1 /*
2 * linux/arch/parisc/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
9 * Copyright 2006-2007 Helge Deller (deller@gmx.de)
10 *
11 */
12
13
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/gfp.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h> /* for node_online_map */
25 #include <linux/pagemap.h> /* for release_pages and page_cache_release */
26
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33
34 extern int data_start;
35 extern void parisc_kernel_start(void); /* Kernel entry point in head.S */
36
37 #if PT_NLEVELS == 3
38 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
39 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
40 * guarantee that global objects will be laid out in memory in the same order
41 * as the order of declaration, so put these in different sections and use
42 * the linker script to order them. */
43 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
44 #endif
45
46 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
47 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
48
49 #ifdef CONFIG_DISCONTIGMEM
50 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
51 signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
52 #endif
53
54 static struct resource data_resource = {
55 .name = "Kernel data",
56 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
57 };
58
59 static struct resource code_resource = {
60 .name = "Kernel code",
61 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
62 };
63
64 static struct resource pdcdata_resource = {
65 .name = "PDC data (Page Zero)",
66 .start = 0,
67 .end = 0x9ff,
68 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
69 };
70
71 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
72
73 /* The following array is initialized from the firmware specific
74 * information retrieved in kernel/inventory.c.
75 */
76
77 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
78 int npmem_ranges __read_mostly;
79
80 #ifdef CONFIG_64BIT
81 #define MAX_MEM (~0UL)
82 #else /* !CONFIG_64BIT */
83 #define MAX_MEM (3584U*1024U*1024U)
84 #endif /* !CONFIG_64BIT */
85
86 static unsigned long mem_limit __read_mostly = MAX_MEM;
87
mem_limit_func(void)88 static void __init mem_limit_func(void)
89 {
90 char *cp, *end;
91 unsigned long limit;
92
93 /* We need this before __setup() functions are called */
94
95 limit = MAX_MEM;
96 for (cp = boot_command_line; *cp; ) {
97 if (memcmp(cp, "mem=", 4) == 0) {
98 cp += 4;
99 limit = memparse(cp, &end);
100 if (end != cp)
101 break;
102 cp = end;
103 } else {
104 while (*cp != ' ' && *cp)
105 ++cp;
106 while (*cp == ' ')
107 ++cp;
108 }
109 }
110
111 if (limit < mem_limit)
112 mem_limit = limit;
113 }
114
115 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
116
setup_bootmem(void)117 static void __init setup_bootmem(void)
118 {
119 unsigned long bootmap_size;
120 unsigned long mem_max;
121 unsigned long bootmap_pages;
122 unsigned long bootmap_start_pfn;
123 unsigned long bootmap_pfn;
124 #ifndef CONFIG_DISCONTIGMEM
125 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
126 int npmem_holes;
127 #endif
128 int i, sysram_resource_count;
129
130 disable_sr_hashing(); /* Turn off space register hashing */
131
132 /*
133 * Sort the ranges. Since the number of ranges is typically
134 * small, and performance is not an issue here, just do
135 * a simple insertion sort.
136 */
137
138 for (i = 1; i < npmem_ranges; i++) {
139 int j;
140
141 for (j = i; j > 0; j--) {
142 unsigned long tmp;
143
144 if (pmem_ranges[j-1].start_pfn <
145 pmem_ranges[j].start_pfn) {
146
147 break;
148 }
149 tmp = pmem_ranges[j-1].start_pfn;
150 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
151 pmem_ranges[j].start_pfn = tmp;
152 tmp = pmem_ranges[j-1].pages;
153 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
154 pmem_ranges[j].pages = tmp;
155 }
156 }
157
158 #ifndef CONFIG_DISCONTIGMEM
159 /*
160 * Throw out ranges that are too far apart (controlled by
161 * MAX_GAP).
