1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/of.h>
14 #include <linux/of_pci.h>
15 #include <linux/pci.h>
16 #include <linux/pm.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/log2.h>
22 #include <linux/pci-aspm.h>
23 #include <linux/pm_wakeup.h>
24 #include <linux/interrupt.h>
25 #include <linux/device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pci_hotplug.h>
28 #include <asm-generic/pci-bridge.h>
29 #include <asm/setup.h>
30 #include "pci.h"
31
32 const char *pci_power_names[] = {
33 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
34 };
35 EXPORT_SYMBOL_GPL(pci_power_names);
36
37 int isa_dma_bridge_buggy;
38 EXPORT_SYMBOL(isa_dma_bridge_buggy);
39
40 int pci_pci_problems;
41 EXPORT_SYMBOL(pci_pci_problems);
42
43 unsigned int pci_pm_d3_delay;
44
45 static void pci_pme_list_scan(struct work_struct *work);
46
47 static LIST_HEAD(pci_pme_list);
48 static DEFINE_MUTEX(pci_pme_list_mutex);
49 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
50
51 struct pci_pme_device {
52 struct list_head list;
53 struct pci_dev *dev;
54 };
55
56 #define PME_TIMEOUT 1000 /* How long between PME checks */
57
pci_dev_d3_sleep(struct pci_dev * dev)58 static void pci_dev_d3_sleep(struct pci_dev *dev)
59 {
60 unsigned int delay = dev->d3_delay;
61
62 if (delay < pci_pm_d3_delay)
63 delay = pci_pm_d3_delay;
64
65 msleep(delay);
66 }
67
68 #ifdef CONFIG_PCI_DOMAINS
69 int pci_domains_supported = 1;
70 #endif
71
72 #define DEFAULT_CARDBUS_IO_SIZE (256)
73 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
74 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
75 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
76 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
77
78 #define DEFAULT_HOTPLUG_IO_SIZE (256)
79 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
80 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
81 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
82 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
83
84 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
85
86 /*
87 * The default CLS is used if arch didn't set CLS explicitly and not
88 * all pci devices agree on the same value. Arch can override either
89 * the dfl or actual value as it sees fit. Don't forget this is
90 * measured in 32-bit words, not bytes.
91 */
92 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
93 u8 pci_cache_line_size;
94
95 /*
96 * If we set up a device for bus mastering, we need to check the latency
97 * timer as certain BIOSes forget to set it properly.
98 */
99 unsigned int pcibios_max_latency = 255;
100
101 /* If set, the PCIe ARI capability will not be used. */
102 static bool pcie_ari_disabled;
103
104 /**
105 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
106 * @bus: pointer to PCI bus structure to search
107 *
108 * Given a PCI bus, returns the highest PCI bus number present in the set
109 * including the given PCI bus and its list of child PCI buses.
110 */
pci_bus_max_busnr(struct pci_bus * bus)111 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
112 {
113 struct pci_bus *tmp;
114 unsigned char max, n;
115
116 max = bus->busn_res.end;
117 list_for_each_entry(tmp, &bus->children, node) {
118 n = pci_bus_max_busnr(tmp);
119 if (n > max)
120 max = n;
121 }
122 return max;
123 }
124 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
125
126 #ifdef CONFIG_HAS_IOMEM
pci_ioremap_bar(struct pci_dev * pdev,int bar)127 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
128 {
129 /*
130 * Make sure the BAR is actually a memory resource, not an IO resource
131 */
132 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
133 WARN_ON(1);
134 return NULL;
135 }
136 return ioremap_nocache(pci_resource_start(pdev, bar),
137 pci_resource_len(pdev, bar));
138 }
139 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
140 #endif
141
142 #define PCI_FIND_CAP_TTL 48
143
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)144 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
145 u8 pos, int cap, int *ttl)
146 {
147 u8 id;
148
149 while ((*ttl)--) {
150 pci_bus_read_config_byte(bus, devfn, pos, &pos);
151 if (pos < 0x40)
152 break;
153 pos &= ~3;
154 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
155 &id);
156 if (id == 0xff)
157 break;
158 if (id == cap)
159 return pos;
160 pos += PCI_CAP_LIST_NEXT;
161 }
162 return 0;
163 }
164
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)165 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
166 u8 pos, int cap)
167 {
168 int ttl = PCI_FIND_CAP_TTL;
169
170 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
171 }
172
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)173 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
174 {
175 return __pci_find_next_cap(dev->bus, dev->devfn,
176 pos + PCI_CAP_LIST_NEXT, cap);
177 }
178 EXPORT_SYMBOL_GPL(pci_find_next_capability);
179
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)180 static int __pci_bus_find_cap_start(struct pci_bus *bus,
181 unsigned int devfn, u8 hdr_type)
182 {
183 u16 status;
184
185 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
186 if (!(status & PCI_STATUS_CAP_LIST))
187 return 0;
188
189 switch (hdr_type) {
190 case PCI_HEADER_TYPE_NORMAL:
191 case PCI_HEADER_TYPE_BRIDGE:
192 return PCI_CAPABILITY_LIST;
193 case PCI_HEADER_TYPE_CARDBUS:
194 return PCI_CB_CAPABILITY_LIST;
195 default:
196 return 0;
197 }
198
199 return 0;
200 }
201
202 /**
203 * pci_find_capability - query for devices' capabilities
204 * @dev: PCI device to query
205 * @cap: capability code
206 *
207 * Tell if a device supports a given PCI capability.
208 * Returns the address of the requested capability structure within the
209 * device's PCI configuration space or 0 in case the device does not
210 * support it. Possible values for @cap:
211 *
212 * %PCI_CAP_ID_PM Power Management
213 * %PCI_CAP_ID_AGP Accelerated Graphics Port
214 * %PCI_CAP_ID_VPD Vital Product Data
215 * %PCI_CAP_ID_SLOTID Slot Identification
216 * %PCI_CAP_ID_MSI Message Signalled Interrupts
217 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
218 * %PCI_CAP_ID_PCIX PCI-X
219 * %PCI_CAP_ID_EXP PCI Express
220 */
pci_find_capability(struct pci_dev * dev,int cap)221 int pci_find_capability(struct pci_dev *dev, int cap)
222 {
223 int pos;
224
225 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
226 if (pos)
227 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
228
229 return pos;
230 }
231 EXPORT_SYMBOL(pci_find_capability);
232
233 /**
234 * pci_bus_find_capability - query for devices' capabilities
235 * @bus: the PCI bus to query
236 * @devfn: PCI device to query
237 * @cap: capability code
238 *
239 * Like pci_find_capability() but works for pci devices that do not have a
240 * pci_dev structure set up yet.
241 *
242 * Returns the address of the requested capability structure within the
243 * device's PCI configuration space or 0 in case the device does not
244 * support it.
245 */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)246 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
247 {
248 int pos;
249 u8 hdr_type;
250
251 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
252
253 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
254 if (pos)
255 pos = __pci_find_next_cap(bus, devfn, pos, cap);
256
257 return pos;
258 }
259 EXPORT_SYMBOL(pci_bus_find_capability);
260
261 /**
262 * pci_find_next_ext_capability - Find an extended capability
263 * @dev: PCI device to query
264 * @start: address at which to start looking (0 to start at beginning of list)
265 * @cap: capability code
266 *
267 * Returns the address of the next matching extended capability structure
268 * within the device's PCI configuration space or 0 if the device does
269 * not support it. Some capabilities can occur several times, e.g., the
270 * vendor-specific capability, and this provides a way to find them all.
271 */
pci_find_next_ext_capability(struct pci_dev * dev,int start,int cap)272 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
273 {
274 u32 header;
275 int ttl;
276 int pos = PCI_CFG_SPACE_SIZE;
277
278 /* minimum 8 bytes per capability */
279 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
280
281 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
282 return 0;
283
284 if (start)
285 pos = start;
286
287 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
288 return 0;
289
290 /*
291 * If we have no capabilities, this is indicated by cap ID,
292 * cap version and next pointer all being 0.
293 */
294 if (header == 0)
295 return 0;
296
297 while (ttl-- > 0) {
298 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
299 return pos;
300
301 pos = PCI_EXT_CAP_NEXT(header);
302 if (pos < PCI_CFG_SPACE_SIZE)
303 break;
304
305 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
306 break;
307 }
308
309 return 0;
310 }
311 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
312
313 /**
314 * pci_find_ext_capability - Find an extended capability
315 * @dev: PCI device to query
316 * @cap: capability code
317 *
318 * Returns the address of the requested extended capability structure
319 * within the device's PCI configuration space or 0 if the device does
320 * not support it. Possible values for @cap:
321 *
322 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
323 * %PCI_EXT_CAP_ID_VC Virtual Channel
324 * %PCI_EXT_CAP_ID_DSN Device Serial Number
325 * %PCI_EXT_CAP_ID_PWR Power Budgeting
326 */
pci_find_ext_capability(struct pci_dev * dev,int cap)327 int pci_find_ext_capability(struct pci_dev *dev, int cap)
328 {
329 return pci_find_next_ext_capability(dev, 0, cap);
330 }
331 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
332
__pci_find_next_ht_cap(struct pci_dev * dev,int pos,int ht_cap)333 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
334 {
335 int rc, ttl = PCI_FIND_CAP_TTL;
336 u8 cap, mask;
337
338 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
339 mask = HT_3BIT_CAP_MASK;
340 else
341 mask = HT_5BIT_CAP_MASK;
342
343 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
344 PCI_CAP_ID_HT, &ttl);
345 while (pos) {
346 rc = pci_read_config_byte(dev, pos + 3, &cap);
347 if (rc != PCIBIOS_SUCCESSFUL)
348 return 0;
349
350 if ((cap & mask) == ht_cap)
351 return pos;
352
353 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
354 pos + PCI_CAP_LIST_NEXT,
355 PCI_CAP_ID_HT, &ttl);
356 }
357
358 return 0;
359 }
360 /**
361 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
362 * @dev: PCI device to query
363 * @pos: Position from which to continue searching
364 * @ht_cap: Hypertransport capability code
365 *
366 * To be used in conjunction with pci_find_ht_capability() to search for
367 * all capabilities matching @ht_cap. @pos should always be a value returned
368 * from pci_find_ht_capability().
369 *
370 * NB. To be 100% safe against broken PCI devices, the caller should take
371 * steps to avoid an infinite loop.
372 */
pci_find_next_ht_capability(struct pci_dev * dev,int pos,int ht_cap)373 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
374 {
375 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
376 }
377 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
378
379 /**
380 * pci_find_ht_capability - query a device's Hypertransport capabilities
381 * @dev: PCI device to query
382 * @ht_cap: Hypertransport capability code
383 *
384 * Tell if a device supports a given Hypertransport capability.
385 * Returns an address within the device's PCI configuration space
386 * or 0 in case the device does not support the request capability.
387 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
388 * which has a Hypertransport capability matching @ht_cap.
389 */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)390 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
391 {
392 int pos;
393
394 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
395 if (pos)
396 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
397
398 return pos;
399 }
400 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
401
402 /**
403 * pci_find_parent_resource - return resource region of parent bus of given region
404 * @dev: PCI device structure contains resources to be searched
405 * @res: child resource record for which parent is sought
406 *
407 * For given resource region of given device, return the resource
408 * region of parent bus the given region is contained in.
409 */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)410 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
411 struct resource *res)
412 {
413 const struct pci_bus *bus = dev->bus;
414 struct resource *r;
415 int i;
416
417 pci_bus_for_each_resource(bus, r, i) {
418 if (!r)
419 continue;
420 if (res->start && resource_contains(r, res)) {
421
422 /*
423 * If the window is prefetchable but the BAR is
424 * not, the allocator made a mistake.
425 */
426 if (r->flags & IORESOURCE_PREFETCH &&
427 !(res->flags & IORESOURCE_PREFETCH))
428 return NULL;
429
430 /*
431 * If we're below a transparent bridge, there may
432 * be both a positively-decoded aperture and a
433 * subtractively-decoded region that contain the BAR.
434 * We want the positively-decoded one, so this depends
435 * on pci_bus_for_each_resource() giving us those
436 * first.
437 */
438 return r;
439 }
440 }
441 return NULL;
442 }
443 EXPORT_SYMBOL(pci_find_parent_resource);
444
445 /**
446 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
447 * @dev: the PCI device to operate on
448 * @pos: config space offset of status word
449 * @mask: mask of bit(s) to care about in status word
450 *
451 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
452 */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)453 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
454 {
455 int i;
456
457 /* Wait for Transaction Pending bit clean */
458 for (i = 0; i < 4; i++) {
459 u16 status;
460 if (i)
461 msleep((1 << (i - 1)) * 100);
462
463 pci_read_config_word(dev, pos, &status);
464 if (!(status & mask))
465 return 1;
466 }
467
468 return 0;
469 }
470
471 /**
472 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
473 * @dev: PCI device to have its BARs restored
474 *
475 * Restore the BAR values for a given device, so as to make it
476 * accessible by its driver.
477 */
pci_restore_bars(struct pci_dev * dev)478 static void pci_restore_bars(struct pci_dev *dev)
479 {
480 int i;
481
482 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
483 pci_update_resource(dev, i);
484 }
485
486 static struct pci_platform_pm_ops *pci_platform_pm;
487
pci_set_platform_pm(struct pci_platform_pm_ops * ops)488 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
489 {
490 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
491 || !ops->sleep_wake)
492 return -EINVAL;
493 pci_platform_pm = ops;
494 return 0;
495 }
496
platform_pci_power_manageable(struct pci_dev * dev)497 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
498 {
499 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
500 }
501
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)502 static inline int platform_pci_set_power_state(struct pci_dev *dev,
503 pci_power_t t)
504 {
505 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
506 }
507
platform_pci_choose_state(struct pci_dev * dev)508 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
509 {
510 return pci_platform_pm ?
511 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
512 }
513
platform_pci_sleep_wake(struct pci_dev * dev,bool enable)514 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
515 {
516 return pci_platform_pm ?
517 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
518 }
519
platform_pci_run_wake(struct pci_dev * dev,bool enable)520 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
521 {
522 return pci_platform_pm ?
523 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
524 }
525
526 /**
527 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
528 * given PCI device
529 * @dev: PCI device to handle.
530 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
531 *
532 * RETURN VALUE:
533 * -EINVAL if the requested state is invalid.
534 * -EIO if device does not support PCI PM or its PM capabilities register has a
535 * wrong version, or device doesn't support the requested state.
536 * 0 if device already is in the requested state.
537 * 0 if device's power state has been successfully changed.
538 */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)539 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
540 {
541 u16 pmcsr;
542 bool need_restore = false;
543
544 /* Check if we're already there */
545 if (dev->current_state == state)
546 return 0;
547
548 if (!dev->pm_cap)
549 return -EIO;
550
551 if (state < PCI_D0 || state > PCI_D3hot)
552 return -EINVAL;
553
554 /* Validate current state:
555 * Can enter D0 from any state, but if we can only go deeper
556 * to sleep if we're already in a low power state
557 */
558 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
559 && dev->current_state > state) {
560 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
561 dev->current_state, state);
562 return -EINVAL;
563 }
564
565 /* check if this device supports the desired state */
566 if ((state == PCI_D1 && !dev->d1_support)
567 || (state == PCI_D2 && !dev->d2_support))
568 return -EIO;
569
570 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
571
572 /* If we're (effectively) in D3, force entire word to 0.
573 * This doesn't affect PME_Status, disables PME_En, and
574 * sets PowerState to 0.
575 */
576 switch (dev->current_state) {
577 case PCI_D0:
578 case PCI_D1:
579 case PCI_D2:
580 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
581 pmcsr |= state;
582 break;
583 case PCI_D3hot:
584 case PCI_D3cold:
585 case PCI_UNKNOWN: /* Boot-up */
586 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
587 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
588 need_restore = true;
589 /* Fall-through: force to D0 */
590 default:
591 pmcsr = 0;
592 break;
593 }
594
595 /* enter specified state */
596 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
597
598 /* Mandatory power management transition delays */
599 /* see PCI PM 1.1 5.6.1 table 18 */
600 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
601 pci_dev_d3_sleep(dev);
602 else if (state == PCI_D2 || dev->current_state == PCI_D2)
603 udelay(PCI_PM_D2_DELAY);
604
605 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
606 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
607 if (dev->current_state != state && printk_ratelimit())
608 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
609 dev->current_state);
610
611 /*
612 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
613 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
614 * from D3hot to D0 _may_ perform an internal reset, thereby
615 * going to "D0 Uninitialized" rather than "D0 Initialized".
616 * For example, at least some versions of the 3c905B and the
617 * 3c556B exhibit this behaviour.
618 *
619 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
620 * devices in a D3hot state at boot. Consequently, we need to
621 * restore at least the BARs so that the device will be
622 * accessible to its driver.
623 */
624 if (need_restore)
625 pci_restore_bars(dev);
626
627 if (dev->bus->self)
628 pcie_aspm_pm_state_change(dev->bus->self);
629
630 return 0;
631 }
632
633 /**
634 * pci_update_current_state - Read PCI power state of given device from its
635 * PCI PM registers and cache it
636 * @dev: PCI device to handle.
