1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "callchain.h"
19 #include "cgroup.h"
20 #include "evsel.h"
21 #include "evlist.h"
22 #include "util.h"
23 #include "cpumap.h"
24 #include "thread_map.h"
25 #include "target.h"
26 #include "perf_regs.h"
27 #include "debug.h"
28 #include "trace-event.h"
29
30 static struct {
31 bool sample_id_all;
32 bool exclude_guest;
33 bool mmap2;
34 bool cloexec;
35 } perf_missing_features;
36
perf_evsel__no_extra_init(struct perf_evsel * evsel __maybe_unused)37 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
38 {
39 return 0;
40 }
41
perf_evsel__no_extra_fini(struct perf_evsel * evsel __maybe_unused)42 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
43 {
44 }
45
46 static struct {
47 size_t size;
48 int (*init)(struct perf_evsel *evsel);
49 void (*fini)(struct perf_evsel *evsel);
50 } perf_evsel__object = {
51 .size = sizeof(struct perf_evsel),
52 .init = perf_evsel__no_extra_init,
53 .fini = perf_evsel__no_extra_fini,
54 };
55
perf_evsel__object_config(size_t object_size,int (* init)(struct perf_evsel * evsel),void (* fini)(struct perf_evsel * evsel))56 int perf_evsel__object_config(size_t object_size,
57 int (*init)(struct perf_evsel *evsel),
58 void (*fini)(struct perf_evsel *evsel))
59 {
60
61 if (object_size == 0)
62 goto set_methods;
63
64 if (perf_evsel__object.size > object_size)
65 return -EINVAL;
66
67 perf_evsel__object.size = object_size;
68
69 set_methods:
70 if (init != NULL)
71 perf_evsel__object.init = init;
72
73 if (fini != NULL)
74 perf_evsel__object.fini = fini;
75
76 return 0;
77 }
78
79 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
80
__perf_evsel__sample_size(u64 sample_type)81 int __perf_evsel__sample_size(u64 sample_type)
82 {
83 u64 mask = sample_type & PERF_SAMPLE_MASK;
84 int size = 0;
85 int i;
86
87 for (i = 0; i < 64; i++) {
88 if (mask & (1ULL << i))
89 size++;
90 }
91
92 size *= sizeof(u64);
93
94 return size;
95 }
96
97 /**
98 * __perf_evsel__calc_id_pos - calculate id_pos.
99 * @sample_type: sample type
100 *
101 * This function returns the position of the event id (PERF_SAMPLE_ID or
102 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
103 * sample_event.
104 */
__perf_evsel__calc_id_pos(u64 sample_type)105 static int __perf_evsel__calc_id_pos(u64 sample_type)
106 {
107 int idx = 0;
108
109 if (sample_type & PERF_SAMPLE_IDENTIFIER)
110 return 0;
111
112 if (!(sample_type & PERF_SAMPLE_ID))
113 return -1;
114
115 if (sample_type & PERF_SAMPLE_IP)
116 idx += 1;
117
118 if (sample_type & PERF_SAMPLE_TID)
119 idx += 1;
120
121 if (sample_type & PERF_SAMPLE_TIME)
122 idx += 1;
123
124 if (sample_type & PERF_SAMPLE_ADDR)
125 idx += 1;
126
127 return idx;
128 }
129
130 /**
131 * __perf_evsel__calc_is_pos - calculate is_pos.
132 * @sample_type: sample type
133 *
134 * This function returns the position (counting backwards) of the event id
135 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
136 * sample_id_all is used there is an id sample appended to non-sample events.
137 */
__perf_evsel__calc_is_pos(u64 sample_type)138 static int __perf_evsel__calc_is_pos(u64 sample_type)
139 {
140 int idx = 1;
141
142 if (sample_type & PERF_SAMPLE_IDENTIFIER)
143 return 1;
144
145 if (!(sample_type & PERF_SAMPLE_ID))
146 return -1;
147
148 if (sample_type & PERF_SAMPLE_CPU)
149 idx += 1;
150
151 if (sample_type & PERF_SAMPLE_STREAM_ID)
152 idx += 1;
153
154 return idx;
155 }
156
perf_evsel__calc_id_pos(struct perf_evsel * evsel)157 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
158 {
159 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
160 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
161 }
162
__perf_evsel__set_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)163 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
164 enum perf_event_sample_format bit)
165 {
166 if (!(evsel->attr.sample_type & bit)) {
167 evsel->attr.sample_type |= bit;
168 evsel->sample_size += sizeof(u64);
169 perf_evsel__calc_id_pos(evsel);
170 }
171 }
172
__perf_evsel__reset_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)173 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
174 enum perf_event_sample_format bit)
175 {
176 if (evsel->attr.sample_type & bit) {
177 evsel->attr.sample_type &= ~bit;
178 evsel->sample_size -= sizeof(u64);
179 perf_evsel__calc_id_pos(evsel);
180 }
181 }
182
perf_evsel__set_sample_id(struct perf_evsel * evsel,bool can_sample_identifier)183 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
184 bool can_sample_identifier)
185 {
186 if (can_sample_identifier) {
187 perf_evsel__reset_sample_bit(evsel, ID);
188 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
189 } else {
190 perf_evsel__set_sample_bit(evsel, ID);
191 }
192 evsel->attr.read_format |= PERF_FORMAT_ID;
193 }
194
perf_evsel__init(struct perf_evsel * evsel,struct perf_event_attr * attr,int idx)195 void perf_evsel__init(struct perf_evsel *evsel,
196 struct perf_event_attr *attr, int idx)
197 {
198 evsel->idx = idx;
199 evsel->tracking = !idx;
200 evsel->attr = *attr;
201 evsel->leader = evsel;
202 evsel->unit = "";
203 evsel->scale = 1.0;
204 INIT_LIST_HEAD(&evsel->node);
205 perf_evsel__object.init(evsel);
206 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
207 perf_evsel__calc_id_pos(evsel);
208 }
209
perf_evsel__new_idx(struct perf_event_attr * attr,int idx)210 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
211 {
212 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
213
214 if (evsel != NULL)
215 perf_evsel__init(evsel, attr, idx);
216
217 return evsel;
218 }
219
perf_evsel__newtp_idx(const char * sys,const char * name,int idx)220 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
221 {
222 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
223
224 if (evsel != NULL) {
225 struct perf_event_attr attr = {
226 .type = PERF_TYPE_TRACEPOINT,
227 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
228 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
229 };
230
231 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
232 goto out_free;
233
234 evsel->tp_format = trace_event__tp_format(sys, name);
235 if (evsel->tp_format == NULL)
236 goto out_free;
237
238 event_attr_init(&attr);
239 attr.config = evsel->tp_format->id;
240 attr.sample_period = 1;
241 perf_evsel__init(evsel, &attr, idx);
242 }
243
244 return evsel;
245
246 out_free:
247 zfree(&evsel->name);
248 free(evsel);
249 return NULL;
250 }
251
252 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
253 "cycles",
254 "instructions",
255 "cache-references",
256 "cache-misses",
257 "branches",
258 "branch-misses",
259 "bus-cycles",
260 "stalled-cycles-frontend",
261 "stalled-cycles-backend",
262 "ref-cycles",
263 };
264
__perf_evsel__hw_name(u64 config)265 static const char *__perf_evsel__hw_name(u64 config)
266 {
267 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
268 return perf_evsel__hw_names[config];
269
270 return "unknown-hardware";
271 }
272
perf_evsel__add_modifiers(struct perf_evsel * evsel,char * bf,size_t size)273 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
274 {
275 int colon = 0, r = 0;
276 struct perf_event_attr *attr = &evsel->attr;
277 bool exclude_guest_default = false;
278
279 #define MOD_PRINT(context, mod) do { \
280 if (!attr->exclude_##context) { \
281 if (!colon) colon = ++r; \
282 r += scnprintf(bf + r, size - r, "%c", mod); \
283 } } while(0)
284
285 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
286 MOD_PRINT(kernel, 'k');
287 MOD_PRINT(user, 'u');
288 MOD_PRINT(hv, 'h');
289 exclude_guest_default = true;
290 }
291
292 if (attr->precise_ip) {
293 if (!colon)
294 colon = ++r;
295 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
296 exclude_guest_default = true;
297 }
298
299 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
300 MOD_PRINT(host, 'H');
301 MOD_PRINT(guest, 'G');
302 }
303 #undef MOD_PRINT
304 if (colon)
305 bf[colon - 1] = ':';
306 return r;
307 }
308
perf_evsel__hw_name(struct perf_evsel * evsel,char * bf,size_t size)309 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
310 {
311 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
