3964  * Returns mmrbc: maximum designed memory read count in bytes
3965  *    or appropriate error value.
3966  */
pcix_get_max_mmrbc(struct pci_dev * dev)3967 int pcix_get_max_mmrbc(struct pci_dev *dev)
3968 {
3969 	int cap;
3970 	u32 stat;
3971 
3972 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3973 	if (!cap)
3974 		return -EINVAL;
3975 
3976 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3977 		return -EINVAL;
3978 
3979 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3980 }
3981 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3982 
3983 /**
3984  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3985  * @dev: PCI device to query
3986  *
3987  * Returns mmrbc: maximum memory read count in bytes
3988  *    or appropriate error value.
3989  */
pcix_get_mmrbc(struct pci_dev * dev)3990 int pcix_get_mmrbc(struct pci_dev *dev)
3991 {
3992 	int cap;
3993 	u16 cmd;
3994 
3995 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3996 	if (!cap)
3997 		return -EINVAL;
3998 
3999 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4000 		return -EINVAL;
4001 
4002 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4003 }
4004 EXPORT_SYMBOL(pcix_get_mmrbc);
4005 
4006 /**
4007  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4008  * @dev: PCI device to query
4009  * @mmrbc: maximum memory read count in bytes
4010  *    valid values are 512, 1024, 2048, 4096
4011  *
4012  * If possible sets maximum memory read byte count, some bridges have erratas
4013  * that prevent this.
4014  */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)4015 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4016 {
4017 	int cap;
4018 	u32 stat, v, o;
4019 	u16 cmd;
4020 
4021 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4022 		return -EINVAL;
4023 
4024 	v = ffs(mmrbc) - 10;
4025 
4026 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4027 	if (!cap)
4028 		return -EINVAL;
4029 
4030 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4031 		return -EINVAL;
4032 
4033 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4034 		return -E2BIG;
4035 
4036 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4037 		return -EINVAL;
4038 
4039 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4040 	if (o != v) {
4041 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4042 			return -EIO;
4043 
4044 		cmd &= ~PCI_X_CMD_MAX_READ;
4045 		cmd |= v << 2;
4046 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4047 			return -EIO;
4048 	}
4049 	return 0;
4050 }
4051 EXPORT_SYMBOL(pcix_set_mmrbc);
4052 
4053 /**
4054  * pcie_get_readrq - get PCI Express read request size
4055  * @dev: PCI device to query
4056  *
4057  * Returns maximum memory read request in bytes
4058  *    or appropriate error value.
4059  */
pcie_get_readrq(struct pci_dev * dev)4060 int pcie_get_readrq(struct pci_dev *dev)
4061 {
4062 	u16 ctl;
4063 
4064 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4065 
4066 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4067 }
4068 EXPORT_SYMBOL(pcie_get_readrq);
4069 
4070 /**
4071  * pcie_set_readrq - set PCI Express maximum memory read request
4072  * @dev: PCI device to query
4073  * @rq: maximum memory read count in bytes
4074  *    valid values are 128, 256, 512, 1024, 2048, 4096
4075  *
4076  * If possible sets maximum memory read request in bytes
4077  */
pcie_set_readrq(struct pci_dev * dev,int rq)4078 int pcie_set_readrq(struct pci_dev *dev, int rq)
4079 {
4080 	u16 v;
4081 
4082 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4083 		return -EINVAL;
4084 
4085 	/*
4086 	 * If using the "performance" PCIe config, we clamp the
4087 	 * read rq size to the max packet size to prevent the
4088 	 * host bridge generating requests larger than we can
4089 	 * cope with
4090 	 */
4091 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4092 		int mps = pcie_get_mps(dev);
4093 
4094 		if (mps < rq)
4095 			rq = mps;
4096 	}
4097 
4098 	v = (ffs(rq) - 8) << 12;
4099 
4100 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4101 						  PCI_EXP_DEVCTL_READRQ, v);
4102 }
4103 EXPORT_SYMBOL(pcie_set_readrq);
4104 
4105 /**
4106  * pcie_get_mps - get PCI Express maximum payload size
4107  * @dev: PCI device to query
4108  *
4109  * Returns maximum payload size in bytes
4110  */
pcie_get_mps(struct pci_dev * dev)4111 int pcie_get_mps(struct pci_dev *dev)
4112 {
4113 	u16 ctl;
4114 
4115 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4116 
4117 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4118 }
4119 EXPORT_SYMBOL(pcie_get_mps);
4120 
4121 /**
4122  * pcie_set_mps - set PCI Express maximum payload size
4123  * @dev: PCI device to query
4124  * @mps: maximum payload size in bytes
4125  *    valid values are 128, 256, 512, 1024, 2048, 4096
4126  *
4127  * If possible sets maximum payload size
4128  */
pcie_set_mps(struct pci_dev * dev,int mps)4129 int pcie_set_mps(struct pci_dev *dev, int mps)
4130 {
4131 	u16 v;
4132 
4133 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4134 		return -EINVAL;
4135 
4136 	v = ffs(mps) - 8;
4137 	if (v > dev->pcie_mpss)
4138 		return -EINVAL;
4139 	v <<= 5;
4140 
4141 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4142 						  PCI_EXP_DEVCTL_PAYLOAD, v);
4143 }
4144 EXPORT_SYMBOL(pcie_set_mps);
4145 
4146 /**
4147  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4148  * @dev: PCI device to query
4149  * @speed: storage for minimum speed
4150  * @width: storage for minimum width
4151  *
4152  * This function will walk up the PCI device chain and determine the minimum
4153  * link width and speed of the device.