637 * @state: State to cache in case the device doesn't have the PM capability
638 */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)639 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
640 {
641 if (dev->pm_cap) {
642 u16 pmcsr;
643
644 /*
645 * Configuration space is not accessible for device in
646 * D3cold, so just keep or set D3cold for safety
647 */
648 if (dev->current_state == PCI_D3cold)
649 return;
650 if (state == PCI_D3cold) {
651 dev->current_state = PCI_D3cold;
652 return;
653 }
654 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
655 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
656 } else {
657 dev->current_state = state;
658 }
659 }
660
661 /**
662 * pci_power_up - Put the given device into D0 forcibly
663 * @dev: PCI device to power up
664 */
pci_power_up(struct pci_dev * dev)665 void pci_power_up(struct pci_dev *dev)
666 {
667 if (platform_pci_power_manageable(dev))
668 platform_pci_set_power_state(dev, PCI_D0);
669
670 pci_raw_set_power_state(dev, PCI_D0);
671 pci_update_current_state(dev, PCI_D0);
672 }
673
674 /**
675 * pci_platform_power_transition - Use platform to change device power state
676 * @dev: PCI device to handle.
677 * @state: State to put the device into.
678 */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)679 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
680 {
681 int error;
682
683 if (platform_pci_power_manageable(dev)) {
684 error = platform_pci_set_power_state(dev, state);
685 if (!error)
686 pci_update_current_state(dev, state);
687 } else
688 error = -ENODEV;
689
690 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
691 dev->current_state = PCI_D0;
692
693 return error;
694 }
695
696 /**
697 * pci_wakeup - Wake up a PCI device
698 * @pci_dev: Device to handle.
699 * @ign: ignored parameter
700 */
pci_wakeup(struct pci_dev * pci_dev,void * ign)701 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
702 {
703 pci_wakeup_event(pci_dev);
704 pm_request_resume(&pci_dev->dev);
705 return 0;
706 }
707
708 /**
709 * pci_wakeup_bus - Walk given bus and wake up devices on it
710 * @bus: Top bus of the subtree to walk.
711 */
pci_wakeup_bus(struct pci_bus * bus)712 static void pci_wakeup_bus(struct pci_bus *bus)
713 {
714 if (bus)
715 pci_walk_bus(bus, pci_wakeup, NULL);
716 }
717
718 /**
719 * __pci_start_power_transition - Start power transition of a PCI device
720 * @dev: PCI device to handle.
721 * @state: State to put the device into.
722 */
__pci_start_power_transition(struct pci_dev * dev,pci_power_t state)723 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
724 {
725 if (state == PCI_D0) {
726 pci_platform_power_transition(dev, PCI_D0);
727 /*
728 * Mandatory power management transition delays, see
729 * PCI Express Base Specification Revision 2.0 Section
730 * 6.6.1: Conventional Reset. Do not delay for
731 * devices powered on/off by corresponding bridge,
732 * because have already delayed for the bridge.
733 */
734 if (dev->runtime_d3cold) {
735 msleep(dev->d3cold_delay);
736 /*
737 * When powering on a bridge from D3cold, the
738 * whole hierarchy may be powered on into
739 * D0uninitialized state, resume them to give
740 * them a chance to suspend again
741 */
742 pci_wakeup_bus(dev->subordinate);
743 }
744 }
745 }
746
747 /**
748 * __pci_dev_set_current_state - Set current state of a PCI device
749 * @dev: Device to handle
750 * @data: pointer to state to be set
751 */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)752 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
753 {
754 pci_power_t state = *(pci_power_t *)data;
755
756 dev->current_state = state;
757 return 0;
758 }
759
760 /**
761 * __pci_bus_set_current_state - Walk given bus and set current state of devices
762 * @bus: Top bus of the subtree to walk.
763 * @state: state to be set
764 */
__pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)765 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
766 {
767 if (bus)
768 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
769 }
770
771 /**
772 * __pci_complete_power_transition - Complete power transition of a PCI device
773 * @dev: PCI device to handle.
774 * @state: State to put the device into.
775 *
776 * This function should not be called directly by device drivers.
777 */
__pci_complete_power_transition(struct pci_dev * dev,pci_power_t state)778 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
779 {
780 int ret;
781
782 if (state <= PCI_D0)
783 return -EINVAL;
784 ret = pci_platform_power_transition(dev, state);
785 /* Power off the bridge may power off the whole hierarchy */
786 if (!ret && state == PCI_D3cold)
787 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
788 return ret;
789 }
790 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
791
792 /**
793 * pci_set_power_state - Set the power state of a PCI device
794 * @dev: PCI device to handle.
795 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
796 *
797 * Transition a device to a new power state, using the platform firmware and/or
798 * the device's PCI PM registers.
799 *
800 * RETURN VALUE:
801 * -EINVAL if the requested state is invalid.
802 * -EIO if device does not support PCI PM or its PM capabilities register has a
803 * wrong version, or device doesn't support the requested state.
804 * 0 if device already is in the requested state.
805 * 0 if device's power state has been successfully changed.
806 */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)807 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
808 {
809 int error;
810
811 /* bound the state we're entering */
812 if (state > PCI_D3cold)
813 state = PCI_D3cold;
814 else if (state < PCI_D0)
815 state = PCI_D0;
816 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
817 /*
818 * If the device or the parent bridge do not support PCI PM,
819 * ignore the request if we're doing anything other than putting
820 * it into D0 (which would only happen on boot).
821 */
822 return 0;
823
824 /* Check if we're already there */
825 if (dev->current_state == state)
826 return 0;
827
828 __pci_start_power_transition(dev, state);
829
830 /* This device is quirked not to be put into D3, so
831 don't put it in D3 */
832 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
833 return 0;
834
835 /*
836 * To put device in D3cold, we put device into D3hot in native
837 * way, then put device into D3cold with platform ops
838 */
839 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
840 PCI_D3hot : state);
841
842 if (!__pci_complete_power_transition(dev, state))
843 error = 0;
844
845 return error;
846 }
847 EXPORT_SYMBOL(pci_set_power_state);
848
849 /**
850 * pci_choose_state - Choose the power state of a PCI device
851 * @dev: PCI device to be suspended
852 * @state: target sleep state for the whole system. This is the value
853 * that is passed to suspend() function.
854 *
855 * Returns PCI power state suitable for given device and given system
856 * message.
857 */
858
pci_choose_state(struct pci_dev * dev,pm_message_t state)859 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
860 {
861 pci_power_t ret;
862
863 if (!dev->pm_cap)
864 return PCI_D0;
865
866 ret = platform_pci_choose_state(dev);
867 if (ret != PCI_POWER_ERROR)
868 return ret;
869
870 switch (state.event) {
871 case PM_EVENT_ON:
872 return PCI_D0;
873 case PM_EVENT_FREEZE:
874 case PM_EVENT_PRETHAW:
875 /* REVISIT both freeze and pre-thaw "should" use D0 */
876 case PM_EVENT_SUSPEND:
877 case PM_EVENT_HIBERNATE:
878 return PCI_D3hot;
879 default:
880 dev_info(&dev->dev, "unrecognized suspend event %d\n",
881 state.event);
882 BUG();
883 }
884 return PCI_D0;
885 }
886 EXPORT_SYMBOL(pci_choose_state);
887
888 #define PCI_EXP_SAVE_REGS 7
889
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)890 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
891 u16 cap, bool extended)
892 {
893 struct pci_cap_saved_state *tmp;
894
895 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
896 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
897 return tmp;
898 }
899 return NULL;
900 }
901
pci_find_saved_cap(struct pci_dev * dev,char cap)902 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
903 {
904 return _pci_find_saved_cap(dev, cap, false);
905 }
906
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)907 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
908 {
909 return _pci_find_saved_cap(dev, cap, true);
910 }
911
pci_save_pcie_state(struct pci_dev * dev)912 static int pci_save_pcie_state(struct pci_dev *dev)
913 {
914 int i = 0;
915 struct pci_cap_saved_state *save_state;
916 u16 *cap;
917
918 if (!pci_is_pcie(dev))
919 return 0;
920
921 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
922 if (!save_state) {
923 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
924 return -ENOMEM;
925 }
926
927 cap = (u16 *)&save_state->cap.data[0];
928 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
929 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
930 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
931 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
932 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
933 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
934 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
935
936 return 0;
937 }
938
pci_restore_pcie_state(struct pci_dev * dev)939 static void pci_restore_pcie_state(struct pci_dev *dev)
940 {
941 int i = 0;
942 struct pci_cap_saved_state *save_state;
943 u16 *cap;
944
945 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
946 if (!save_state)
947 return;
948
949 cap = (u16 *)&save_state->cap.data[0];
950 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
951 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
952 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
953 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
954 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
955 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
956 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
957 }
958
959
pci_save_pcix_state(struct pci_dev * dev)960 static int pci_save_pcix_state(struct pci_dev *dev)
961 {
962 int pos;
963 struct pci_cap_saved_state *save_state;
964
965 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
966 if (pos <= 0)
967 return 0;
968
969 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
970 if (!save_state) {
971 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
972 return -ENOMEM;
973 }
974
975 pci_read_config_word(dev, pos + PCI_X_CMD,
976 (u16 *)save_state->cap.data);
977
978 return 0;
979 }
980
pci_restore_pcix_state(struct pci_dev * dev)981 static void pci_restore_pcix_state(struct pci_dev *dev)
982 {
983 int i = 0, pos;
984 struct pci_cap_saved_state *save_state;
985 u16 *cap;
986
987 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
988 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
989 if (!save_state || pos <= 0)
990 return;
991 cap = (u16 *)&save_state->cap.data[0];
992
993 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
994 }
995
996
997 /**
998 * pci_save_state - save the PCI configuration space of a device before suspending
999 * @dev: - PCI device that we're dealing with
1000 */
pci_save_state(struct pci_dev * dev)1001 int pci_save_state(struct pci_dev *dev)
1002 {
1003 int i;
1004 /* XXX: 100% dword access ok here? */
1005 for (i = 0; i < 16; i++)
1006 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1007 dev->state_saved = true;
1008
1009 i = pci_save_pcie_state(dev);
1010 if (i != 0)
1011 return i;
1012
1013 i = pci_save_pcix_state(dev);
1014 if (i != 0)
1015 return i;
1016
1017 i = pci_save_vc_state(dev);
1018 if (i != 0)
1019 return i;
1020
1021 return 0;
1022 }
1023 EXPORT_SYMBOL(pci_save_state);
1024
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry)1025 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1026 u32 saved_val, int retry)
1027 {
1028 u32 val;
1029
1030 pci_read_config_dword(pdev, offset, &val);
1031 if (val == saved_val)
1032 return;
1033
1034 for (;;) {
1035 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1036 offset, val, saved_val);
1037 pci_write_config_dword(pdev, offset, saved_val);
1038 if (retry-- <= 0)
1039 return;
1040
1041 pci_read_config_dword(pdev, offset, &val);
1042 if (val == saved_val)
1043 return;
1044
1045 mdelay(1);
1046 }
1047 }
1048
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry)1049 static void pci_restore_config_space_range(struct pci_dev *pdev,
1050 int start, int end, int retry)
1051 {
1052 int index;
1053
1054 for (index = end; index >= start; index--)
1055 pci_restore_config_dword(pdev, 4 * index,
1056 pdev->saved_config_space[index],
1057 retry);
1058 }
1059
pci_restore_config_space(struct pci_dev * pdev)1060 static void pci_restore_config_space(struct pci_dev *pdev)
1061 {
1062 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1063 pci_restore_config_space_range(pdev, 10, 15, 0);
1064 /* Restore BARs before the command register. */
1065 pci_restore_config_space_range(pdev, 4, 9, 10);
1066 pci_restore_config_space_range(pdev, 0, 3, 0);
1067 } else {
1068 pci_restore_config_space_range(pdev, 0, 15, 0);
1069 }
1070 }
1071
1072 /**
1073 * pci_restore_state - Restore the saved state of a PCI device
1074 * @dev: - PCI device that we're dealing with
1075 */
pci_restore_state(struct pci_dev * dev)1076 void pci_restore_state(struct pci_dev *dev)
1077 {
1078 if (!dev->state_saved)
1079 return;
1080
1081 /* PCI Express register must be restored first */
1082 pci_restore_pcie_state(dev);
1083 pci_restore_ats_state(dev);
1084 pci_restore_vc_state(dev);
1085
1086 pci_restore_config_space(dev);
1087
1088 pci_restore_pcix_state(dev);
1089 pci_restore_msi_state(dev);
1090 pci_restore_iov_state(dev);
1091
1092 dev->state_saved = false;
1093 }
1094 EXPORT_SYMBOL(pci_restore_state);
1095
1096 struct pci_saved_state {
1097 u32 config_space[16];
1098 struct pci_cap_saved_data cap[0];
1099 };
1100
1101 /**
1102 * pci_store_saved_state - Allocate and return an opaque struct containing
1103 * the device saved state.
1104 * @dev: PCI device that we're dealing with
1105 *
1106 * Return NULL if no state or error.
1107 */
pci_store_saved_state(struct pci_dev * dev)1108 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1109 {
1110 struct pci_saved_state *state;
1111 struct pci_cap_saved_state *tmp;
1112 struct pci_cap_saved_data *cap;
1113 size_t size;
1114
1115 if (!dev->state_saved)
1116 return NULL;
1117
1118 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1119
1120 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1121 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1122
1123 state = kzalloc(size, GFP_KERNEL);
1124 if (!state)
1125 return NULL;
1126
1127 memcpy(state->config_space, dev->saved_config_space,
1128 sizeof(state->config_space));
1129
1130 cap = state->cap;
1131 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1132 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1133 memcpy(cap, &tmp->cap, len);
1134 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1135 }
1136 /* Empty cap_save terminates list */
1137
1138 return state;
1139 }
1140 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1141
1142 /**
1143 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1144 * @dev: PCI device that we're dealing with
1145 * @state: Saved state returned from pci_store_saved_state()
1146 */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1147 static int pci_load_saved_state(struct pci_dev *dev,
1148 struct pci_saved_state *state)
1149 {
1150 struct pci_cap_saved_data *cap;
1151
1152 dev->state_saved = false;
1153
1154 if (!state)
1155 return 0;
1156
1157 memcpy(dev->saved_config_space, state->config_space,
1158 sizeof(state->config_space));
1159
1160 cap = state->cap;
1161 while (cap->size) {
1162 struct pci_cap_saved_state *tmp;
1163
1164 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1165 if (!tmp || tmp->cap.size != cap->size)
1166 return -EINVAL;
1167
1168 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1169 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1170 sizeof(struct pci_cap_saved_data) + cap->size);
1171 }
1172
1173 dev->state_saved = true;
1174 return 0;
1175 }
1176
1177 /**
1178 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1179 * and free the memory allocated for it.
1180 * @dev: PCI device that we're dealing with
1181 * @state: Pointer to saved state returned from pci_store_saved_state()
1182 */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1183 int pci_load_and_free_saved_state(struct pci_dev *dev,
1184 struct pci_saved_state **state)
1185 {
1186 int ret = pci_load_saved_state(dev, *state);
1187 kfree(*state);
1188 *state = NULL;
1189 return ret;
1190 }
1191 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1192
pcibios_enable_device(struct pci_dev * dev,int bars)1193 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1194 {
1195 return pci_enable_resources(dev, bars);
1196 }
1197
do_pci_enable_device(struct pci_dev * dev,int bars)1198 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1199 {
1200 int err;
1201 struct pci_dev *bridge;
1202 u16 cmd;
1203 u8 pin;
1204
1205 err = pci_set_power_state(dev, PCI_D0);
1206 if (err < 0 && err != -EIO)
1207 return err;
1208
1209 bridge = pci_upstream_bridge(dev);
1210 if (bridge)
1211 pcie_aspm_powersave_config_link(bridge);
1212
1213 err = pcibios_enable_device(dev, bars);
1214 if (err < 0)
1215 return err;
1216 pci_fixup_device(pci_fixup_enable, dev);
1217
1218 if (dev->msi_enabled || dev->msix_enabled)
1219 return 0;
1220
1221 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1222 if (pin) {
1223 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1224 if (cmd & PCI_COMMAND_INTX_DISABLE)
1225 pci_write_config_word(dev, PCI_COMMAND,
1226 cmd & ~PCI_COMMAND_INTX_DISABLE);
1227 }
1228
1229 return 0;
1230 }
1231
1232 /**
1233 * pci_reenable_device - Resume abandoned device
1234 * @dev: PCI device to be resumed
1235 *
1236 * Note this function is a backend of pci_default_resume and is not supposed
1237 * to be called by normal code, write proper resume handler and use it instead.
1238 */
pci_reenable_device(struct pci_dev * dev)1239 int pci_reenable_device(struct pci_dev *dev)
1240 {
1241 if (pci_is_enabled(dev))
1242 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1243 return 0;
1244 }
1245 EXPORT_SYMBOL(pci_reenable_device);
1246
pci_enable_bridge(struct pci_dev * dev)1247 static void pci_enable_bridge(struct pci_dev *dev)
1248 {
1249 struct pci_dev *bridge;
1250 int retval;
1251
1252 bridge = pci_upstream_bridge(dev);
1253 if (bridge)
1254 pci_enable_bridge(bridge);
1255
1256 if (pci_is_enabled(dev)) {
1257 if (!dev->is_busmaster)
1258 pci_set_master(dev);
1259 return;
1260 }
1261
1262 retval = pci_enable_device(dev);
1263 if (retval)
1264 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1265 retval);
1266 pci_set_master(dev);
1267 }
1268
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)1269 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1270 {
1271 struct pci_dev *bridge;
1272 int err;
1273 int i, bars = 0;
1274
1275 /*
1276 * Power state could be unknown at this point, either due to a fresh
1277 * boot or a device removal call. So get the current power state
1278 * so that things like MSI message writing will behave as expected
1279 * (e.g. if the device really is in D0 at enable time).