312 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
313 }
314
315 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
316 "cpu-clock",
317 "task-clock",
318 "page-faults",
319 "context-switches",
320 "cpu-migrations",
321 "minor-faults",
322 "major-faults",
323 "alignment-faults",
324 "emulation-faults",
325 "dummy",
326 };
327
__perf_evsel__sw_name(u64 config)328 static const char *__perf_evsel__sw_name(u64 config)
329 {
330 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
331 return perf_evsel__sw_names[config];
332 return "unknown-software";
333 }
334
perf_evsel__sw_name(struct perf_evsel * evsel,char * bf,size_t size)335 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
336 {
337 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
338 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
339 }
340
__perf_evsel__bp_name(char * bf,size_t size,u64 addr,u64 type)341 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
342 {
343 int r;
344
345 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
346
347 if (type & HW_BREAKPOINT_R)
348 r += scnprintf(bf + r, size - r, "r");
349
350 if (type & HW_BREAKPOINT_W)
351 r += scnprintf(bf + r, size - r, "w");
352
353 if (type & HW_BREAKPOINT_X)
354 r += scnprintf(bf + r, size - r, "x");
355
356 return r;
357 }
358
perf_evsel__bp_name(struct perf_evsel * evsel,char * bf,size_t size)359 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
360 {
361 struct perf_event_attr *attr = &evsel->attr;
362 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
363 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
364 }
365
366 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
367 [PERF_EVSEL__MAX_ALIASES] = {
368 { "L1-dcache", "l1-d", "l1d", "L1-data", },
369 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
370 { "LLC", "L2", },
371 { "dTLB", "d-tlb", "Data-TLB", },
372 { "iTLB", "i-tlb", "Instruction-TLB", },
373 { "branch", "branches", "bpu", "btb", "bpc", },
374 { "node", },
375 };
376
377 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
378 [PERF_EVSEL__MAX_ALIASES] = {
379 { "load", "loads", "read", },
380 { "store", "stores", "write", },
381 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
382 };
383
384 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
385 [PERF_EVSEL__MAX_ALIASES] = {
386 { "refs", "Reference", "ops", "access", },
387 { "misses", "miss", },
388 };
389
390 #define C(x) PERF_COUNT_HW_CACHE_##x
391 #define CACHE_READ (1 << C(OP_READ))
392 #define CACHE_WRITE (1 << C(OP_WRITE))
393 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
394 #define COP(x) (1 << x)
395
396 /*
397 * cache operartion stat
398 * L1I : Read and prefetch only
399 * ITLB and BPU : Read-only
400 */
401 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
402 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
403 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
404 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
405 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
406 [C(ITLB)] = (CACHE_READ),
407 [C(BPU)] = (CACHE_READ),
408 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
409 };
410
perf_evsel__is_cache_op_valid(u8 type,u8 op)411 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
412 {
413 if (perf_evsel__hw_cache_stat[type] & COP(op))
414 return true; /* valid */
415 else
416 return false; /* invalid */
417 }
418
__perf_evsel__hw_cache_type_op_res_name(u8 type,u8 op,u8 result,char * bf,size_t size)419 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
420 char *bf, size_t size)
421 {
422 if (result) {
423 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
424 perf_evsel__hw_cache_op[op][0],
425 perf_evsel__hw_cache_result[result][0]);
426 }
427
428 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
429 perf_evsel__hw_cache_op[op][1]);
430 }
431
__perf_evsel__hw_cache_name(u64 config,char * bf,size_t size)432 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
433 {
434 u8 op, result, type = (config >> 0) & 0xff;
435 const char *err = "unknown-ext-hardware-cache-type";
436
437 if (type > PERF_COUNT_HW_CACHE_MAX)
438 goto out_err;
439
440 op = (config >> 8) & 0xff;
441 err = "unknown-ext-hardware-cache-op";
442 if (op > PERF_COUNT_HW_CACHE_OP_MAX)
443 goto out_err;
444
445 result = (config >> 16) & 0xff;
446 err = "unknown-ext-hardware-cache-result";
447 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
448 goto out_err;
449
450 err = "invalid-cache";
451 if (!perf_evsel__is_cache_op_valid(type, op))
452 goto out_err;
453
454 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
455 out_err:
456 return scnprintf(bf, size, "%s", err);
457 }
458
perf_evsel__hw_cache_name(struct perf_evsel * evsel,char * bf,size_t size)459 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
460 {
461 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
462 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
463 }
464
perf_evsel__raw_name(struct perf_evsel * evsel,char * bf,size_t size)465 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
466 {
467 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
468 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
469 }
470
perf_evsel__name(struct perf_evsel * evsel)471 const char *perf_evsel__name(struct perf_evsel *evsel)
472 {
473 char bf[128];
474
475 if (evsel->name)
476 return evsel->name;
477
478 switch (evsel->attr.type) {
479 case PERF_TYPE_RAW:
480 perf_evsel__raw_name(evsel, bf, sizeof(bf));
481 break;
482
483 case PERF_TYPE_HARDWARE:
484 perf_evsel__hw_name(evsel, bf, sizeof(bf));
485 break;
486
487 case PERF_TYPE_HW_CACHE:
488 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
489 break;
490
491 case PERF_TYPE_SOFTWARE:
492 perf_evsel__sw_name(evsel, bf, sizeof(bf));
493 break;
494
495 case PERF_TYPE_TRACEPOINT:
496 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
497 break;
498
499 case PERF_TYPE_BREAKPOINT:
500 perf_evsel__bp_name(evsel, bf, sizeof(bf));
501 break;
502
503 default:
504 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
505 evsel->attr.type);
506 break;
507 }
508
509 evsel->name = strdup(bf);
510
511 return evsel->name ?: "unknown";
512 }
513
perf_evsel__group_name(struct perf_evsel * evsel)514 const char *perf_evsel__group_name(struct perf_evsel *evsel)
515 {
516 return evsel->group_name ?: "anon group";
517 }
518
perf_evsel__group_desc(struct perf_evsel * evsel,char * buf,size_t size)519 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
520 {
521 int ret;
522 struct perf_evsel *pos;
523 const char *group_name = perf_evsel__group_name(evsel);
524
525 ret = scnprintf(buf, size, "%s", group_name);
526
527 ret += scnprintf(buf + ret, size - ret, " { %s",
528 perf_evsel__name(evsel));
529
530 for_each_group_member(pos, evsel)
531 ret += scnprintf(buf + ret, size - ret, ", %s",
532 perf_evsel__name(pos));
533
534 ret += scnprintf(buf + ret, size - ret, " }");
535
536 return ret;
537 }
538
539 static void
perf_evsel__config_callgraph(struct perf_evsel * evsel)540 perf_evsel__config_callgraph(struct perf_evsel *evsel)
541 {
542 bool function = perf_evsel__is_function_event(evsel);
543 struct perf_event_attr *attr = &evsel->attr;
544
545 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
546
547 if (callchain_param.record_mode == CALLCHAIN_DWARF) {
548 if (!function) {
549 perf_evsel__set_sample_bit(evsel, REGS_USER);
550 perf_evsel__set_sample_bit(evsel, STACK_USER);
551 attr->sample_regs_user = PERF_REGS_MASK;
552 attr->sample_stack_user = callchain_param.dump_size;
553 attr->exclude_callchain_user = 1;
554 } else {
555 pr_info("Cannot use DWARF unwind for function trace event,"
556 " falling back to framepointers.\n");
557 }
558 }
559
560 if (function) {
561 pr_info("Disabling user space callchains for function trace event.\n");
562 attr->exclude_callchain_user = 1;
563 }
564 }
565
566 /*
567 * The enable_on_exec/disabled value strategy:
568 *
569 * 1) For any type of traced program:
570 * - all independent events and group leaders are disabled
571 * - all group members are enabled
572 *
573 * Group members are ruled by group leaders. They need to
574 * be enabled, because the group scheduling relies on that.
