• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*********************************************************************
2  *
3  * Filename:      irttp.c
4  * Version:       1.2
5  * Description:   Tiny Transport Protocol (TTP) implementation
6  * Status:        Stable
7  * Author:        Dag Brattli <dagb@cs.uit.no>
8  * Created at:    Sun Aug 31 20:14:31 1997
9  * Modified at:   Wed Jan  5 11:31:27 2000
10  * Modified by:   Dag Brattli <dagb@cs.uit.no>
11  *
12  *     Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
13  *     All Rights Reserved.
14  *     Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
15  *
16  *     This program is free software; you can redistribute it and/or
17  *     modify it under the terms of the GNU General Public License as
18  *     published by the Free Software Foundation; either version 2 of
19  *     the License, or (at your option) any later version.
20  *
21  *     Neither Dag Brattli nor University of Tromsø admit liability nor
22  *     provide warranty for any of this software. This material is
23  *     provided "AS-IS" and at no charge.
24  *
25  ********************************************************************/
26 
27 #include <linux/skbuff.h>
28 #include <linux/init.h>
29 #include <linux/fs.h>
30 #include <linux/seq_file.h>
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 
34 #include <asm/byteorder.h>
35 #include <asm/unaligned.h>
36 
37 #include <net/irda/irda.h>
38 #include <net/irda/irlap.h>
39 #include <net/irda/irlmp.h>
40 #include <net/irda/parameters.h>
41 #include <net/irda/irttp.h>
42 
43 static struct irttp_cb *irttp;
44 
45 static void __irttp_close_tsap(struct tsap_cb *self);
46 
47 static int irttp_data_indication(void *instance, void *sap,
48 				 struct sk_buff *skb);
49 static int irttp_udata_indication(void *instance, void *sap,
50 				  struct sk_buff *skb);
51 static void irttp_disconnect_indication(void *instance, void *sap,
52 					LM_REASON reason, struct sk_buff *);
53 static void irttp_connect_indication(void *instance, void *sap,
54 				     struct qos_info *qos, __u32 max_sdu_size,
55 				     __u8 header_size, struct sk_buff *skb);
56 static void irttp_connect_confirm(void *instance, void *sap,
57 				  struct qos_info *qos, __u32 max_sdu_size,
58 				  __u8 header_size, struct sk_buff *skb);
59 static void irttp_run_tx_queue(struct tsap_cb *self);
60 static void irttp_run_rx_queue(struct tsap_cb *self);
61 
62 static void irttp_flush_queues(struct tsap_cb *self);
63 static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
64 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
65 static void irttp_todo_expired(unsigned long data);
66 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
67 				    int get);
68 
69 static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
70 static void irttp_status_indication(void *instance,
71 				    LINK_STATUS link, LOCK_STATUS lock);
72 
73 /* Information for parsing parameters in IrTTP */
74 static pi_minor_info_t pi_minor_call_table[] = {
75 	{ NULL, 0 },                                             /* 0x00 */
76 	{ irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
77 };
78 static pi_major_info_t pi_major_call_table[] = { { pi_minor_call_table, 2 } };
79 static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
80 
81 /************************ GLOBAL PROCEDURES ************************/
82 
83 /*
84  * Function irttp_init (void)
85  *
86  *    Initialize the IrTTP layer. Called by module initialization code
87  *
88  */
irttp_init(void)89 int __init irttp_init(void)
90 {
91 	irttp = kzalloc(sizeof(struct irttp_cb), GFP_KERNEL);
92 	if (irttp == NULL)
93 		return -ENOMEM;
94 
95 	irttp->magic = TTP_MAGIC;
96 
97 	irttp->tsaps = hashbin_new(HB_LOCK);
98 	if (!irttp->tsaps) {
99 		IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
100 			   __func__);
101 		kfree(irttp);
102 		return -ENOMEM;
103 	}
104 
105 	return 0;
106 }
107 
108 /*
109  * Function irttp_cleanup (void)
110  *
111  *    Called by module destruction/cleanup code
112  *
113  */
irttp_cleanup(void)114 void irttp_cleanup(void)
115 {
116 	/* Check for main structure */
117 	IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
118 
119 	/*
120 	 *  Delete hashbin and close all TSAP instances in it
121 	 */
122 	hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
123 
124 	irttp->magic = 0;
125 
126 	/* De-allocate main structure */
127 	kfree(irttp);
128 
129 	irttp = NULL;
130 }
131 
132 /*************************** SUBROUTINES ***************************/
133 
134 /*
135  * Function irttp_start_todo_timer (self, timeout)
136  *
137  *    Start todo timer.
138  *
139  * Made it more effient and unsensitive to race conditions - Jean II
140  */
irttp_start_todo_timer(struct tsap_cb * self,int timeout)141 static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
142 {
143 	/* Set new value for timer */
144 	mod_timer(&self->todo_timer, jiffies + timeout);
145 }
146 
147 /*
148  * Function irttp_todo_expired (data)
149  *
150  *    Todo timer has expired!
151  *
152  * One of the restriction of the timer is that it is run only on the timer
153  * interrupt which run every 10ms. This mean that even if you set the timer
154  * with a delay of 0, it may take up to 10ms before it's run.
155  * So, to minimise latency and keep cache fresh, we try to avoid using
156  * it as much as possible.
157  * Note : we can't use tasklets, because they can't be asynchronously
158  * killed (need user context), and we can't guarantee that here...