1280 */
1281 if (dev->pm_cap) {
1282 u16 pmcsr;
1283 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1284 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1285 }
1286
1287 if (atomic_inc_return(&dev->enable_cnt) > 1)
1288 return 0; /* already enabled */
1289
1290 bridge = pci_upstream_bridge(dev);
1291 if (bridge)
1292 pci_enable_bridge(bridge);
1293
1294 /* only skip sriov related */
1295 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1296 if (dev->resource[i].flags & flags)
1297 bars |= (1 << i);
1298 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1299 if (dev->resource[i].flags & flags)
1300 bars |= (1 << i);
1301
1302 err = do_pci_enable_device(dev, bars);
1303 if (err < 0)
1304 atomic_dec(&dev->enable_cnt);
1305 return err;
1306 }
1307
1308 /**
1309 * pci_enable_device_io - Initialize a device for use with IO space
1310 * @dev: PCI device to be initialized
1311 *
1312 * Initialize device before it's used by a driver. Ask low-level code
1313 * to enable I/O resources. Wake up the device if it was suspended.
1314 * Beware, this function can fail.
1315 */
pci_enable_device_io(struct pci_dev * dev)1316 int pci_enable_device_io(struct pci_dev *dev)
1317 {
1318 return pci_enable_device_flags(dev, IORESOURCE_IO);
1319 }
1320 EXPORT_SYMBOL(pci_enable_device_io);
1321
1322 /**
1323 * pci_enable_device_mem - Initialize a device for use with Memory space
1324 * @dev: PCI device to be initialized
1325 *
1326 * Initialize device before it's used by a driver. Ask low-level code
1327 * to enable Memory resources. Wake up the device if it was suspended.
1328 * Beware, this function can fail.
1329 */
pci_enable_device_mem(struct pci_dev * dev)1330 int pci_enable_device_mem(struct pci_dev *dev)
1331 {
1332 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1333 }
1334 EXPORT_SYMBOL(pci_enable_device_mem);
1335
1336 /**
1337 * pci_enable_device - Initialize device before it's used by a driver.
1338 * @dev: PCI device to be initialized
1339 *
1340 * Initialize device before it's used by a driver. Ask low-level code
1341 * to enable I/O and memory. Wake up the device if it was suspended.
1342 * Beware, this function can fail.
1343 *
1344 * Note we don't actually enable the device many times if we call
1345 * this function repeatedly (we just increment the count).
1346 */
pci_enable_device(struct pci_dev * dev)1347 int pci_enable_device(struct pci_dev *dev)
1348 {
1349 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1350 }
1351 EXPORT_SYMBOL(pci_enable_device);
1352
1353 /*
1354 * Managed PCI resources. This manages device on/off, intx/msi/msix
1355 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1356 * there's no need to track it separately. pci_devres is initialized
1357 * when a device is enabled using managed PCI device enable interface.
1358 */
1359 struct pci_devres {
1360 unsigned int enabled:1;
1361 unsigned int pinned:1;
1362 unsigned int orig_intx:1;
1363 unsigned int restore_intx:1;
1364 u32 region_mask;
1365 };
1366
pcim_release(struct device * gendev,void * res)1367 static void pcim_release(struct device *gendev, void *res)
1368 {
1369 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1370 struct pci_devres *this = res;
1371 int i;
1372
1373 if (dev->msi_enabled)
1374 pci_disable_msi(dev);
1375 if (dev->msix_enabled)
1376 pci_disable_msix(dev);
1377
1378 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1379 if (this->region_mask & (1 << i))
1380 pci_release_region(dev, i);
1381
1382 if (this->restore_intx)
1383 pci_intx(dev, this->orig_intx);
1384
1385 if (this->enabled && !this->pinned)
1386 pci_disable_device(dev);
1387 }
1388
get_pci_dr(struct pci_dev * pdev)1389 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1390 {
1391 struct pci_devres *dr, *new_dr;
1392
1393 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1394 if (dr)
1395 return dr;
1396
1397 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1398 if (!new_dr)
1399 return NULL;
1400 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1401 }
1402
find_pci_dr(struct pci_dev * pdev)1403 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1404 {
1405 if (pci_is_managed(pdev))
1406 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1407 return NULL;
1408 }
1409
1410 /**
1411 * pcim_enable_device - Managed pci_enable_device()
1412 * @pdev: PCI device to be initialized
1413 *
1414 * Managed pci_enable_device().
1415 */
pcim_enable_device(struct pci_dev * pdev)1416 int pcim_enable_device(struct pci_dev *pdev)
1417 {
1418 struct pci_devres *dr;
1419 int rc;
1420
1421 dr = get_pci_dr(pdev);
1422 if (unlikely(!dr))
1423 return -ENOMEM;
1424 if (dr->enabled)
1425 return 0;
1426
1427 rc = pci_enable_device(pdev);
1428 if (!rc) {
1429 pdev->is_managed = 1;
1430 dr->enabled = 1;
1431 }
1432 return rc;
1433 }
1434 EXPORT_SYMBOL(pcim_enable_device);
1435
1436 /**
1437 * pcim_pin_device - Pin managed PCI device
1438 * @pdev: PCI device to pin
1439 *
1440 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1441 * driver detach. @pdev must have been enabled with
1442 * pcim_enable_device().
1443 */
pcim_pin_device(struct pci_dev * pdev)1444 void pcim_pin_device(struct pci_dev *pdev)
1445 {
1446 struct pci_devres *dr;
1447
1448 dr = find_pci_dr(pdev);
1449 WARN_ON(!dr || !dr->enabled);
1450 if (dr)
1451 dr->pinned = 1;
1452 }
1453 EXPORT_SYMBOL(pcim_pin_device);
1454
1455 /*
1456 * pcibios_add_device - provide arch specific hooks when adding device dev
1457 * @dev: the PCI device being added
1458 *
1459 * Permits the platform to provide architecture specific functionality when
1460 * devices are added. This is the default implementation. Architecture
1461 * implementations can override this.
1462 */
pcibios_add_device(struct pci_dev * dev)1463 int __weak pcibios_add_device(struct pci_dev *dev)
1464 {
1465 return 0;
1466 }
1467
1468 /**
1469 * pcibios_release_device - provide arch specific hooks when releasing device dev
1470 * @dev: the PCI device being released
1471 *
1472 * Permits the platform to provide architecture specific functionality when
1473 * devices are released. This is the default implementation. Architecture
1474 * implementations can override this.
1475 */
pcibios_release_device(struct pci_dev * dev)1476 void __weak pcibios_release_device(struct pci_dev *dev) {}
1477
1478 /**
1479 * pcibios_disable_device - disable arch specific PCI resources for device dev
1480 * @dev: the PCI device to disable
1481 *
1482 * Disables architecture specific PCI resources for the device. This
1483 * is the default implementation. Architecture implementations can
1484 * override this.
1485 */
pcibios_disable_device(struct pci_dev * dev)1486 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1487
1488 /**
1489 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1490 * @irq: ISA IRQ to penalize
1491 * @active: IRQ active or not
1492 *
1493 * Permits the platform to provide architecture-specific functionality when
1494 * penalizing ISA IRQs. This is the default implementation. Architecture
1495 * implementations can override this.
1496 */
pcibios_penalize_isa_irq(int irq,int active)1497 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1498
do_pci_disable_device(struct pci_dev * dev)1499 static void do_pci_disable_device(struct pci_dev *dev)
1500 {
1501 u16 pci_command;
1502
1503 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1504 if (pci_command & PCI_COMMAND_MASTER) {
1505 pci_command &= ~PCI_COMMAND_MASTER;
1506 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1507 }
1508
1509 pcibios_disable_device(dev);
1510 }
1511
1512 /**
1513 * pci_disable_enabled_device - Disable device without updating enable_cnt
1514 * @dev: PCI device to disable
1515 *
1516 * NOTE: This function is a backend of PCI power management routines and is
1517 * not supposed to be called drivers.
1518 */
pci_disable_enabled_device(struct pci_dev * dev)1519 void pci_disable_enabled_device(struct pci_dev *dev)
1520 {
1521 if (pci_is_enabled(dev))
1522 do_pci_disable_device(dev);
1523 }
1524
1525 /**
1526 * pci_disable_device - Disable PCI device after use
1527 * @dev: PCI device to be disabled
1528 *
1529 * Signal to the system that the PCI device is not in use by the system
1530 * anymore. This only involves disabling PCI bus-mastering, if active.
1531 *
1532 * Note we don't actually disable the device until all callers of
1533 * pci_enable_device() have called pci_disable_device().
1534 */
pci_disable_device(struct pci_dev * dev)1535 void pci_disable_device(struct pci_dev *dev)
1536 {
1537 struct pci_devres *dr;
1538
1539 dr = find_pci_dr(dev);
1540 if (dr)
1541 dr->enabled = 0;
1542
1543 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1544 "disabling already-disabled device");
1545
1546 if (atomic_dec_return(&dev->enable_cnt) != 0)
1547 return;
1548
1549 do_pci_disable_device(dev);
1550
1551 dev->is_busmaster = 0;
1552 }
1553 EXPORT_SYMBOL(pci_disable_device);
1554
1555 /**
1556 * pcibios_set_pcie_reset_state - set reset state for device dev
1557 * @dev: the PCIe device reset
1558 * @state: Reset state to enter into
1559 *
1560 *
1561 * Sets the PCIe reset state for the device. This is the default
1562 * implementation. Architecture implementations can override this.
1563 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1564 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1565 enum pcie_reset_state state)
1566 {
1567 return -EINVAL;
1568 }
1569
1570 /**
1571 * pci_set_pcie_reset_state - set reset state for device dev
1572 * @dev: the PCIe device reset
1573 * @state: Reset state to enter into
1574 *
1575 *
1576 * Sets the PCI reset state for the device.
1577 */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1578 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1579 {
1580 return pcibios_set_pcie_reset_state(dev, state);
1581 }
1582 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1583
1584 /**
1585 * pci_check_pme_status - Check if given device has generated PME.
1586 * @dev: Device to check.
1587 *
1588 * Check the PME status of the device and if set, clear it and clear PME enable
1589 * (if set). Return 'true' if PME status and PME enable were both set or
1590 * 'false' otherwise.
1591 */
pci_check_pme_status(struct pci_dev * dev)1592 bool pci_check_pme_status(struct pci_dev *dev)
1593 {
1594 int pmcsr_pos;
1595 u16 pmcsr;
1596 bool ret = false;
1597
1598 if (!dev->pm_cap)
1599 return false;
1600
1601 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1602 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1603 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1604 return false;
1605
1606 /* Clear PME status. */
1607 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1608 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1609 /* Disable PME to avoid interrupt flood. */
1610 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1611 ret = true;
1612 }
1613
1614 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1615
1616 return ret;
1617 }
1618
1619 /**
1620 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1621 * @dev: Device to handle.
1622 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1623 *
1624 * Check if @dev has generated PME and queue a resume request for it in that
1625 * case.
1626 */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)1627 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1628 {
1629 if (pme_poll_reset && dev->pme_poll)
1630 dev->pme_poll = false;
1631
1632 if (pci_check_pme_status(dev)) {
1633 pci_wakeup_event(dev);
1634 pm_request_resume(&dev->dev);
1635 }
1636 return 0;
1637 }
1638
1639 /**
1640 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1641 * @bus: Top bus of the subtree to walk.
1642 */
pci_pme_wakeup_bus(struct pci_bus * bus)1643 void pci_pme_wakeup_bus(struct pci_bus *bus)
1644 {
1645 if (bus)
1646 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1647 }
1648
1649
1650 /**
1651 * pci_pme_capable - check the capability of PCI device to generate PME#
1652 * @dev: PCI device to handle.
1653 * @state: PCI state from which device will issue PME#.
1654 */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)1655 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1656 {
1657 if (!dev->pm_cap)
1658 return false;
1659
1660 return !!(dev->pme_support & (1 << state));
1661 }
1662 EXPORT_SYMBOL(pci_pme_capable);
1663
pci_pme_list_scan(struct work_struct * work)1664 static void pci_pme_list_scan(struct work_struct *work)
1665 {
1666 struct pci_pme_device *pme_dev, *n;
1667
1668 mutex_lock(&pci_pme_list_mutex);
1669 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1670 if (pme_dev->dev->pme_poll) {
1671 struct pci_dev *bridge;
1672
1673 bridge = pme_dev->dev->bus->self;
1674 /*
1675 * If bridge is in low power state, the
1676 * configuration space of subordinate devices
1677 * may be not accessible
1678 */
1679 if (bridge && bridge->current_state != PCI_D0)
1680 continue;
1681 pci_pme_wakeup(pme_dev->dev, NULL);
1682 } else {
1683 list_del(&pme_dev->list);
1684 kfree(pme_dev);
1685 }
1686 }
1687 if (!list_empty(&pci_pme_list))
1688 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1689 msecs_to_jiffies(PME_TIMEOUT));
1690 mutex_unlock(&pci_pme_list_mutex);
1691 }
1692
1693 /**
1694 * pci_pme_active - enable or disable PCI device's PME# function
1695 * @dev: PCI device to handle.
1696 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1697 *
1698 * The caller must verify that the device is capable of generating PME# before
1699 * calling this function with @enable equal to 'true'.
1700 */
pci_pme_active(struct pci_dev * dev,bool enable)1701 void pci_pme_active(struct pci_dev *dev, bool enable)
1702 {
1703 u16 pmcsr;
1704
1705 if (!dev->pme_support)
1706 return;
1707
1708 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1709 /* Clear PME_Status by writing 1 to it and enable PME# */
1710 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1711 if (!enable)
1712 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1713
1714 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1715
1716 /*
1717 * PCI (as opposed to PCIe) PME requires that the device have
1718 * its PME# line hooked up correctly. Not all hardware vendors
1719 * do this, so the PME never gets delivered and the device
1720 * remains asleep. The easiest way around this is to
1721 * periodically walk the list of suspended devices and check
1722 * whether any have their PME flag set. The assumption is that
1723 * we'll wake up often enough anyway that this won't be a huge
1724 * hit, and the power savings from the devices will still be a
1725 * win.
1726 *
1727 * Although PCIe uses in-band PME message instead of PME# line
1728 * to report PME, PME does not work for some PCIe devices in
1729 * reality. For example, there are devices that set their PME
1730 * status bits, but don't really bother to send a PME message;
1731 * there are PCI Express Root Ports that don't bother to
1732 * trigger interrupts when they receive PME messages from the
1733 * devices below. So PME poll is used for PCIe devices too.
1734 */
1735
1736 if (dev->pme_poll) {
1737 struct pci_pme_device *pme_dev;
1738 if (enable) {
1739 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1740 GFP_KERNEL);
1741 if (!pme_dev) {
1742 dev_warn(&dev->dev, "can't enable PME#\n");
1743 return;
1744 }
1745 pme_dev->dev = dev;
1746 mutex_lock(&pci_pme_list_mutex);
1747 list_add(&pme_dev->list, &pci_pme_list);
1748 if (list_is_singular(&pci_pme_list))
1749 queue_delayed_work(system_freezable_wq,
1750 &pci_pme_work,
1751 msecs_to_jiffies(PME_TIMEOUT));
1752 mutex_unlock(&pci_pme_list_mutex);
1753 } else {
1754 mutex_lock(&pci_pme_list_mutex);
1755 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1756 if (pme_dev->dev == dev) {
1757 list_del(&pme_dev->list);
1758 kfree(pme_dev);
1759 break;
1760 }
1761 }
1762 mutex_unlock(&pci_pme_list_mutex);
1763 }
1764 }
1765
1766 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1767 }
1768 EXPORT_SYMBOL(pci_pme_active);
1769
1770 /**
1771 * __pci_enable_wake - enable PCI device as wakeup event source
1772 * @dev: PCI device affected
1773 * @state: PCI state from which device will issue wakeup events
1774 * @runtime: True if the events are to be generated at run time
1775 * @enable: True to enable event generation; false to disable
1776 *
1777 * This enables the device as a wakeup event source, or disables it.
1778 * When such events involves platform-specific hooks, those hooks are
1779 * called automatically by this routine.
1780 *
1781 * Devices with legacy power management (no standard PCI PM capabilities)
1782 * always require such platform hooks.
1783 *
1784 * RETURN VALUE:
1785 * 0 is returned on success
1786 * -EINVAL is returned if device is not supposed to wake up the system
1787 * Error code depending on the platform is returned if both the platform and
1788 * the native mechanism fail to enable the generation of wake-up events
1789 */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool runtime,bool enable)1790 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1791 bool runtime, bool enable)
1792 {
1793 int ret = 0;
1794
1795 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1796 return -EINVAL;
1797
1798 /* Don't do the same thing twice in a row for one device. */
1799 if (!!enable == !!dev->wakeup_prepared)
1800 return 0;
1801
1802 /*
1803 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1804 * Anderson we should be doing PME# wake enable followed by ACPI wake
1805 * enable. To disable wake-up we call the platform first, for symmetry.