575 *
576 * 2) For traced programs executed by perf:
577 * - all independent events and group leaders have
578 * enable_on_exec set
579 * - we don't specifically enable or disable any event during
580 * the record command
581 *
582 * Independent events and group leaders are initially disabled
583 * and get enabled by exec. Group members are ruled by group
584 * leaders as stated in 1).
585 *
586 * 3) For traced programs attached by perf (pid/tid):
587 * - we specifically enable or disable all events during
588 * the record command
589 *
590 * When attaching events to already running traced we
591 * enable/disable events specifically, as there's no
592 * initial traced exec call.
593 */
perf_evsel__config(struct perf_evsel * evsel,struct record_opts * opts)594 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
595 {
596 struct perf_evsel *leader = evsel->leader;
597 struct perf_event_attr *attr = &evsel->attr;
598 int track = evsel->tracking;
599 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
600
601 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
602 attr->inherit = !opts->no_inherit;
603
604 perf_evsel__set_sample_bit(evsel, IP);
605 perf_evsel__set_sample_bit(evsel, TID);
606
607 if (evsel->sample_read) {
608 perf_evsel__set_sample_bit(evsel, READ);
609
610 /*
611 * We need ID even in case of single event, because
612 * PERF_SAMPLE_READ process ID specific data.
613 */
614 perf_evsel__set_sample_id(evsel, false);
615
616 /*
617 * Apply group format only if we belong to group
618 * with more than one members.
619 */
620 if (leader->nr_members > 1) {
621 attr->read_format |= PERF_FORMAT_GROUP;
622 attr->inherit = 0;
623 }
624 }
625
626 /*
627 * We default some events to have a default interval. But keep
628 * it a weak assumption overridable by the user.
629 */
630 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
631 opts->user_interval != ULLONG_MAX)) {
632 if (opts->freq) {
633 perf_evsel__set_sample_bit(evsel, PERIOD);
634 attr->freq = 1;
635 attr->sample_freq = opts->freq;
636 } else {
637 attr->sample_period = opts->default_interval;
638 }
639 }
640
641 /*
642 * Disable sampling for all group members other
643 * than leader in case leader 'leads' the sampling.
644 */
645 if ((leader != evsel) && leader->sample_read) {
646 attr->sample_freq = 0;
647 attr->sample_period = 0;
648 }
649
650 if (opts->no_samples)
651 attr->sample_freq = 0;
652
653 if (opts->inherit_stat)
654 attr->inherit_stat = 1;
655
656 if (opts->sample_address) {
657 perf_evsel__set_sample_bit(evsel, ADDR);
658 attr->mmap_data = track;
659 }
660
661 if (callchain_param.enabled && !evsel->no_aux_samples)
662 perf_evsel__config_callgraph(evsel);
663
664 if (target__has_cpu(&opts->target))
665 perf_evsel__set_sample_bit(evsel, CPU);
666
667 if (opts->period)
668 perf_evsel__set_sample_bit(evsel, PERIOD);
669
670 /*
671 * When the user explicitely disabled time don't force it here.
672 */
673 if (opts->sample_time &&
674 (!perf_missing_features.sample_id_all &&
675 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu)))
676 perf_evsel__set_sample_bit(evsel, TIME);
677
678 if (opts->raw_samples && !evsel->no_aux_samples) {
679 perf_evsel__set_sample_bit(evsel, TIME);
680 perf_evsel__set_sample_bit(evsel, RAW);
681 perf_evsel__set_sample_bit(evsel, CPU);
682 }
683
684 if (opts->sample_address)
685 perf_evsel__set_sample_bit(evsel, DATA_SRC);
686
687 if (opts->no_buffering) {
688 attr->watermark = 0;
689 attr->wakeup_events = 1;
690 }
691 if (opts->branch_stack && !evsel->no_aux_samples) {
692 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
693 attr->branch_sample_type = opts->branch_stack;
694 }
695
696 if (opts->sample_weight)
697 perf_evsel__set_sample_bit(evsel, WEIGHT);
698
699 attr->mmap = track;
700 attr->mmap2 = track && !perf_missing_features.mmap2;
701 attr->comm = track;
702
703 if (opts->sample_transaction)
704 perf_evsel__set_sample_bit(evsel, TRANSACTION);
705
706 /*
707 * XXX see the function comment above
708 *
709 * Disabling only independent events or group leaders,
710 * keeping group members enabled.
711 */
712 if (perf_evsel__is_group_leader(evsel))
713 attr->disabled = 1;
714
715 /*
716 * Setting enable_on_exec for independent events and
717 * group leaders for traced executed by perf.
718 */
719 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
720 !opts->initial_delay)
721 attr->enable_on_exec = 1;
722
723 if (evsel->immediate) {
724 attr->disabled = 0;
725 attr->enable_on_exec = 0;
726 }
727 }
728
perf_evsel__alloc_fd(struct perf_evsel * evsel,int ncpus,int nthreads)729 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
730 {
731 int cpu, thread;
732
733 if (evsel->system_wide)
734 nthreads = 1;
735
736 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
737
738 if (evsel->fd) {
739 for (cpu = 0; cpu < ncpus; cpu++) {
740 for (thread = 0; thread < nthreads; thread++) {
741 FD(evsel, cpu, thread) = -1;
742 }
743 }
744 }
745
746 return evsel->fd != NULL ? 0 : -ENOMEM;
747 }
748
perf_evsel__run_ioctl(struct perf_evsel * evsel,int ncpus,int nthreads,int ioc,void * arg)749 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
750 int ioc, void *arg)
751 {
752 int cpu, thread;
753
754 if (evsel->system_wide)
755 nthreads = 1;
756
757 for (cpu = 0; cpu < ncpus; cpu++) {
758 for (thread = 0; thread < nthreads; thread++) {
759 int fd = FD(evsel, cpu, thread),
760 err = ioctl(fd, ioc, arg);
761
762 if (err)
763 return err;
764 }
765 }
766
767 return 0;
768 }
769
perf_evsel__set_filter(struct perf_evsel * evsel,int ncpus,int nthreads,const char * filter)770 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
771 const char *filter)
772 {
773 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
774 PERF_EVENT_IOC_SET_FILTER,
775 (void *)filter);
776 }
777
perf_evsel__enable(struct perf_evsel * evsel,int ncpus,int nthreads)778 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
779 {
780 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
781 PERF_EVENT_IOC_ENABLE,
782 0);
783 }
784
perf_evsel__alloc_id(struct perf_evsel * evsel,int ncpus,int nthreads)785 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
786 {
787 if (evsel->system_wide)
788 nthreads = 1;
789
790 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
791 if (evsel->sample_id == NULL)
792 return -ENOMEM;
793
794 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
795 if (evsel->id == NULL) {
796 xyarray__delete(evsel->sample_id);
797 evsel->sample_id = NULL;
798 return -ENOMEM;
799 }
800
801 return 0;
802 }
803
perf_evsel__reset_counts(struct perf_evsel * evsel,int ncpus)804 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
805 {
806 memset(evsel->counts, 0, (sizeof(*evsel->counts) +
807 (ncpus * sizeof(struct perf_counts_values))));
808 }
809
perf_evsel__alloc_counts(struct perf_evsel * evsel,int ncpus)810 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
811 {
812 evsel->counts = zalloc((sizeof(*evsel->counts) +
813 (ncpus * sizeof(struct perf_counts_values))));
814 return evsel->counts != NULL ? 0 : -ENOMEM;
815 }
816
perf_evsel__free_fd(struct perf_evsel * evsel)817 static void perf_evsel__free_fd(struct perf_evsel *evsel)
818 {
819 xyarray__delete(evsel->fd);
820 evsel->fd = NULL;
821 }
822
perf_evsel__free_id(struct perf_evsel * evsel)823 static void perf_evsel__free_id(struct perf_evsel *evsel)
824 {
825 xyarray__delete(evsel->sample_id);
826 evsel->sample_id = NULL;
827 zfree(&evsel->id);
828 }
829
perf_evsel__close_fd(struct perf_evsel * evsel,int ncpus,int nthreads)830 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
831 {
832 int cpu, thread;
833
834 if (evsel->system_wide)
835 nthreads = 1;
836
837 for (cpu = 0; cpu < ncpus; cpu++)
838 for (thread = 0; thread < nthreads; ++thread) {
839 close(FD(evsel, cpu, thread));
840 FD(evsel, cpu, thread) = -1;
841 }
842 }
843
perf_evsel__free_counts(struct perf_evsel * evsel)844 void perf_evsel__free_counts(struct perf_evsel *evsel)
845 {
846 zfree(&evsel->counts);
