• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Framework for configuring and reading PHY devices
2  * Based on code in sungem_phy.c and gianfar_phy.c
3  *
4  * Author: Andy Fleming
5  *
6  * Copyright (c) 2004 Freescale Semiconductor, Inc.
7  * Copyright (c) 2006, 2007  Maciej W. Rozycki
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  *
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kernel.h>
19 #include <linux/string.h>
20 #include <linux/errno.h>
21 #include <linux/unistd.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/phy.h>
32 #include <linux/timer.h>
33 #include <linux/workqueue.h>
34 #include <linux/mdio.h>
35 #include <linux/io.h>
36 #include <linux/uaccess.h>
37 #include <linux/atomic.h>
38 
39 #include <asm/irq.h>
40 
phy_speed_to_str(int speed)41 static const char *phy_speed_to_str(int speed)
42 {
43 	switch (speed) {
44 	case SPEED_10:
45 		return "10Mbps";
46 	case SPEED_100:
47 		return "100Mbps";
48 	case SPEED_1000:
49 		return "1Gbps";
50 	case SPEED_2500:
51 		return "2.5Gbps";
52 	case SPEED_10000:
53 		return "10Gbps";
54 	case SPEED_UNKNOWN:
55 		return "Unknown";
56 	default:
57 		return "Unsupported (update phy.c)";
58 	}
59 }
60 
61 /**
62  * phy_print_status - Convenience function to print out the current phy status
63  * @phydev: the phy_device struct
64  */
phy_print_status(struct phy_device * phydev)65 void phy_print_status(struct phy_device *phydev)
66 {
67 	if (phydev->link) {
68 		netdev_info(phydev->attached_dev,
69 			"Link is Up - %s/%s - flow control %s\n",
70 			phy_speed_to_str(phydev->speed),
71 			DUPLEX_FULL == phydev->duplex ? "Full" : "Half",
72 			phydev->pause ? "rx/tx" : "off");
73 	} else	{
74 		netdev_info(phydev->attached_dev, "Link is Down\n");
75 	}
76 }
77 EXPORT_SYMBOL(phy_print_status);
78 
79 /**
80  * phy_clear_interrupt - Ack the phy device's interrupt
81  * @phydev: the phy_device struct
82  *
83  * If the @phydev driver has an ack_interrupt function, call it to
84  * ack and clear the phy device's interrupt.
85  *
86  * Returns 0 on success or < 0 on error.
87  */
phy_clear_interrupt(struct phy_device * phydev)88 static int phy_clear_interrupt(struct phy_device *phydev)
89 {
90 	if (phydev->drv->ack_interrupt)
91 		return phydev->drv->ack_interrupt(phydev);
92 
93 	return 0;
94 }
95 
96 /**
97  * phy_config_interrupt - configure the PHY device for the requested interrupts
98  * @phydev: the phy_device struct
99  * @interrupts: interrupt flags to configure for this @phydev
100  *
101  * Returns 0 on success or < 0 on error.
102  */
phy_config_interrupt(struct phy_device * phydev,u32 interrupts)103 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
104 {
105 	phydev->interrupts = interrupts;
106 	if (phydev->drv->config_intr)
107 		return phydev->drv->config_intr(phydev);
108 
109 	return 0;
110 }
111 
112 
113 /**
114  * phy_aneg_done - return auto-negotiation status
115  * @phydev: target phy_device struct
116  *
117  * Description: Return the auto-negotiation status from this @phydev
118  * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation
119  * is still pending.
120  */
phy_aneg_done(struct phy_device * phydev)121 static inline int phy_aneg_done(struct phy_device *phydev)
122 {
123 	if (phydev->drv->aneg_done)
124 		return phydev->drv->aneg_done(phydev);
125 
126 	return genphy_aneg_done(phydev);
127 }
128 
129 /* A structure for mapping a particular speed and duplex
130  * combination to a particular SUPPORTED and ADVERTISED value
131  */
132 struct phy_setting {
133 	int speed;
134 	int duplex;
135 	u32 setting;
136 };
137 
138 /* A mapping of all SUPPORTED settings to speed/duplex */
139 static const struct phy_setting settings[] = {
140 	{
141 		.speed = SPEED_10000,
142 		.duplex = DUPLEX_FULL,
143 		.setting = SUPPORTED_10000baseKR_Full,
144 	},
145 	{
146 		.speed = SPEED_10000,
147 		.duplex = DUPLEX_FULL,
148 		.setting = SUPPORTED_10000baseKX4_Full,
149 	},
150 	{
151 		.speed = SPEED_10000,
152 		.duplex = DUPLEX_FULL,
153 		.setting = SUPPORTED_10000baseT_Full,
154 	},
155 	{
156 		.speed = SPEED_2500,
157 		.duplex = DUPLEX_FULL,
158 		.setting = SUPPORTED_2500baseX_Full,
159 	},
160 	{
161 		.speed = SPEED_1000,
162 		.duplex = DUPLEX_FULL,
163 		.setting = SUPPORTED_1000baseKX_Full,
164 	},
165 	{
166 		.speed = SPEED_1000,
167 		.duplex = DUPLEX_FULL,
168 		.setting = SUPPORTED_1000baseT_Full,
169 	},
170 	{
171 		.speed = SPEED_1000,
172 		.duplex = DUPLEX_HALF,
173 		.setting = SUPPORTED_1000baseT_Half,
174 	},
175 	{
176 		.speed = SPEED_100,
177 		.duplex = DUPLEX_FULL,
178 		.setting = SUPPORTED_100baseT_Full,
179 	},
180 	{
181 		.speed = SPEED_100,
182 		.duplex = DUPLEX_HALF,
183 		.setting = SUPPORTED_100baseT_Half,
184 	},
185 	{
186 		.speed = SPEED_10,
187 		.duplex = DUPLEX_FULL,
188 		.setting = SUPPORTED_10baseT_Full,
189 	},
190 	{
191 		.speed = SPEED_10,
192 		.duplex = DUPLEX_HALF,
193 		.setting = SUPPORTED_10baseT_Half,
194 	},
195 };
196 
197 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings)
198 
199 /**
200  * phy_find_setting - find a PHY settings array entry that matches speed & duplex
201  * @speed: speed to match
202  * @duplex: duplex to match
203  *
204  * Description: Searches the settings array for the setting which
205  *   matches the desired speed and duplex, and returns the index
206  *   of that setting.  Returns the index of the last setting if
207  *   none of the others match.