4154  */
pcie_get_minimum_link(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)4155 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4156 			  enum pcie_link_width *width)
4157 {
4158 	int ret;
4159 
4160 	*speed = PCI_SPEED_UNKNOWN;
4161 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4162 
4163 	while (dev) {
4164 		u16 lnksta;
4165 		enum pci_bus_speed next_speed;
4166 		enum pcie_link_width next_width;
4167 
4168 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4169 		if (ret)
4170 			return ret;
4171 
4172 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4173 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4174 			PCI_EXP_LNKSTA_NLW_SHIFT;
4175 
4176 		if (next_speed < *speed)
4177 			*speed = next_speed;
4178 
4179 		if (next_width < *width)
4180 			*width = next_width;
4181 
4182 		dev = dev->bus->self;
4183 	}
4184 
4185 	return 0;
4186 }
4187 EXPORT_SYMBOL(pcie_get_minimum_link);
4188 
4189 /**
4190  * pci_select_bars - Make BAR mask from the type of resource
4191  * @dev: the PCI device for which BAR mask is made
4192  * @flags: resource type mask to be selected
4193  *
4194  * This helper routine makes bar mask from the type of resource.
4195  */
pci_select_bars(struct pci_dev * dev,unsigned long flags)4196 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4197 {
4198 	int i, bars = 0;
4199 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4200 		if (pci_resource_flags(dev, i) & flags)
4201 			bars |= (1 << i);
4202 	return bars;
4203 }
4204 EXPORT_SYMBOL(pci_select_bars);
4205 
4206 /**
4207  * pci_resource_bar - get position of the BAR associated with a resource
4208  * @dev: the PCI device
4209  * @resno: the resource number
4210  * @type: the BAR type to be filled in
4211  *
4212  * Returns BAR position in config space, or 0 if the BAR is invalid.