159  * Jean II
160  */
irttp_todo_expired(unsigned long data)161 static void irttp_todo_expired(unsigned long data)
162 {
163 	struct tsap_cb *self = (struct tsap_cb *) data;
164 
165 	/* Check that we still exist */
166 	if (!self || self->magic != TTP_TSAP_MAGIC)
167 		return;
168 
169 	IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
170 
171 	/* Try to make some progress, especially on Tx side - Jean II */
172 	irttp_run_rx_queue(self);
173 	irttp_run_tx_queue(self);
174 
175 	/* Check if time for disconnect */
176 	if (test_bit(0, &self->disconnect_pend)) {
177 		/* Check if it's possible to disconnect yet */
178 		if (skb_queue_empty(&self->tx_queue)) {
179 			/* Make sure disconnect is not pending anymore */
180 			clear_bit(0, &self->disconnect_pend);	/* FALSE */
181 
182 			/* Note : self->disconnect_skb may be NULL */
183 			irttp_disconnect_request(self, self->disconnect_skb,
184 						 P_NORMAL);
185 			self->disconnect_skb = NULL;
186 		} else {
187 			/* Try again later */
188 			irttp_start_todo_timer(self, HZ/10);
189 
190 			/* No reason to try and close now */
191 			return;
192 		}
193 	}
194 
195 	/* Check if it's closing time */
196 	if (self->close_pend)
197 		/* Finish cleanup */
198 		irttp_close_tsap(self);
199 }
200 
201 /*
202  * Function irttp_flush_queues (self)
203  *
204  *     Flushes (removes all frames) in transitt-buffer (tx_list)
205  */
irttp_flush_queues(struct tsap_cb * self)206 static void irttp_flush_queues(struct tsap_cb *self)
207 {
208 	struct sk_buff *skb;
209 
210 	IRDA_DEBUG(4, "%s()\n", __func__);
211 
212 	IRDA_ASSERT(self != NULL, return;);
213 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
214 
215 	/* Deallocate frames waiting to be sent */
216 	while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
217 		dev_kfree_skb(skb);
218 
219 	/* Deallocate received frames */
220 	while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
221 		dev_kfree_skb(skb);
222 
223 	/* Deallocate received fragments */
224 	while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
225 		dev_kfree_skb(skb);
226 }
227 
228 /*
229  * Function irttp_reassemble (self)
230  *
231  *    Makes a new (continuous) skb of all the fragments in the fragment
232  *    queue
233  *
234  */
irttp_reassemble_skb(struct tsap_cb * self)235 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
236 {
237 	struct sk_buff *skb, *frag;
238 	int n = 0;  /* Fragment index */
239 
240 	IRDA_ASSERT(self != NULL, return NULL;);
241 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
242 
243 	IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __func__,
244 		   self->rx_sdu_size);
245 
246 	skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
247 	if (!skb)
248 		return NULL;
249 
250 	/*
251 	 * Need to reserve space for TTP header in case this skb needs to
252 	 * be requeued in case delivery failes
253 	 */
254 	skb_reserve(skb, TTP_HEADER);
255 	skb_put(skb, self->rx_sdu_size);
256 
257 	/*
258 	 *  Copy all fragments to a new buffer
259 	 */
260 	while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
261 		skb_copy_to_linear_data_offset(skb, n, frag->data, frag->len);
262 		n += frag->len;
263 
264 		dev_kfree_skb(frag);
265 	}
266 
267 	IRDA_DEBUG(2,
268 		   "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
269 		   __func__, n, self->rx_sdu_size, self->rx_max_sdu_size);
270 	/* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
271 	 * by summing the size of all fragments, so we should always
272 	 * have n == self->rx_sdu_size, except in cases where we
273 	 * droped the last fragment (when self->rx_sdu_size exceed
274 	 * self->rx_max_sdu_size), where n < self->rx_sdu_size.
275 	 * Jean II */
276 	IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
277 
278 	/* Set the new length */
279 	skb_trim(skb, n);
280 
281 	self->rx_sdu_size = 0;
282 
283 	return skb;
284 }
285 
286 /*
287  * Function irttp_fragment_skb (skb)
288  *
289  *    Fragments a frame and queues all the fragments for transmission
290  *
291  */
irttp_fragment_skb(struct tsap_cb * self,struct sk_buff * skb)292 static inline void irttp_fragment_skb(struct tsap_cb *self,
293 				      struct sk_buff *skb)
294 {
295 	struct sk_buff *frag;
296 	__u8 *frame;
297 
298 	IRDA_DEBUG(2, "%s()\n", __func__);
299 
300 	IRDA_ASSERT(self != NULL, return;);
301 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
302 	IRDA_ASSERT(skb != NULL, return;);
303 
304 	/*
305 	 *  Split frame into a number of segments
306 	 */
307 	while (skb->len > self->max_seg_size) {
308 		IRDA_DEBUG(2, "%s(), fragmenting ...\n", __func__);
309 
310 		/* Make new segment */
311 		frag = alloc_skb(self->max_seg_size+self->max_header_size,
312 				 GFP_ATOMIC);
313 		if (!frag)
314 			return;
315 
316 		skb_reserve(frag, self->max_header_size);
317 
318 		/* Copy data from the original skb into this fragment. */
319 		skb_copy_from_linear_data(skb, skb_put(frag, self->max_seg_size),
320 			      self->max_seg_size);
321 
322 		/* Insert TTP header, with the more bit set */
323 		frame = skb_push(frag, TTP_HEADER);
324 		frame[0] = TTP_MORE;
325 
326 		/* Hide the copied data from the original skb */
327 		skb_pull(skb, self->max_seg_size);
328 
329 		/* Queue fragment */
330 		skb_queue_tail(&self->tx_queue, frag);
331 	}
332 	/* Queue what is left of the original skb */
333 	IRDA_DEBUG(2, "%s(), queuing last segment\n", __func__);
334 
335 	frame = skb_push(skb, TTP_HEADER);
336 	frame[0] = 0x00; /* Clear more bit */
337 
338 	/* Queue fragment */
339 	skb_queue_tail(&self->tx_queue, skb);
340 }
341 
342 /*
343  * Function irttp_param_max_sdu_size (self, param)
344  *
345  *    Handle the MaxSduSize parameter in the connect frames, this function
346  *    will be called both when this parameter needs to be inserted into, and
347  *    extracted from the connect frames
348  */
irttp_param_max_sdu_size(void * instance,irda_param_t * param,int get)349 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
350 				    int get)
351 {
352 	struct tsap_cb *self;
353 
354 	self = instance;
355 
356 	IRDA_ASSERT(self != NULL, return -1;);
357 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
358 
359 	if (get)
360 		param->pv.i = self->tx_max_sdu_size;
361 	else
362 		self->tx_max_sdu_size = param->pv.i;
363 
364 	IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __func__, param->pv.i);
365 
366 	return 0;
367 }
368 
369 /*************************** CLIENT CALLS ***************************/
370 /************************** LMP CALLBACKS **************************/
371 /* Everything is happily mixed up. Waiting for next clean up - Jean II */
372 
373 /*
374  * Initialization, that has to be done on new tsap
375  * instance allocation and on duplication
376  */
irttp_init_tsap(struct tsap_cb * tsap)377 static void irttp_init_tsap(struct tsap_cb *tsap)