208  */
phy_find_setting(int speed,int duplex)209 static inline unsigned int phy_find_setting(int speed, int duplex)
210 {
211 	unsigned int idx = 0;
212 
213 	while (idx < ARRAY_SIZE(settings) &&
214 	       (settings[idx].speed != speed || settings[idx].duplex != duplex))
215 		idx++;
216 
217 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
218 }
219 
220 /**
221  * phy_find_valid - find a PHY setting that matches the requested features mask
222  * @idx: The first index in settings[] to search
223  * @features: A mask of the valid settings
224  *
225  * Description: Returns the index of the first valid setting less
226  *   than or equal to the one pointed to by idx, as determined by
227  *   the mask in features.  Returns the index of the last setting
228  *   if nothing else matches.
229  */
phy_find_valid(unsigned int idx,u32 features)230 static inline unsigned int phy_find_valid(unsigned int idx, u32 features)
231 {
232 	while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features))
233 		idx++;
234 
235 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
236 }
237 
238 /**
239  * phy_check_valid - check if there is a valid PHY setting which matches
240  *		     speed, duplex, and feature mask
241  * @speed: speed to match
242  * @duplex: duplex to match
243  * @features: A mask of the valid settings
244  *
245  * Description: Returns true if there is a valid setting, false otherwise.
246  */
phy_check_valid(int speed,int duplex,u32 features)247 static inline bool phy_check_valid(int speed, int duplex, u32 features)
248 {
249 	unsigned int idx;
250 
251 	idx = phy_find_valid(phy_find_setting(speed, duplex), features);
252 
253 	return settings[idx].speed == speed && settings[idx].duplex == duplex &&
254 		(settings[idx].setting & features);
255 }
256 
257 /**
258  * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex
259  * @phydev: the target phy_device struct
260  *
261  * Description: Make sure the PHY is set to supported speeds and
262  *   duplexes.  Drop down by one in this order:  1000/FULL,
263  *   1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.
264  */
phy_sanitize_settings(struct phy_device * phydev)265 static void phy_sanitize_settings(struct phy_device *phydev)
266 {
267 	u32 features = phydev->supported;
268 	unsigned int idx;
269 
270 	/* Sanitize settings based on PHY capabilities */
271 	if ((features & SUPPORTED_Autoneg) == 0)
272 		phydev->autoneg = AUTONEG_DISABLE;
273 
274 	idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex),
275 			features);
276 
277 	phydev->speed = settings[idx].speed;
278 	phydev->duplex = settings[idx].duplex;
279 }
280 
281 /**
282  * phy_ethtool_sset - generic ethtool sset function, handles all the details
283  * @phydev: target phy_device struct
284  * @cmd: ethtool_cmd
285  *
286  * A few notes about parameter checking:
287  * - We don't set port or transceiver, so we don't care what they
288  *   were set to.
289  * - phy_start_aneg() will make sure forced settings are sane, and
290  *   choose the next best ones from the ones selected, so we don't
291  *   care if ethtool tries to give us bad values.
292  */
phy_ethtool_sset(struct phy_device * phydev,struct ethtool_cmd * cmd)293 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd)
294 {
295 	u32 speed = ethtool_cmd_speed(cmd);
296 
297 	if (cmd->phy_address != phydev->addr)
298 		return -EINVAL;
299 
300 	/* We make sure that we don't pass unsupported values in to the PHY */
301 	cmd->advertising &= phydev->supported;
302 
303 	/* Verify the settings we care about. */
304 	if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
305 		return -EINVAL;
306 
307 	if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
308 		return -EINVAL;
309 
310 	if (cmd->autoneg == AUTONEG_DISABLE &&
311 	    ((speed != SPEED_1000 &&
312 	      speed != SPEED_100 &&
313 	      speed != SPEED_10) ||
314 	     (cmd->duplex != DUPLEX_HALF &&
315 	      cmd->duplex != DUPLEX_FULL)))
316 		return -EINVAL;
317 
318 	phydev->autoneg = cmd->autoneg;
319 
320 	phydev->speed = speed;
321 
322 	phydev->advertising = cmd->advertising;
323 
324 	if (AUTONEG_ENABLE == cmd->autoneg)
325 		phydev->advertising |= ADVERTISED_Autoneg;
326 	else
327 		phydev->advertising &= ~ADVERTISED_Autoneg;
328 
329 	phydev->duplex = cmd->duplex;
330 
331 	/* Restart the PHY */
332 	phy_start_aneg(phydev);
333 
334 	return 0;
335 }
336 EXPORT_SYMBOL(phy_ethtool_sset);
337 
phy_ethtool_gset(struct phy_device * phydev,struct ethtool_cmd * cmd)338 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd)
339 {
340 	cmd->supported = phydev->supported;
341 
342 	cmd->advertising = phydev->advertising;
343 	cmd->lp_advertising = phydev->lp_advertising;
344 
345 	ethtool_cmd_speed_set(cmd, phydev->speed);
346 	cmd->duplex = phydev->duplex;
347 	if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
348 		cmd->port = PORT_BNC;
349 	else
350 		cmd->port = PORT_MII;
351 	cmd->phy_address = phydev->addr;
352 	cmd->transceiver = phy_is_internal(phydev) ?