4213  */
pci_resource_bar(struct pci_dev * dev,int resno,enum pci_bar_type * type)4214 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4215 {
4216 	int reg;
4217 
4218 	if (resno < PCI_ROM_RESOURCE) {
4219 		*type = pci_bar_unknown;
4220 		return PCI_BASE_ADDRESS_0 + 4 * resno;
4221 	} else if (resno == PCI_ROM_RESOURCE) {
4222 		*type = pci_bar_mem32;
4223 		return dev->rom_base_reg;
4224 	} else if (resno < PCI_BRIDGE_RESOURCES) {
4225 		/* device specific resource */
4226 		reg = pci_iov_resource_bar(dev, resno, type);
4227 		if (reg)
4228 			return reg;
4229 	}
4230 
4231 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4232 	return 0;
4233 }
4234 
4235 /* Some architectures require additional programming to enable VGA */
4236 static arch_set_vga_state_t arch_set_vga_state;
4237 
pci_register_set_vga_state(arch_set_vga_state_t func)4238 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4239 {
4240 	arch_set_vga_state = func;	/* NULL disables */
4241 }
4242 
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)4243 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4244 				  unsigned int command_bits, u32 flags)
4245 {
4246 	if (arch_set_vga_state)
4247 		return arch_set_vga_state(dev, decode, command_bits,
4248 						flags);
4249 	return 0;
4250 }
4251 
4252 /**
4253  * pci_set_vga_state - set VGA decode state on device and parents if requested
4254  * @dev: the PCI device
4255  * @decode: true = enable decoding, false = disable decoding
4256  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4257  * @flags: traverse ancestors and change bridges
4258  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4259  */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)4260 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4261 		      unsigned int command_bits, u32 flags)
4262 {
4263 	struct pci_bus *bus;
4264 	struct pci_dev *bridge;
4265 	u16 cmd;
4266 	int rc;
4267 
4268 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4269 
4270 	/* ARCH specific VGA enables */
4271 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4272 	if (rc)
4273 		return rc;
4274 
4275 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4276 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4277 		if (decode == true)
4278 			cmd |= command_bits;
4279 		else
4280 			cmd &= ~command_bits;
4281 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4282 	}
4283 
4284 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4285 		return 0;
4286 
4287 	bus = dev->bus;
4288 	while (bus) {
4289 		bridge = bus->self;
4290 		if (bridge) {
4291 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4292 					     &cmd);
4293 			if (decode == true)
4294 				cmd |= PCI_BRIDGE_CTL_VGA;
4295 			else
4296 				cmd &= ~PCI_BRIDGE_CTL_VGA;
4297 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4298 					      cmd);
4299 		}
4300 		bus = bus->parent;
4301 	}
4302 	return 0;
4303 }
4304 
pci_device_is_present(struct pci_dev * pdev)4305 bool pci_device_is_present(struct pci_dev *pdev)
4306 {
4307 	u32 v;
4308 
4309 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4310 }
4311 EXPORT_SYMBOL_GPL(pci_device_is_present);
4312 
pci_ignore_hotplug(struct pci_dev * dev)4313 void pci_ignore_hotplug(struct pci_dev *dev)
4314 {
4315 	struct pci_dev *bridge = dev->bus->self;
4316 
4317 	dev->ignore_hotplug = 1;
4318 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
4319 	if (bridge)
4320 		bridge->ignore_hotplug = 1;
4321 }
4322 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4323 
4324 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4325 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4326 static DEFINE_SPINLOCK(resource_alignment_lock);
4327 
4328 /**
4329  * pci_specified_resource_alignment - get resource alignment specified by user.
4330  * @dev: the PCI device to get
4331  *
4332  * RETURNS: Resource alignment if it is specified.
4333  *          Zero if it is not specified.
4334  */
pci_specified_resource_alignment(struct pci_dev * dev)4335 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4336 {
4337 	int seg, bus, slot, func, align_order, count;
4338 	resource_size_t align = 0;
4339 	char *p;
4340 
4341 	spin_lock(&resource_alignment_lock);
4342 	p = resource_alignment_param;
4343 	while (*p) {
4344 		count = 0;
4345 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4346 							p[count] == '@') {
4347 			p += count + 1;
4348 		} else {
4349 			align_order = -1;
4350 		}
4351 		if (sscanf(p, "%x:%x:%x.%x%n",
4352 			&seg, &bus, &slot, &func, &count) != 4) {
4353 			seg = 0;
4354 			if (sscanf(p, "%x:%x.%x%n",
4355 					&bus, &slot, &func, &count) != 3) {
4356 				/* Invalid format */
4357 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4358 					p);
4359 				break;
4360 			}
4361 		}
4362 		p += count;
4363 		if (seg == pci_domain_nr(dev->bus) &&
4364 			bus == dev->bus->number &&
4365 			slot == PCI_SLOT(dev->devfn) &&
4366 			func == PCI_FUNC(dev->devfn)) {
4367 			if (align_order == -1)
4368 				align = PAGE_SIZE;
4369 			else
4370 				align = 1 << align_order;
4371 			/* Found */
4372 			break;
4373 		}
4374 		if (*p != ';' && *p != ',') {
4375 			/* End of param or invalid format */
4376 			break;
4377 		}
4378 		p++;
4379 	}
4380 	spin_unlock(&resource_alignment_lock);
4381 	return align;
4382 }
4383 
4384 /*
4385  * This function disables memory decoding and releases memory resources
4386  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4387  * It also rounds up size to specified alignment.
4388  * Later on, the kernel will assign page-aligned memory resource back
4389  * to the device.