378 {
379 	spin_lock_init(&tsap->lock);
380 	init_timer(&tsap->todo_timer);
381 
382 	skb_queue_head_init(&tsap->rx_queue);
383 	skb_queue_head_init(&tsap->tx_queue);
384 	skb_queue_head_init(&tsap->rx_fragments);
385 }
386 
387 /*
388  * Function irttp_open_tsap (stsap, notify)
389  *
390  *    Create TSAP connection endpoint,
391  */
irttp_open_tsap(__u8 stsap_sel,int credit,notify_t * notify)392 struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
393 {
394 	struct tsap_cb *self;
395 	struct lsap_cb *lsap;
396 	notify_t ttp_notify;
397 
398 	IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
399 
400 	/* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
401 	 * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
402 	 * JeanII */
403 	if ((stsap_sel != LSAP_ANY) &&
404 	   ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
405 		IRDA_DEBUG(0, "%s(), invalid tsap!\n", __func__);
406 		return NULL;
407 	}
408 
409 	self = kzalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
410 	if (self == NULL) {
411 		IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __func__);
412 		return NULL;
413 	}
414 
415 	/* Initialize internal objects */
416 	irttp_init_tsap(self);
417 
418 	/* Initialise todo timer */
419 	self->todo_timer.data     = (unsigned long) self;
420 	self->todo_timer.function = &irttp_todo_expired;
421 
422 	/* Initialize callbacks for IrLMP to use */
423 	irda_notify_init(&ttp_notify);
424 	ttp_notify.connect_confirm = irttp_connect_confirm;
425 	ttp_notify.connect_indication = irttp_connect_indication;
426 	ttp_notify.disconnect_indication = irttp_disconnect_indication;
427 	ttp_notify.data_indication = irttp_data_indication;
428 	ttp_notify.udata_indication = irttp_udata_indication;
429 	ttp_notify.flow_indication = irttp_flow_indication;
430 	if (notify->status_indication != NULL)
431 		ttp_notify.status_indication = irttp_status_indication;
432 	ttp_notify.instance = self;
433 	strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
434 
435 	self->magic = TTP_TSAP_MAGIC;
436 	self->connected = FALSE;
437 
438 	/*
439 	 *  Create LSAP at IrLMP layer
440 	 */
441 	lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
442 	if (lsap == NULL) {
443 		IRDA_DEBUG(0, "%s: unable to allocate LSAP!!\n", __func__);
444 		__irttp_close_tsap(self);
445 		return NULL;
446 	}
447 
448 	/*
449 	 *  If user specified LSAP_ANY as source TSAP selector, then IrLMP
450 	 *  will replace it with whatever source selector which is free, so
451 	 *  the stsap_sel we have might not be valid anymore
452 	 */
453 	self->stsap_sel = lsap->slsap_sel;
454 	IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __func__, self->stsap_sel);
455 
456 	self->notify = *notify;
457 	self->lsap = lsap;
458 
459 	hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
460 
461 	if (credit > TTP_RX_MAX_CREDIT)
462 		self->initial_credit = TTP_RX_MAX_CREDIT;
463 	else
464 		self->initial_credit = credit;
465 
466 	return self;
467 }
468 EXPORT_SYMBOL(irttp_open_tsap);
469 
470 /*
471  * Function irttp_close (handle)
472  *
473  *    Remove an instance of a TSAP. This function should only deal with the
474  *    deallocation of the TSAP, and resetting of the TSAPs values;
475  *
476  */
__irttp_close_tsap(struct tsap_cb * self)477 static void __irttp_close_tsap(struct tsap_cb *self)
478 {
479 	/* First make sure we're connected. */
480 	IRDA_ASSERT(self != NULL, return;);
481 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
482 
483 	irttp_flush_queues(self);
484 
485 	del_timer(&self->todo_timer);
486 
487 	/* This one won't be cleaned up if we are disconnect_pend + close_pend
488 	 * and we receive a disconnect_indication */
489 	if (self->disconnect_skb)
490 		dev_kfree_skb(self->disconnect_skb);
491 
492 	self->connected = FALSE;
493 	self->magic = ~TTP_TSAP_MAGIC;
494 
495 	kfree(self);
496 }
497 
498 /*
499  * Function irttp_close (self)
500  *
501  *    Remove TSAP from list of all TSAPs and then deallocate all resources
502  *    associated with this TSAP
503  *
504  * Note : because we *free* the tsap structure, it is the responsibility
505  * of the caller to make sure we are called only once and to deal with
506  * possible race conditions. - Jean II
507  */
irttp_close_tsap(struct tsap_cb * self)508 int irttp_close_tsap(struct tsap_cb *self)
509 {
510 	struct tsap_cb *tsap;
511 
512 	IRDA_DEBUG(4, "%s()\n", __func__);
513 
514 	IRDA_ASSERT(self != NULL, return -1;);
515 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
516 
517 	/* Make sure tsap has been disconnected */
518 	if (self->connected) {
519 		/* Check if disconnect is not pending */
520 		if (!test_bit(0, &self->disconnect_pend)) {
521 			IRDA_WARNING("%s: TSAP still connected!\n",
522 				     __func__);
523 			irttp_disconnect_request(self, NULL, P_NORMAL);
524 		}
525 		self->close_pend = TRUE;
526 		irttp_start_todo_timer(self, HZ/10);
527 
528 		return 0; /* Will be back! */
529 	}
530 
531 	tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
532 
533 	IRDA_ASSERT(tsap == self, return -1;);
534 
535 	/* Close corresponding LSAP */
536 	if (self->lsap) {
537 		irlmp_close_lsap(self->lsap);
538 		self->lsap = NULL;
539 	}
540 
541 	__irttp_close_tsap(self);
542 
543 	return 0;
544 }
545 EXPORT_SYMBOL(irttp_close_tsap);
546 
547 /*
548  * Function irttp_udata_request (self, skb)
549  *
550  *    Send unreliable data on this TSAP
551  *
552  */
irttp_udata_request(struct tsap_cb * self,struct sk_buff * skb)553 int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
554 {
555 	int ret;
556 
557 	IRDA_ASSERT(self != NULL, return -1;);
558 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
559 	IRDA_ASSERT(skb != NULL, return -1;);
560 
561 	IRDA_DEBUG(4, "%s()\n", __func__);
562 
563 	/* Take shortcut on zero byte packets */
564 	if (skb->len == 0) {
565 		ret = 0;
566 		goto err;
567 	}
568 
569 	/* Check that nothing bad happens */
570 	if (!self->connected) {
571 		IRDA_WARNING("%s(), Not connected\n", __func__);
572 		ret = -ENOTCONN;
573 		goto err;
574 	}
575 
576 	if (skb->len > self->max_seg_size) {
577 		IRDA_ERROR("%s(), UData is too large for IrLAP!\n", __func__);
578 		ret = -EMSGSIZE;
579 		goto err;
580 	}
581 
582 	irlmp_udata_request(self->lsap, skb);
583 	self->stats.tx_packets++;
584 
585 	return 0;
586 
587 err:
588 	dev_kfree_skb(skb);
589 	return ret;
590 }
591 EXPORT_SYMBOL(irttp_udata_request);
592 
593 
594 /*
595  * Function irttp_data_request (handle, skb)
596  *
597  *    Queue frame for transmission. If SAR is enabled, fragement the frame
598  *    and queue the fragments for transmission
599  */
irttp_data_request(struct tsap_cb * self,struct sk_buff * skb)600 int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
601 {