1806 */
1807
1808 if (enable) {
1809 int error;
1810
1811 if (pci_pme_capable(dev, state))
1812 pci_pme_active(dev, true);
1813 else
1814 ret = 1;
1815 error = runtime ? platform_pci_run_wake(dev, true) :
1816 platform_pci_sleep_wake(dev, true);
1817 if (ret)
1818 ret = error;
1819 if (!ret)
1820 dev->wakeup_prepared = true;
1821 } else {
1822 if (runtime)
1823 platform_pci_run_wake(dev, false);
1824 else
1825 platform_pci_sleep_wake(dev, false);
1826 pci_pme_active(dev, false);
1827 dev->wakeup_prepared = false;
1828 }
1829
1830 return ret;
1831 }
1832 EXPORT_SYMBOL(__pci_enable_wake);
1833
1834 /**
1835 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1836 * @dev: PCI device to prepare
1837 * @enable: True to enable wake-up event generation; false to disable
1838 *
1839 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1840 * and this function allows them to set that up cleanly - pci_enable_wake()
1841 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1842 * ordering constraints.
1843 *
1844 * This function only returns error code if the device is not capable of
1845 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1846 * enable wake-up power for it.
1847 */
pci_wake_from_d3(struct pci_dev * dev,bool enable)1848 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1849 {
1850 return pci_pme_capable(dev, PCI_D3cold) ?
1851 pci_enable_wake(dev, PCI_D3cold, enable) :
1852 pci_enable_wake(dev, PCI_D3hot, enable);
1853 }
1854 EXPORT_SYMBOL(pci_wake_from_d3);
1855
1856 /**
1857 * pci_target_state - find an appropriate low power state for a given PCI dev
1858 * @dev: PCI device
1859 *
1860 * Use underlying platform code to find a supported low power state for @dev.
1861 * If the platform can't manage @dev, return the deepest state from which it
1862 * can generate wake events, based on any available PME info.
1863 */
pci_target_state(struct pci_dev * dev)1864 static pci_power_t pci_target_state(struct pci_dev *dev)
1865 {
1866 pci_power_t target_state = PCI_D3hot;
1867
1868 if (platform_pci_power_manageable(dev)) {
1869 /*
1870 * Call the platform to choose the target state of the device
1871 * and enable wake-up from this state if supported.
1872 */
1873 pci_power_t state = platform_pci_choose_state(dev);
1874
1875 switch (state) {
1876 case PCI_POWER_ERROR:
1877 case PCI_UNKNOWN:
1878 break;
1879 case PCI_D1:
1880 case PCI_D2:
1881 if (pci_no_d1d2(dev))
1882 break;
1883 default:
1884 target_state = state;
1885 }
1886 } else if (!dev->pm_cap) {
1887 target_state = PCI_D0;
1888 } else if (device_may_wakeup(&dev->dev)) {
1889 /*
1890 * Find the deepest state from which the device can generate
1891 * wake-up events, make it the target state and enable device
1892 * to generate PME#.
1893 */
1894 if (dev->pme_support) {
1895 while (target_state
1896 && !(dev->pme_support & (1 << target_state)))
1897 target_state--;
1898 }
1899 }
1900
1901 return target_state;
1902 }
1903
1904 /**
1905 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1906 * @dev: Device to handle.
1907 *
1908 * Choose the power state appropriate for the device depending on whether
1909 * it can wake up the system and/or is power manageable by the platform
1910 * (PCI_D3hot is the default) and put the device into that state.
1911 */
pci_prepare_to_sleep(struct pci_dev * dev)1912 int pci_prepare_to_sleep(struct pci_dev *dev)
1913 {
1914 pci_power_t target_state = pci_target_state(dev);
1915 int error;
1916
1917 if (target_state == PCI_POWER_ERROR)
1918 return -EIO;
1919
1920 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1921
1922 error = pci_set_power_state(dev, target_state);
1923
1924 if (error)
1925 pci_enable_wake(dev, target_state, false);
1926
1927 return error;
1928 }
1929 EXPORT_SYMBOL(pci_prepare_to_sleep);
1930
1931 /**
1932 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1933 * @dev: Device to handle.
1934 *
1935 * Disable device's system wake-up capability and put it into D0.
1936 */
pci_back_from_sleep(struct pci_dev * dev)1937 int pci_back_from_sleep(struct pci_dev *dev)
1938 {
1939 pci_enable_wake(dev, PCI_D0, false);
1940 return pci_set_power_state(dev, PCI_D0);
1941 }
1942 EXPORT_SYMBOL(pci_back_from_sleep);
1943
1944 /**
1945 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1946 * @dev: PCI device being suspended.
1947 *
1948 * Prepare @dev to generate wake-up events at run time and put it into a low
1949 * power state.
1950 */
pci_finish_runtime_suspend(struct pci_dev * dev)1951 int pci_finish_runtime_suspend(struct pci_dev *dev)
1952 {
1953 pci_power_t target_state = pci_target_state(dev);
1954 int error;
1955
1956 if (target_state == PCI_POWER_ERROR)
1957 return -EIO;
1958
1959 dev->runtime_d3cold = target_state == PCI_D3cold;
1960
1961 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1962
1963 error = pci_set_power_state(dev, target_state);
1964
1965 if (error) {
1966 __pci_enable_wake(dev, target_state, true, false);
1967 dev->runtime_d3cold = false;
1968 }
1969
1970 return error;
1971 }
1972
1973 /**
1974 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1975 * @dev: Device to check.
1976 *
1977 * Return true if the device itself is capable of generating wake-up events
1978 * (through the platform or using the native PCIe PME) or if the device supports
1979 * PME and one of its upstream bridges can generate wake-up events.
1980 */
pci_dev_run_wake(struct pci_dev * dev)1981 bool pci_dev_run_wake(struct pci_dev *dev)
1982 {
1983 struct pci_bus *bus = dev->bus;
1984
1985 if (device_run_wake(&dev->dev))
1986 return true;
1987
1988 if (!dev->pme_support)
1989 return false;
1990
1991 /* PME-capable in principle, but not from the intended sleep state */
1992 if (!pci_pme_capable(dev, pci_target_state(dev)))
1993 return false;
1994
1995 while (bus->parent) {
1996 struct pci_dev *bridge = bus->self;
1997
1998 if (device_run_wake(&bridge->dev))
1999 return true;
2000
2001 bus = bus->parent;
2002 }
2003
2004 /* We have reached the root bus. */
2005 if (bus->bridge)
2006 return device_run_wake(bus->bridge);
2007
2008 return false;
2009 }
2010 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2011
pci_config_pm_runtime_get(struct pci_dev * pdev)2012 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2013 {
2014 struct device *dev = &pdev->dev;
2015 struct device *parent = dev->parent;
2016
2017 if (parent)
2018 pm_runtime_get_sync(parent);
2019 pm_runtime_get_noresume(dev);
2020 /*
2021 * pdev->current_state is set to PCI_D3cold during suspending,
2022 * so wait until suspending completes
2023 */
2024 pm_runtime_barrier(dev);
2025 /*
2026 * Only need to resume devices in D3cold, because config
2027 * registers are still accessible for devices suspended but
2028 * not in D3cold.
2029 */
2030 if (pdev->current_state == PCI_D3cold)
2031 pm_runtime_resume(dev);
2032 }
2033
pci_config_pm_runtime_put(struct pci_dev * pdev)2034 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2035 {
2036 struct device *dev = &pdev->dev;
2037 struct device *parent = dev->parent;
2038
2039 pm_runtime_put(dev);
2040 if (parent)
2041 pm_runtime_put_sync(parent);
2042 }
2043
2044 /**
2045 * pci_pm_init - Initialize PM functions of given PCI device
2046 * @dev: PCI device to handle.
2047 */
pci_pm_init(struct pci_dev * dev)2048 void pci_pm_init(struct pci_dev *dev)
2049 {
2050 int pm;
2051 u16 pmc;
2052
2053 pm_runtime_forbid(&dev->dev);
2054 pm_runtime_set_active(&dev->dev);
2055 pm_runtime_enable(&dev->dev);
2056 device_enable_async_suspend(&dev->dev);
2057 dev->wakeup_prepared = false;
2058
2059 dev->pm_cap = 0;
2060 dev->pme_support = 0;
2061
2062 /* find PCI PM capability in list */
2063 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2064 if (!pm)
2065 return;
2066 /* Check device's ability to generate PME# */
2067 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2068
2069 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2070 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2071 pmc & PCI_PM_CAP_VER_MASK);
2072 return;
2073 }
2074
2075 dev->pm_cap = pm;
2076 dev->d3_delay = PCI_PM_D3_WAIT;
2077 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2078 dev->d3cold_allowed = true;
2079
2080 dev->d1_support = false;
2081 dev->d2_support = false;
2082 if (!pci_no_d1d2(dev)) {
2083 if (pmc & PCI_PM_CAP_D1)
2084 dev->d1_support = true;
2085 if (pmc & PCI_PM_CAP_D2)
2086 dev->d2_support = true;
2087
2088 if (dev->d1_support || dev->d2_support)
2089 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2090 dev->d1_support ? " D1" : "",
2091 dev->d2_support ? " D2" : "");
2092 }
2093
2094 pmc &= PCI_PM_CAP_PME_MASK;
2095 if (pmc) {
2096 dev_printk(KERN_DEBUG, &dev->dev,
2097 "PME# supported from%s%s%s%s%s\n",
2098 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2099 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2100 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2101 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2102 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2103 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2104 dev->pme_poll = true;
2105 /*
2106 * Make device's PM flags reflect the wake-up capability, but
2107 * let the user space enable it to wake up the system as needed.
2108 */
2109 device_set_wakeup_capable(&dev->dev, true);
2110 /* Disable the PME# generation functionality */
2111 pci_pme_active(dev, false);
2112 }
2113 }
2114
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)2115 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2116 struct pci_cap_saved_state *new_cap)
2117 {
2118 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2119 }
2120
2121 /**
2122 * _pci_add_cap_save_buffer - allocate buffer for saving given
2123 * capability registers
2124 * @dev: the PCI device
2125 * @cap: the capability to allocate the buffer for
2126 * @extended: Standard or Extended capability ID
2127 * @size: requested size of the buffer
2128 */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)2129 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2130 bool extended, unsigned int size)
2131 {
2132 int pos;
2133 struct pci_cap_saved_state *save_state;
2134
2135 if (extended)
2136 pos = pci_find_ext_capability(dev, cap);
2137 else
2138 pos = pci_find_capability(dev, cap);
2139
2140 if (pos <= 0)
2141 return 0;
2142
2143 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2144 if (!save_state)
2145 return -ENOMEM;
2146
2147 save_state->cap.cap_nr = cap;
2148 save_state->cap.cap_extended = extended;
2149 save_state->cap.size = size;
2150 pci_add_saved_cap(dev, save_state);
2151
2152 return 0;
2153 }
2154
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)2155 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2156 {
2157 return _pci_add_cap_save_buffer(dev, cap, false, size);
2158 }
2159
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)2160 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2161 {
2162 return _pci_add_cap_save_buffer(dev, cap, true, size);
2163 }
2164
2165 /**
2166 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2167 * @dev: the PCI device
2168 */
pci_allocate_cap_save_buffers(struct pci_dev * dev)2169 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2170 {
2171 int error;
2172
2173 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2174 PCI_EXP_SAVE_REGS * sizeof(u16));
2175 if (error)
2176 dev_err(&dev->dev,
2177 "unable to preallocate PCI Express save buffer\n");
2178
2179 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2180 if (error)
2181 dev_err(&dev->dev,
2182 "unable to preallocate PCI-X save buffer\n");
2183
2184 pci_allocate_vc_save_buffers(dev);
2185 }
2186
pci_free_cap_save_buffers(struct pci_dev * dev)2187 void pci_free_cap_save_buffers(struct pci_dev *dev)
2188 {
2189 struct pci_cap_saved_state *tmp;
2190 struct hlist_node *n;
2191
2192 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2193 kfree(tmp);
2194 }
2195
2196 /**
2197 * pci_configure_ari - enable or disable ARI forwarding
2198 * @dev: the PCI device
2199 *
2200 * If @dev and its upstream bridge both support ARI, enable ARI in the
2201 * bridge. Otherwise, disable ARI in the bridge.
2202 */
pci_configure_ari(struct pci_dev * dev)2203 void pci_configure_ari(struct pci_dev *dev)
2204 {
2205 u32 cap;
2206 struct pci_dev *bridge;
2207
2208 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2209 return;
2210
2211 bridge = dev->bus->self;
2212 if (!bridge)
2213 return;
2214
2215 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2216 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2217 return;
2218
2219 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2220 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2221 PCI_EXP_DEVCTL2_ARI);
2222 bridge->ari_enabled = 1;
2223 } else {
2224 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2225 PCI_EXP_DEVCTL2_ARI);
2226 bridge->ari_enabled = 0;
2227 }
2228 }
2229
2230 static int pci_acs_enable;
2231
2232 /**
2233 * pci_request_acs - ask for ACS to be enabled if supported
2234 */
pci_request_acs(void)2235 void pci_request_acs(void)
2236 {
2237 pci_acs_enable = 1;
2238 }
2239
2240 /**
2241 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2242 * @dev: the PCI device
2243 */
pci_std_enable_acs(struct pci_dev * dev)2244 static int pci_std_enable_acs(struct pci_dev *dev)
2245 {
2246 int pos;
2247 u16 cap;
2248 u16 ctrl;
2249
2250 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2251 if (!pos)
2252 return -ENODEV;
2253
2254 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2255 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2256
2257 /* Source Validation */
2258 ctrl |= (cap & PCI_ACS_SV);
2259
2260 /* P2P Request Redirect */
2261 ctrl |= (cap & PCI_ACS_RR);
2262
2263 /* P2P Completion Redirect */
2264 ctrl |= (cap & PCI_ACS_CR);
2265
2266 /* Upstream Forwarding */
2267 ctrl |= (cap & PCI_ACS_UF);
2268
2269 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2270
2271 return 0;
2272 }
2273
2274 /**
2275 * pci_enable_acs - enable ACS if hardware support it
2276 * @dev: the PCI device
2277 */
pci_enable_acs(struct pci_dev * dev)2278 void pci_enable_acs(struct pci_dev *dev)
2279 {
2280 if (!pci_acs_enable)
2281 return;
2282
2283 if (!pci_std_enable_acs(dev))
2284 return;
2285
2286 pci_dev_specific_enable_acs(dev);
2287 }
2288
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)2289 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2290 {
2291 int pos;
2292 u16 cap, ctrl;
2293
2294 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2295 if (!pos)
2296 return false;
2297
2298 /*
2299 * Except for egress control, capabilities are either required
2300 * or only required if controllable. Features missing from the
2301 * capability field can therefore be assumed as hard-wired enabled.
2302 */
2303 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2304 acs_flags &= (cap | PCI_ACS_EC);
2305
2306 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2307 return (ctrl & acs_flags) == acs_flags;
2308 }
2309
2310 /**
2311 * pci_acs_enabled - test ACS against required flags for a given device
2312 * @pdev: device to test
2313 * @acs_flags: required PCI ACS flags
2314 *
2315 * Return true if the device supports the provided flags. Automatically
2316 * filters out flags that are not implemented on multifunction devices.
2317 *
2318 * Note that this interface checks the effective ACS capabilities of the
2319 * device rather than the actual capabilities. For instance, most single
2320 * function endpoints are not required to support ACS because they have no
2321 * opportunity for peer-to-peer access. We therefore return 'true'
2322 * regardless of whether the device exposes an ACS capability. This makes
2323 * it much easier for callers of this function to ignore the actual type
2324 * or topology of the device when testing ACS support.
2325 */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)2326 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2327 {
2328 int ret;
2329
2330 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2331 if (ret >= 0)
2332 return ret > 0;
2333
2334 /*
2335 * Conventional PCI and PCI-X devices never support ACS, either
2336 * effectively or actually. The shared bus topology implies that
2337 * any device on the bus can receive or snoop DMA.
2338 */
2339 if (!pci_is_pcie(pdev))
2340 return false;
2341
2342 switch (pci_pcie_type(pdev)) {
2343 /*
2344 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2345 * but since their primary interface is PCI/X, we conservatively
2346 * handle them as we would a non-PCIe device.
2347 */
2348 case PCI_EXP_TYPE_PCIE_BRIDGE:
2349 /*
2350 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2351 * applicable... must never implement an ACS Extended Capability...".
2352 * This seems arbitrary, but we take a conservative interpretation
2353 * of this statement.
2354 */
2355 case PCI_EXP_TYPE_PCI_BRIDGE:
2356 case PCI_EXP_TYPE_RC_EC:
2357 return false;
2358 /*
2359 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2360 * implement ACS in order to indicate their peer-to-peer capabilities,
2361 * regardless of whether they are single- or multi-function devices.