162 */
163
164 for (i = 1; i < npmem_ranges; i++) {
165 if (pmem_ranges[i].start_pfn -
166 (pmem_ranges[i-1].start_pfn +
167 pmem_ranges[i-1].pages) > MAX_GAP) {
168 npmem_ranges = i;
169 printk("Large gap in memory detected (%ld pages). "
170 "Consider turning on CONFIG_DISCONTIGMEM\n",
171 pmem_ranges[i].start_pfn -
172 (pmem_ranges[i-1].start_pfn +
173 pmem_ranges[i-1].pages));
174 break;
175 }
176 }
177 #endif
178
179 if (npmem_ranges > 1) {
180
181 /* Print the memory ranges */
182
183 printk(KERN_INFO "Memory Ranges:\n");
184
185 for (i = 0; i < npmem_ranges; i++) {
186 unsigned long start;
187 unsigned long size;
188
189 size = (pmem_ranges[i].pages << PAGE_SHIFT);
190 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
191 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
192 i,start, start + (size - 1), size >> 20);
193 }
194 }
195
196 sysram_resource_count = npmem_ranges;
197 for (i = 0; i < sysram_resource_count; i++) {
198 struct resource *res = &sysram_resources[i];
199 res->name = "System RAM";
200 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
201 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
202 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
203 request_resource(&iomem_resource, res);
204 }
205
206 /*
207 * For 32 bit kernels we limit the amount of memory we can
208 * support, in order to preserve enough kernel address space
209 * for other purposes. For 64 bit kernels we don't normally
210 * limit the memory, but this mechanism can be used to
211 * artificially limit the amount of memory (and it is written
212 * to work with multiple memory ranges).
213 */
214
215 mem_limit_func(); /* check for "mem=" argument */
216
217 mem_max = 0;
218 for (i = 0; i < npmem_ranges; i++) {
219 unsigned long rsize;
220
221 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
222 if ((mem_max + rsize) > mem_limit) {
223 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
224 if (mem_max == mem_limit)
225 npmem_ranges = i;
226 else {
227 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
228 - (mem_max >> PAGE_SHIFT);
229 npmem_ranges = i + 1;
230 mem_max = mem_limit;
231 }
232 break;
233 }
234 mem_max += rsize;
235 }
236
237 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
238
239 #ifndef CONFIG_DISCONTIGMEM
240 /* Merge the ranges, keeping track of the holes */
241
242 {
243 unsigned long end_pfn;
244 unsigned long hole_pages;
245
246 npmem_holes = 0;
247 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
248 for (i = 1; i < npmem_ranges; i++) {
249
250 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
251 if (hole_pages) {
252 pmem_holes[npmem_holes].start_pfn = end_pfn;
253 pmem_holes[npmem_holes++].pages = hole_pages;
254 end_pfn += hole_pages;
255 }
256 end_pfn += pmem_ranges[i].pages;
257 }
258
259 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
260 npmem_ranges = 1;
261 }
262 #endif
263
264 bootmap_pages = 0;
265 for (i = 0; i < npmem_ranges; i++)
266 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
267
268 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
269
270 #ifdef CONFIG_DISCONTIGMEM
271 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
272 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
273 NODE_DATA(i)->bdata = &bootmem_node_data[i];
274 }
275 memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
276
277 for (i = 0; i < npmem_ranges; i++) {
278 node_set_state(i, N_NORMAL_MEMORY);
279 node_set_online(i);
280 }
281 #endif
282
283 /*
284 * Initialize and free the full range of memory in each range.
285 * Note that the only writing these routines do are to the bootmap,
286 * and we've made sure to locate the bootmap properly so that they
287 * won't be writing over anything important.
288 */
289
290 bootmap_pfn = bootmap_start_pfn;
291 max_pfn = 0;
292 for (i = 0; i < npmem_ranges; i++) {
293 unsigned long start_pfn;
294 unsigned long npages;
295
296 start_pfn = pmem_ranges[i].start_pfn;
297 npages = pmem_ranges[i].pages;
298
299 bootmap_size = init_bootmem_node(NODE_DATA(i),
300 bootmap_pfn,
301 start_pfn,
302 (start_pfn + npages) );
303 free_bootmem_node(NODE_DATA(i),
304 (start_pfn << PAGE_SHIFT),
305 (npages << PAGE_SHIFT) );
306 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
307 if ((start_pfn + npages) > max_pfn)
308 max_pfn = start_pfn + npages;
309 }
310
311 /* IOMMU is always used to access "high mem" on those boxes
312 * that can support enough mem that a PCI device couldn't
313 * directly DMA to any physical addresses.
314 * ISA DMA support will need to revisit this.