602 	__u8 *frame;
603 	int ret;
604 
605 	IRDA_ASSERT(self != NULL, return -1;);
606 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
607 	IRDA_ASSERT(skb != NULL, return -1;);
608 
609 	IRDA_DEBUG(2, "%s() : queue len = %d\n", __func__,
610 		   skb_queue_len(&self->tx_queue));
611 
612 	/* Take shortcut on zero byte packets */
613 	if (skb->len == 0) {
614 		ret = 0;
615 		goto err;
616 	}
617 
618 	/* Check that nothing bad happens */
619 	if (!self->connected) {
620 		IRDA_WARNING("%s: Not connected\n", __func__);
621 		ret = -ENOTCONN;
622 		goto err;
623 	}
624 
625 	/*
626 	 *  Check if SAR is disabled, and the frame is larger than what fits
627 	 *  inside an IrLAP frame
628 	 */
629 	if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
630 		IRDA_ERROR("%s: SAR disabled, and data is too large for IrLAP!\n",
631 			   __func__);
632 		ret = -EMSGSIZE;
633 		goto err;
634 	}
635 
636 	/*
637 	 *  Check if SAR is enabled, and the frame is larger than the
638 	 *  TxMaxSduSize
639 	 */
640 	if ((self->tx_max_sdu_size != 0) &&
641 	    (self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
642 	    (skb->len > self->tx_max_sdu_size)) {
643 		IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
644 			   __func__);
645 		ret = -EMSGSIZE;
646 		goto err;
647 	}
648 	/*
649 	 *  Check if transmit queue is full
650 	 */
651 	if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
652 		/*
653 		 *  Give it a chance to empty itself
654 		 */
655 		irttp_run_tx_queue(self);
656 
657 		/* Drop packet. This error code should trigger the caller
658 		 * to resend the data in the client code - Jean II */
659 		ret = -ENOBUFS;
660 		goto err;
661 	}
662 
663 	/* Queue frame, or queue frame segments */
664 	if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
665 		/* Queue frame */
666 		IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
667 		frame = skb_push(skb, TTP_HEADER);
668 		frame[0] = 0x00; /* Clear more bit */
669 
670 		skb_queue_tail(&self->tx_queue, skb);
671 	} else {
672 		/*
673 		 *  Fragment the frame, this function will also queue the
674 		 *  fragments, we don't care about the fact the transmit
675 		 *  queue may be overfilled by all the segments for a little
676 		 *  while
677 		 */
678 		irttp_fragment_skb(self, skb);
679 	}
680 
681 	/* Check if we can accept more data from client */
682 	if ((!self->tx_sdu_busy) &&
683 	    (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
684 		/* Tx queue filling up, so stop client. */
685 		if (self->notify.flow_indication) {
686 			self->notify.flow_indication(self->notify.instance,
687 						     self, FLOW_STOP);
688 		}
689 		/* self->tx_sdu_busy is the state of the client.
690 		 * Update state after notifying client to avoid
691 		 * race condition with irttp_flow_indication().
692 		 * If the queue empty itself after our test but before
693 		 * we set the flag, we will fix ourselves below in
694 		 * irttp_run_tx_queue().
695 		 * Jean II */
696 		self->tx_sdu_busy = TRUE;
697 	}
698 
699 	/* Try to make some progress */
700 	irttp_run_tx_queue(self);
701 
702 	return 0;
703 
704 err:
705 	dev_kfree_skb(skb);
706 	return ret;
707 }
708 EXPORT_SYMBOL(irttp_data_request);
709 
710 /*
711  * Function irttp_run_tx_queue (self)
712  *
713  *    Transmit packets queued for transmission (if possible)
714  *
715  */
irttp_run_tx_queue(struct tsap_cb * self)716 static void irttp_run_tx_queue(struct tsap_cb *self)
717 {
718 	struct sk_buff *skb;
719 	unsigned long flags;
720 	int n;
721 
722 	IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
723 		   __func__,
724 		   self->send_credit, skb_queue_len(&self->tx_queue));
725 
726 	/* Get exclusive access to the tx queue, otherwise don't touch it */
727 	if (irda_lock(&self->tx_queue_lock) == FALSE)
728 		return;
729 
730 	/* Try to send out frames as long as we have credits
731 	 * and as long as LAP is not full. If LAP is full, it will
732 	 * poll us through irttp_flow_indication() - Jean II */
733 	while ((self->send_credit > 0) &&
734 	       (!irlmp_lap_tx_queue_full(self->lsap)) &&
735 	       (skb = skb_dequeue(&self->tx_queue))) {
736 		/*
737 		 *  Since we can transmit and receive frames concurrently,
738 		 *  the code below is a critical region and we must assure that
739 		 *  nobody messes with the credits while we update them.
740 		 */
741 		spin_lock_irqsave(&self->lock, flags);
742 
743 		n = self->avail_credit;
744 		self->avail_credit = 0;
745 
746 		/* Only room for 127 credits in frame */
747 		if (n > 127) {
748 			self->avail_credit = n-127;
749 			n = 127;
750 		}
751 		self->remote_credit += n;
752 		self->send_credit--;
753 
754 		spin_unlock_irqrestore(&self->lock, flags);
755 
756 		/*
757 		 *  More bit must be set by the data_request() or fragment()
758 		 *  functions
759 		 */
760 		skb->data[0] |= (n & 0x7f);
761 
762 		/* Detach from socket.
763 		 * The current skb has a reference to the socket that sent
764 		 * it (skb->sk). When we pass it to IrLMP, the skb will be
765 		 * stored in in IrLAP (self->wx_list). When we are within
766 		 * IrLAP, we lose the notion of socket, so we should not
767 		 * have a reference to a socket. So, we drop it here.
768 		 *
769 		 * Why does it matter ?
770 		 * When the skb is freed (kfree_skb), if it is associated
771 		 * with a socket, it release buffer space on the socket
772 		 * (through sock_wfree() and sock_def_write_space()).
773 		 * If the socket no longer exist, we may crash. Hard.
774 		 * When we close a socket, we make sure that associated packets
775 		 * in IrTTP are freed. However, we have no way to cancel
776 		 * the packet that we have passed to IrLAP. So, if a packet
777 		 * remains in IrLAP (retry on the link or else) after we
778 		 * close the socket, we are dead !
779 		 * Jean II */
780 		if (skb->sk != NULL) {
781 			/* IrSOCK application, IrOBEX, ... */
782 			skb_orphan(skb);
783 		}
784 			/* IrCOMM over IrTTP, IrLAN, ... */
785 
786 		/* Pass the skb to IrLMP - done */
787 		irlmp_data_request(self->lsap, skb);
788 		self->stats.tx_packets++;
789 	}
790 
791 	/* Check if we can accept more frames from client.
792 	 * We don't want to wait until the todo timer to do that, and we
793 	 * can't use tasklets (grr...), so we are obliged to give control
794 	 * to client. That's ok, this test will be true not too often
795 	 * (max once per LAP window) and we are called from places
796 	 * where we can spend a bit of time doing stuff. - Jean II */
797 	if ((self->tx_sdu_busy) &&
798 	    (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
799 	    (!self->close_pend)) {
800 		if (self->notify.flow_indication)
801 			self->notify.flow_indication(self->notify.instance,
802 						     self, FLOW_START);
803 
804 		/* self->tx_sdu_busy is the state of the client.