2362 */
2363 case PCI_EXP_TYPE_DOWNSTREAM:
2364 case PCI_EXP_TYPE_ROOT_PORT:
2365 return pci_acs_flags_enabled(pdev, acs_flags);
2366 /*
2367 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2368 * implemented by the remaining PCIe types to indicate peer-to-peer
2369 * capabilities, but only when they are part of a multifunction
2370 * device. The footnote for section 6.12 indicates the specific
2371 * PCIe types included here.
2372 */
2373 case PCI_EXP_TYPE_ENDPOINT:
2374 case PCI_EXP_TYPE_UPSTREAM:
2375 case PCI_EXP_TYPE_LEG_END:
2376 case PCI_EXP_TYPE_RC_END:
2377 if (!pdev->multifunction)
2378 break;
2379
2380 return pci_acs_flags_enabled(pdev, acs_flags);
2381 }
2382
2383 /*
2384 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2385 * to single function devices with the exception of downstream ports.
2386 */
2387 return true;
2388 }
2389
2390 /**
2391 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2392 * @start: starting downstream device
2393 * @end: ending upstream device or NULL to search to the root bus
2394 * @acs_flags: required flags
2395 *
2396 * Walk up a device tree from start to end testing PCI ACS support. If
2397 * any step along the way does not support the required flags, return false.
2398 */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)2399 bool pci_acs_path_enabled(struct pci_dev *start,
2400 struct pci_dev *end, u16 acs_flags)
2401 {
2402 struct pci_dev *pdev, *parent = start;
2403
2404 do {
2405 pdev = parent;
2406
2407 if (!pci_acs_enabled(pdev, acs_flags))
2408 return false;
2409
2410 if (pci_is_root_bus(pdev->bus))
2411 return (end == NULL);
2412
2413 parent = pdev->bus->self;
2414 } while (pdev != end);
2415
2416 return true;
2417 }
2418
2419 /**
2420 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2421 * @dev: the PCI device
2422 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2423 *
2424 * Perform INTx swizzling for a device behind one level of bridge. This is
2425 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2426 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2427 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2428 * the PCI Express Base Specification, Revision 2.1)
2429 */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)2430 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2431 {
2432 int slot;
2433
2434 if (pci_ari_enabled(dev->bus))
2435 slot = 0;
2436 else
2437 slot = PCI_SLOT(dev->devfn);
2438
2439 return (((pin - 1) + slot) % 4) + 1;
2440 }
2441
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)2442 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2443 {
2444 u8 pin;
2445
2446 pin = dev->pin;
2447 if (!pin)
2448 return -1;
2449
2450 while (!pci_is_root_bus(dev->bus)) {
2451 pin = pci_swizzle_interrupt_pin(dev, pin);
2452 dev = dev->bus->self;
2453 }
2454 *bridge = dev;
2455 return pin;
2456 }
2457
2458 /**
2459 * pci_common_swizzle - swizzle INTx all the way to root bridge
2460 * @dev: the PCI device
2461 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2462 *
2463 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2464 * bridges all the way up to a PCI root bus.
2465 */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)2466 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2467 {
2468 u8 pin = *pinp;
2469
2470 while (!pci_is_root_bus(dev->bus)) {
2471 pin = pci_swizzle_interrupt_pin(dev, pin);
2472 dev = dev->bus->self;
2473 }
2474 *pinp = pin;
2475 return PCI_SLOT(dev->devfn);
2476 }
2477
2478 /**
2479 * pci_release_region - Release a PCI bar
2480 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2481 * @bar: BAR to release
2482 *
2483 * Releases the PCI I/O and memory resources previously reserved by a
2484 * successful call to pci_request_region. Call this function only
2485 * after all use of the PCI regions has ceased.
2486 */
pci_release_region(struct pci_dev * pdev,int bar)2487 void pci_release_region(struct pci_dev *pdev, int bar)
2488 {
2489 struct pci_devres *dr;
2490
2491 if (pci_resource_len(pdev, bar) == 0)
2492 return;
2493 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2494 release_region(pci_resource_start(pdev, bar),
2495 pci_resource_len(pdev, bar));
2496 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2497 release_mem_region(pci_resource_start(pdev, bar),
2498 pci_resource_len(pdev, bar));
2499
2500 dr = find_pci_dr(pdev);
2501 if (dr)
2502 dr->region_mask &= ~(1 << bar);
2503 }
2504 EXPORT_SYMBOL(pci_release_region);
2505
2506 /**
2507 * __pci_request_region - Reserved PCI I/O and memory resource
2508 * @pdev: PCI device whose resources are to be reserved
2509 * @bar: BAR to be reserved
2510 * @res_name: Name to be associated with resource.
2511 * @exclusive: whether the region access is exclusive or not
2512 *
2513 * Mark the PCI region associated with PCI device @pdev BR @bar as
2514 * being reserved by owner @res_name. Do not access any
2515 * address inside the PCI regions unless this call returns
2516 * successfully.
2517 *
2518 * If @exclusive is set, then the region is marked so that userspace
2519 * is explicitly not allowed to map the resource via /dev/mem or
2520 * sysfs MMIO access.
2521 *
2522 * Returns 0 on success, or %EBUSY on error. A warning
2523 * message is also printed on failure.
2524 */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)2525 static int __pci_request_region(struct pci_dev *pdev, int bar,
2526 const char *res_name, int exclusive)
2527 {
2528 struct pci_devres *dr;
2529
2530 if (pci_resource_len(pdev, bar) == 0)
2531 return 0;
2532
2533 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2534 if (!request_region(pci_resource_start(pdev, bar),
2535 pci_resource_len(pdev, bar), res_name))
2536 goto err_out;
2537 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2538 if (!__request_mem_region(pci_resource_start(pdev, bar),
2539 pci_resource_len(pdev, bar), res_name,
2540 exclusive))
2541 goto err_out;
2542 }
2543
2544 dr = find_pci_dr(pdev);
2545 if (dr)
2546 dr->region_mask |= 1 << bar;
2547
2548 return 0;
2549
2550 err_out:
2551 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2552 &pdev->resource[bar]);
2553 return -EBUSY;
2554 }
2555
2556 /**
2557 * pci_request_region - Reserve PCI I/O and memory resource
2558 * @pdev: PCI device whose resources are to be reserved
2559 * @bar: BAR to be reserved
2560 * @res_name: Name to be associated with resource
2561 *
2562 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2563 * being reserved by owner @res_name. Do not access any
2564 * address inside the PCI regions unless this call returns
2565 * successfully.
2566 *
2567 * Returns 0 on success, or %EBUSY on error. A warning
2568 * message is also printed on failure.
2569 */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)2570 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2571 {
2572 return __pci_request_region(pdev, bar, res_name, 0);
2573 }
2574 EXPORT_SYMBOL(pci_request_region);
2575
2576 /**
2577 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2578 * @pdev: PCI device whose resources are to be reserved
2579 * @bar: BAR to be reserved
2580 * @res_name: Name to be associated with resource.
2581 *
2582 * Mark the PCI region associated with PCI device @pdev BR @bar as
2583 * being reserved by owner @res_name. Do not access any
2584 * address inside the PCI regions unless this call returns
2585 * successfully.
2586 *
2587 * Returns 0 on success, or %EBUSY on error. A warning
2588 * message is also printed on failure.
2589 *
2590 * The key difference that _exclusive makes it that userspace is
2591 * explicitly not allowed to map the resource via /dev/mem or
2592 * sysfs.
2593 */
pci_request_region_exclusive(struct pci_dev * pdev,int bar,const char * res_name)2594 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2595 const char *res_name)
2596 {
2597 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2598 }
2599 EXPORT_SYMBOL(pci_request_region_exclusive);
2600
2601 /**
2602 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2603 * @pdev: PCI device whose resources were previously reserved
2604 * @bars: Bitmask of BARs to be released
2605 *
2606 * Release selected PCI I/O and memory resources previously reserved.
2607 * Call this function only after all use of the PCI regions has ceased.
2608 */
pci_release_selected_regions(struct pci_dev * pdev,int bars)2609 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2610 {
2611 int i;
2612
2613 for (i = 0; i < 6; i++)
2614 if (bars & (1 << i))
2615 pci_release_region(pdev, i);
2616 }
2617 EXPORT_SYMBOL(pci_release_selected_regions);
2618
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)2619 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2620 const char *res_name, int excl)
2621 {
2622 int i;
2623
2624 for (i = 0; i < 6; i++)
2625 if (bars & (1 << i))
2626 if (__pci_request_region(pdev, i, res_name, excl))
2627 goto err_out;
2628 return 0;
2629
2630 err_out:
2631 while (--i >= 0)
2632 if (bars & (1 << i))
2633 pci_release_region(pdev, i);
2634
2635 return -EBUSY;
2636 }
2637
2638
2639 /**
2640 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2641 * @pdev: PCI device whose resources are to be reserved
2642 * @bars: Bitmask of BARs to be requested
2643 * @res_name: Name to be associated with resource
2644 */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)2645 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2646 const char *res_name)
2647 {
2648 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2649 }
2650 EXPORT_SYMBOL(pci_request_selected_regions);
2651
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)2652 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2653 const char *res_name)
2654 {
2655 return __pci_request_selected_regions(pdev, bars, res_name,
2656 IORESOURCE_EXCLUSIVE);
2657 }
2658 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2659
2660 /**
2661 * pci_release_regions - Release reserved PCI I/O and memory resources
2662 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2663 *
2664 * Releases all PCI I/O and memory resources previously reserved by a
2665 * successful call to pci_request_regions. Call this function only
2666 * after all use of the PCI regions has ceased.
2667 */
2668
pci_release_regions(struct pci_dev * pdev)2669 void pci_release_regions(struct pci_dev *pdev)
2670 {
2671 pci_release_selected_regions(pdev, (1 << 6) - 1);
2672 }
2673 EXPORT_SYMBOL(pci_release_regions);
2674
2675 /**
2676 * pci_request_regions - Reserved PCI I/O and memory resources
2677 * @pdev: PCI device whose resources are to be reserved
2678 * @res_name: Name to be associated with resource.
2679 *
2680 * Mark all PCI regions associated with PCI device @pdev as
2681 * being reserved by owner @res_name. Do not access any
2682 * address inside the PCI regions unless this call returns
2683 * successfully.
2684 *
2685 * Returns 0 on success, or %EBUSY on error. A warning
2686 * message is also printed on failure.
2687 */
pci_request_regions(struct pci_dev * pdev,const char * res_name)2688 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2689 {
2690 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2691 }
2692 EXPORT_SYMBOL(pci_request_regions);
2693
2694 /**
2695 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2696 * @pdev: PCI device whose resources are to be reserved
2697 * @res_name: Name to be associated with resource.
2698 *
2699 * Mark all PCI regions associated with PCI device @pdev as
2700 * being reserved by owner @res_name. Do not access any
2701 * address inside the PCI regions unless this call returns
2702 * successfully.
2703 *
2704 * pci_request_regions_exclusive() will mark the region so that
2705 * /dev/mem and the sysfs MMIO access will not be allowed.
2706 *
2707 * Returns 0 on success, or %EBUSY on error. A warning
2708 * message is also printed on failure.
2709 */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)2710 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2711 {
2712 return pci_request_selected_regions_exclusive(pdev,
2713 ((1 << 6) - 1), res_name);
2714 }
2715 EXPORT_SYMBOL(pci_request_regions_exclusive);
2716
2717 /**
2718 * pci_remap_iospace - Remap the memory mapped I/O space
2719 * @res: Resource describing the I/O space
2720 * @phys_addr: physical address of range to be mapped
2721 *
2722 * Remap the memory mapped I/O space described by the @res
2723 * and the CPU physical address @phys_addr into virtual address space.
2724 * Only architectures that have memory mapped IO functions defined
2725 * (and the PCI_IOBASE value defined) should call this function.
2726 */
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)2727 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
2728 {
2729 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
2730 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
2731
2732 if (!(res->flags & IORESOURCE_IO))
2733 return -EINVAL;
2734
2735 if (res->end > IO_SPACE_LIMIT)
2736 return -EINVAL;
2737
2738 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
2739 pgprot_device(PAGE_KERNEL));
2740 #else
2741 /* this architecture does not have memory mapped I/O space,
2742 so this function should never be called */
2743 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
2744 return -ENODEV;
2745 #endif
2746 }
2747
__pci_set_master(struct pci_dev * dev,bool enable)2748 static void __pci_set_master(struct pci_dev *dev, bool enable)
2749 {
2750 u16 old_cmd, cmd;
2751
2752 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2753 if (enable)
2754 cmd = old_cmd | PCI_COMMAND_MASTER;
2755 else
2756 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2757 if (cmd != old_cmd) {
2758 dev_dbg(&dev->dev, "%s bus mastering\n",
2759 enable ? "enabling" : "disabling");
2760 pci_write_config_word(dev, PCI_COMMAND, cmd);
2761 }
2762 dev->is_busmaster = enable;
2763 }
2764
2765 /**
2766 * pcibios_setup - process "pci=" kernel boot arguments
2767 * @str: string used to pass in "pci=" kernel boot arguments
2768 *
2769 * Process kernel boot arguments. This is the default implementation.
2770 * Architecture specific implementations can override this as necessary.
2771 */
pcibios_setup(char * str)2772 char * __weak __init pcibios_setup(char *str)
2773 {
2774 return str;
2775 }
2776
2777 /**
2778 * pcibios_set_master - enable PCI bus-mastering for device dev
2779 * @dev: the PCI device to enable
2780 *
2781 * Enables PCI bus-mastering for the device. This is the default
2782 * implementation. Architecture specific implementations can override
2783 * this if necessary.
2784 */
pcibios_set_master(struct pci_dev * dev)2785 void __weak pcibios_set_master(struct pci_dev *dev)
2786 {
2787 u8 lat;
2788
2789 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2790 if (pci_is_pcie(dev))
2791 return;
2792
2793 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2794 if (lat < 16)
2795 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2796 else if (lat > pcibios_max_latency)
2797 lat = pcibios_max_latency;
2798 else
2799 return;
2800
2801 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2802 }
2803
2804 /**
2805 * pci_set_master - enables bus-mastering for device dev
2806 * @dev: the PCI device to enable
2807 *
2808 * Enables bus-mastering on the device and calls pcibios_set_master()
2809 * to do the needed arch specific settings.
2810 */
pci_set_master(struct pci_dev * dev)2811 void pci_set_master(struct pci_dev *dev)
2812 {
2813 __pci_set_master(dev, true);
2814 pcibios_set_master(dev);
2815 }
2816 EXPORT_SYMBOL(pci_set_master);
2817
2818 /**
2819 * pci_clear_master - disables bus-mastering for device dev
2820 * @dev: the PCI device to disable
2821 */
pci_clear_master(struct pci_dev * dev)2822 void pci_clear_master(struct pci_dev *dev)
2823 {
2824 __pci_set_master(dev, false);
2825 }
2826 EXPORT_SYMBOL(pci_clear_master);
2827
2828 /**
2829 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2830 * @dev: the PCI device for which MWI is to be enabled
2831 *
2832 * Helper function for pci_set_mwi.
2833 * Originally copied from drivers/net/acenic.c.
2834 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2835 *
2836 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2837 */
pci_set_cacheline_size(struct pci_dev * dev)2838 int pci_set_cacheline_size(struct pci_dev *dev)
2839 {
2840 u8 cacheline_size;
2841
2842 if (!pci_cache_line_size)
2843 return -EINVAL;
2844
2845 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2846 equal to or multiple of the right value. */
2847 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2848 if (cacheline_size >= pci_cache_line_size &&
2849 (cacheline_size % pci_cache_line_size) == 0)
2850 return 0;
2851
2852 /* Write the correct value. */
2853 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2854 /* Read it back. */
2855 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2856 if (cacheline_size == pci_cache_line_size)
2857 return 0;
2858
2859 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
2860 pci_cache_line_size << 2);
2861
2862 return -EINVAL;
2863 }
2864 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2865
2866 /**
2867 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2868 * @dev: the PCI device for which MWI is enabled
2869 *
2870 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2871 *
2872 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2873 */
pci_set_mwi(struct pci_dev * dev)2874 int pci_set_mwi(struct pci_dev *dev)
2875 {
2876 #ifdef PCI_DISABLE_MWI
2877 return 0;
2878 #else
2879 int rc;
2880 u16 cmd;
2881
2882 rc = pci_set_cacheline_size(dev);
2883 if (rc)
2884 return rc;
2885
2886 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2887 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
2888 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2889 cmd |= PCI_COMMAND_INVALIDATE;
2890 pci_write_config_word(dev, PCI_COMMAND, cmd);
2891 }
2892 return 0;
2893 #endif
2894 }
2895 EXPORT_SYMBOL(pci_set_mwi);
2896
2897 /**
2898 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2899 * @dev: the PCI device for which MWI is enabled
2900 *
2901 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2902 * Callers are not required to check the return value.