353 		XCVR_INTERNAL : XCVR_EXTERNAL;
354 	cmd->autoneg = phydev->autoneg;
355 
356 	return 0;
357 }
358 EXPORT_SYMBOL(phy_ethtool_gset);
359 
360 /**
361  * phy_mii_ioctl - generic PHY MII ioctl interface
362  * @phydev: the phy_device struct
363  * @ifr: &struct ifreq for socket ioctl's
364  * @cmd: ioctl cmd to execute
365  *
366  * Note that this function is currently incompatible with the
367  * PHYCONTROL layer.  It changes registers without regard to
368  * current state.  Use at own risk.
369  */
phy_mii_ioctl(struct phy_device * phydev,struct ifreq * ifr,int cmd)370 int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd)
371 {
372 	struct mii_ioctl_data *mii_data = if_mii(ifr);
373 	u16 val = mii_data->val_in;
374 	bool change_autoneg = false;
375 
376 	switch (cmd) {
377 	case SIOCGMIIPHY:
378 		mii_data->phy_id = phydev->addr;
379 		/* fall through */
380 
381 	case SIOCGMIIREG:
382 		mii_data->val_out = mdiobus_read(phydev->bus, mii_data->phy_id,
383 						 mii_data->reg_num);
384 		return 0;
385 
386 	case SIOCSMIIREG:
387 		if (mii_data->phy_id == phydev->addr) {
388 			switch (mii_data->reg_num) {
389 			case MII_BMCR:
390 				if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0) {
391 					if (phydev->autoneg == AUTONEG_ENABLE)
392 						change_autoneg = true;
393 					phydev->autoneg = AUTONEG_DISABLE;
394 					if (val & BMCR_FULLDPLX)
395 						phydev->duplex = DUPLEX_FULL;
396 					else
397 						phydev->duplex = DUPLEX_HALF;
398 					if (val & BMCR_SPEED1000)
399 						phydev->speed = SPEED_1000;
400 					else if (val & BMCR_SPEED100)
401 						phydev->speed = SPEED_100;
402 					else phydev->speed = SPEED_10;
403 				}
404 				else {
405 					if (phydev->autoneg == AUTONEG_DISABLE)
406 						change_autoneg = true;
407 					phydev->autoneg = AUTONEG_ENABLE;
408 				}
409 				break;
410 			case MII_ADVERTISE:
411 				phydev->advertising = mii_adv_to_ethtool_adv_t(val);
412 				change_autoneg = true;
413 				break;
414 			default:
415 				/* do nothing */
416 				break;
417 			}
418 		}
419 
420 		mdiobus_write(phydev->bus, mii_data->phy_id,
421 			      mii_data->reg_num, val);
422 
423 		if (mii_data->reg_num == MII_BMCR &&
424 		    val & BMCR_RESET)
425 			return phy_init_hw(phydev);
426 
427 		if (change_autoneg)
428 			return phy_start_aneg(phydev);
429 
430 		return 0;
431 
432 	case SIOCSHWTSTAMP:
433 		if (phydev->drv->hwtstamp)
434 			return phydev->drv->hwtstamp(phydev, ifr);
435 		/* fall through */
436 
437 	default:
438 		return -EOPNOTSUPP;
439 	}
440 }
441 EXPORT_SYMBOL(phy_mii_ioctl);
442 
443 /**
444  * phy_start_aneg - start auto-negotiation for this PHY device
445  * @phydev: the phy_device struct
446  *
447  * Description: Sanitizes the settings (if we're not autonegotiating
448  *   them), and then calls the driver's config_aneg function.
449  *   If the PHYCONTROL Layer is operating, we change the state to
450  *   reflect the beginning of Auto-negotiation or forcing.