847 }
848
perf_evsel__exit(struct perf_evsel * evsel)849 void perf_evsel__exit(struct perf_evsel *evsel)
850 {
851 assert(list_empty(&evsel->node));
852 perf_evsel__free_fd(evsel);
853 perf_evsel__free_id(evsel);
854 close_cgroup(evsel->cgrp);
855 zfree(&evsel->group_name);
856 if (evsel->tp_format)
857 pevent_free_format(evsel->tp_format);
858 zfree(&evsel->name);
859 perf_evsel__object.fini(evsel);
860 }
861
perf_evsel__delete(struct perf_evsel * evsel)862 void perf_evsel__delete(struct perf_evsel *evsel)
863 {
864 perf_evsel__exit(evsel);
865 free(evsel);
866 }
867
compute_deltas(struct perf_evsel * evsel,int cpu,struct perf_counts_values * count)868 static inline void compute_deltas(struct perf_evsel *evsel,
869 int cpu,
870 struct perf_counts_values *count)
871 {
872 struct perf_counts_values tmp;
873
874 if (!evsel->prev_raw_counts)
875 return;
876
877 if (cpu == -1) {
878 tmp = evsel->prev_raw_counts->aggr;
879 evsel->prev_raw_counts->aggr = *count;
880 } else {
881 tmp = evsel->prev_raw_counts->cpu[cpu];
882 evsel->prev_raw_counts->cpu[cpu] = *count;
883 }
884
885 count->val = count->val - tmp.val;
886 count->ena = count->ena - tmp.ena;
887 count->run = count->run - tmp.run;
888 }
889
__perf_evsel__read_on_cpu(struct perf_evsel * evsel,int cpu,int thread,bool scale)890 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
891 int cpu, int thread, bool scale)
892 {
893 struct perf_counts_values count;
894 size_t nv = scale ? 3 : 1;
895
896 if (FD(evsel, cpu, thread) < 0)
897 return -EINVAL;
898
899 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
900 return -ENOMEM;
901
902 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
903 return -errno;
904
905 compute_deltas(evsel, cpu, &count);
906
907 if (scale) {
908 if (count.run == 0)
909 count.val = 0;
910 else if (count.run < count.ena)
911 count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
912 } else
913 count.ena = count.run = 0;
914
915 evsel->counts->cpu[cpu] = count;
916 return 0;
917 }
918
__perf_evsel__read(struct perf_evsel * evsel,int ncpus,int nthreads,bool scale)919 int __perf_evsel__read(struct perf_evsel *evsel,
920 int ncpus, int nthreads, bool scale)
921 {
922 size_t nv = scale ? 3 : 1;
923 int cpu, thread;
924 struct perf_counts_values *aggr = &evsel->counts->aggr, count;
925
926 if (evsel->system_wide)
927 nthreads = 1;
928
929 aggr->val = aggr->ena = aggr->run = 0;
930
931 for (cpu = 0; cpu < ncpus; cpu++) {
932 for (thread = 0; thread < nthreads; thread++) {
933 if (FD(evsel, cpu, thread) < 0)
934 continue;
935
936 if (readn(FD(evsel, cpu, thread),
937 &count, nv * sizeof(u64)) < 0)
938 return -errno;
939
940 aggr->val += count.val;
941 if (scale) {
942 aggr->ena += count.ena;
943 aggr->run += count.run;
944 }
945 }
946 }
947
948 compute_deltas(evsel, -1, aggr);
949
950 evsel->counts->scaled = 0;
951 if (scale) {
952 if (aggr->run == 0) {
953 evsel->counts->scaled = -1;
954 aggr->val = 0;
955 return 0;
956 }
957
958 if (aggr->run < aggr->ena) {
959 evsel->counts->scaled = 1;
960 aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
961 }
962 } else
963 aggr->ena = aggr->run = 0;
964
965 return 0;
966 }
967
get_group_fd(struct perf_evsel * evsel,int cpu,int thread)968 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
969 {
970 struct perf_evsel *leader = evsel->leader;
971 int fd;
972
973 if (perf_evsel__is_group_leader(evsel))
974 return -1;
975
976 /*
977 * Leader must be already processed/open,
978 * if not it's a bug.
979 */
980 BUG_ON(!leader->fd);
981
982 fd = FD(leader, cpu, thread);
983 BUG_ON(fd == -1);
984
985 return fd;
986 }
987
988 #define __PRINT_ATTR(fmt, cast, field) \
989 fprintf(fp, " %-19s "fmt"\n", #field, cast attr->field)
990
991 #define PRINT_ATTR_U32(field) __PRINT_ATTR("%u" , , field)
992 #define PRINT_ATTR_X32(field) __PRINT_ATTR("%#x", , field)
993 #define PRINT_ATTR_U64(field) __PRINT_ATTR("%" PRIu64, (uint64_t), field)
994 #define PRINT_ATTR_X64(field) __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
995
996 #define PRINT_ATTR2N(name1, field1, name2, field2) \
997 fprintf(fp, " %-19s %u %-19s %u\n", \
998 name1, attr->field1, name2, attr->field2)
999
1000 #define PRINT_ATTR2(field1, field2) \
1001 PRINT_ATTR2N(#field1, field1, #field2, field2)
1002
perf_event_attr__fprintf(struct perf_event_attr * attr,FILE * fp)1003 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
1004 {
1005 size_t ret = 0;
1006
1007 ret += fprintf(fp, "%.60s\n", graph_dotted_line);
1008 ret += fprintf(fp, "perf_event_attr:\n");
1009
1010 ret += PRINT_ATTR_U32(type);
1011 ret += PRINT_ATTR_U32(size);
1012 ret += PRINT_ATTR_X64(config);
1013 ret += PRINT_ATTR_U64(sample_period);
1014 ret += PRINT_ATTR_U64(sample_freq);
1015 ret += PRINT_ATTR_X64(sample_type);
1016 ret += PRINT_ATTR_X64(read_format);
1017
1018 ret += PRINT_ATTR2(disabled, inherit);
1019 ret += PRINT_ATTR2(pinned, exclusive);
1020 ret += PRINT_ATTR2(exclude_user, exclude_kernel);
1021 ret += PRINT_ATTR2(exclude_hv, exclude_idle);
1022 ret += PRINT_ATTR2(mmap, comm);
1023 ret += PRINT_ATTR2(mmap2, comm_exec);
1024 ret += PRINT_ATTR2(freq, inherit_stat);
1025 ret += PRINT_ATTR2(enable_on_exec, task);
1026 ret += PRINT_ATTR2(watermark, precise_ip);
1027 ret += PRINT_ATTR2(mmap_data, sample_id_all);
1028 ret += PRINT_ATTR2(exclude_host, exclude_guest);
1029 ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
1030 "excl.callchain_user", exclude_callchain_user);
1031
1032 ret += PRINT_ATTR_U32(wakeup_events);
1033 ret += PRINT_ATTR_U32(wakeup_watermark);
1034 ret += PRINT_ATTR_X32(bp_type);
1035 ret += PRINT_ATTR_X64(bp_addr);
1036 ret += PRINT_ATTR_X64(config1);
1037 ret += PRINT_ATTR_U64(bp_len);
1038 ret += PRINT_ATTR_X64(config2);
1039 ret += PRINT_ATTR_X64(branch_sample_type);
1040 ret += PRINT_ATTR_X64(sample_regs_user);
1041 ret += PRINT_ATTR_U32(sample_stack_user);
1042
1043 ret += fprintf(fp, "%.60s\n", graph_dotted_line);
1044
1045 return ret;
1046 }
1047
__perf_evsel__open(struct perf_evsel * evsel,struct cpu_map * cpus,struct thread_map * threads)1048 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1049 struct thread_map *threads)
1050 {
1051 int cpu, thread, nthreads;
1052 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1053 int pid = -1, err;
1054 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1055
1056 if (evsel->system_wide)
1057 nthreads = 1;
1058 else
1059 nthreads = threads->nr;
1060
1061 if (evsel->fd == NULL &&
1062 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1063 return -ENOMEM;
1064
1065 if (evsel->cgrp) {
1066 flags |= PERF_FLAG_PID_CGROUP;
1067 pid = evsel->cgrp->fd;
1068 }
1069
1070 fallback_missing_features:
1071 if (perf_missing_features.cloexec)
1072 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1073 if (perf_missing_features.mmap2)
1074 evsel->attr.mmap2 = 0;
1075 if (perf_missing_features.exclude_guest)
1076 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1077 retry_sample_id:
1078 if (perf_missing_features.sample_id_all)
1079 evsel->attr.sample_id_all = 0;
1080
1081 if (verbose >= 2)
1082 perf_event_attr__fprintf(&evsel->attr, stderr);
1083
1084 for (cpu = 0; cpu < cpus->nr; cpu++) {
1085
1086 for (thread = 0; thread < nthreads; thread++) {
1087 int group_fd;
1088
1089 if (!evsel->cgrp && !evsel->system_wide)
1090 pid = threads->map[thread];
1091
1092 group_fd = get_group_fd(evsel, cpu, thread);
1093 retry_open:
1094 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n",
1095 pid, cpus->map[cpu], group_fd, flags);
1096
1097 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1098 pid,
1099 cpus->map[cpu],
1100 group_fd, flags);
1101 if (FD(evsel, cpu, thread) < 0) {
1102 err = -errno;
1103 pr_debug2("sys_perf_event_open failed, error %d\n",
1104 err);
1105 goto try_fallback;
1106 }
1107 set_rlimit = NO_CHANGE;
1108 }
1109 }
1110
1111 return 0;
1112
1113 try_fallback:
1114 /*
1115 * perf stat needs between 5 and 22 fds per CPU. When we run out
1116 * of them try to increase the limits.