4390  */
pci_reassigndev_resource_alignment(struct pci_dev * dev)4391 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4392 {
4393 	int i;
4394 	struct resource *r;
4395 	resource_size_t align, size;
4396 	u16 command;
4397 
4398 	/* check if specified PCI is target device to reassign */
4399 	align = pci_specified_resource_alignment(dev);
4400 	if (!align)
4401 		return;
4402 
4403 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4404 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4405 		dev_warn(&dev->dev,
4406 			"Can't reassign resources to host bridge.\n");
4407 		return;
4408 	}
4409 
4410 	dev_info(&dev->dev,
4411 		"Disabling memory decoding and releasing memory resources.\n");
4412 	pci_read_config_word(dev, PCI_COMMAND, &command);
4413 	command &= ~PCI_COMMAND_MEMORY;
4414 	pci_write_config_word(dev, PCI_COMMAND, command);
4415 
4416 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4417 		r = &dev->resource[i];
4418 		if (!(r->flags & IORESOURCE_MEM))
4419 			continue;
4420 		size = resource_size(r);
4421 		if (size < align) {
4422 			size = align;
4423 			dev_info(&dev->dev,
4424 				"Rounding up size of resource #%d to %#llx.\n",
4425 				i, (unsigned long long)size);
4426 		}
4427 		r->flags |= IORESOURCE_UNSET;
4428 		r->end = size - 1;
4429 		r->start = 0;
4430 	}
4431 	/* Need to disable bridge's resource window,
4432 	 * to enable the kernel to reassign new resource
4433 	 * window later on.
4434 	 */
4435 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4436 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4437 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4438 			r = &dev->resource[i];
4439 			if (!(r->flags & IORESOURCE_MEM))
4440 				continue;
4441 			r->flags |= IORESOURCE_UNSET;
4442 			r->end = resource_size(r) - 1;
4443 			r->start = 0;
4444 		}
4445 		pci_disable_bridge_window(dev);
4446 	}
4447 }
4448 
pci_set_resource_alignment_param(const char * buf,size_t count)4449 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4450 {
4451 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4452 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4453 	spin_lock(&resource_alignment_lock);
4454 	strncpy(resource_alignment_param, buf, count);
4455 	resource_alignment_param[count] = '\0';
4456 	spin_unlock(&resource_alignment_lock);
4457 	return count;
4458 }
4459 
pci_get_resource_alignment_param(char * buf,size_t size)4460 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4461 {
4462 	size_t count;
4463 	spin_lock(&resource_alignment_lock);
4464 	count = snprintf(buf, size, "%s", resource_alignment_param);
4465 	spin_unlock(&resource_alignment_lock);
4466 	return count;
4467 }
4468 
pci_resource_alignment_show(struct bus_type * bus,char * buf)4469 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4470 {
4471 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4472 }
4473 
pci_resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)4474 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4475 					const char *buf, size_t count)
4476 {
4477 	return pci_set_resource_alignment_param(buf, count);
4478 }
4479 
4480 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4481 					pci_resource_alignment_store);
4482 
pci_resource_alignment_sysfs_init(void)4483 static int __init pci_resource_alignment_sysfs_init(void)
4484 {
4485 	return bus_create_file(&pci_bus_type,
4486 					&bus_attr_resource_alignment);
4487 }
4488 late_initcall(pci_resource_alignment_sysfs_init);
4489 
pci_no_domains(void)4490 static void pci_no_domains(void)
4491 {
4492 #ifdef CONFIG_PCI_DOMAINS
4493 	pci_domains_supported = 0;
4494 #endif
4495 }
4496 
4497 #ifdef CONFIG_PCI_DOMAINS
4498 static atomic_t __domain_nr = ATOMIC_INIT(-1);
4499 
pci_get_new_domain_nr(void)4500 int pci_get_new_domain_nr(void)
4501 {
4502 	return atomic_inc_return(&__domain_nr);
4503 }
4504 
4505 #ifdef CONFIG_PCI_DOMAINS_GENERIC
pci_bus_assign_domain_nr(struct pci_bus * bus,struct device * parent)4506 void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent)
4507 {
4508 	static int use_dt_domains = -1;
4509 	int domain = -1;
4510 
4511 	if (parent)
4512 		domain = of_get_pci_domain_nr(parent->of_node);
4513 	/*
4514 	 * Check DT domain and use_dt_domains values.