451  */
phy_start_aneg(struct phy_device * phydev)452 int phy_start_aneg(struct phy_device *phydev)
453 {
454 	int err;
455 
456 	mutex_lock(&phydev->lock);
457 
458 	if (AUTONEG_DISABLE == phydev->autoneg)
459 		phy_sanitize_settings(phydev);
460 
461 	err = phydev->drv->config_aneg(phydev);
462 	if (err < 0)
463 		goto out_unlock;
464 
465 	if (phydev->state != PHY_HALTED) {
466 		if (AUTONEG_ENABLE == phydev->autoneg) {
467 			phydev->state = PHY_AN;
468 			phydev->link_timeout = PHY_AN_TIMEOUT;
469 		} else {
470 			phydev->state = PHY_FORCING;
471 			phydev->link_timeout = PHY_FORCE_TIMEOUT;
472 		}
473 	}
474 
475 out_unlock:
476 	mutex_unlock(&phydev->lock);
477 	return err;
478 }
479 EXPORT_SYMBOL(phy_start_aneg);
480 
481 /**
482  * phy_start_machine - start PHY state machine tracking
483  * @phydev: the phy_device struct
484  *
485  * Description: The PHY infrastructure can run a state machine
486  *   which tracks whether the PHY is starting up, negotiating,
487  *   etc.  This function starts the timer which tracks the state
488  *   of the PHY.  If you want to maintain your own state machine,
489  *   do not call this function.
490  */
phy_start_machine(struct phy_device * phydev)491 void phy_start_machine(struct phy_device *phydev)
492 {
493 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ);
494 }
495 
496 /**
497  * phy_stop_machine - stop the PHY state machine tracking
498  * @phydev: target phy_device struct
499  *
500  * Description: Stops the state machine timer, sets the state to UP
501  *   (unless it wasn't up yet). This function must be called BEFORE
502  *   phy_detach.
503  */
phy_stop_machine(struct phy_device * phydev)504 void phy_stop_machine(struct phy_device *phydev)
505 {
506 	cancel_delayed_work_sync(&phydev->state_queue);
507 
508 	mutex_lock(&phydev->lock);
509 	if (phydev->state > PHY_UP && phydev->state != PHY_HALTED)
510 		phydev->state = PHY_UP;
511 	mutex_unlock(&phydev->lock);
512 }
513 
514 /**
515  * phy_error - enter HALTED state for this PHY device
516  * @phydev: target phy_device struct
517  *
518  * Moves the PHY to the HALTED state in response to a read
519  * or write error, and tells the controller the link is down.
520  * Must not be called from interrupt context, or while the
521  * phydev->lock is held.
522  */
phy_error(struct phy_device * phydev)523 static void phy_error(struct phy_device *phydev)
524 {
525 	mutex_lock(&phydev->lock);
526 	phydev->state = PHY_HALTED;
527 	mutex_unlock(&phydev->lock);
528 }
529 
530 /**
531  * phy_interrupt - PHY interrupt handler
532  * @irq: interrupt line
533  * @phy_dat: phy_device pointer
534  *
535  * Description: When a PHY interrupt occurs, the handler disables
536  * interrupts, and schedules a work task to clear the interrupt.
537  */
phy_interrupt(int irq,void * phy_dat)538 static irqreturn_t phy_interrupt(int irq, void *phy_dat)
539 {
540 	struct phy_device *phydev = phy_dat;
541 
542 	if (PHY_HALTED == phydev->state)
543 		return IRQ_NONE;		/* It can't be ours.  */
544 
545 	/* The MDIO bus is not allowed to be written in interrupt
546 	 * context, so we need to disable the irq here.  A work
547 	 * queue will write the PHY to disable and clear the
548 	 * interrupt, and then reenable the irq line.
549 	 */
550 	disable_irq_nosync(irq);
551 	atomic_inc(&phydev->irq_disable);
552 
553 	queue_work(system_power_efficient_wq, &phydev->phy_queue);
554 
555 	return IRQ_HANDLED;
556 }
557 
558 /**
559  * phy_enable_interrupts - Enable the interrupts from the PHY side
560  * @phydev: target phy_device struct
561  */
phy_enable_interrupts(struct phy_device * phydev)562 static int phy_enable_interrupts(struct phy_device *phydev)
563 {
564 	int err = phy_clear_interrupt(phydev);
565 
566 	if (err < 0)
567 		return err;
568 
569 	return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
570 }
571 
572 /**
573  * phy_disable_interrupts - Disable the PHY interrupts from the PHY side
574  * @phydev: target phy_device struct
575  */
phy_disable_interrupts(struct phy_device * phydev)576 static int phy_disable_interrupts(struct phy_device *phydev)
577 {
578 	int err;
579 
580 	/* Disable PHY interrupts */
581 	err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
582 	if (err)
583 		goto phy_err;
584 
585 	/* Clear the interrupt */
586 	err = phy_clear_interrupt(phydev);
587 	if (err)
588 		goto phy_err;
589 
590 	return 0;
591 
592 phy_err:
593 	phy_error(phydev);
594 
595 	return err;
596 }
597 
598 /**
599  * phy_start_interrupts - request and enable interrupts for a PHY device
600  * @phydev: target phy_device struct
601  *
602  * Description: Request the interrupt for the given PHY.
603  *   If this fails, then we set irq to PHY_POLL.
604  *   Otherwise, we enable the interrupts in the PHY.
605  *   This should only be called with a valid IRQ number.
606  *   Returns 0 on success or < 0 on error.