1117 */
1118 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1119 struct rlimit l;
1120 int old_errno = errno;
1121
1122 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1123 if (set_rlimit == NO_CHANGE)
1124 l.rlim_cur = l.rlim_max;
1125 else {
1126 l.rlim_cur = l.rlim_max + 1000;
1127 l.rlim_max = l.rlim_cur;
1128 }
1129 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1130 set_rlimit++;
1131 errno = old_errno;
1132 goto retry_open;
1133 }
1134 }
1135 errno = old_errno;
1136 }
1137
1138 if (err != -EINVAL || cpu > 0 || thread > 0)
1139 goto out_close;
1140
1141 if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1142 perf_missing_features.cloexec = true;
1143 goto fallback_missing_features;
1144 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1145 perf_missing_features.mmap2 = true;
1146 goto fallback_missing_features;
1147 } else if (!perf_missing_features.exclude_guest &&
1148 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1149 perf_missing_features.exclude_guest = true;
1150 goto fallback_missing_features;
1151 } else if (!perf_missing_features.sample_id_all) {
1152 perf_missing_features.sample_id_all = true;
1153 goto retry_sample_id;
1154 }
1155
1156 out_close:
1157 do {
1158 while (--thread >= 0) {
1159 close(FD(evsel, cpu, thread));
1160 FD(evsel, cpu, thread) = -1;
1161 }
1162 thread = nthreads;
1163 } while (--cpu >= 0);
1164 return err;
1165 }
1166
perf_evsel__close(struct perf_evsel * evsel,int ncpus,int nthreads)1167 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1168 {
1169 if (evsel->fd == NULL)
1170 return;
1171
1172 perf_evsel__close_fd(evsel, ncpus, nthreads);
1173 perf_evsel__free_fd(evsel);
1174 }
1175
1176 static struct {
1177 struct cpu_map map;
1178 int cpus[1];
1179 } empty_cpu_map = {
1180 .map.nr = 1,
1181 .cpus = { -1, },
1182 };
1183
1184 static struct {
1185 struct thread_map map;
1186 int threads[1];
1187 } empty_thread_map = {
1188 .map.nr = 1,
1189 .threads = { -1, },
1190 };
1191
perf_evsel__open(struct perf_evsel * evsel,struct cpu_map * cpus,struct thread_map * threads)1192 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1193 struct thread_map *threads)
1194 {
1195 if (cpus == NULL) {
1196 /* Work around old compiler warnings about strict aliasing */
1197 cpus = &empty_cpu_map.map;
1198 }
1199
1200 if (threads == NULL)
1201 threads = &empty_thread_map.map;
1202
1203 return __perf_evsel__open(evsel, cpus, threads);
1204 }
1205
perf_evsel__open_per_cpu(struct perf_evsel * evsel,struct cpu_map * cpus)1206 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1207 struct cpu_map *cpus)
1208 {
1209 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1210 }
1211
perf_evsel__open_per_thread(struct perf_evsel * evsel,struct thread_map * threads)1212 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1213 struct thread_map *threads)
1214 {
1215 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1216 }
1217
perf_evsel__parse_id_sample(const struct perf_evsel * evsel,const union perf_event * event,struct perf_sample * sample)1218 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1219 const union perf_event *event,
1220 struct perf_sample *sample)
1221 {
1222 u64 type = evsel->attr.sample_type;
1223 const u64 *array = event->sample.array;
1224 bool swapped = evsel->needs_swap;
1225 union u64_swap u;
1226
1227 array += ((event->header.size -
1228 sizeof(event->header)) / sizeof(u64)) - 1;
1229
1230 if (type & PERF_SAMPLE_IDENTIFIER) {
1231 sample->id = *array;
1232 array--;
1233 }
1234
1235 if (type & PERF_SAMPLE_CPU) {
1236 u.val64 = *array;
1237 if (swapped) {
1238 /* undo swap of u64, then swap on individual u32s */
1239 u.val64 = bswap_64(u.val64);
1240 u.val32[0] = bswap_32(u.val32[0]);
1241 }
1242
1243 sample->cpu = u.val32[0];
1244 array--;
1245 }
1246
1247 if (type & PERF_SAMPLE_STREAM_ID) {
1248 sample->stream_id = *array;
1249 array--;
1250 }
1251
1252 if (type & PERF_SAMPLE_ID) {
1253 sample->id = *array;
1254 array--;
1255 }
1256
1257 if (type & PERF_SAMPLE_TIME) {
1258 sample->time = *array;
1259 array--;
1260 }
1261
1262 if (type & PERF_SAMPLE_TID) {
1263 u.val64 = *array;
1264 if (swapped) {
1265 /* undo swap of u64, then swap on individual u32s */
1266 u.val64 = bswap_64(u.val64);
1267 u.val32[0] = bswap_32(u.val32[0]);
1268 u.val32[1] = bswap_32(u.val32[1]);
1269 }
1270
1271 sample->pid = u.val32[0];
1272 sample->tid = u.val32[1];
1273 array--;
1274 }
1275
1276 return 0;
1277 }
1278
overflow(const void * endp,u16 max_size,const void * offset,u64 size)1279 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1280 u64 size)
1281 {
1282 return size > max_size || offset + size > endp;
1283 }
1284
1285 #define OVERFLOW_CHECK(offset, size, max_size) \
1286 do { \
1287 if (overflow(endp, (max_size), (offset), (size))) \
1288 return -EFAULT; \
1289 } while (0)
1290
1291 #define OVERFLOW_CHECK_u64(offset) \
1292 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1293
perf_evsel__parse_sample(struct perf_evsel * evsel,union perf_event * event,struct perf_sample * data)1294 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1295 struct perf_sample *data)
1296 {
1297 u64 type = evsel->attr.sample_type;
1298 bool swapped = evsel->needs_swap;
1299 const u64 *array;
1300 u16 max_size = event->header.size;
1301 const void *endp = (void *)event + max_size;
1302 u64 sz;
1303
1304 /*
1305 * used for cross-endian analysis. See git commit 65014ab3
1306 * for why this goofiness is needed.
1307 */
1308 union u64_swap u;
1309
1310 memset(data, 0, sizeof(*data));
1311 data->cpu = data->pid = data->tid = -1;
1312 data->stream_id = data->id = data->time = -1ULL;
1313 data->period = evsel->attr.sample_period;
1314 data->weight = 0;
1315
1316 if (event->header.type != PERF_RECORD_SAMPLE) {
1317 if (!evsel->attr.sample_id_all)
1318 return 0;
1319 return perf_evsel__parse_id_sample(evsel, event, data);
1320 }
1321
1322 array = event->sample.array;
1323
1324 /*
1325 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1326 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
1327 * check the format does not go past the end of the event.