805 		 * We don't really have a race here, but it's always safer
806 		 * to update our state after the client - Jean II */
807 		self->tx_sdu_busy = FALSE;
808 	}
809 
810 	/* Reset lock */
811 	self->tx_queue_lock = 0;
812 }
813 
814 /*
815  * Function irttp_give_credit (self)
816  *
817  *    Send a dataless flowdata TTP-PDU and give available credit to peer
818  *    TSAP
819  */
irttp_give_credit(struct tsap_cb * self)820 static inline void irttp_give_credit(struct tsap_cb *self)
821 {
822 	struct sk_buff *tx_skb = NULL;
823 	unsigned long flags;
824 	int n;
825 
826 	IRDA_ASSERT(self != NULL, return;);
827 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
828 
829 	IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
830 		   __func__,
831 		   self->send_credit, self->avail_credit, self->remote_credit);
832 
833 	/* Give credit to peer */
834 	tx_skb = alloc_skb(TTP_MAX_HEADER, GFP_ATOMIC);
835 	if (!tx_skb)
836 		return;
837 
838 	/* Reserve space for LMP, and LAP header */
839 	skb_reserve(tx_skb, LMP_MAX_HEADER);
840 
841 	/*
842 	 *  Since we can transmit and receive frames concurrently,
843 	 *  the code below is a critical region and we must assure that
844 	 *  nobody messes with the credits while we update them.
845 	 */
846 	spin_lock_irqsave(&self->lock, flags);
847 
848 	n = self->avail_credit;
849 	self->avail_credit = 0;
850 
851 	/* Only space for 127 credits in frame */
852 	if (n > 127) {
853 		self->avail_credit = n - 127;
854 		n = 127;
855 	}
856 	self->remote_credit += n;
857 
858 	spin_unlock_irqrestore(&self->lock, flags);
859 
860 	skb_put(tx_skb, 1);
861 	tx_skb->data[0] = (__u8) (n & 0x7f);
862 
863 	irlmp_data_request(self->lsap, tx_skb);
864 	self->stats.tx_packets++;
865 }
866 
867 /*
868  * Function irttp_udata_indication (instance, sap, skb)
869  *
870  *    Received some unit-data (unreliable)
871  *
872  */
irttp_udata_indication(void * instance,void * sap,struct sk_buff * skb)873 static int irttp_udata_indication(void *instance, void *sap,
874 				  struct sk_buff *skb)
875 {
876 	struct tsap_cb *self;
877 	int err;
878 
879 	IRDA_DEBUG(4, "%s()\n", __func__);
880 
881 	self = instance;
882 
883 	IRDA_ASSERT(self != NULL, return -1;);
884 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
885 	IRDA_ASSERT(skb != NULL, return -1;);
886 
887 	self->stats.rx_packets++;
888 
889 	/* Just pass data to layer above */
890 	if (self->notify.udata_indication) {
891 		err = self->notify.udata_indication(self->notify.instance,
892 						    self, skb);
893 		/* Same comment as in irttp_do_data_indication() */
894 		if (!err)
895 			return 0;
896 	}
897 	/* Either no handler, or handler returns an error */
898 	dev_kfree_skb(skb);
899 
900 	return 0;
901 }
902 
903 /*
904  * Function irttp_data_indication (instance, sap, skb)
905  *
906  *    Receive segment from IrLMP.
907  *
908  */
irttp_data_indication(void * instance,void * sap,struct sk_buff * skb)909 static int irttp_data_indication(void *instance, void *sap,
910 				 struct sk_buff *skb)
911 {
912 	struct tsap_cb *self;
913 	unsigned long flags;
914 	int n;
915 
916 	self = instance;
917 
918 	n = skb->data[0] & 0x7f;     /* Extract the credits */
919 
920 	self->stats.rx_packets++;
921 
922 	/*  Deal with inbound credit
923 	 *  Since we can transmit and receive frames concurrently,
924 	 *  the code below is a critical region and we must assure that
925 	 *  nobody messes with the credits while we update them.
926 	 */
927 	spin_lock_irqsave(&self->lock, flags);
928 	self->send_credit += n;
929 	if (skb->len > 1)
930 		self->remote_credit--;
931 	spin_unlock_irqrestore(&self->lock, flags);
932 
933 	/*
934 	 *  Data or dataless packet? Dataless frames contains only the
935 	 *  TTP_HEADER.
936 	 */
937 	if (skb->len > 1) {
938 		/*
939 		 *  We don't remove the TTP header, since we must preserve the
940 		 *  more bit, so the defragment routing knows what to do
941 		 */
942 		skb_queue_tail(&self->rx_queue, skb);
943 	} else {
944 		/* Dataless flowdata TTP-PDU */
945 		dev_kfree_skb(skb);
946 	}
947 
948 
949 	/* Push data to the higher layer.
950 	 * We do it synchronously because running the todo timer for each
951 	 * receive packet would be too much overhead and latency.
952 	 * By passing control to the higher layer, we run the risk that
953 	 * it may take time or grab a lock. Most often, the higher layer
954 	 * will only put packet in a queue.
955 	 * Anyway, packets are only dripping through the IrDA, so we can
956 	 * have time before the next packet.
957 	 * Further, we are run from NET_BH, so the worse that can happen is
958 	 * us missing the optimal time to send back the PF bit in LAP.
959 	 * Jean II */
960 	irttp_run_rx_queue(self);
961 
962 	/* We now give credits to peer in irttp_run_rx_queue().
963 	 * We need to send credit *NOW*, otherwise we are going
964 	 * to miss the next Tx window. The todo timer may take
965 	 * a while before it's run... - Jean II */
966 
967 	/*
968 	 * If the peer device has given us some credits and we didn't have
969 	 * anyone from before, then we need to shedule the tx queue.
970 	 * We need to do that because our Tx have stopped (so we may not
971 	 * get any LAP flow indication) and the user may be stopped as
972 	 * well. - Jean II
973 	 */
974 	if (self->send_credit == n) {
975 		/* Restart pushing stuff to LAP */
976 		irttp_run_tx_queue(self);
977 		/* Note : we don't want to schedule the todo timer
978 		 * because it has horrible latency. No tasklets
979 		 * because the tasklet API is broken. - Jean II */
980 	}
981 
982 	return 0;
983 }
984 
985 /*
986  * Function irttp_status_indication (self, reason)
987  *
988  *    Status_indication, just pass to the higher layer...
989  *
990  */
irttp_status_indication(void * instance,LINK_STATUS link,LOCK_STATUS lock)991 static void irttp_status_indication(void *instance,
992 				    LINK_STATUS link, LOCK_STATUS lock)
993 {
994 	struct tsap_cb *self;
995 
996 	IRDA_DEBUG(4, "%s()\n", __func__);
997 
998 	self = instance;
999 
1000 	IRDA_ASSERT(self != NULL, return;);
1001 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1002 
1003 	/* Check if client has already closed the TSAP and gone away */
1004 	if (self->close_pend)
1005 		return;
1006 
1007 	/*
1008 	 *  Inform service user if he has requested it
1009 	 */
1010 	if (self->notify.status_indication != NULL)
1011 		self->notify.status_indication(self->notify.instance,
1012 					       link, lock);
1013 	else
1014 		IRDA_DEBUG(2, "%s(), no handler\n", __func__);
1015 }
1016 
1017 /*
1018  * Function irttp_flow_indication (self, reason)
1019  *
1020  *    Flow_indication : IrLAP tells us to send more data.