607  */
phy_start_interrupts(struct phy_device * phydev)608 int phy_start_interrupts(struct phy_device *phydev)
609 {
610 	atomic_set(&phydev->irq_disable, 0);
611 	if (request_irq(phydev->irq, phy_interrupt, 0, "phy_interrupt",
612 			phydev) < 0) {
613 		pr_warn("%s: Can't get IRQ %d (PHY)\n",
614 			phydev->bus->name, phydev->irq);
615 		phydev->irq = PHY_POLL;
616 		return 0;
617 	}
618 
619 	return phy_enable_interrupts(phydev);
620 }
621 EXPORT_SYMBOL(phy_start_interrupts);
622 
623 /**
624  * phy_stop_interrupts - disable interrupts from a PHY device
625  * @phydev: target phy_device struct
626  */
phy_stop_interrupts(struct phy_device * phydev)627 int phy_stop_interrupts(struct phy_device *phydev)
628 {
629 	int err = phy_disable_interrupts(phydev);
630 
631 	if (err)
632 		phy_error(phydev);
633 
634 	free_irq(phydev->irq, phydev);
635 
636 	/* Cannot call flush_scheduled_work() here as desired because
637 	 * of rtnl_lock(), but we do not really care about what would
638 	 * be done, except from enable_irq(), so cancel any work
639 	 * possibly pending and take care of the matter below.
640 	 */
641 	cancel_work_sync(&phydev->phy_queue);
642 	/* If work indeed has been cancelled, disable_irq() will have
643 	 * been left unbalanced from phy_interrupt() and enable_irq()
644 	 * has to be called so that other devices on the line work.
645 	 */
646 	while (atomic_dec_return(&phydev->irq_disable) >= 0)
647 		enable_irq(phydev->irq);
648 
649 	return err;
650 }
651 EXPORT_SYMBOL(phy_stop_interrupts);
652 
653 /**
654  * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes
655  * @work: work_struct that describes the work to be done
656  */
phy_change(struct work_struct * work)657 void phy_change(struct work_struct *work)
658 {
659 	struct phy_device *phydev =
660 		container_of(work, struct phy_device, phy_queue);
661 
662 	if (phydev->drv->did_interrupt &&
663 	    !phydev->drv->did_interrupt(phydev))
664 		goto ignore;
665 
666 	if (phy_disable_interrupts(phydev))
667 		goto phy_err;
668 
669 	mutex_lock(&phydev->lock);
670 	if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state))
671 		phydev->state = PHY_CHANGELINK;
672 	mutex_unlock(&phydev->lock);
673 
674 	atomic_dec(&phydev->irq_disable);
675 	enable_irq(phydev->irq);
676 
677 	/* Reenable interrupts */
678 	if (PHY_HALTED != phydev->state &&
679 	    phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED))
680 		goto irq_enable_err;
681 
682 	/* reschedule state queue work to run as soon as possible */
683 	cancel_delayed_work_sync(&phydev->state_queue);
684 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0);
685 	return;
686 
687 ignore:
688 	atomic_dec(&phydev->irq_disable);
689 	enable_irq(phydev->irq);
690 	return;
691 
692 irq_enable_err:
693 	disable_irq(phydev->irq);
694 	atomic_inc(&phydev->irq_disable);
695 phy_err:
696 	phy_error(phydev);
697 }
698 
699 /**
700  * phy_stop - Bring down the PHY link, and stop checking the status
701  * @phydev: target phy_device struct
702  */
phy_stop(struct phy_device * phydev)703 void phy_stop(struct phy_device *phydev)
704 {
705 	mutex_lock(&phydev->lock);
706 
707 	if (PHY_HALTED == phydev->state)
708 		goto out_unlock;
709 
710 	if (phy_interrupt_is_valid(phydev)) {
711 		/* Disable PHY Interrupts */
712 		phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
713 
714 		/* Clear any pending interrupts */
715 		phy_clear_interrupt(phydev);
716 	}
717 
718 	phydev->state = PHY_HALTED;
719 
720 out_unlock:
721 	mutex_unlock(&phydev->lock);
722 
723 	/* Cannot call flush_scheduled_work() here as desired because
724 	 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change()
725 	 * will not reenable interrupts.
726 	 */
727 }
728 EXPORT_SYMBOL(phy_stop);
729 
730 /**
731  * phy_start - start or restart a PHY device
732  * @phydev: target phy_device struct
733  *
734  * Description: Indicates the attached device's readiness to
735  *   handle PHY-related work.  Used during startup to start the
736  *   PHY, and after a call to phy_stop() to resume operation.
737  *   Also used to indicate the MDIO bus has cleared an error
738  *   condition.