4515 	 *
4516 	 * If DT domain property is valid (domain >= 0) and
4517 	 * use_dt_domains != 0, the DT assignment is valid since this means
4518 	 * we have not previously allocated a domain number by using
4519 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4520 	 * 1, to indicate that we have just assigned a domain number from
4521 	 * DT.
4522 	 *
4523 	 * If DT domain property value is not valid (ie domain < 0), and we
4524 	 * have not previously assigned a domain number from DT
4525 	 * (use_dt_domains != 1) we should assign a domain number by
4526 	 * using the:
4527 	 *
4528 	 * pci_get_new_domain_nr()
4529 	 *
4530 	 * API and update the use_dt_domains value to keep track of method we
4531 	 * are using to assign domain numbers (use_dt_domains = 0).
4532 	 *
4533 	 * All other combinations imply we have a platform that is trying
4534 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4535 	 * which is a recipe for domain mishandling and it is prevented by
4536 	 * invalidating the domain value (domain = -1) and printing a
4537 	 * corresponding error.
4538 	 */
4539 	if (domain >= 0 && use_dt_domains) {
4540 		use_dt_domains = 1;
4541 	} else if (domain < 0 && use_dt_domains != 1) {
4542 		use_dt_domains = 0;
4543 		domain = pci_get_new_domain_nr();
4544 	} else {
4545 		dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4546 			parent->of_node->full_name);
4547 		domain = -1;
4548 	}
4549 
4550 	bus->domain_nr = domain;
4551 }
4552 #endif
4553 #endif
4554 
4555 /**
4556  * pci_ext_cfg_avail - can we access extended PCI config space?
4557  *
4558  * Returns 1 if we can access PCI extended config space (offsets
4559  * greater than 0xff). This is the default implementation. Architecture
4560  * implementations can override this.
4561  */
pci_ext_cfg_avail(void)4562 int __weak pci_ext_cfg_avail(void)
4563 {
4564 	return 1;
4565 }
4566 
pci_fixup_cardbus(struct pci_bus * bus)4567 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4568 {
4569 }
4570 EXPORT_SYMBOL(pci_fixup_cardbus);
4571 
pci_setup(char * str)4572 static int __init pci_setup(char *str)
4573 {
4574 	while (str) {
4575 		char *k = strchr(str, ',');
4576 		if (k)
4577 			*k++ = 0;
4578 		if (*str && (str = pcibios_setup(str)) && *str) {
4579 			if (!strcmp(str, "nomsi")) {
4580 				pci_no_msi();
4581 			} else if (!strcmp(str, "noaer")) {
4582 				pci_no_aer();
4583 			} else if (!strncmp(str, "realloc=", 8)) {
4584 				pci_realloc_get_opt(str + 8);
4585 			} else if (!strncmp(str, "realloc", 7)) {
4586 				pci_realloc_get_opt("on");
4587 			} else if (!strcmp(str, "nodomains")) {
4588 				pci_no_domains();
4589 			} else if (!strncmp(str, "noari", 5)) {
4590 				pcie_ari_disabled = true;
4591 			} else if (!strncmp(str, "cbiosize=", 9)) {
4592 				pci_cardbus_io_size = memparse(str + 9, &str);
4593 			} else if (!strncmp(str, "cbmemsize=", 10)) {
4594 				pci_cardbus_mem_size = memparse(str + 10, &str);
4595 			} else if (!strncmp(str, "resource_alignment=", 19)) {
4596 				pci_set_resource_alignment_param(str + 19,
4597 							strlen(str + 19));
4598 			} else if (!strncmp(str, "ecrc=", 5)) {
4599 				pcie_ecrc_get_policy(str + 5);
4600 			} else if (!strncmp(str, "hpiosize=", 9)) {
4601 				pci_hotplug_io_size = memparse(str + 9, &str);
4602 			} else if (!strncmp(str, "hpmemsize=", 10)) {
4603 				pci_hotplug_mem_size = memparse(str + 10, &str);
4604 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4605 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
4606 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
4607 				pcie_bus_config = PCIE_BUS_SAFE;
4608 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
4609 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
4610 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4611 				pcie_bus_config = PCIE_BUS_PEER2PEER;
4612 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
4613 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4614 			} else {
4615 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
4616 						str);
4617 			}
4618 		}
4619 		str = k;
4620 	}
4621 	return 0;
4622 }
4623 early_param("pci", pci_setup);
4624