1021  *
1022  */
irttp_flow_indication(void * instance,void * sap,LOCAL_FLOW flow)1023 static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
1024 {
1025 	struct tsap_cb *self;
1026 
1027 	self = instance;
1028 
1029 	IRDA_ASSERT(self != NULL, return;);
1030 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1031 
1032 	IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
1033 
1034 	/* We are "polled" directly from LAP, and the LAP want to fill
1035 	 * its Tx window. We want to do our best to send it data, so that
1036 	 * we maximise the window. On the other hand, we want to limit the
1037 	 * amount of work here so that LAP doesn't hang forever waiting
1038 	 * for packets. - Jean II */
1039 
1040 	/* Try to send some packets. Currently, LAP calls us every time
1041 	 * there is one free slot, so we will send only one packet.
1042 	 * This allow the scheduler to do its round robin - Jean II */
1043 	irttp_run_tx_queue(self);
1044 
1045 	/* Note regarding the interraction with higher layer.
1046 	 * irttp_run_tx_queue() may call the client when its queue
1047 	 * start to empty, via notify.flow_indication(). Initially.
1048 	 * I wanted this to happen in a tasklet, to avoid client
1049 	 * grabbing the CPU, but we can't use tasklets safely. And timer
1050 	 * is definitely too slow.
1051 	 * This will happen only once per LAP window, and usually at
1052 	 * the third packet (unless window is smaller). LAP is still
1053 	 * doing mtt and sending first packet so it's sort of OK
1054 	 * to do that. Jean II */
1055 
1056 	/* If we need to send disconnect. try to do it now */
1057 	if (self->disconnect_pend)
1058 		irttp_start_todo_timer(self, 0);
1059 }
1060 
1061 /*
1062  * Function irttp_flow_request (self, command)
1063  *
1064  *    This function could be used by the upper layers to tell IrTTP to stop
1065  *    delivering frames if the receive queues are starting to get full, or
1066  *    to tell IrTTP to start delivering frames again.
1067  */
irttp_flow_request(struct tsap_cb * self,LOCAL_FLOW flow)1068 void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
1069 {
1070 	IRDA_DEBUG(1, "%s()\n", __func__);
1071 
1072 	IRDA_ASSERT(self != NULL, return;);
1073 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1074 
1075 	switch (flow) {
1076 	case FLOW_STOP:
1077 		IRDA_DEBUG(1, "%s(), flow stop\n", __func__);
1078 		self->rx_sdu_busy = TRUE;
1079 		break;
1080 	case FLOW_START:
1081 		IRDA_DEBUG(1, "%s(), flow start\n", __func__);
1082 		self->rx_sdu_busy = FALSE;
1083 
1084 		/* Client say he can accept more data, try to free our
1085 		 * queues ASAP - Jean II */
1086 		irttp_run_rx_queue(self);
1087 
1088 		break;
1089 	default:
1090 		IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __func__);
1091 	}
1092 }
1093 EXPORT_SYMBOL(irttp_flow_request);
1094 
1095 /*
1096  * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
1097  *
1098  *    Try to connect to remote destination TSAP selector
1099  *
1100  */
irttp_connect_request(struct tsap_cb * self,__u8 dtsap_sel,__u32 saddr,__u32 daddr,struct qos_info * qos,__u32 max_sdu_size,struct sk_buff * userdata)1101 int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
1102 			  __u32 saddr, __u32 daddr,
1103 			  struct qos_info *qos, __u32 max_sdu_size,
1104 			  struct sk_buff *userdata)
1105 {
1106 	struct sk_buff *tx_skb;
1107 	__u8 *frame;
1108 	__u8 n;
1109 
1110 	IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __func__, max_sdu_size);
1111 
1112 	IRDA_ASSERT(self != NULL, return -EBADR;);
1113 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
1114 
1115 	if (self->connected) {
1116 		if (userdata)
1117 			dev_kfree_skb(userdata);
1118 		return -EISCONN;
1119 	}
1120 
1121 	/* Any userdata supplied? */
1122 	if (userdata == NULL) {
1123 		tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1124 				   GFP_ATOMIC);
1125 		if (!tx_skb)
1126 			return -ENOMEM;
1127 
1128 		/* Reserve space for MUX_CONTROL and LAP header */
1129 		skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1130 	} else {
1131 		tx_skb = userdata;
1132 		/*
1133 		 *  Check that the client has reserved enough space for
1134 		 *  headers
1135 		 */
1136 		IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1137 			{ dev_kfree_skb(userdata); return -1; });
1138 	}
1139 
1140 	/* Initialize connection parameters */
1141 	self->connected = FALSE;
1142 	self->avail_credit = 0;
1143 	self->rx_max_sdu_size = max_sdu_size;
1144 	self->rx_sdu_size = 0;
1145 	self->rx_sdu_busy = FALSE;
1146 	self->dtsap_sel = dtsap_sel;
1147 
1148 	n = self->initial_credit;
1149 
1150 	self->remote_credit = 0;
1151 	self->send_credit = 0;
1152 
1153 	/*
1154 	 *  Give away max 127 credits for now
1155 	 */
1156 	if (n > 127) {
1157 		self->avail_credit = n - 127;
1158 		n = 127;
1159 	}
1160 
1161 	self->remote_credit = n;
1162 
1163 	/* SAR enabled? */
1164 	if (max_sdu_size > 0) {
1165 		IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1166 			{ dev_kfree_skb(tx_skb); return -1; });
1167 
1168 		/* Insert SAR parameters */
1169 		frame = skb_push(tx_skb, TTP_HEADER + TTP_SAR_HEADER);
1170 
1171 		frame[0] = TTP_PARAMETERS | n;
1172 		frame[1] = 0x04; /* Length */
1173 		frame[2] = 0x01; /* MaxSduSize */
1174 		frame[3] = 0x02; /* Value length */
1175 
1176 		put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1177 			      (__be16 *)(frame+4));
1178 	} else {
1179 		/* Insert plain TTP header */
1180 		frame = skb_push(tx_skb, TTP_HEADER);
1181 
1182 		/* Insert initial credit in frame */
1183 		frame[0] = n & 0x7f;
1184 	}
1185 
1186 	/* Connect with IrLMP. No QoS parameters for now */
1187 	return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
1188 				     tx_skb);
1189 }
1190 EXPORT_SYMBOL(irttp_connect_request);
1191 
1192 /*
1193  * Function irttp_connect_confirm (handle, qos, skb)
1194  *
1195  *    Service user confirms TSAP connection with peer.