2903 *
2904 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2905 */
pci_try_set_mwi(struct pci_dev * dev)2906 int pci_try_set_mwi(struct pci_dev *dev)
2907 {
2908 #ifdef PCI_DISABLE_MWI
2909 return 0;
2910 #else
2911 return pci_set_mwi(dev);
2912 #endif
2913 }
2914 EXPORT_SYMBOL(pci_try_set_mwi);
2915
2916 /**
2917 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2918 * @dev: the PCI device to disable
2919 *
2920 * Disables PCI Memory-Write-Invalidate transaction on the device
2921 */
pci_clear_mwi(struct pci_dev * dev)2922 void pci_clear_mwi(struct pci_dev *dev)
2923 {
2924 #ifndef PCI_DISABLE_MWI
2925 u16 cmd;
2926
2927 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2928 if (cmd & PCI_COMMAND_INVALIDATE) {
2929 cmd &= ~PCI_COMMAND_INVALIDATE;
2930 pci_write_config_word(dev, PCI_COMMAND, cmd);
2931 }
2932 #endif
2933 }
2934 EXPORT_SYMBOL(pci_clear_mwi);
2935
2936 /**
2937 * pci_intx - enables/disables PCI INTx for device dev
2938 * @pdev: the PCI device to operate on
2939 * @enable: boolean: whether to enable or disable PCI INTx
2940 *
2941 * Enables/disables PCI INTx for device dev
2942 */
pci_intx(struct pci_dev * pdev,int enable)2943 void pci_intx(struct pci_dev *pdev, int enable)
2944 {
2945 u16 pci_command, new;
2946
2947 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2948
2949 if (enable)
2950 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2951 else
2952 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2953
2954 if (new != pci_command) {
2955 struct pci_devres *dr;
2956
2957 pci_write_config_word(pdev, PCI_COMMAND, new);
2958
2959 dr = find_pci_dr(pdev);
2960 if (dr && !dr->restore_intx) {
2961 dr->restore_intx = 1;
2962 dr->orig_intx = !enable;
2963 }
2964 }
2965 }
2966 EXPORT_SYMBOL_GPL(pci_intx);
2967
2968 /**
2969 * pci_intx_mask_supported - probe for INTx masking support
2970 * @dev: the PCI device to operate on
2971 *
2972 * Check if the device dev support INTx masking via the config space
2973 * command word.
2974 */
pci_intx_mask_supported(struct pci_dev * dev)2975 bool pci_intx_mask_supported(struct pci_dev *dev)
2976 {
2977 bool mask_supported = false;
2978 u16 orig, new;
2979
2980 if (dev->broken_intx_masking)
2981 return false;
2982
2983 pci_cfg_access_lock(dev);
2984
2985 pci_read_config_word(dev, PCI_COMMAND, &orig);
2986 pci_write_config_word(dev, PCI_COMMAND,
2987 orig ^ PCI_COMMAND_INTX_DISABLE);
2988 pci_read_config_word(dev, PCI_COMMAND, &new);
2989
2990 /*
2991 * There's no way to protect against hardware bugs or detect them
2992 * reliably, but as long as we know what the value should be, let's
2993 * go ahead and check it.
2994 */
2995 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2996 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
2997 orig, new);
2998 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2999 mask_supported = true;
3000 pci_write_config_word(dev, PCI_COMMAND, orig);
3001 }
3002
3003 pci_cfg_access_unlock(dev);
3004 return mask_supported;
3005 }
3006 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3007
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)3008 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3009 {
3010 struct pci_bus *bus = dev->bus;
3011 bool mask_updated = true;
3012 u32 cmd_status_dword;
3013 u16 origcmd, newcmd;
3014 unsigned long flags;
3015 bool irq_pending;
3016
3017 /*
3018 * We do a single dword read to retrieve both command and status.
3019 * Document assumptions that make this possible.
3020 */
3021 BUILD_BUG_ON(PCI_COMMAND % 4);
3022 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3023
3024 raw_spin_lock_irqsave(&pci_lock, flags);
3025
3026 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3027
3028 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3029
3030 /*
3031 * Check interrupt status register to see whether our device
3032 * triggered the interrupt (when masking) or the next IRQ is
3033 * already pending (when unmasking).
3034 */
3035 if (mask != irq_pending) {
3036 mask_updated = false;
3037 goto done;
3038 }
3039
3040 origcmd = cmd_status_dword;
3041 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3042 if (mask)
3043 newcmd |= PCI_COMMAND_INTX_DISABLE;
3044 if (newcmd != origcmd)
3045 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3046
3047 done:
3048 raw_spin_unlock_irqrestore(&pci_lock, flags);
3049
3050 return mask_updated;
3051 }
3052
3053 /**
3054 * pci_check_and_mask_intx - mask INTx on pending interrupt
3055 * @dev: the PCI device to operate on
3056 *
3057 * Check if the device dev has its INTx line asserted, mask it and
3058 * return true in that case. False is returned if not interrupt was
3059 * pending.
3060 */
pci_check_and_mask_intx(struct pci_dev * dev)3061 bool pci_check_and_mask_intx(struct pci_dev *dev)
3062 {
3063 return pci_check_and_set_intx_mask(dev, true);
3064 }
3065 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3066
3067 /**
3068 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3069 * @dev: the PCI device to operate on
3070 *
3071 * Check if the device dev has its INTx line asserted, unmask it if not
3072 * and return true. False is returned and the mask remains active if
3073 * there was still an interrupt pending.
3074 */
pci_check_and_unmask_intx(struct pci_dev * dev)3075 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3076 {
3077 return pci_check_and_set_intx_mask(dev, false);
3078 }
3079 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3080
3081 /**
3082 * pci_msi_off - disables any MSI or MSI-X capabilities
3083 * @dev: the PCI device to operate on
3084 *
3085 * If you want to use MSI, see pci_enable_msi() and friends.
3086 * This is a lower-level primitive that allows us to disable
3087 * MSI operation at the device level.
3088 */
pci_msi_off(struct pci_dev * dev)3089 void pci_msi_off(struct pci_dev *dev)
3090 {
3091 int pos;
3092 u16 control;
3093
3094 /*
3095 * This looks like it could go in msi.c, but we need it even when
3096 * CONFIG_PCI_MSI=n. For the same reason, we can't use
3097 * dev->msi_cap or dev->msix_cap here.
3098 */
3099 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3100 if (pos) {
3101 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3102 control &= ~PCI_MSI_FLAGS_ENABLE;
3103 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3104 }
3105 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3106 if (pos) {
3107 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3108 control &= ~PCI_MSIX_FLAGS_ENABLE;
3109 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3110 }
3111 }
3112 EXPORT_SYMBOL_GPL(pci_msi_off);
3113
pci_set_dma_max_seg_size(struct pci_dev * dev,unsigned int size)3114 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3115 {
3116 return dma_set_max_seg_size(&dev->dev, size);
3117 }
3118 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3119
pci_set_dma_seg_boundary(struct pci_dev * dev,unsigned long mask)3120 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3121 {
3122 return dma_set_seg_boundary(&dev->dev, mask);
3123 }
3124 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3125
3126 /**
3127 * pci_wait_for_pending_transaction - waits for pending transaction
3128 * @dev: the PCI device to operate on
3129 *
3130 * Return 0 if transaction is pending 1 otherwise.
3131 */
pci_wait_for_pending_transaction(struct pci_dev * dev)3132 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3133 {
3134 if (!pci_is_pcie(dev))
3135 return 1;
3136
3137 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3138 PCI_EXP_DEVSTA_TRPND);
3139 }
3140 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3141
pcie_flr(struct pci_dev * dev,int probe)3142 static int pcie_flr(struct pci_dev *dev, int probe)
3143 {
3144 u32 cap;
3145
3146 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3147 if (!(cap & PCI_EXP_DEVCAP_FLR))
3148 return -ENOTTY;
3149
3150 if (probe)
3151 return 0;
3152
3153 if (!pci_wait_for_pending_transaction(dev))
3154 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3155
3156 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3157
3158 msleep(100);
3159
3160 return 0;
3161 }
3162
pci_af_flr(struct pci_dev * dev,int probe)3163 static int pci_af_flr(struct pci_dev *dev, int probe)
3164 {
3165 int pos;
3166 u8 cap;
3167
3168 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3169 if (!pos)
3170 return -ENOTTY;
3171
3172 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3173 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3174 return -ENOTTY;
3175
3176 if (probe)
3177 return 0;
3178
3179 /*
3180 * Wait for Transaction Pending bit to clear. A word-aligned test
3181 * is used, so we use the conrol offset rather than status and shift
3182 * the test bit to match.
3183 */
3184 if (pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3185 PCI_AF_STATUS_TP << 8))
3186 goto clear;
3187
3188 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3189
3190 clear:
3191 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3192 msleep(100);
3193
3194 return 0;
3195 }
3196
3197 /**
3198 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3199 * @dev: Device to reset.
3200 * @probe: If set, only check if the device can be reset this way.
3201 *
3202 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3203 * unset, it will be reinitialized internally when going from PCI_D3hot to
3204 * PCI_D0. If that's the case and the device is not in a low-power state
3205 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3206 *
3207 * NOTE: This causes the caller to sleep for twice the device power transition
3208 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3209 * by default (i.e. unless the @dev's d3_delay field has a different value).
3210 * Moreover, only devices in D0 can be reset by this function.
3211 */
pci_pm_reset(struct pci_dev * dev,int probe)3212 static int pci_pm_reset(struct pci_dev *dev, int probe)
3213 {
3214 u16 csr;
3215
3216 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3217 return -ENOTTY;
3218
3219 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3220 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3221 return -ENOTTY;
3222
3223 if (probe)
3224 return 0;
3225
3226 if (dev->current_state != PCI_D0)
3227 return -EINVAL;
3228
3229 csr &= ~PCI_PM_CTRL_STATE_MASK;
3230 csr |= PCI_D3hot;
3231 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3232 pci_dev_d3_sleep(dev);
3233
3234 csr &= ~PCI_PM_CTRL_STATE_MASK;
3235 csr |= PCI_D0;
3236 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3237 pci_dev_d3_sleep(dev);
3238
3239 return 0;
3240 }
3241
pci_reset_secondary_bus(struct pci_dev * dev)3242 void pci_reset_secondary_bus(struct pci_dev *dev)
3243 {
3244 u16 ctrl;
3245
3246 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3247 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3248 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3249 /*
3250 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3251 * this to 2ms to ensure that we meet the minimum requirement.
3252 */
3253 msleep(2);
3254
3255 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3256 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3257
3258 /*
3259 * Trhfa for conventional PCI is 2^25 clock cycles.
3260 * Assuming a minimum 33MHz clock this results in a 1s
3261 * delay before we can consider subordinate devices to
3262 * be re-initialized. PCIe has some ways to shorten this,
3263 * but we don't make use of them yet.
3264 */
3265 ssleep(1);
3266 }
3267
pcibios_reset_secondary_bus(struct pci_dev * dev)3268 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3269 {
3270 pci_reset_secondary_bus(dev);
3271 }
3272
3273 /**
3274 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3275 * @dev: Bridge device
3276 *
3277 * Use the bridge control register to assert reset on the secondary bus.
3278 * Devices on the secondary bus are left in power-on state.
3279 */
pci_reset_bridge_secondary_bus(struct pci_dev * dev)3280 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3281 {
3282 pcibios_reset_secondary_bus(dev);
3283 }
3284 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3285
pci_parent_bus_reset(struct pci_dev * dev,int probe)3286 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3287 {
3288 struct pci_dev *pdev;
3289
3290 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3291 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3292 return -ENOTTY;
3293
3294 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3295 if (pdev != dev)
3296 return -ENOTTY;
3297
3298 if (probe)
3299 return 0;
3300
3301 pci_reset_bridge_secondary_bus(dev->bus->self);
3302
3303 return 0;
3304 }
3305
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,int probe)3306 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3307 {
3308 int rc = -ENOTTY;
3309
3310 if (!hotplug || !try_module_get(hotplug->ops->owner))
3311 return rc;
3312
3313 if (hotplug->ops->reset_slot)
3314 rc = hotplug->ops->reset_slot(hotplug, probe);
3315
3316 module_put(hotplug->ops->owner);
3317
3318 return rc;
3319 }
3320
pci_dev_reset_slot_function(struct pci_dev * dev,int probe)3321 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3322 {
3323 struct pci_dev *pdev;
3324
3325 if (dev->subordinate || !dev->slot ||
3326 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3327 return -ENOTTY;
3328
3329 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3330 if (pdev != dev && pdev->slot == dev->slot)
3331 return -ENOTTY;
3332
3333 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3334 }
3335
__pci_dev_reset(struct pci_dev * dev,int probe)3336 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3337 {
3338 int rc;
3339
3340 might_sleep();
3341
3342 rc = pci_dev_specific_reset(dev, probe);
3343 if (rc != -ENOTTY)
3344 goto done;
3345
3346 rc = pcie_flr(dev, probe);
3347 if (rc != -ENOTTY)
3348 goto done;
3349
3350 rc = pci_af_flr(dev, probe);
3351 if (rc != -ENOTTY)
3352 goto done;
3353
3354 rc = pci_pm_reset(dev, probe);
3355 if (rc != -ENOTTY)
3356 goto done;
3357
3358 rc = pci_dev_reset_slot_function(dev, probe);
3359 if (rc != -ENOTTY)
3360 goto done;
3361
3362 rc = pci_parent_bus_reset(dev, probe);
3363 done:
3364 return rc;
3365 }
3366
pci_dev_lock(struct pci_dev * dev)3367 static void pci_dev_lock(struct pci_dev *dev)
3368 {
3369 pci_cfg_access_lock(dev);
3370 /* block PM suspend, driver probe, etc. */
3371 device_lock(&dev->dev);
3372 }
3373
3374 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)3375 static int pci_dev_trylock(struct pci_dev *dev)
3376 {
3377 if (pci_cfg_access_trylock(dev)) {
3378 if (device_trylock(&dev->dev))
3379 return 1;
3380 pci_cfg_access_unlock(dev);
3381 }
3382
3383 return 0;
3384 }
3385
pci_dev_unlock(struct pci_dev * dev)3386 static void pci_dev_unlock(struct pci_dev *dev)
3387 {
3388 device_unlock(&dev->dev);
3389 pci_cfg_access_unlock(dev);
3390 }
3391
3392 /**
3393 * pci_reset_notify - notify device driver of reset
3394 * @dev: device to be notified of reset
3395 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3396 * completed
3397 *
3398 * Must be called prior to device access being disabled and after device
3399 * access is restored.
3400 */
pci_reset_notify(struct pci_dev * dev,bool prepare)3401 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3402 {
3403 const struct pci_error_handlers *err_handler =
3404 dev->driver ? dev->driver->err_handler : NULL;
3405 if (err_handler && err_handler->reset_notify)
3406 err_handler->reset_notify(dev, prepare);
3407 }
3408
pci_dev_save_and_disable(struct pci_dev * dev)3409 static void pci_dev_save_and_disable(struct pci_dev *dev)
3410 {
3411 pci_reset_notify(dev, true);
3412
3413 /*
3414 * Wake-up device prior to save. PM registers default to D0 after
3415 * reset and a simple register restore doesn't reliably return
3416 * to a non-D0 state anyway.
3417 */
3418 pci_set_power_state(dev, PCI_D0);
3419
3420 pci_save_state(dev);
3421 /*
3422 * Disable the device by clearing the Command register, except for
3423 * INTx-disable which is set. This not only disables MMIO and I/O port
3424 * BARs, but also prevents the device from being Bus Master, preventing
3425 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3426 * compliant devices, INTx-disable prevents legacy interrupts.
3427 */
3428 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3429 }
3430
pci_dev_restore(struct pci_dev * dev)3431 static void pci_dev_restore(struct pci_dev *dev)
3432 {
3433 pci_restore_state(dev);
3434 pci_reset_notify(dev, false);
3435 }
3436
pci_dev_reset(struct pci_dev * dev,int probe)3437 static int pci_dev_reset(struct pci_dev *dev, int probe)
3438 {
3439 int rc;
3440
3441 if (!probe)
3442 pci_dev_lock(dev);
3443
3444 rc = __pci_dev_reset(dev, probe);
3445
3446 if (!probe)
3447 pci_dev_unlock(dev);
3448
3449 return rc;
3450 }
3451
3452 /**
3453 * __pci_reset_function - reset a PCI device function
3454 * @dev: PCI device to reset
3455 *
3456 * Some devices allow an individual function to be reset without affecting
3457 * other functions in the same device. The PCI device must be responsive
3458 * to PCI config space in order to use this function.
3459 *
3460 * The device function is presumed to be unused when this function is called.
3461 * Resetting the device will make the contents of PCI configuration space
3462 * random, so any caller of this must be prepared to reinitialise the
3463 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3464 * etc.
3465 *
3466 * Returns 0 if the device function was successfully reset or negative if the
3467 * device doesn't support resetting a single function.
3468 */
__pci_reset_function(struct pci_dev * dev)3469 int __pci_reset_function(struct pci_dev *dev)
3470 {
3471 return pci_dev_reset(dev, 0);
3472 }
3473 EXPORT_SYMBOL_GPL(__pci_reset_function);
3474
3475 /**
3476 * __pci_reset_function_locked - reset a PCI device function while holding
3477 * the @dev mutex lock.
3478 * @dev: PCI device to reset
3479 *
3480 * Some devices allow an individual function to be reset without affecting
3481 * other functions in the same device. The PCI device must be responsive
3482 * to PCI config space in order to use this function.
3483 *
3484 * The device function is presumed to be unused and the caller is holding
3485 * the device mutex lock when this function is called.
3486 * Resetting the device will make the contents of PCI configuration space
3487 * random, so any caller of this must be prepared to reinitialise the
3488 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3489 * etc.