315 */
316 max_low_pfn = max_pfn;
317
318 /* bootmap sizing messed up? */
319 BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
320
321 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
322
323 #define PDC_CONSOLE_IO_IODC_SIZE 32768
324
325 reserve_bootmem_node(NODE_DATA(0), 0UL,
326 (unsigned long)(PAGE0->mem_free +
327 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
328 reserve_bootmem_node(NODE_DATA(0), __pa(KERNEL_BINARY_TEXT_START),
329 (unsigned long)(_end - KERNEL_BINARY_TEXT_START),
330 BOOTMEM_DEFAULT);
331 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
332 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
333 BOOTMEM_DEFAULT);
334
335 #ifndef CONFIG_DISCONTIGMEM
336
337 /* reserve the holes */
338
339 for (i = 0; i < npmem_holes; i++) {
340 reserve_bootmem_node(NODE_DATA(0),
341 (pmem_holes[i].start_pfn << PAGE_SHIFT),
342 (pmem_holes[i].pages << PAGE_SHIFT),
343 BOOTMEM_DEFAULT);
344 }
345 #endif
346
347 #ifdef CONFIG_BLK_DEV_INITRD
348 if (initrd_start) {
349 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
350 if (__pa(initrd_start) < mem_max) {
351 unsigned long initrd_reserve;
352
353 if (__pa(initrd_end) > mem_max) {
354 initrd_reserve = mem_max - __pa(initrd_start);
355 } else {
356 initrd_reserve = initrd_end - initrd_start;
357 }
358 initrd_below_start_ok = 1;
359 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
360
361 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
362 initrd_reserve, BOOTMEM_DEFAULT);
363 }
364 }
365 #endif
366
367 data_resource.start = virt_to_phys(&data_start);
368 data_resource.end = virt_to_phys(_end) - 1;
369 code_resource.start = virt_to_phys(_text);
370 code_resource.end = virt_to_phys(&data_start)-1;
371
372 /* We don't know which region the kernel will be in, so try
373 * all of them.
374 */
375 for (i = 0; i < sysram_resource_count; i++) {
376 struct resource *res = &sysram_resources[i];
377 request_resource(res, &code_resource);
378 request_resource(res, &data_resource);
379 }
380 request_resource(&sysram_resources[0], &pdcdata_resource);
381 }
382
parisc_text_address(unsigned long vaddr)383 static int __init parisc_text_address(unsigned long vaddr)
384 {
385 static unsigned long head_ptr __initdata;
386
387 if (!head_ptr)
388 head_ptr = PAGE_MASK & (unsigned long)
389 dereference_function_descriptor(&parisc_kernel_start);
390
391 return core_kernel_text(vaddr) || vaddr == head_ptr;
392 }
393
map_pages(unsigned long start_vaddr,unsigned long start_paddr,unsigned long size,pgprot_t pgprot,int force)394 static void __init map_pages(unsigned long start_vaddr,
395 unsigned long start_paddr, unsigned long size,
396 pgprot_t pgprot, int force)
397 {
398 pgd_t *pg_dir;
399 pmd_t *pmd;
400 pte_t *pg_table;
401 unsigned long end_paddr;
402 unsigned long start_pmd;
403 unsigned long start_pte;
404 unsigned long tmp1;
405 unsigned long tmp2;
406 unsigned long address;
407 unsigned long vaddr;
408 unsigned long ro_start;
409 unsigned long ro_end;
410 unsigned long fv_addr;
411 unsigned long gw_addr;
412 extern const unsigned long fault_vector_20;
413 extern void * const linux_gateway_page;
414
415 ro_start = __pa((unsigned long)_text);
416 ro_end = __pa((unsigned long)&data_start);
417 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
418 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
419
420 end_paddr = start_paddr + size;
421
422 pg_dir = pgd_offset_k(start_vaddr);
423
424 #if PTRS_PER_PMD == 1
425 start_pmd = 0;
426 #else
427 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
428 #endif
429 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
430
431 address = start_paddr;
432 vaddr = start_vaddr;
433 while (address < end_paddr) {
434 #if PTRS_PER_PMD == 1
435 pmd = (pmd_t *)__pa(pg_dir);
436 #else
437 pmd = (pmd_t *)pgd_address(*pg_dir);
438
439 /*
440 * pmd is physical at this point
441 */
442
443 if (!pmd) {
444 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
445 pmd = (pmd_t *) __pa(pmd);
446 }
447
448 pgd_populate(NULL, pg_dir, __va(pmd));
449 #endif
450 pg_dir++;
451
452 /* now change pmd to kernel virtual addresses */
453
454 pmd = (pmd_t *)__va(pmd) + start_pmd;
455 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
456
457 /*
458 * pg_table is physical at this point
459 */
460
461 pg_table = (pte_t *)pmd_address(*pmd);
462 if (!pg_table) {
463 pg_table = (pte_t *)
464 alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
465 pg_table = (pte_t *) __pa(pg_table);
466 }
467
468 pmd_populate_kernel(NULL, pmd, __va(pg_table));
469
470 /* now change pg_table to kernel virtual addresses */
471
472 pg_table = (pte_t *) __va(pg_table) + start_pte;
473 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
474 pte_t pte;
475
476 /*
477 * Map the fault vector writable so we can
478 * write the HPMC checksum.