739  */
phy_start(struct phy_device * phydev)740 void phy_start(struct phy_device *phydev)
741 {
742 	mutex_lock(&phydev->lock);
743 
744 	switch (phydev->state) {
745 	case PHY_STARTING:
746 		phydev->state = PHY_PENDING;
747 		break;
748 	case PHY_READY:
749 		phydev->state = PHY_UP;
750 		break;
751 	case PHY_HALTED:
752 		phydev->state = PHY_RESUMING;
753 	default:
754 		break;
755 	}
756 	mutex_unlock(&phydev->lock);
757 }
758 EXPORT_SYMBOL(phy_start);
759 
760 /**
761  * phy_state_machine - Handle the state machine
762  * @work: work_struct that describes the work to be done
763  */
phy_state_machine(struct work_struct * work)764 void phy_state_machine(struct work_struct *work)
765 {
766 	struct delayed_work *dwork = to_delayed_work(work);
767 	struct phy_device *phydev =
768 			container_of(dwork, struct phy_device, state_queue);
769 	bool needs_aneg = false, do_suspend = false, do_resume = false;
770 	int err = 0;
771 
772 	mutex_lock(&phydev->lock);
773 
774 	if (phydev->drv->link_change_notify)
775 		phydev->drv->link_change_notify(phydev);
776 
777 	switch (phydev->state) {
778 	case PHY_DOWN:
779 	case PHY_STARTING:
780 	case PHY_READY:
781 	case PHY_PENDING:
782 		break;
783 	case PHY_UP:
784 		needs_aneg = true;
785 
786 		phydev->link_timeout = PHY_AN_TIMEOUT;
787 
788 		break;
789 	case PHY_AN:
790 		err = phy_read_status(phydev);
791 		if (err < 0)
792 			break;
793 
794 		/* If the link is down, give up on negotiation for now */
795 		if (!phydev->link) {
796 			phydev->state = PHY_NOLINK;
797 			netif_carrier_off(phydev->attached_dev);
798 			phydev->adjust_link(phydev->attached_dev);
799 			break;
800 		}
801 
802 		/* Check if negotiation is done.  Break if there's an error */
803 		err = phy_aneg_done(phydev);
804 		if (err < 0)
805 			break;
806 
807 		/* If AN is done, we're running */
808 		if (err > 0) {
809 			phydev->state = PHY_RUNNING;
810 			netif_carrier_on(phydev->attached_dev);
811 			phydev->adjust_link(phydev->attached_dev);
812 
813 		} else if (0 == phydev->link_timeout--)
814 			needs_aneg = true;
815 		break;
816 	case PHY_NOLINK:
817 		err = phy_read_status(phydev);
818 		if (err)
819 			break;
820 
821 		if (phydev->link) {
822 			if (AUTONEG_ENABLE == phydev->autoneg) {
823 				err = phy_aneg_done(phydev);
824 				if (err < 0)
825 					break;
826 
827 				if (!err) {
828 					phydev->state = PHY_AN;
829 					phydev->link_timeout = PHY_AN_TIMEOUT;
830 					break;
831 				}
832 			}
833 			phydev->state = PHY_RUNNING;
834 			netif_carrier_on(phydev->attached_dev);
835 			phydev->adjust_link(phydev->attached_dev);
836 		}
837 		break;
838 	case PHY_FORCING:
839 		err = genphy_update_link(phydev);
840 		if (err)
841 			break;
842 
843 		if (phydev->link) {
844 			phydev->state = PHY_RUNNING;
845 			netif_carrier_on(phydev->attached_dev);
846 		} else {
847 			if (0 == phydev->link_timeout--)
848 				needs_aneg = true;
849 		}
850 
851 		phydev->adjust_link(phydev->attached_dev);
852 		break;
853 	case PHY_RUNNING:
854 		/* Only register a CHANGE if we are
855 		 * polling or ignoring interrupts
856 		 */
857 		if (!phy_interrupt_is_valid(phydev))
858 			phydev->state = PHY_CHANGELINK;
859 		break;
860 	case PHY_CHANGELINK:
861 		err = phy_read_status(phydev);
862 		if (err)
863 			break;
864 
865 		if (phydev->link) {
866 			phydev->state = PHY_RUNNING;
867 			netif_carrier_on(phydev->attached_dev);
868 		} else {
869 			phydev->state = PHY_NOLINK;
870 			netif_carrier_off(phydev->attached_dev);
871 		}
872 
873 		phydev->adjust_link(phydev->attached_dev);
874 
875 		if (phy_interrupt_is_valid(phydev))
876 			err = phy_config_interrupt(phydev,
877 						   PHY_INTERRUPT_ENABLED);
878 		break;
879 	case PHY_HALTED:
880 		if (phydev->link) {
881 			phydev->link = 0;
882 			netif_carrier_off(phydev->attached_dev);
883 			phydev->adjust_link(phydev->attached_dev);
884 			do_suspend = true;
885 		}
886 		break;
887 	case PHY_RESUMING:
888 		err = phy_clear_interrupt(phydev);
889 		if (err)
890 			break;
891 
892 		err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
893 		if (err)
894 			break;
895 
896 		if (AUTONEG_ENABLE == phydev->autoneg) {
897 			err = phy_aneg_done(phydev);
898 			if (err < 0)
899 				break;
900 
901 			/* err > 0 if AN is done.