3490 *
3491 * Returns 0 if the device function was successfully reset or negative if the
3492 * device doesn't support resetting a single function.
3493 */
__pci_reset_function_locked(struct pci_dev * dev)3494 int __pci_reset_function_locked(struct pci_dev *dev)
3495 {
3496 return __pci_dev_reset(dev, 0);
3497 }
3498 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3499
3500 /**
3501 * pci_probe_reset_function - check whether the device can be safely reset
3502 * @dev: PCI device to reset
3503 *
3504 * Some devices allow an individual function to be reset without affecting
3505 * other functions in the same device. The PCI device must be responsive
3506 * to PCI config space in order to use this function.
3507 *
3508 * Returns 0 if the device function can be reset or negative if the
3509 * device doesn't support resetting a single function.
3510 */
pci_probe_reset_function(struct pci_dev * dev)3511 int pci_probe_reset_function(struct pci_dev *dev)
3512 {
3513 return pci_dev_reset(dev, 1);
3514 }
3515
3516 /**
3517 * pci_reset_function - quiesce and reset a PCI device function
3518 * @dev: PCI device to reset
3519 *
3520 * Some devices allow an individual function to be reset without affecting
3521 * other functions in the same device. The PCI device must be responsive
3522 * to PCI config space in order to use this function.
3523 *
3524 * This function does not just reset the PCI portion of a device, but
3525 * clears all the state associated with the device. This function differs
3526 * from __pci_reset_function in that it saves and restores device state
3527 * over the reset.
3528 *
3529 * Returns 0 if the device function was successfully reset or negative if the
3530 * device doesn't support resetting a single function.
3531 */
pci_reset_function(struct pci_dev * dev)3532 int pci_reset_function(struct pci_dev *dev)
3533 {
3534 int rc;
3535
3536 rc = pci_dev_reset(dev, 1);
3537 if (rc)
3538 return rc;
3539
3540 pci_dev_save_and_disable(dev);
3541
3542 rc = pci_dev_reset(dev, 0);
3543
3544 pci_dev_restore(dev);
3545
3546 return rc;
3547 }
3548 EXPORT_SYMBOL_GPL(pci_reset_function);
3549
3550 /**
3551 * pci_try_reset_function - quiesce and reset a PCI device function
3552 * @dev: PCI device to reset
3553 *
3554 * Same as above, except return -EAGAIN if unable to lock device.
3555 */
pci_try_reset_function(struct pci_dev * dev)3556 int pci_try_reset_function(struct pci_dev *dev)
3557 {
3558 int rc;
3559
3560 rc = pci_dev_reset(dev, 1);
3561 if (rc)
3562 return rc;
3563
3564 pci_dev_save_and_disable(dev);
3565
3566 if (pci_dev_trylock(dev)) {
3567 rc = __pci_dev_reset(dev, 0);
3568 pci_dev_unlock(dev);
3569 } else
3570 rc = -EAGAIN;
3571
3572 pci_dev_restore(dev);
3573
3574 return rc;
3575 }
3576 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3577
3578 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resetable(struct pci_bus * bus)3579 static bool pci_bus_resetable(struct pci_bus *bus)
3580 {
3581 struct pci_dev *dev;
3582
3583
3584 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
3585 return false;
3586
3587 list_for_each_entry(dev, &bus->devices, bus_list) {
3588 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3589 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3590 return false;
3591 }
3592
3593 return true;
3594 }
3595
3596 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)3597 static void pci_bus_lock(struct pci_bus *bus)
3598 {
3599 struct pci_dev *dev;
3600
3601 list_for_each_entry(dev, &bus->devices, bus_list) {
3602 pci_dev_lock(dev);
3603 if (dev->subordinate)
3604 pci_bus_lock(dev->subordinate);
3605 }
3606 }
3607
3608 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)3609 static void pci_bus_unlock(struct pci_bus *bus)
3610 {
3611 struct pci_dev *dev;
3612
3613 list_for_each_entry(dev, &bus->devices, bus_list) {
3614 if (dev->subordinate)
3615 pci_bus_unlock(dev->subordinate);
3616 pci_dev_unlock(dev);
3617 }
3618 }
3619
3620 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)3621 static int pci_bus_trylock(struct pci_bus *bus)
3622 {
3623 struct pci_dev *dev;
3624
3625 list_for_each_entry(dev, &bus->devices, bus_list) {
3626 if (!pci_dev_trylock(dev))
3627 goto unlock;
3628 if (dev->subordinate) {
3629 if (!pci_bus_trylock(dev->subordinate)) {
3630 pci_dev_unlock(dev);
3631 goto unlock;
3632 }
3633 }
3634 }
3635 return 1;
3636
3637 unlock:
3638 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3639 if (dev->subordinate)
3640 pci_bus_unlock(dev->subordinate);
3641 pci_dev_unlock(dev);
3642 }
3643 return 0;
3644 }
3645
3646 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resetable(struct pci_slot * slot)3647 static bool pci_slot_resetable(struct pci_slot *slot)
3648 {
3649 struct pci_dev *dev;
3650
3651 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3652 if (!dev->slot || dev->slot != slot)
3653 continue;
3654 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3655 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3656 return false;
3657 }
3658
3659 return true;
3660 }
3661
3662 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)3663 static void pci_slot_lock(struct pci_slot *slot)
3664 {
3665 struct pci_dev *dev;
3666
3667 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3668 if (!dev->slot || dev->slot != slot)
3669 continue;
3670 pci_dev_lock(dev);
3671 if (dev->subordinate)
3672 pci_bus_lock(dev->subordinate);
3673 }
3674 }
3675
3676 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)3677 static void pci_slot_unlock(struct pci_slot *slot)
3678 {
3679 struct pci_dev *dev;
3680
3681 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3682 if (!dev->slot || dev->slot != slot)
3683 continue;
3684 if (dev->subordinate)
3685 pci_bus_unlock(dev->subordinate);
3686 pci_dev_unlock(dev);
3687 }
3688 }
3689
3690 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)3691 static int pci_slot_trylock(struct pci_slot *slot)
3692 {
3693 struct pci_dev *dev;
3694
3695 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3696 if (!dev->slot || dev->slot != slot)
3697 continue;
3698 if (!pci_dev_trylock(dev))
3699 goto unlock;
3700 if (dev->subordinate) {
3701 if (!pci_bus_trylock(dev->subordinate)) {
3702 pci_dev_unlock(dev);
3703 goto unlock;
3704 }
3705 }
3706 }
3707 return 1;
3708
3709 unlock:
3710 list_for_each_entry_continue_reverse(dev,
3711 &slot->bus->devices, bus_list) {
3712 if (!dev->slot || dev->slot != slot)
3713 continue;
3714 if (dev->subordinate)
3715 pci_bus_unlock(dev->subordinate);
3716 pci_dev_unlock(dev);
3717 }
3718 return 0;
3719 }
3720
3721 /* Save and disable devices from the top of the tree down */
pci_bus_save_and_disable(struct pci_bus * bus)3722 static void pci_bus_save_and_disable(struct pci_bus *bus)
3723 {
3724 struct pci_dev *dev;
3725
3726 list_for_each_entry(dev, &bus->devices, bus_list) {
3727 pci_dev_save_and_disable(dev);
3728 if (dev->subordinate)
3729 pci_bus_save_and_disable(dev->subordinate);
3730 }
3731 }
3732
3733 /*
3734 * Restore devices from top of the tree down - parent bridges need to be
3735 * restored before we can get to subordinate devices.
3736 */
pci_bus_restore(struct pci_bus * bus)3737 static void pci_bus_restore(struct pci_bus *bus)
3738 {
3739 struct pci_dev *dev;
3740
3741 list_for_each_entry(dev, &bus->devices, bus_list) {
3742 pci_dev_restore(dev);
3743 if (dev->subordinate)
3744 pci_bus_restore(dev->subordinate);
3745 }
3746 }
3747
3748 /* Save and disable devices from the top of the tree down */
pci_slot_save_and_disable(struct pci_slot * slot)3749 static void pci_slot_save_and_disable(struct pci_slot *slot)
3750 {
3751 struct pci_dev *dev;
3752
3753 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3754 if (!dev->slot || dev->slot != slot)
3755 continue;
3756 pci_dev_save_and_disable(dev);
3757 if (dev->subordinate)
3758 pci_bus_save_and_disable(dev->subordinate);
3759 }
3760 }
3761
3762 /*
3763 * Restore devices from top of the tree down - parent bridges need to be
3764 * restored before we can get to subordinate devices.
3765 */
pci_slot_restore(struct pci_slot * slot)3766 static void pci_slot_restore(struct pci_slot *slot)
3767 {
3768 struct pci_dev *dev;
3769
3770 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3771 if (!dev->slot || dev->slot != slot)
3772 continue;
3773 pci_dev_restore(dev);
3774 if (dev->subordinate)
3775 pci_bus_restore(dev->subordinate);
3776 }
3777 }
3778
pci_slot_reset(struct pci_slot * slot,int probe)3779 static int pci_slot_reset(struct pci_slot *slot, int probe)
3780 {
3781 int rc;
3782
3783 if (!slot || !pci_slot_resetable(slot))
3784 return -ENOTTY;
3785
3786 if (!probe)
3787 pci_slot_lock(slot);
3788
3789 might_sleep();
3790
3791 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3792
3793 if (!probe)
3794 pci_slot_unlock(slot);
3795
3796 return rc;
3797 }
3798
3799 /**
3800 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3801 * @slot: PCI slot to probe
3802 *
3803 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3804 */
pci_probe_reset_slot(struct pci_slot * slot)3805 int pci_probe_reset_slot(struct pci_slot *slot)
3806 {
3807 return pci_slot_reset(slot, 1);
3808 }
3809 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3810
3811 /**
3812 * pci_reset_slot - reset a PCI slot
3813 * @slot: PCI slot to reset
3814 *
3815 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3816 * independent of other slots. For instance, some slots may support slot power
3817 * control. In the case of a 1:1 bus to slot architecture, this function may
3818 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3819 * Generally a slot reset should be attempted before a bus reset. All of the
3820 * function of the slot and any subordinate buses behind the slot are reset
3821 * through this function. PCI config space of all devices in the slot and
3822 * behind the slot is saved before and restored after reset.
3823 *
3824 * Return 0 on success, non-zero on error.
3825 */
pci_reset_slot(struct pci_slot * slot)3826 int pci_reset_slot(struct pci_slot *slot)
3827 {
3828 int rc;
3829
3830 rc = pci_slot_reset(slot, 1);
3831 if (rc)
3832 return rc;
3833
3834 pci_slot_save_and_disable(slot);
3835
3836 rc = pci_slot_reset(slot, 0);
3837
3838 pci_slot_restore(slot);
3839
3840 return rc;
3841 }
3842 EXPORT_SYMBOL_GPL(pci_reset_slot);
3843
3844 /**
3845 * pci_try_reset_slot - Try to reset a PCI slot
3846 * @slot: PCI slot to reset
3847 *
3848 * Same as above except return -EAGAIN if the slot cannot be locked
3849 */
pci_try_reset_slot(struct pci_slot * slot)3850 int pci_try_reset_slot(struct pci_slot *slot)
3851 {
3852 int rc;
3853
3854 rc = pci_slot_reset(slot, 1);
3855 if (rc)
3856 return rc;
3857
3858 pci_slot_save_and_disable(slot);
3859
3860 if (pci_slot_trylock(slot)) {
3861 might_sleep();
3862 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3863 pci_slot_unlock(slot);
3864 } else
3865 rc = -EAGAIN;
3866
3867 pci_slot_restore(slot);
3868
3869 return rc;
3870 }
3871 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3872
pci_bus_reset(struct pci_bus * bus,int probe)3873 static int pci_bus_reset(struct pci_bus *bus, int probe)
3874 {
3875 if (!bus->self || !pci_bus_resetable(bus))
3876 return -ENOTTY;
3877
3878 if (probe)
3879 return 0;
3880
3881 pci_bus_lock(bus);
3882
3883 might_sleep();
3884
3885 pci_reset_bridge_secondary_bus(bus->self);
3886
3887 pci_bus_unlock(bus);
3888
3889 return 0;
3890 }
3891
3892 /**
3893 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3894 * @bus: PCI bus to probe
3895 *
3896 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3897 */
pci_probe_reset_bus(struct pci_bus * bus)3898 int pci_probe_reset_bus(struct pci_bus *bus)
3899 {
3900 return pci_bus_reset(bus, 1);
3901 }
3902 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3903
3904 /**
3905 * pci_reset_bus - reset a PCI bus
3906 * @bus: top level PCI bus to reset
3907 *
3908 * Do a bus reset on the given bus and any subordinate buses, saving
3909 * and restoring state of all devices.
3910 *
3911 * Return 0 on success, non-zero on error.
3912 */
pci_reset_bus(struct pci_bus * bus)3913 int pci_reset_bus(struct pci_bus *bus)
3914 {
3915 int rc;
3916
3917 rc = pci_bus_reset(bus, 1);
3918 if (rc)
3919 return rc;
3920
3921 pci_bus_save_and_disable(bus);
3922
3923 rc = pci_bus_reset(bus, 0);
3924
3925 pci_bus_restore(bus);
3926
3927 return rc;
3928 }
3929 EXPORT_SYMBOL_GPL(pci_reset_bus);
3930
3931 /**
3932 * pci_try_reset_bus - Try to reset a PCI bus
3933 * @bus: top level PCI bus to reset
3934 *
3935 * Same as above except return -EAGAIN if the bus cannot be locked
3936 */
pci_try_reset_bus(struct pci_bus * bus)3937 int pci_try_reset_bus(struct pci_bus *bus)
3938 {
3939 int rc;
3940
3941 rc = pci_bus_reset(bus, 1);
3942 if (rc)
3943 return rc;
3944
3945 pci_bus_save_and_disable(bus);
3946
3947 if (pci_bus_trylock(bus)) {
3948 might_sleep();
3949 pci_reset_bridge_secondary_bus(bus->self);
3950 pci_bus_unlock(bus);
3951 } else
3952 rc = -EAGAIN;
3953
3954 pci_bus_restore(bus);
3955
3956 return rc;
3957 }
3958 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3959
3960 /**
3961 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3962 * @dev: PCI device to query
3963 *
3964 * Returns mmrbc: maximum designed memory read count in bytes
3965 * or appropriate error value.
3966 */
pcix_get_max_mmrbc(struct pci_dev * dev)3967 int pcix_get_max_mmrbc(struct pci_dev *dev)
3968 {
3969 int cap;
3970 u32 stat;
3971
3972 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3973 if (!cap)
3974 return -EINVAL;
3975
3976 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3977 return -EINVAL;
3978
3979 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3980 }
3981 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3982
3983 /**
3984 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3985 * @dev: PCI device to query
3986 *
3987 * Returns mmrbc: maximum memory read count in bytes
3988 * or appropriate error value.
3989 */
pcix_get_mmrbc(struct pci_dev * dev)3990 int pcix_get_mmrbc(struct pci_dev *dev)
3991 {
3992 int cap;
3993 u16 cmd;
3994
3995 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3996 if (!cap)
3997 return -EINVAL;
3998
3999 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4000 return -EINVAL;
4001
4002 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4003 }
4004 EXPORT_SYMBOL(pcix_get_mmrbc);
4005
4006 /**
4007 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4008 * @dev: PCI device to query
4009 * @mmrbc: maximum memory read count in bytes
4010 * valid values are 512, 1024, 2048, 4096
4011 *
4012 * If possible sets maximum memory read byte count, some bridges have erratas
4013 * that prevent this.
4014 */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)4015 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4016 {
4017 int cap;
4018 u32 stat, v, o;
4019 u16 cmd;
4020
4021 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4022 return -EINVAL;
4023
4024 v = ffs(mmrbc) - 10;
4025
4026 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4027 if (!cap)
4028 return -EINVAL;
4029
4030 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4031 return -EINVAL;
4032
4033 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4034 return -E2BIG;
4035
4036 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4037 return -EINVAL;
4038
4039 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4040 if (o != v) {
4041 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4042 return -EIO;
4043
4044 cmd &= ~PCI_X_CMD_MAX_READ;
4045 cmd |= v << 2;
4046 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4047 return -EIO;
4048 }
4049 return 0;
4050 }
4051 EXPORT_SYMBOL(pcix_set_mmrbc);
4052
4053 /**
4054 * pcie_get_readrq - get PCI Express read request size
4055 * @dev: PCI device to query
4056 *
4057 * Returns maximum memory read request in bytes
4058 * or appropriate error value.