1196  *
1197  */
irttp_connect_confirm(void * instance,void * sap,struct qos_info * qos,__u32 max_seg_size,__u8 max_header_size,struct sk_buff * skb)1198 static void irttp_connect_confirm(void *instance, void *sap,
1199 				  struct qos_info *qos, __u32 max_seg_size,
1200 				  __u8 max_header_size, struct sk_buff *skb)
1201 {
1202 	struct tsap_cb *self;
1203 	int parameters;
1204 	int ret;
1205 	__u8 plen;
1206 	__u8 n;
1207 
1208 	IRDA_DEBUG(4, "%s()\n", __func__);
1209 
1210 	self = instance;
1211 
1212 	IRDA_ASSERT(self != NULL, return;);
1213 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1214 	IRDA_ASSERT(skb != NULL, return;);
1215 
1216 	self->max_seg_size = max_seg_size - TTP_HEADER;
1217 	self->max_header_size = max_header_size + TTP_HEADER;
1218 
1219 	/*
1220 	 *  Check if we have got some QoS parameters back! This should be the
1221 	 *  negotiated QoS for the link.
1222 	 */
1223 	if (qos) {
1224 		IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
1225 		       qos->baud_rate.bits);
1226 		IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
1227 		       qos->baud_rate.value);
1228 	}
1229 
1230 	n = skb->data[0] & 0x7f;
1231 
1232 	IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __func__, n);
1233 
1234 	self->send_credit = n;
1235 	self->tx_max_sdu_size = 0;
1236 	self->connected = TRUE;
1237 
1238 	parameters = skb->data[0] & 0x80;
1239 
1240 	IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1241 	skb_pull(skb, TTP_HEADER);
1242 
1243 	if (parameters) {
1244 		plen = skb->data[0];
1245 
1246 		ret = irda_param_extract_all(self, skb->data+1,
1247 					     IRDA_MIN(skb->len-1, plen),
1248 					     &param_info);
1249 
1250 		/* Any errors in the parameter list? */
1251 		if (ret < 0) {
1252 			IRDA_WARNING("%s: error extracting parameters\n",
1253 				     __func__);
1254 			dev_kfree_skb(skb);
1255 
1256 			/* Do not accept this connection attempt */
1257 			return;
1258 		}
1259 		/* Remove parameters */
1260 		skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1261 	}
1262 
1263 	IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __func__,
1264 	      self->send_credit, self->avail_credit, self->remote_credit);
1265 
1266 	IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __func__,
1267 		   self->tx_max_sdu_size);
1268 
1269 	if (self->notify.connect_confirm) {
1270 		self->notify.connect_confirm(self->notify.instance, self, qos,
1271 					     self->tx_max_sdu_size,
1272 					     self->max_header_size, skb);
1273 	} else
1274 		dev_kfree_skb(skb);
1275 }
1276 
1277 /*
1278  * Function irttp_connect_indication (handle, skb)
1279  *
1280  *    Some other device is connecting to this TSAP
1281  *
1282  */
irttp_connect_indication(void * instance,void * sap,struct qos_info * qos,__u32 max_seg_size,__u8 max_header_size,struct sk_buff * skb)1283 static void irttp_connect_indication(void *instance, void *sap,
1284 		struct qos_info *qos, __u32 max_seg_size, __u8 max_header_size,
1285 		struct sk_buff *skb)
1286 {
1287 	struct tsap_cb *self;
1288 	struct lsap_cb *lsap;
1289 	int parameters;
1290 	int ret;
1291 	__u8 plen;
1292 	__u8 n;
1293 
1294 	self = instance;
1295 
1296 	IRDA_ASSERT(self != NULL, return;);
1297 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1298 	IRDA_ASSERT(skb != NULL, return;);
1299 
1300 	lsap = sap;
1301 
1302 	self->max_seg_size = max_seg_size - TTP_HEADER;
1303 	self->max_header_size = max_header_size+TTP_HEADER;
1304 
1305 	IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __func__, self->stsap_sel);
1306 
1307 	/* Need to update dtsap_sel if its equal to LSAP_ANY */
1308 	self->dtsap_sel = lsap->dlsap_sel;
1309 
1310 	n = skb->data[0] & 0x7f;
1311 
1312 	self->send_credit = n;
1313 	self->tx_max_sdu_size = 0;
1314 
1315 	parameters = skb->data[0] & 0x80;
1316 
1317 	IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1318 	skb_pull(skb, TTP_HEADER);
1319 
1320 	if (parameters) {
1321 		plen = skb->data[0];
1322 
1323 		ret = irda_param_extract_all(self, skb->data+1,
1324 					     IRDA_MIN(skb->len-1, plen),
1325 					     &param_info);
1326 
1327 		/* Any errors in the parameter list? */
1328 		if (ret < 0) {
1329 			IRDA_WARNING("%s: error extracting parameters\n",
1330 				     __func__);
1331 			dev_kfree_skb(skb);
1332 
1333 			/* Do not accept this connection attempt */
1334 			return;
1335 		}
1336 
1337 		/* Remove parameters */
1338 		skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1339 	}
1340 
1341 	if (self->notify.connect_indication) {
1342 		self->notify.connect_indication(self->notify.instance, self,
1343 						qos, self->tx_max_sdu_size,
1344 						self->max_header_size, skb);
1345 	} else
1346 		dev_kfree_skb(skb);
1347 }
1348 
1349 /*
1350  * Function irttp_connect_response (handle, userdata)
1351  *
1352  *    Service user is accepting the connection, just pass it down to
1353  *    IrLMP!