902 			 * Otherwise, it's 0, and we're  still waiting for AN
903 			 */
904 			if (err > 0) {
905 				err = phy_read_status(phydev);
906 				if (err)
907 					break;
908 
909 				if (phydev->link) {
910 					phydev->state = PHY_RUNNING;
911 					netif_carrier_on(phydev->attached_dev);
912 				} else	{
913 					phydev->state = PHY_NOLINK;
914 				}
915 				phydev->adjust_link(phydev->attached_dev);
916 			} else {
917 				phydev->state = PHY_AN;
918 				phydev->link_timeout = PHY_AN_TIMEOUT;
919 			}
920 		} else {
921 			err = phy_read_status(phydev);
922 			if (err)
923 				break;
924 
925 			if (phydev->link) {
926 				phydev->state = PHY_RUNNING;
927 				netif_carrier_on(phydev->attached_dev);
928 			} else	{
929 				phydev->state = PHY_NOLINK;
930 			}
931 			phydev->adjust_link(phydev->attached_dev);
932 		}
933 		do_resume = true;
934 		break;
935 	}
936 
937 	mutex_unlock(&phydev->lock);
938 
939 	if (needs_aneg)
940 		err = phy_start_aneg(phydev);
941 	else if (do_suspend)
942 		phy_suspend(phydev);
943 	else if (do_resume)
944 		phy_resume(phydev);
945 
946 	if (err < 0)
947 		phy_error(phydev);
948 
949 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue,
950 			   PHY_STATE_TIME * HZ);
951 }
952 
phy_mac_interrupt(struct phy_device * phydev,int new_link)953 void phy_mac_interrupt(struct phy_device *phydev, int new_link)
954 {
955 	cancel_work_sync(&phydev->phy_queue);
956 	phydev->link = new_link;
957 	schedule_work(&phydev->phy_queue);
958 }
959 EXPORT_SYMBOL(phy_mac_interrupt);
960 
mmd_phy_indirect(struct mii_bus * bus,int prtad,int devad,int addr)961 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad,
962 				    int addr)
963 {
964 	/* Write the desired MMD Devad */
965 	bus->write(bus, addr, MII_MMD_CTRL, devad);
966 
967 	/* Write the desired MMD register address */
968 	bus->write(bus, addr, MII_MMD_DATA, prtad);
969 
970 	/* Select the Function : DATA with no post increment */
971 	bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
972 }
973 
974 /**
975  * phy_read_mmd_indirect - reads data from the MMD registers
976  * @phydev: The PHY device bus
977  * @prtad: MMD Address
978  * @devad: MMD DEVAD
979  * @addr: PHY address on the MII bus
980  *
981  * Description: it reads data from the MMD registers (clause 22 to access to
982  * clause 45) of the specified phy address.
983  * To read these register we have:
984  * 1) Write reg 13 // DEVAD
985  * 2) Write reg 14 // MMD Address
986  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
987  * 3) Read  reg 14 // Read MMD data
988  */
phy_read_mmd_indirect(struct phy_device * phydev,int prtad,int devad,int addr)989 int phy_read_mmd_indirect(struct phy_device *phydev, int prtad,
990 				 int devad, int addr)
991 {
992 	struct phy_driver *phydrv = phydev->drv;
993 	int value = -1;
994 
995 	if (phydrv->read_mmd_indirect == NULL) {
996 		mmd_phy_indirect(phydev->bus, prtad, devad, addr);
997 
998 		/* Read the content of the MMD's selected register */
999 		value = phydev->bus->read(phydev->bus, addr, MII_MMD_DATA);
1000 	} else {
1001 		value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr);
1002 	}
1003 	return value;
1004 }
1005 EXPORT_SYMBOL(phy_read_mmd_indirect);
1006 
1007 /**
1008  * phy_write_mmd_indirect - writes data to the MMD registers
1009  * @phydev: The PHY device
1010  * @prtad: MMD Address
1011  * @devad: MMD DEVAD
1012  * @addr: PHY address on the MII bus
1013  * @data: data to write in the MMD register
1014  *
1015  * Description: Write data from the MMD registers of the specified
1016  * phy address.
1017  * To write these register we have:
1018  * 1) Write reg 13 // DEVAD
1019  * 2) Write reg 14 // MMD Address
1020  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
1021  * 3) Write reg 14 // Write MMD data
1022  */
phy_write_mmd_indirect(struct phy_device * phydev,int prtad,int devad,int addr,u32 data)1023 void phy_write_mmd_indirect(struct phy_device *phydev, int prtad,
1024 				   int devad, int addr, u32 data)
1025 {
1026 	struct phy_driver *phydrv = phydev->drv;
1027 
1028 	if (phydrv->write_mmd_indirect == NULL) {
1029 		mmd_phy_indirect(phydev->bus, prtad, devad, addr);
1030 
1031 		/* Write the data into MMD's selected register */
1032 		phydev->bus->write(phydev->bus, addr, MII_MMD_DATA, data);
1033 	} else {
1034 		phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data);
1035 	}
1036 }
1037 EXPORT_SYMBOL(phy_write_mmd_indirect);
1038 
1039 /**
1040  * phy_init_eee - init and check the EEE feature
1041  * @phydev: target phy_device struct
1042  * @clk_stop_enable: PHY may stop the clock during LPI
1043  *
1044  * Description: it checks if the Energy-Efficient Ethernet (EEE)
1045  * is supported by looking at the MMD registers 3.20 and 7.60/61
1046  * and it programs the MMD register 3.0 setting the "Clock stop enable"
1047  * bit if required.
1048  */
phy_init_eee(struct phy_device * phydev,bool clk_stop_enable)1049 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable)
1050 {
1051 	/* According to 802.3az,the EEE is supported only in full duplex-mode.
1052 	 * Also EEE feature is active when core is operating with MII, GMII
1053 	 * or RGMII (all kinds). Internal PHYs are also allowed to proceed and
1054 	 * should return an error if they do not support EEE.