479 */
480 if (force)
481 pte = __mk_pte(address, pgprot);
482 else if (parisc_text_address(vaddr) &&
483 address != fv_addr)
484 pte = __mk_pte(address, PAGE_KERNEL_EXEC);
485 else
486 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
487 if (address >= ro_start && address < ro_end
488 && address != fv_addr
489 && address != gw_addr)
490 pte = __mk_pte(address, PAGE_KERNEL_RO);
491 else
492 #endif
493 pte = __mk_pte(address, pgprot);
494
495 if (address >= end_paddr) {
496 if (force)
497 break;
498 else
499 pte_val(pte) = 0;
500 }
501
502 set_pte(pg_table, pte);
503
504 address += PAGE_SIZE;
505 vaddr += PAGE_SIZE;
506 }
507 start_pte = 0;
508
509 if (address >= end_paddr)
510 break;
511 }
512 start_pmd = 0;
513 }
514 }
515
free_initmem(void)516 void free_initmem(void)
517 {
518 unsigned long init_begin = (unsigned long)__init_begin;
519 unsigned long init_end = (unsigned long)__init_end;
520
521 /* The init text pages are marked R-X. We have to
522 * flush the icache and mark them RW-
523 *
524 * This is tricky, because map_pages is in the init section.
525 * Do a dummy remap of the data section first (the data
526 * section is already PAGE_KERNEL) to pull in the TLB entries
527 * for map_kernel */
528 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
529 PAGE_KERNEL_RWX, 1);
530 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
531 * map_pages */
532 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
533 PAGE_KERNEL, 1);
534
535 /* force the kernel to see the new TLB entries */
536 __flush_tlb_range(0, init_begin, init_end);
537 /* Attempt to catch anyone trying to execute code here
538 * by filling the page with BRK insns.
539 */
540 memset((void *)init_begin, 0x00, init_end - init_begin);
541 /* finally dump all the instructions which were cached, since the
542 * pages are no-longer executable */
543 flush_icache_range(init_begin, init_end);
544
545 free_initmem_default(-1);
546
547 /* set up a new led state on systems shipped LED State panel */
548 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
549 }
550
551
552 #ifdef CONFIG_DEBUG_RODATA
mark_rodata_ro(void)553 void mark_rodata_ro(void)
554 {
555 /* rodata memory was already mapped with KERNEL_RO access rights by
556 pagetable_init() and map_pages(). No need to do additional stuff here */
557 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
558 (unsigned long)(__end_rodata - __start_rodata) >> 10);
559 }
560 #endif
561
562
563 /*
564 * Just an arbitrary offset to serve as a "hole" between mapping areas
565 * (between top of physical memory and a potential pcxl dma mapping
566 * area, and below the vmalloc mapping area).
567 *
568 * The current 32K value just means that there will be a 32K "hole"
569 * between mapping areas. That means that any out-of-bounds memory
570 * accesses will hopefully be caught. The vmalloc() routines leaves
571 * a hole of 4kB between each vmalloced area for the same reason.