1328 */
1329 if (evsel->sample_size + sizeof(event->header) > event->header.size)
1330 return -EFAULT;
1331
1332 data->id = -1ULL;
1333 if (type & PERF_SAMPLE_IDENTIFIER) {
1334 data->id = *array;
1335 array++;
1336 }
1337
1338 if (type & PERF_SAMPLE_IP) {
1339 data->ip = *array;
1340 array++;
1341 }
1342
1343 if (type & PERF_SAMPLE_TID) {
1344 u.val64 = *array;
1345 if (swapped) {
1346 /* undo swap of u64, then swap on individual u32s */
1347 u.val64 = bswap_64(u.val64);
1348 u.val32[0] = bswap_32(u.val32[0]);
1349 u.val32[1] = bswap_32(u.val32[1]);
1350 }
1351
1352 data->pid = u.val32[0];
1353 data->tid = u.val32[1];
1354 array++;
1355 }
1356
1357 if (type & PERF_SAMPLE_TIME) {
1358 data->time = *array;
1359 array++;
1360 }
1361
1362 data->addr = 0;
1363 if (type & PERF_SAMPLE_ADDR) {
1364 data->addr = *array;
1365 array++;
1366 }
1367
1368 if (type & PERF_SAMPLE_ID) {
1369 data->id = *array;
1370 array++;
1371 }
1372
1373 if (type & PERF_SAMPLE_STREAM_ID) {
1374 data->stream_id = *array;
1375 array++;
1376 }
1377
1378 if (type & PERF_SAMPLE_CPU) {
1379
1380 u.val64 = *array;
1381 if (swapped) {
1382 /* undo swap of u64, then swap on individual u32s */
1383 u.val64 = bswap_64(u.val64);
1384 u.val32[0] = bswap_32(u.val32[0]);
1385 }
1386
1387 data->cpu = u.val32[0];
1388 array++;
1389 }
1390
1391 if (type & PERF_SAMPLE_PERIOD) {
1392 data->period = *array;
1393 array++;
1394 }
1395
1396 if (type & PERF_SAMPLE_READ) {
1397 u64 read_format = evsel->attr.read_format;
1398
1399 OVERFLOW_CHECK_u64(array);
1400 if (read_format & PERF_FORMAT_GROUP)
1401 data->read.group.nr = *array;
1402 else
1403 data->read.one.value = *array;
1404
1405 array++;
1406
1407 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1408 OVERFLOW_CHECK_u64(array);
1409 data->read.time_enabled = *array;
1410 array++;
1411 }
1412
1413 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1414 OVERFLOW_CHECK_u64(array);
1415 data->read.time_running = *array;
1416 array++;
1417 }
1418
1419 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1420 if (read_format & PERF_FORMAT_GROUP) {
1421 const u64 max_group_nr = UINT64_MAX /
1422 sizeof(struct sample_read_value);
1423
1424 if (data->read.group.nr > max_group_nr)
1425 return -EFAULT;
1426 sz = data->read.group.nr *
1427 sizeof(struct sample_read_value);
1428 OVERFLOW_CHECK(array, sz, max_size);
1429 data->read.group.values =
1430 (struct sample_read_value *)array;
1431 array = (void *)array + sz;
1432 } else {
1433 OVERFLOW_CHECK_u64(array);
1434 data->read.one.id = *array;
1435 array++;
1436 }
1437 }
1438
1439 if (type & PERF_SAMPLE_CALLCHAIN) {
1440 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1441
1442 OVERFLOW_CHECK_u64(array);
1443 data->callchain = (struct ip_callchain *)array++;
1444 if (data->callchain->nr > max_callchain_nr)
1445 return -EFAULT;
1446 sz = data->callchain->nr * sizeof(u64);
1447 OVERFLOW_CHECK(array, sz, max_size);
1448 array = (void *)array + sz;
1449 }
1450
1451 if (type & PERF_SAMPLE_RAW) {
1452 OVERFLOW_CHECK_u64(array);
1453 u.val64 = *array;
1454 if (WARN_ONCE(swapped,
1455 "Endianness of raw data not corrected!\n")) {
1456 /* undo swap of u64, then swap on individual u32s */
1457 u.val64 = bswap_64(u.val64);
1458 u.val32[0] = bswap_32(u.val32[0]);
1459 u.val32[1] = bswap_32(u.val32[1]);
1460 }
1461 data->raw_size = u.val32[0];
1462 array = (void *)array + sizeof(u32);
1463
1464 OVERFLOW_CHECK(array, data->raw_size, max_size);
1465 data->raw_data = (void *)array;
1466 array = (void *)array + data->raw_size;
1467 }
1468
1469 if (type & PERF_SAMPLE_BRANCH_STACK) {
1470 const u64 max_branch_nr = UINT64_MAX /
1471 sizeof(struct branch_entry);
1472
1473 OVERFLOW_CHECK_u64(array);
1474 data->branch_stack = (struct branch_stack *)array++;
1475
1476 if (data->branch_stack->nr > max_branch_nr)
1477 return -EFAULT;
1478 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1479 OVERFLOW_CHECK(array, sz, max_size);
1480 array = (void *)array + sz;
1481 }
1482
1483 if (type & PERF_SAMPLE_REGS_USER) {
1484 OVERFLOW_CHECK_u64(array);
1485 data->user_regs.abi = *array;
1486 array++;
1487
1488 if (data->user_regs.abi) {
1489 u64 mask = evsel->attr.sample_regs_user;
1490
1491 sz = hweight_long(mask) * sizeof(u64);
1492 OVERFLOW_CHECK(array, sz, max_size);
1493 data->user_regs.mask = mask;
1494 data->user_regs.regs = (u64 *)array;
1495 array = (void *)array + sz;
1496 }
1497 }
1498
1499 if (type & PERF_SAMPLE_STACK_USER) {
1500 OVERFLOW_CHECK_u64(array);
1501 sz = *array++;
1502
1503 data->user_stack.offset = ((char *)(array - 1)
1504 - (char *) event);
1505
1506 if (!sz) {
1507 data->user_stack.size = 0;
1508 } else {
1509 OVERFLOW_CHECK(array, sz, max_size);
1510 data->user_stack.data = (char *)array;
1511 array = (void *)array + sz;
1512 OVERFLOW_CHECK_u64(array);
1513 data->user_stack.size = *array++;
1514 if (WARN_ONCE(data->user_stack.size > sz,
1515 "user stack dump failure\n"))
1516 return -EFAULT;
1517 }
1518 }
1519
1520 data->weight = 0;
1521 if (type & PERF_SAMPLE_WEIGHT) {
1522 OVERFLOW_CHECK_u64(array);
1523 data->weight = *array;
1524 array++;
1525 }
1526
1527 data->data_src = PERF_MEM_DATA_SRC_NONE;
1528 if (type & PERF_SAMPLE_DATA_SRC) {
1529 OVERFLOW_CHECK_u64(array);
1530 data->data_src = *array;
1531 array++;
1532 }
1533
1534 data->transaction = 0;
1535 if (type & PERF_SAMPLE_TRANSACTION) {
1536 OVERFLOW_CHECK_u64(array);
1537 data->transaction = *array;
1538 array++;
1539 }
1540
1541 return 0;
1542 }
1543
perf_event__sample_event_size(const struct perf_sample * sample,u64 type,u64 read_format)1544 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1545 u64 read_format)
1546 {
1547 size_t sz, result = sizeof(struct sample_event);
1548
1549 if (type & PERF_SAMPLE_IDENTIFIER)
1550 result += sizeof(u64);
1551
1552 if (type & PERF_SAMPLE_IP)
1553 result += sizeof(u64);
1554
1555 if (type & PERF_SAMPLE_TID)
1556 result += sizeof(u64);
1557
1558 if (type & PERF_SAMPLE_TIME)
1559 result += sizeof(u64);
1560
1561 if (type & PERF_SAMPLE_ADDR)
1562 result += sizeof(u64);
1563
1564 if (type & PERF_SAMPLE_ID)
1565 result += sizeof(u64);
1566
1567 if (type & PERF_SAMPLE_STREAM_ID)
1568 result += sizeof(u64);
1569
1570 if (type & PERF_SAMPLE_CPU)
1571 result += sizeof(u64);
1572
1573 if (type & PERF_SAMPLE_PERIOD)
1574 result += sizeof(u64);
1575
1576 if (type & PERF_SAMPLE_READ) {
1577 result += sizeof(u64);
1578 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1579 result += sizeof(u64);
1580 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1581 result += sizeof(u64);
1582 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1583 if (read_format & PERF_FORMAT_GROUP) {
1584 sz = sample->read.group.nr *
1585 sizeof(struct sample_read_value);
1586 result += sz;
1587 } else {
1588 result += sizeof(u64);
1589 }
1590 }
1591
1592 if (type & PERF_SAMPLE_CALLCHAIN) {
1593 sz = (sample->callchain->nr + 1) * sizeof(u64);
1594 result += sz;
1595 }
1596
1597 if (type & PERF_SAMPLE_RAW) {
1598 result += sizeof(u32);
1599 result += sample->raw_size;
1600 }
1601
1602 if (type & PERF_SAMPLE_BRANCH_STACK) {