1055 	 */
1056 	if ((phydev->duplex == DUPLEX_FULL) &&
1057 	    ((phydev->interface == PHY_INTERFACE_MODE_MII) ||
1058 	    (phydev->interface == PHY_INTERFACE_MODE_GMII) ||
1059 	    (phydev->interface >= PHY_INTERFACE_MODE_RGMII &&
1060 	     phydev->interface <= PHY_INTERFACE_MODE_RGMII_TXID) ||
1061 	     phy_is_internal(phydev))) {
1062 		int eee_lp, eee_cap, eee_adv;
1063 		u32 lp, cap, adv;
1064 		int status;
1065 
1066 		/* Read phy status to properly get the right settings */
1067 		status = phy_read_status(phydev);
1068 		if (status)
1069 			return status;
1070 
1071 		/* First check if the EEE ability is supported */
1072 		eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE,
1073 						MDIO_MMD_PCS, phydev->addr);
1074 		if (eee_cap <= 0)
1075 			goto eee_exit_err;
1076 
1077 		cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap);
1078 		if (!cap)
1079 			goto eee_exit_err;
1080 
1081 		/* Check which link settings negotiated and verify it in
1082 		 * the EEE advertising registers.
1083 		 */
1084 		eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE,
1085 					       MDIO_MMD_AN, phydev->addr);
1086 		if (eee_lp <= 0)
1087 			goto eee_exit_err;
1088 
1089 		eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
1090 						MDIO_MMD_AN, phydev->addr);
1091 		if (eee_adv <= 0)
1092 			goto eee_exit_err;
1093 
1094 		adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv);
1095 		lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp);
1096 		if (!phy_check_valid(phydev->speed, phydev->duplex, lp & adv))
1097 			goto eee_exit_err;
1098 
1099 		if (clk_stop_enable) {
1100 			/* Configure the PHY to stop receiving xMII
1101 			 * clock while it is signaling LPI.
1102 			 */
1103 			int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1,
1104 							MDIO_MMD_PCS,
1105 							phydev->addr);
1106 			if (val < 0)
1107 				return val;
1108 
1109 			val |= MDIO_PCS_CTRL1_CLKSTOP_EN;
1110 			phy_write_mmd_indirect(phydev, MDIO_CTRL1,
1111 					       MDIO_MMD_PCS, phydev->addr,
1112 					       val);
1113 		}
1114 
1115 		return 0; /* EEE supported */
1116 	}
1117 eee_exit_err:
1118 	return -EPROTONOSUPPORT;
1119 }
1120 EXPORT_SYMBOL(phy_init_eee);
1121 
1122 /**
1123  * phy_get_eee_err - report the EEE wake error count
1124  * @phydev: target phy_device struct
1125  *
1126  * Description: it is to report the number of time where the PHY
1127  * failed to complete its normal wake sequence.
1128  */
phy_get_eee_err(struct phy_device * phydev)1129 int phy_get_eee_err(struct phy_device *phydev)
1130 {
1131 	return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR,
1132 				     MDIO_MMD_PCS, phydev->addr);
1133 }
1134 EXPORT_SYMBOL(phy_get_eee_err);
1135 
1136 /**
1137  * phy_ethtool_get_eee - get EEE supported and status
1138  * @phydev: target phy_device struct
1139  * @data: ethtool_eee data
1140  *
1141  * Description: it reportes the Supported/Advertisement/LP Advertisement
1142  * capabilities.
1143  */
phy_ethtool_get_eee(struct phy_device * phydev,struct ethtool_eee * data)1144 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data)
1145 {
1146 	int val;
1147 
1148 	/* Get Supported EEE */
1149 	val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE,
1150 				    MDIO_MMD_PCS, phydev->addr);
1151 	if (val < 0)
1152 		return val;
1153 	data->supported = mmd_eee_cap_to_ethtool_sup_t(val);
1154 
1155 	/* Get advertisement EEE */
1156 	val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
1157 				    MDIO_MMD_AN, phydev->addr);
1158 	if (val < 0)
1159 		return val;
1160 	data->advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1161 
1162 	/* Get LP advertisement EEE */
1163 	val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE,
1164 				    MDIO_MMD_AN, phydev->addr);
1165 	if (val < 0)
1166 		return val;
1167 	data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1168 
1169 	return 0;
1170 }
1171 EXPORT_SYMBOL(phy_ethtool_get_eee);
1172 
1173 /**
1174  * phy_ethtool_set_eee - set EEE supported and status
1175  * @phydev: target phy_device struct
1176  * @data: ethtool_eee data
1177  *
1178  * Description: it is to program the Advertisement EEE register.
1179  */
phy_ethtool_set_eee(struct phy_device * phydev,struct ethtool_eee * data)1180 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data)
1181 {
1182 	int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised);
1183 
1184 	phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN,
1185 			       phydev->addr, val);
1186 
1187 	return 0;
1188 }
1189 EXPORT_SYMBOL(phy_ethtool_set_eee);
1190 
phy_ethtool_set_wol(struct phy_device * phydev,struct ethtool_wolinfo * wol)1191 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1192 {
1193 	if (phydev->drv->set_wol)
1194 		return phydev->drv->set_wol(phydev, wol);
1195 
1196 	return -EOPNOTSUPP;
1197 }
1198 EXPORT_SYMBOL(phy_ethtool_set_wol);
1199 
phy_ethtool_get_wol(struct phy_device * phydev,struct ethtool_wolinfo * wol)1200 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1201 {
1202 	if (phydev->drv->get_wol)
1203 		phydev->drv->get_wol(phydev, wol);
1204 }
1205 EXPORT_SYMBOL(phy_ethtool_get_wol);
1206