572 */
573
574 /* Leave room for gateway page expansion */
575 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
576 #error KERNEL_MAP_START is in gateway reserved region
577 #endif
578 #define MAP_START (KERNEL_MAP_START)
579
580 #define VM_MAP_OFFSET (32*1024)
581 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
582 & ~(VM_MAP_OFFSET-1)))
583
584 void *parisc_vmalloc_start __read_mostly;
585 EXPORT_SYMBOL(parisc_vmalloc_start);
586
587 #ifdef CONFIG_PA11
588 unsigned long pcxl_dma_start __read_mostly;
589 #endif
590
mem_init(void)591 void __init mem_init(void)
592 {
593 /* Do sanity checks on page table constants */
594 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
595 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
596 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
597 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
598 > BITS_PER_LONG);
599
600 high_memory = __va((max_pfn << PAGE_SHIFT));
601 set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
602 free_all_bootmem();
603
604 #ifdef CONFIG_PA11
605 if (hppa_dma_ops == &pcxl_dma_ops) {
606 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
607 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
608 + PCXL_DMA_MAP_SIZE);
609 } else {
610 pcxl_dma_start = 0;
611 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
612 }
613 #else
614 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
615 #endif
616
617 mem_init_print_info(NULL);
618 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
619 printk("virtual kernel memory layout:\n"
620 " vmalloc : 0x%p - 0x%p (%4ld MB)\n"
621 " memory : 0x%p - 0x%p (%4ld MB)\n"
622 " .init : 0x%p - 0x%p (%4ld kB)\n"
623 " .data : 0x%p - 0x%p (%4ld kB)\n"
624 " .text : 0x%p - 0x%p (%4ld kB)\n",
625
626 (void*)VMALLOC_START, (void*)VMALLOC_END,
627 (VMALLOC_END - VMALLOC_START) >> 20,
628
629 __va(0), high_memory,
630 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
631
632 __init_begin, __init_end,
633 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
634
635 _etext, _edata,
636 ((unsigned long)_edata - (unsigned long)_etext) >> 10,
637
638 _text, _etext,
639 ((unsigned long)_etext - (unsigned long)_text) >> 10);
640 #endif
641 }
642
643 unsigned long *empty_zero_page __read_mostly;
644 EXPORT_SYMBOL(empty_zero_page);
645
show_mem(unsigned int filter)646 void show_mem(unsigned int filter)
647 {
648 int total = 0,reserved = 0;
649 pg_data_t *pgdat;
650
651 printk(KERN_INFO "Mem-info:\n");
652 show_free_areas(filter);
653
654 for_each_online_pgdat(pgdat) {
655 unsigned long flags;
656 int zoneid;
657
658 pgdat_resize_lock(pgdat, &flags);
659 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
660 struct zone *zone = &pgdat->node_zones[zoneid];
661 if (!populated_zone(zone))
662 continue;
663
664 total += zone->present_pages;
665 reserved = zone->present_pages - zone->managed_pages;
666 }
667 pgdat_resize_unlock(pgdat, &flags);
668 }
669
670 printk(KERN_INFO "%d pages of RAM\n", total);
671 printk(KERN_INFO "%d reserved pages\n", reserved);
672
673 #ifdef CONFIG_DISCONTIGMEM
674 {
675 struct zonelist *zl;
676 int i, j;
677
678 for (i = 0; i < npmem_ranges; i++) {
679 zl = node_zonelist(i, 0);
680 for (j = 0; j < MAX_NR_ZONES; j++) {
681 struct zoneref *z;
682 struct zone *zone;
683
684 printk("Zone list for zone %d on node %d: ", j, i);
685 for_each_zone_zonelist(zone, z, zl, j)
686 printk("[%d/%s] ", zone_to_nid(zone),
687 zone->name);
688 printk("\n");
689 }
690 }
691 }
692 #endif
693 }
694
695 /*
696 * pagetable_init() sets up the page tables
697 *
698 * Note that gateway_init() places the Linux gateway page at page 0.
699 * Since gateway pages cannot be dereferenced this has the desirable
700 * side effect of trapping those pesky NULL-reference errors in the
701 * kernel.
702 */
pagetable_init(void)703 static void __init pagetable_init(void)
704 {
705 int range;
706
707 /* Map each physical memory range to its kernel vaddr */
708
709 for (range = 0; range < npmem_ranges; range++) {
710 unsigned long start_paddr;
711 unsigned long end_paddr;
712 unsigned long size;
713
714 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
715 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
716 size = pmem_ranges[range].pages << PAGE_SHIFT;
717
718 map_pages((unsigned long)__va(start_paddr), start_paddr,
719 size, PAGE_KERNEL, 0);
720 }
721
722 #ifdef CONFIG_BLK_DEV_INITRD
723 if (initrd_end && initrd_end > mem_limit) {
724 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
725 map_pages(initrd_start, __pa(initrd_start),
726 initrd_end - initrd_start, PAGE_KERNEL, 0);
727 }
728 #endif
729
730 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
731 }
732
gateway_init(void)733 static void __init gateway_init(void)
734 {
735 unsigned long linux_gateway_page_addr;
736 /* FIXME: This is 'const' in order to trick the compiler
737 into not treating it as DP-relative data. */
738 extern void * const linux_gateway_page;
739
740 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
741
742 /*
743 * Setup Linux Gateway page.