1603 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1604 sz += sizeof(u64);
1605 result += sz;
1606 }
1607
1608 if (type & PERF_SAMPLE_REGS_USER) {
1609 if (sample->user_regs.abi) {
1610 result += sizeof(u64);
1611 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1612 result += sz;
1613 } else {
1614 result += sizeof(u64);
1615 }
1616 }
1617
1618 if (type & PERF_SAMPLE_STACK_USER) {
1619 sz = sample->user_stack.size;
1620 result += sizeof(u64);
1621 if (sz) {
1622 result += sz;
1623 result += sizeof(u64);
1624 }
1625 }
1626
1627 if (type & PERF_SAMPLE_WEIGHT)
1628 result += sizeof(u64);
1629
1630 if (type & PERF_SAMPLE_DATA_SRC)
1631 result += sizeof(u64);
1632
1633 if (type & PERF_SAMPLE_TRANSACTION)
1634 result += sizeof(u64);
1635
1636 return result;
1637 }
1638
perf_event__synthesize_sample(union perf_event * event,u64 type,u64 read_format,const struct perf_sample * sample,bool swapped)1639 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1640 u64 read_format,
1641 const struct perf_sample *sample,
1642 bool swapped)
1643 {
1644 u64 *array;
1645 size_t sz;
1646 /*
1647 * used for cross-endian analysis. See git commit 65014ab3
1648 * for why this goofiness is needed.
1649 */
1650 union u64_swap u;
1651
1652 array = event->sample.array;
1653
1654 if (type & PERF_SAMPLE_IDENTIFIER) {
1655 *array = sample->id;
1656 array++;
1657 }
1658
1659 if (type & PERF_SAMPLE_IP) {
1660 *array = sample->ip;
1661 array++;
1662 }
1663
1664 if (type & PERF_SAMPLE_TID) {
1665 u.val32[0] = sample->pid;
1666 u.val32[1] = sample->tid;
1667 if (swapped) {
1668 /*
1669 * Inverse of what is done in perf_evsel__parse_sample
1670 */
1671 u.val32[0] = bswap_32(u.val32[0]);
1672 u.val32[1] = bswap_32(u.val32[1]);
1673 u.val64 = bswap_64(u.val64);
1674 }
1675
1676 *array = u.val64;
1677 array++;
1678 }
1679
1680 if (type & PERF_SAMPLE_TIME) {
1681 *array = sample->time;
1682 array++;
1683 }
1684
1685 if (type & PERF_SAMPLE_ADDR) {
1686 *array = sample->addr;
1687 array++;
1688 }
1689
1690 if (type & PERF_SAMPLE_ID) {
1691 *array = sample->id;
1692 array++;
1693 }
1694
1695 if (type & PERF_SAMPLE_STREAM_ID) {
1696 *array = sample->stream_id;
1697 array++;
1698 }
1699
1700 if (type & PERF_SAMPLE_CPU) {
1701 u.val32[0] = sample->cpu;
1702 if (swapped) {
1703 /*
1704 * Inverse of what is done in perf_evsel__parse_sample
1705 */
1706 u.val32[0] = bswap_32(u.val32[0]);
1707 u.val64 = bswap_64(u.val64);
1708 }
1709 *array = u.val64;
1710 array++;
1711 }
1712
1713 if (type & PERF_SAMPLE_PERIOD) {
1714 *array = sample->period;
1715 array++;
1716 }
1717
1718 if (type & PERF_SAMPLE_READ) {
1719 if (read_format & PERF_FORMAT_GROUP)
1720 *array = sample->read.group.nr;
1721 else
1722 *array = sample->read.one.value;
1723 array++;
1724
1725 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1726 *array = sample->read.time_enabled;
1727 array++;
1728 }
1729
1730 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1731 *array = sample->read.time_running;
1732 array++;
1733 }
1734
1735 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1736 if (read_format & PERF_FORMAT_GROUP) {
1737 sz = sample->read.group.nr *
1738 sizeof(struct sample_read_value);
1739 memcpy(array, sample->read.group.values, sz);
1740 array = (void *)array + sz;
1741 } else {
1742 *array = sample->read.one.id;
1743 array++;
1744 }
1745 }
1746
1747 if (type & PERF_SAMPLE_CALLCHAIN) {
1748 sz = (sample->callchain->nr + 1) * sizeof(u64);
1749 memcpy(array, sample->callchain, sz);
1750 array = (void *)array + sz;
1751 }
1752
1753 if (type & PERF_SAMPLE_RAW) {
1754 u.val32[0] = sample->raw_size;
1755 if (WARN_ONCE(swapped,
1756 "Endianness of raw data not corrected!\n")) {
1757 /*
1758 * Inverse of what is done in perf_evsel__parse_sample
1759 */
1760 u.val32[0] = bswap_32(u.val32[0]);
1761 u.val32[1] = bswap_32(u.val32[1]);
1762 u.val64 = bswap_64(u.val64);
1763 }
1764 *array = u.val64;
1765 array = (void *)array + sizeof(u32);
1766
1767 memcpy(array, sample->raw_data, sample->raw_size);
1768 array = (void *)array + sample->raw_size;
1769 }
1770
1771 if (type & PERF_SAMPLE_BRANCH_STACK) {
1772 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1773 sz += sizeof(u64);
1774 memcpy(array, sample->branch_stack, sz);
1775 array = (void *)array + sz;
1776 }
1777
1778 if (type & PERF_SAMPLE_REGS_USER) {
1779 if (sample->user_regs.abi) {
1780 *array++ = sample->user_regs.abi;
1781 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1782 memcpy(array, sample->user_regs.regs, sz);
1783 array = (void *)array + sz;
1784 } else {
1785 *array++ = 0;
1786 }
1787 }
1788
1789 if (type & PERF_SAMPLE_STACK_USER) {
1790 sz = sample->user_stack.size;
1791 *array++ = sz;
1792 if (sz) {
1793 memcpy(array, sample->user_stack.data, sz);
1794 array = (void *)array + sz;
1795 *array++ = sz;
1796 }
1797 }
1798
1799 if (type & PERF_SAMPLE_WEIGHT) {
1800 *array = sample->weight;
1801 array++;
1802 }
1803
1804 if (type & PERF_SAMPLE_DATA_SRC) {
1805 *array = sample->data_src;
1806 array++;
1807 }
1808
1809 if (type & PERF_SAMPLE_TRANSACTION) {
1810 *array = sample->transaction;
1811 array++;
1812 }
1813
1814 return 0;
1815 }
1816
perf_evsel__field(struct perf_evsel * evsel,const char * name)1817 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1818 {
1819 return pevent_find_field(evsel->tp_format, name);
1820 }
1821
perf_evsel__rawptr(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)1822 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1823 const char *name)
1824 {
1825 struct format_field *field = perf_evsel__field(evsel, name);
1826 int offset;
1827
1828 if (!field)
1829 return NULL;
1830
1831 offset = field->offset;
1832
1833 if (field->flags & FIELD_IS_DYNAMIC) {
1834 offset = *(int *)(sample->raw_data + field->offset);
1835 offset &= 0xffff;
1836 }
1837
1838 return sample->raw_data + offset;
1839 }
1840
perf_evsel__intval(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)1841 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1842 const char *name)
1843 {
1844 struct format_field *field = perf_evsel__field(evsel, name);
1845 void *ptr;
1846 u64 value;
1847
1848 if (!field)
1849 return 0;
1850
1851 ptr = sample->raw_data + field->offset;
1852
1853 switch (field->size) {
1854 case 1:
1855 return *(u8 *)ptr;
1856 case 2:
1857 value = *(u16 *)ptr;
1858 break;
1859 case 4:
1860 value = *(u32 *)ptr;
1861 break;
1862 case 8:
1863 value = *(u64 *)ptr;
1864 break;
1865 default:
1866 return 0;
1867 }
1868
1869 if (!evsel->needs_swap)
1870 return value;
1871
1872 switch (field->size) {
1873 case 2:
1874 return bswap_16(value);
1875 case 4:
1876 return bswap_32(value);
1877 case 8:
1878 return bswap_64(value);
1879 default:
1880 return 0;
1881 }
1882
1883 return 0;
1884 }
1885
comma_fprintf(FILE * fp,bool * first,const char * fmt,...)1886 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1887 {
1888 va_list args;
1889 int ret = 0;
1890
1891 if (!*first) {
1892 ret += fprintf(fp, ",");
1893 } else {
1894 ret += fprintf(fp, ":");
1895 *first = false;
1896 }
1897
1898 va_start(args, fmt);
1899 ret += vfprintf(fp, fmt, args);
1900 va_end(args);
1901 return ret;
1902 }
1903