4059 */
pcie_get_readrq(struct pci_dev * dev)4060 int pcie_get_readrq(struct pci_dev *dev)
4061 {
4062 u16 ctl;
4063
4064 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4065
4066 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4067 }
4068 EXPORT_SYMBOL(pcie_get_readrq);
4069
4070 /**
4071 * pcie_set_readrq - set PCI Express maximum memory read request
4072 * @dev: PCI device to query
4073 * @rq: maximum memory read count in bytes
4074 * valid values are 128, 256, 512, 1024, 2048, 4096
4075 *
4076 * If possible sets maximum memory read request in bytes
4077 */
pcie_set_readrq(struct pci_dev * dev,int rq)4078 int pcie_set_readrq(struct pci_dev *dev, int rq)
4079 {
4080 u16 v;
4081
4082 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4083 return -EINVAL;
4084
4085 /*
4086 * If using the "performance" PCIe config, we clamp the
4087 * read rq size to the max packet size to prevent the
4088 * host bridge generating requests larger than we can
4089 * cope with
4090 */
4091 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4092 int mps = pcie_get_mps(dev);
4093
4094 if (mps < rq)
4095 rq = mps;
4096 }
4097
4098 v = (ffs(rq) - 8) << 12;
4099
4100 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4101 PCI_EXP_DEVCTL_READRQ, v);
4102 }
4103 EXPORT_SYMBOL(pcie_set_readrq);
4104
4105 /**
4106 * pcie_get_mps - get PCI Express maximum payload size
4107 * @dev: PCI device to query
4108 *
4109 * Returns maximum payload size in bytes
4110 */
pcie_get_mps(struct pci_dev * dev)4111 int pcie_get_mps(struct pci_dev *dev)
4112 {
4113 u16 ctl;
4114
4115 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4116
4117 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4118 }
4119 EXPORT_SYMBOL(pcie_get_mps);
4120
4121 /**
4122 * pcie_set_mps - set PCI Express maximum payload size
4123 * @dev: PCI device to query
4124 * @mps: maximum payload size in bytes
4125 * valid values are 128, 256, 512, 1024, 2048, 4096
4126 *
4127 * If possible sets maximum payload size
4128 */
pcie_set_mps(struct pci_dev * dev,int mps)4129 int pcie_set_mps(struct pci_dev *dev, int mps)
4130 {
4131 u16 v;
4132
4133 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4134 return -EINVAL;
4135
4136 v = ffs(mps) - 8;
4137 if (v > dev->pcie_mpss)
4138 return -EINVAL;
4139 v <<= 5;
4140
4141 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4142 PCI_EXP_DEVCTL_PAYLOAD, v);
4143 }
4144 EXPORT_SYMBOL(pcie_set_mps);
4145
4146 /**
4147 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4148 * @dev: PCI device to query
4149 * @speed: storage for minimum speed
4150 * @width: storage for minimum width
4151 *
4152 * This function will walk up the PCI device chain and determine the minimum
4153 * link width and speed of the device.
4154 */
pcie_get_minimum_link(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)4155 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4156 enum pcie_link_width *width)
4157 {
4158 int ret;
4159
4160 *speed = PCI_SPEED_UNKNOWN;
4161 *width = PCIE_LNK_WIDTH_UNKNOWN;
4162
4163 while (dev) {
4164 u16 lnksta;
4165 enum pci_bus_speed next_speed;
4166 enum pcie_link_width next_width;
4167
4168 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4169 if (ret)
4170 return ret;
4171
4172 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4173 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4174 PCI_EXP_LNKSTA_NLW_SHIFT;
4175
4176 if (next_speed < *speed)
4177 *speed = next_speed;
4178
4179 if (next_width < *width)
4180 *width = next_width;
4181
4182 dev = dev->bus->self;
4183 }
4184
4185 return 0;
4186 }
4187 EXPORT_SYMBOL(pcie_get_minimum_link);
4188
4189 /**
4190 * pci_select_bars - Make BAR mask from the type of resource
4191 * @dev: the PCI device for which BAR mask is made
4192 * @flags: resource type mask to be selected
4193 *
4194 * This helper routine makes bar mask from the type of resource.
4195 */
pci_select_bars(struct pci_dev * dev,unsigned long flags)4196 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4197 {
4198 int i, bars = 0;
4199 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4200 if (pci_resource_flags(dev, i) & flags)
4201 bars |= (1 << i);
4202 return bars;
4203 }
4204 EXPORT_SYMBOL(pci_select_bars);
4205
4206 /**
4207 * pci_resource_bar - get position of the BAR associated with a resource
4208 * @dev: the PCI device
4209 * @resno: the resource number
4210 * @type: the BAR type to be filled in
4211 *
4212 * Returns BAR position in config space, or 0 if the BAR is invalid.
4213 */
pci_resource_bar(struct pci_dev * dev,int resno,enum pci_bar_type * type)4214 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4215 {
4216 int reg;
4217
4218 if (resno < PCI_ROM_RESOURCE) {
4219 *type = pci_bar_unknown;
4220 return PCI_BASE_ADDRESS_0 + 4 * resno;
4221 } else if (resno == PCI_ROM_RESOURCE) {
4222 *type = pci_bar_mem32;
4223 return dev->rom_base_reg;
4224 } else if (resno < PCI_BRIDGE_RESOURCES) {
4225 /* device specific resource */
4226 reg = pci_iov_resource_bar(dev, resno, type);
4227 if (reg)
4228 return reg;
4229 }
4230
4231 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4232 return 0;
4233 }
4234
4235 /* Some architectures require additional programming to enable VGA */
4236 static arch_set_vga_state_t arch_set_vga_state;
4237
pci_register_set_vga_state(arch_set_vga_state_t func)4238 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4239 {
4240 arch_set_vga_state = func; /* NULL disables */
4241 }
4242
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)4243 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4244 unsigned int command_bits, u32 flags)
4245 {
4246 if (arch_set_vga_state)
4247 return arch_set_vga_state(dev, decode, command_bits,
4248 flags);
4249 return 0;
4250 }
4251
4252 /**
4253 * pci_set_vga_state - set VGA decode state on device and parents if requested
4254 * @dev: the PCI device
4255 * @decode: true = enable decoding, false = disable decoding
4256 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4257 * @flags: traverse ancestors and change bridges
4258 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4259 */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)4260 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4261 unsigned int command_bits, u32 flags)
4262 {
4263 struct pci_bus *bus;
4264 struct pci_dev *bridge;
4265 u16 cmd;
4266 int rc;
4267
4268 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4269
4270 /* ARCH specific VGA enables */
4271 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4272 if (rc)
4273 return rc;
4274
4275 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4276 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4277 if (decode == true)
4278 cmd |= command_bits;
4279 else
4280 cmd &= ~command_bits;
4281 pci_write_config_word(dev, PCI_COMMAND, cmd);
4282 }
4283
4284 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4285 return 0;
4286
4287 bus = dev->bus;
4288 while (bus) {
4289 bridge = bus->self;
4290 if (bridge) {
4291 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4292 &cmd);
4293 if (decode == true)
4294 cmd |= PCI_BRIDGE_CTL_VGA;
4295 else
4296 cmd &= ~PCI_BRIDGE_CTL_VGA;
4297 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4298 cmd);
4299 }
4300 bus = bus->parent;
4301 }
4302 return 0;
4303 }
4304
pci_device_is_present(struct pci_dev * pdev)4305 bool pci_device_is_present(struct pci_dev *pdev)
4306 {
4307 u32 v;
4308
4309 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4310 }
4311 EXPORT_SYMBOL_GPL(pci_device_is_present);
4312
pci_ignore_hotplug(struct pci_dev * dev)4313 void pci_ignore_hotplug(struct pci_dev *dev)
4314 {
4315 struct pci_dev *bridge = dev->bus->self;
4316
4317 dev->ignore_hotplug = 1;
4318 /* Propagate the "ignore hotplug" setting to the parent bridge. */
4319 if (bridge)
4320 bridge->ignore_hotplug = 1;
4321 }
4322 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4323
4324 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4325 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4326 static DEFINE_SPINLOCK(resource_alignment_lock);
4327
4328 /**
4329 * pci_specified_resource_alignment - get resource alignment specified by user.
4330 * @dev: the PCI device to get
4331 *
4332 * RETURNS: Resource alignment if it is specified.
4333 * Zero if it is not specified.
4334 */
pci_specified_resource_alignment(struct pci_dev * dev)4335 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4336 {
4337 int seg, bus, slot, func, align_order, count;
4338 resource_size_t align = 0;
4339 char *p;
4340
4341 spin_lock(&resource_alignment_lock);
4342 p = resource_alignment_param;
4343 while (*p) {
4344 count = 0;
4345 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4346 p[count] == '@') {
4347 p += count + 1;
4348 } else {
4349 align_order = -1;
4350 }
4351 if (sscanf(p, "%x:%x:%x.%x%n",
4352 &seg, &bus, &slot, &func, &count) != 4) {
4353 seg = 0;
4354 if (sscanf(p, "%x:%x.%x%n",
4355 &bus, &slot, &func, &count) != 3) {
4356 /* Invalid format */
4357 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4358 p);
4359 break;
4360 }
4361 }
4362 p += count;
4363 if (seg == pci_domain_nr(dev->bus) &&
4364 bus == dev->bus->number &&
4365 slot == PCI_SLOT(dev->devfn) &&
4366 func == PCI_FUNC(dev->devfn)) {
4367 if (align_order == -1)
4368 align = PAGE_SIZE;
4369 else
4370 align = 1 << align_order;
4371 /* Found */
4372 break;
4373 }
4374 if (*p != ';' && *p != ',') {
4375 /* End of param or invalid format */
4376 break;
4377 }
4378 p++;
4379 }
4380 spin_unlock(&resource_alignment_lock);
4381 return align;
4382 }
4383
4384 /*
4385 * This function disables memory decoding and releases memory resources
4386 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4387 * It also rounds up size to specified alignment.
4388 * Later on, the kernel will assign page-aligned memory resource back
4389 * to the device.
4390 */
pci_reassigndev_resource_alignment(struct pci_dev * dev)4391 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4392 {
4393 int i;
4394 struct resource *r;
4395 resource_size_t align, size;
4396 u16 command;
4397
4398 /* check if specified PCI is target device to reassign */
4399 align = pci_specified_resource_alignment(dev);
4400 if (!align)
4401 return;
4402
4403 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4404 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4405 dev_warn(&dev->dev,
4406 "Can't reassign resources to host bridge.\n");
4407 return;
4408 }
4409
4410 dev_info(&dev->dev,
4411 "Disabling memory decoding and releasing memory resources.\n");
4412 pci_read_config_word(dev, PCI_COMMAND, &command);
4413 command &= ~PCI_COMMAND_MEMORY;
4414 pci_write_config_word(dev, PCI_COMMAND, command);
4415
4416 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4417 r = &dev->resource[i];
4418 if (!(r->flags & IORESOURCE_MEM))
4419 continue;
4420 size = resource_size(r);
4421 if (size < align) {
4422 size = align;
4423 dev_info(&dev->dev,
4424 "Rounding up size of resource #%d to %#llx.\n",
4425 i, (unsigned long long)size);
4426 }
4427 r->flags |= IORESOURCE_UNSET;
4428 r->end = size - 1;
4429 r->start = 0;
4430 }
4431 /* Need to disable bridge's resource window,
4432 * to enable the kernel to reassign new resource
4433 * window later on.
4434 */
4435 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4436 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4437 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4438 r = &dev->resource[i];
4439 if (!(r->flags & IORESOURCE_MEM))
4440 continue;
4441 r->flags |= IORESOURCE_UNSET;
4442 r->end = resource_size(r) - 1;
4443 r->start = 0;
4444 }
4445 pci_disable_bridge_window(dev);
4446 }
4447 }
4448
pci_set_resource_alignment_param(const char * buf,size_t count)4449 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4450 {
4451 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4452 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4453 spin_lock(&resource_alignment_lock);
4454 strncpy(resource_alignment_param, buf, count);
4455 resource_alignment_param[count] = '\0';
4456 spin_unlock(&resource_alignment_lock);
4457 return count;
4458 }
4459
pci_get_resource_alignment_param(char * buf,size_t size)4460 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4461 {
4462 size_t count;
4463 spin_lock(&resource_alignment_lock);
4464 count = snprintf(buf, size, "%s", resource_alignment_param);
4465 spin_unlock(&resource_alignment_lock);
4466 return count;
4467 }
4468
pci_resource_alignment_show(struct bus_type * bus,char * buf)4469 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4470 {
4471 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4472 }
4473
pci_resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)4474 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4475 const char *buf, size_t count)
4476 {
4477 return pci_set_resource_alignment_param(buf, count);
4478 }
4479
4480 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4481 pci_resource_alignment_store);
4482
pci_resource_alignment_sysfs_init(void)4483 static int __init pci_resource_alignment_sysfs_init(void)
4484 {
4485 return bus_create_file(&pci_bus_type,
4486 &bus_attr_resource_alignment);
4487 }
4488 late_initcall(pci_resource_alignment_sysfs_init);
4489
pci_no_domains(void)4490 static void pci_no_domains(void)
4491 {
4492 #ifdef CONFIG_PCI_DOMAINS
4493 pci_domains_supported = 0;
4494 #endif
4495 }
4496
4497 #ifdef CONFIG_PCI_DOMAINS
4498 static atomic_t __domain_nr = ATOMIC_INIT(-1);
4499
pci_get_new_domain_nr(void)4500 int pci_get_new_domain_nr(void)
4501 {
4502 return atomic_inc_return(&__domain_nr);
4503 }
4504
4505 #ifdef CONFIG_PCI_DOMAINS_GENERIC
pci_bus_assign_domain_nr(struct pci_bus * bus,struct device * parent)4506 void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent)
4507 {
4508 static int use_dt_domains = -1;
4509 int domain = -1;
4510
4511 if (parent)
4512 domain = of_get_pci_domain_nr(parent->of_node);
4513 /*
4514 * Check DT domain and use_dt_domains values.
4515 *
4516 * If DT domain property is valid (domain >= 0) and
4517 * use_dt_domains != 0, the DT assignment is valid since this means
4518 * we have not previously allocated a domain number by using
4519 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4520 * 1, to indicate that we have just assigned a domain number from
4521 * DT.
4522 *
4523 * If DT domain property value is not valid (ie domain < 0), and we
4524 * have not previously assigned a domain number from DT
4525 * (use_dt_domains != 1) we should assign a domain number by
4526 * using the:
4527 *
4528 * pci_get_new_domain_nr()
4529 *
4530 * API and update the use_dt_domains value to keep track of method we
4531 * are using to assign domain numbers (use_dt_domains = 0).
4532 *
4533 * All other combinations imply we have a platform that is trying
4534 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4535 * which is a recipe for domain mishandling and it is prevented by
4536 * invalidating the domain value (domain = -1) and printing a
4537 * corresponding error.
4538 */
4539 if (domain >= 0 && use_dt_domains) {
4540 use_dt_domains = 1;
4541 } else if (domain < 0 && use_dt_domains != 1) {
4542 use_dt_domains = 0;
4543 domain = pci_get_new_domain_nr();
4544 } else {
4545 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4546 parent->of_node->full_name);
4547 domain = -1;
4548 }
4549
4550 bus->domain_nr = domain;
4551 }
4552 #endif
4553 #endif
4554
4555 /**
4556 * pci_ext_cfg_avail - can we access extended PCI config space?
4557 *
4558 * Returns 1 if we can access PCI extended config space (offsets
4559 * greater than 0xff). This is the default implementation. Architecture
4560 * implementations can override this.
4561 */
pci_ext_cfg_avail(void)4562 int __weak pci_ext_cfg_avail(void)
4563 {
4564 return 1;
4565 }
4566
pci_fixup_cardbus(struct pci_bus * bus)4567 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4568 {
4569 }
4570 EXPORT_SYMBOL(pci_fixup_cardbus);
4571
pci_setup(char * str)4572 static int __init pci_setup(char *str)
4573 {
4574 while (str) {
4575 char *k = strchr(str, ',');
4576 if (k)
4577 *k++ = 0;
4578 if (*str && (str = pcibios_setup(str)) && *str) {
4579 if (!strcmp(str, "nomsi")) {
4580 pci_no_msi();
4581 } else if (!strcmp(str, "noaer")) {
4582 pci_no_aer();
4583 } else if (!strncmp(str, "realloc=", 8)) {
4584 pci_realloc_get_opt(str + 8);
4585 } else if (!strncmp(str, "realloc", 7)) {
4586 pci_realloc_get_opt("on");
4587 } else if (!strcmp(str, "nodomains")) {
4588 pci_no_domains();
4589 } else if (!strncmp(str, "noari", 5)) {
4590 pcie_ari_disabled = true;
4591 } else if (!strncmp(str, "cbiosize=", 9)) {
4592 pci_cardbus_io_size = memparse(str + 9, &str);
4593 } else if (!strncmp(str, "cbmemsize=", 10)) {
4594 pci_cardbus_mem_size = memparse(str + 10, &str);
4595 } else if (!strncmp(str, "resource_alignment=", 19)) {
4596 pci_set_resource_alignment_param(str + 19,
4597 strlen(str + 19));
4598 } else if (!strncmp(str, "ecrc=", 5)) {
4599 pcie_ecrc_get_policy(str + 5);
4600 } else if (!strncmp(str, "hpiosize=", 9)) {
4601 pci_hotplug_io_size = memparse(str + 9, &str);
4602 } else if (!strncmp(str, "hpmemsize=", 10)) {
4603 pci_hotplug_mem_size = memparse(str + 10, &str);
4604 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4605 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4606 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4607 pcie_bus_config = PCIE_BUS_SAFE;
4608 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4609 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4610 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4611 pcie_bus_config = PCIE_BUS_PEER2PEER;
4612 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4613 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4614 } else {
4615 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4616 str);
4617 }
4618 }
4619 str = k;
4620 }
4621 return 0;
4622 }
4623 early_param("pci", pci_setup);
4624