744 *
745 * The Linux gateway page will reside in kernel space (on virtual
746 * page 0), so it doesn't need to be aliased into user space.
747 */
748
749 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
750 PAGE_SIZE, PAGE_GATEWAY, 1);
751 }
752
753 #ifdef CONFIG_HPUX
754 void
map_hpux_gateway_page(struct task_struct * tsk,struct mm_struct * mm)755 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
756 {
757 pgd_t *pg_dir;
758 pmd_t *pmd;
759 pte_t *pg_table;
760 unsigned long start_pmd;
761 unsigned long start_pte;
762 unsigned long address;
763 unsigned long hpux_gw_page_addr;
764 /* FIXME: This is 'const' in order to trick the compiler
765 into not treating it as DP-relative data. */
766 extern void * const hpux_gateway_page;
767
768 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
769
770 /*
771 * Setup HP-UX Gateway page.
772 *
773 * The HP-UX gateway page resides in the user address space,
774 * so it needs to be aliased into each process.
775 */
776
777 pg_dir = pgd_offset(mm,hpux_gw_page_addr);
778
779 #if PTRS_PER_PMD == 1
780 start_pmd = 0;
781 #else
782 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
783 #endif
784 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
785
786 address = __pa(&hpux_gateway_page);
787 #if PTRS_PER_PMD == 1
788 pmd = (pmd_t *)__pa(pg_dir);
789 #else
790 pmd = (pmd_t *) pgd_address(*pg_dir);
791
792 /*
793 * pmd is physical at this point
794 */
795
796 if (!pmd) {
797 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
798 pmd = (pmd_t *) __pa(pmd);
799 }
800
801 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
802 #endif
803 /* now change pmd to kernel virtual addresses */
804
805 pmd = (pmd_t *)__va(pmd) + start_pmd;
806
807 /*
808 * pg_table is physical at this point
809 */
810
811 pg_table = (pte_t *) pmd_address(*pmd);
812 if (!pg_table)
813 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
814
815 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
816
817 /* now change pg_table to kernel virtual addresses */
818
819 pg_table = (pte_t *) __va(pg_table) + start_pte;
820 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
821 }
822 EXPORT_SYMBOL(map_hpux_gateway_page);
823 #endif
824
paging_init(void)825 void __init paging_init(void)
826 {
827 int i;
828
829 setup_bootmem();
830 pagetable_init();
831 gateway_init();
832 flush_cache_all_local(); /* start with known state */
833 flush_tlb_all_local(NULL);
834
835 for (i = 0; i < npmem_ranges; i++) {
836 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
837
838 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
839
840 #ifdef CONFIG_DISCONTIGMEM
841 /* Need to initialize the pfnnid_map before we can initialize
842 the zone */
843 {
844 int j;
845 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
846 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
847 j++) {
848 pfnnid_map[j] = i;
849 }
850 }
851 #endif
852
853 free_area_init_node(i, zones_size,
854 pmem_ranges[i].start_pfn, NULL);
855 }
856 }
857
858 #ifdef CONFIG_PA20
859
860 /*
861 * Currently, all PA20 chips have 18 bit protection IDs, which is the
862 * limiting factor (space ids are 32 bits).
863 */
864
865 #define NR_SPACE_IDS 262144
866
867 #else
868
869 /*
870 * Currently we have a one-to-one relationship between space IDs and
871 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
872 * support 15 bit protection IDs, so that is the limiting factor.
873 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
874 * probably not worth the effort for a special case here.