__if_fprintf(FILE * fp,bool * first,const char * field,u64 value)1904 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1905 {
1906 if (value == 0)
1907 return 0;
1908
1909 return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1910 }
1911
1912 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1913
1914 struct bit_names {
1915 int bit;
1916 const char *name;
1917 };
1918
bits__fprintf(FILE * fp,const char * field,u64 value,struct bit_names * bits,bool * first)1919 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1920 struct bit_names *bits, bool *first)
1921 {
1922 int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1923 bool first_bit = true;
1924
1925 do {
1926 if (value & bits[i].bit) {
1927 printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1928 first_bit = false;
1929 }
1930 } while (bits[++i].name != NULL);
1931
1932 return printed;
1933 }
1934
sample_type__fprintf(FILE * fp,bool * first,u64 value)1935 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1936 {
1937 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1938 struct bit_names bits[] = {
1939 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1940 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1941 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1942 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1943 bit_name(IDENTIFIER),
1944 { .name = NULL, }
1945 };
1946 #undef bit_name
1947 return bits__fprintf(fp, "sample_type", value, bits, first);
1948 }
1949
read_format__fprintf(FILE * fp,bool * first,u64 value)1950 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1951 {
1952 #define bit_name(n) { PERF_FORMAT_##n, #n }
1953 struct bit_names bits[] = {
1954 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1955 bit_name(ID), bit_name(GROUP),
1956 { .name = NULL, }
1957 };
1958 #undef bit_name
1959 return bits__fprintf(fp, "read_format", value, bits, first);
1960 }
1961
perf_evsel__fprintf(struct perf_evsel * evsel,struct perf_attr_details * details,FILE * fp)1962 int perf_evsel__fprintf(struct perf_evsel *evsel,
1963 struct perf_attr_details *details, FILE *fp)
1964 {
1965 bool first = true;
1966 int printed = 0;
1967
1968 if (details->event_group) {
1969 struct perf_evsel *pos;
1970
1971 if (!perf_evsel__is_group_leader(evsel))
1972 return 0;
1973
1974 if (evsel->nr_members > 1)
1975 printed += fprintf(fp, "%s{", evsel->group_name ?: "");
1976
1977 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1978 for_each_group_member(pos, evsel)
1979 printed += fprintf(fp, ",%s", perf_evsel__name(pos));
1980
1981 if (evsel->nr_members > 1)
1982 printed += fprintf(fp, "}");
1983 goto out;
1984 }
1985
1986 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1987
1988 if (details->verbose || details->freq) {
1989 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
1990 (u64)evsel->attr.sample_freq);
1991 }
1992
1993 if (details->verbose) {
1994 if_print(type);
1995 if_print(config);
1996 if_print(config1);
1997 if_print(config2);
1998 if_print(size);
1999 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
2000 if (evsel->attr.read_format)
2001 printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
2002 if_print(disabled);
2003 if_print(inherit);
2004 if_print(pinned);
2005 if_print(exclusive);
2006 if_print(exclude_user);
2007 if_print(exclude_kernel);
2008 if_print(exclude_hv);
2009 if_print(exclude_idle);
2010 if_print(mmap);
2011 if_print(mmap2);
2012 if_print(comm);
2013 if_print(comm_exec);
2014 if_print(freq);
2015 if_print(inherit_stat);
2016 if_print(enable_on_exec);
2017 if_print(task);
2018 if_print(watermark);
2019 if_print(precise_ip);
2020 if_print(mmap_data);
2021 if_print(sample_id_all);
2022 if_print(exclude_host);
2023 if_print(exclude_guest);
2024 if_print(__reserved_1);
2025 if_print(wakeup_events);
2026 if_print(bp_type);
2027 if_print(branch_sample_type);
2028 }
2029 out:
2030 fputc('\n', fp);
2031 return ++printed;
2032 }
2033
perf_evsel__fallback(struct perf_evsel * evsel,int err,char * msg,size_t msgsize)2034 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2035 char *msg, size_t msgsize)
2036 {
2037 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2038 evsel->attr.type == PERF_TYPE_HARDWARE &&
2039 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2040 /*
2041 * If it's cycles then fall back to hrtimer based
2042 * cpu-clock-tick sw counter, which is always available even if
2043 * no PMU support.
2044 *
2045 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2046 * b0a873e).
2047 */
2048 scnprintf(msg, msgsize, "%s",
2049 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2050
2051 evsel->attr.type = PERF_TYPE_SOFTWARE;
2052 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2053
2054 zfree(&evsel->name);
2055 return true;
2056 }
2057
2058 return false;
2059 }
2060
perf_evsel__open_strerror(struct perf_evsel * evsel,struct target * target,int err,char * msg,size_t size)2061 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2062 int err, char *msg, size_t size)
2063 {
2064 char sbuf[STRERR_BUFSIZE];
2065
2066 switch (err) {
2067 case EPERM:
2068 case EACCES:
2069 return scnprintf(msg, size,
2070 "You may not have permission to collect %sstats.\n\n"
2071 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2072 "which controls use of the performance events system by\n"
2073 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2074 "The default value is 1:\n\n"
2075 " -1: Allow use of (almost) all events by all users\n"
2076 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2077 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2078 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN",
2079 target->system_wide ? "system-wide " : "");
2080 case ENOENT:
2081 return scnprintf(msg, size, "The %s event is not supported.",
2082 perf_evsel__name(evsel));
2083 case EMFILE:
2084 return scnprintf(msg, size, "%s",
2085 "Too many events are opened.\n"
2086 "Try again after reducing the number of events.");
2087 case ENODEV:
2088 if (target->cpu_list)
2089 return scnprintf(msg, size, "%s",
2090 "No such device - did you specify an out-of-range profile CPU?\n");
2091 break;
2092 case EOPNOTSUPP:
2093 if (evsel->attr.precise_ip)
2094 return scnprintf(msg, size, "%s",
2095 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2096 #if defined(__i386__) || defined(__x86_64__)
2097 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2098 return scnprintf(msg, size, "%s",
2099 "No hardware sampling interrupt available.\n"
2100 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2101 #endif
2102 break;
2103 case EBUSY:
2104 if (find_process("oprofiled"))
2105 return scnprintf(msg, size,
2106 "The PMU counters are busy/taken by another profiler.\n"
2107 "We found oprofile daemon running, please stop it and try again.");
2108 break;
2109 default:
2110 break;
2111 }
2112
2113 return scnprintf(msg, size,
2114 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2115 "/bin/dmesg may provide additional information.\n"
2116 "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2117 err, strerror_r(err, sbuf, sizeof(sbuf)),
2118 perf_evsel__name(evsel));
2119 }
2120