875 */
876
877 #define NR_SPACE_IDS 32768
878
879 #endif /* !CONFIG_PA20 */
880
881 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
882 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
883
884 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
885 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
886 static unsigned long space_id_index;
887 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
888 static unsigned long dirty_space_ids = 0;
889
890 static DEFINE_SPINLOCK(sid_lock);
891
alloc_sid(void)892 unsigned long alloc_sid(void)
893 {
894 unsigned long index;
895
896 spin_lock(&sid_lock);
897
898 if (free_space_ids == 0) {
899 if (dirty_space_ids != 0) {
900 spin_unlock(&sid_lock);
901 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
902 spin_lock(&sid_lock);
903 }
904 BUG_ON(free_space_ids == 0);
905 }
906
907 free_space_ids--;
908
909 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
910 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
911 space_id_index = index;
912
913 spin_unlock(&sid_lock);
914
915 return index << SPACEID_SHIFT;
916 }
917
free_sid(unsigned long spaceid)918 void free_sid(unsigned long spaceid)
919 {
920 unsigned long index = spaceid >> SPACEID_SHIFT;
921 unsigned long *dirty_space_offset;
922
923 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
924 index &= (BITS_PER_LONG - 1);
925
926 spin_lock(&sid_lock);
927
928 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
929
930 *dirty_space_offset |= (1L << index);
931 dirty_space_ids++;
932
933 spin_unlock(&sid_lock);
934 }
935
936
937 #ifdef CONFIG_SMP
get_dirty_sids(unsigned long * ndirtyptr,unsigned long * dirty_array)938 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
939 {
940 int i;
941
942 /* NOTE: sid_lock must be held upon entry */
943
944 *ndirtyptr = dirty_space_ids;
945 if (dirty_space_ids != 0) {
946 for (i = 0; i < SID_ARRAY_SIZE; i++) {
947 dirty_array[i] = dirty_space_id[i];
948 dirty_space_id[i] = 0;
949 }
950 dirty_space_ids = 0;
951 }
952
953 return;
954 }
955
recycle_sids(unsigned long ndirty,unsigned long * dirty_array)956 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
957 {
958 int i;
959
960 /* NOTE: sid_lock must be held upon entry */
961
962 if (ndirty != 0) {
963 for (i = 0; i < SID_ARRAY_SIZE; i++) {
964 space_id[i] ^= dirty_array[i];
965 }
966
967 free_space_ids += ndirty;
968 space_id_index = 0;
969 }
970 }
971
972 #else /* CONFIG_SMP */
973
recycle_sids(void)974 static void recycle_sids(void)
975 {
976 int i;
977
978 /* NOTE: sid_lock must be held upon entry */
979
980 if (dirty_space_ids != 0) {
981 for (i = 0; i < SID_ARRAY_SIZE; i++) {
982 space_id[i] ^= dirty_space_id[i];
983 dirty_space_id[i] = 0;
984 }
985
986 free_space_ids += dirty_space_ids;
987 dirty_space_ids = 0;
988 space_id_index = 0;
989 }
990 }
991 #endif
992
993 /*
994 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
995 * purged, we can safely reuse the space ids that were released but
996 * not flushed from the tlb.
997 */
998
999 #ifdef CONFIG_SMP
1000
1001 static unsigned long recycle_ndirty;
1002 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1003 static unsigned int recycle_inuse;
1004
flush_tlb_all(void)1005 void flush_tlb_all(void)
1006 {
1007 int do_recycle;
1008
1009 __inc_irq_stat(irq_tlb_count);
1010 do_recycle = 0;
1011 spin_lock(&sid_lock);
1012 if (dirty_space_ids > RECYCLE_THRESHOLD) {
1013 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
1014 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1015 recycle_inuse++;
1016 do_recycle++;
1017 }
1018 spin_unlock(&sid_lock);
1019 on_each_cpu(flush_tlb_all_local, NULL, 1);
1020 if (do_recycle) {
1021 spin_lock(&sid_lock);
1022 recycle_sids(recycle_ndirty,recycle_dirty_array);
1023 recycle_inuse = 0;
1024 spin_unlock(&sid_lock);
1025 }
1026 }
1027 #else
flush_tlb_all(void)1028 void flush_tlb_all(void)
1029 {
1030 __inc_irq_stat(irq_tlb_count);
1031 spin_lock(&sid_lock);
1032 flush_tlb_all_local(NULL);
1033 recycle_sids();
1034 spin_unlock(&sid_lock);
1035 }
1036 #endif
1037
1038 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)1039 void free_initrd_mem(unsigned long start, unsigned long end)
1040 {
1041 free_reserved_area((void *)start, (void *)end, -1, "initrd");
1042 }
1043 #endif
1044