1354  *
1355  */
irttp_connect_response(struct tsap_cb * self,__u32 max_sdu_size,struct sk_buff * userdata)1356 int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
1357 			   struct sk_buff *userdata)
1358 {
1359 	struct sk_buff *tx_skb;
1360 	__u8 *frame;
1361 	int ret;
1362 	__u8 n;
1363 
1364 	IRDA_ASSERT(self != NULL, return -1;);
1365 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1366 
1367 	IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __func__,
1368 		   self->stsap_sel);
1369 
1370 	/* Any userdata supplied? */
1371 	if (userdata == NULL) {
1372 		tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1373 				   GFP_ATOMIC);
1374 		if (!tx_skb)
1375 			return -ENOMEM;
1376 
1377 		/* Reserve space for MUX_CONTROL and LAP header */
1378 		skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1379 	} else {
1380 		tx_skb = userdata;
1381 		/*
1382 		 *  Check that the client has reserved enough space for
1383 		 *  headers
1384 		 */
1385 		IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1386 			{ dev_kfree_skb(userdata); return -1; });
1387 	}
1388 
1389 	self->avail_credit = 0;
1390 	self->remote_credit = 0;
1391 	self->rx_max_sdu_size = max_sdu_size;
1392 	self->rx_sdu_size = 0;
1393 	self->rx_sdu_busy = FALSE;
1394 
1395 	n = self->initial_credit;
1396 
1397 	/* Frame has only space for max 127 credits (7 bits) */
1398 	if (n > 127) {
1399 		self->avail_credit = n - 127;
1400 		n = 127;
1401 	}
1402 
1403 	self->remote_credit = n;
1404 	self->connected = TRUE;
1405 
1406 	/* SAR enabled? */
1407 	if (max_sdu_size > 0) {
1408 		IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1409 			{ dev_kfree_skb(tx_skb); return -1; });
1410 
1411 		/* Insert TTP header with SAR parameters */
1412 		frame = skb_push(tx_skb, TTP_HEADER + TTP_SAR_HEADER);
1413 
1414 		frame[0] = TTP_PARAMETERS | n;
1415 		frame[1] = 0x04; /* Length */
1416 
1417 		/* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1,  */
1418 /*				  TTP_SAR_HEADER, &param_info) */
1419 
1420 		frame[2] = 0x01; /* MaxSduSize */
1421 		frame[3] = 0x02; /* Value length */
1422 
1423 		put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1424 			      (__be16 *)(frame+4));
1425 	} else {
1426 		/* Insert TTP header */
1427 		frame = skb_push(tx_skb, TTP_HEADER);
1428 
1429 		frame[0] = n & 0x7f;
1430 	}
1431 
1432 	ret = irlmp_connect_response(self->lsap, tx_skb);
1433 
1434 	return ret;
1435 }
1436 EXPORT_SYMBOL(irttp_connect_response);
1437 
1438 /*
1439  * Function irttp_dup (self, instance)
1440  *
1441  *    Duplicate TSAP, can be used by servers to confirm a connection on a
1442  *    new TSAP so it can keep listening on the old one.
1443  */
irttp_dup(struct tsap_cb * orig,void * instance)1444 struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
1445 {
1446 	struct tsap_cb *new;
1447 	unsigned long flags;
1448 
1449 	IRDA_DEBUG(1, "%s()\n", __func__);
1450 
1451 	/* Protect our access to the old tsap instance */
1452 	spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
1453 
1454 	/* Find the old instance */
1455 	if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
1456 		IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __func__);
1457 		spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1458 		return NULL;
1459 	}
1460 
1461 	/* Allocate a new instance */
1462 	new = kmemdup(orig, sizeof(struct tsap_cb), GFP_ATOMIC);
1463 	if (!new) {
1464 		IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __func__);
1465 		spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1466 		return NULL;
1467 	}
1468 	spin_lock_init(&new->lock);
1469 
1470 	/* We don't need the old instance any more */
1471 	spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1472 
1473 	/* Try to dup the LSAP (may fail if we were too slow) */
1474 	new->lsap = irlmp_dup(orig->lsap, new);
1475 	if (!new->lsap) {
1476 		IRDA_DEBUG(0, "%s(), dup failed!\n", __func__);
1477 		kfree(new);
1478 		return NULL;
1479 	}
1480 
1481 	/* Not everything should be copied */
1482 	new->notify.instance = instance;
1483 
1484 	/* Initialize internal objects */
1485 	irttp_init_tsap(new);
1486 
1487 	/* This is locked */
1488 	hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
1489 
1490 	return new;
1491 }
1492 EXPORT_SYMBOL(irttp_dup);
1493 
1494 /*
1495  * Function irttp_disconnect_request (self)
1496  *
1497  *    Close this connection please! If priority is high, the queued data
1498  *    segments, if any, will be deallocated first
1499  *
1500  */
irttp_disconnect_request(struct tsap_cb * self,struct sk_buff * userdata,int priority)1501 int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
1502 			     int priority)
1503 {
1504 	int ret;
1505 
1506 	IRDA_ASSERT(self != NULL, return -1;);
1507 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1508 
1509 	/* Already disconnected? */
1510 	if (!self->connected) {
1511 		IRDA_DEBUG(4, "%s(), already disconnected!\n", __func__);
1512 		if (userdata)
1513 			dev_kfree_skb(userdata);
1514 		return -1;
1515 	}
1516 
1517 	/* Disconnect already pending ?
1518 	 * We need to use an atomic operation to prevent reentry. This
1519 	 * function may be called from various context, like user, timer
1520 	 * for following a disconnect_indication() (i.e. net_bh).
1521 	 * Jean II */
1522 	if (test_and_set_bit(0, &self->disconnect_pend)) {
1523 		IRDA_DEBUG(0, "%s(), disconnect already pending\n",
1524 			   __func__);
1525 		if (userdata)
1526 			dev_kfree_skb(userdata);
1527 
1528 		/* Try to make some progress */
1529 		irttp_run_tx_queue(self);
1530 		return -1;
1531 	}
1532 
1533 	/*
1534 	 *  Check if there is still data segments in the transmit queue
1535 	 */
1536 	if (!skb_queue_empty(&self->tx_queue)) {
1537 		if (priority == P_HIGH) {
1538 			/*
1539 			 *  No need to send the queued data, if we are
1540 			 *  disconnecting right now since the data will
1541 			 *  not have any usable connection to be sent on
1542 			 */
1543 			IRDA_DEBUG(1, "%s(): High priority!!()\n", __func__);
1544 			irttp_flush_queues(self);
1545 		} else if (priority == P_NORMAL) {
1546 			/*
1547 			 *  Must delay disconnect until after all data segments
1548 			 *  have been sent and the tx_queue is empty
1549 			 */
1550 			/* We'll reuse this one later for the disconnect */
1551 			self->disconnect_skb = userdata;  /* May be NULL */
1552 
1553 			irttp_run_tx_queue(self);
1554 
1555 			irttp_start_todo_timer(self, HZ/10);
1556 			return -1;
1557 		}
1558 	}
1559 	/* Note : we don't need to check if self->rx_queue is full and the
1560 	 * state of self->rx_sdu_busy because the disconnect response will
1561 	 * be sent at the LMP level (so even if the peer has its Tx queue
1562 	 * full of data). - Jean II */
1563 
1564 	IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __func__);
1565 	self->connected = FALSE;
1566 
1567 	if (!userdata) {
1568 		struct sk_buff *tx_skb;
1569 		tx_skb = alloc_skb(LMP_MAX_HEADER, GFP_ATOMIC);
1570 		if (!tx_skb)
1571 			return -ENOMEM;
1572 
1573 		/*
1574 		 *  Reserve space for MUX and LAP header
1575 		 */
1576 		skb_reserve(tx_skb, LMP_MAX_HEADER);
1577 
1578 		userdata = tx_skb;
1579 	}
1580 	ret = irlmp_disconnect_request(self->lsap, userdata);
1581 
1582 	/* The disconnect is no longer pending */
1583 	clear_bit(0, &self->disconnect_pend);	/* FALSE */
1584 
1585 	return ret;
1586 }
1587 EXPORT_SYMBOL(irttp_disconnect_request);
1588 
1589 /*
1590  * Function irttp_disconnect_indication (self, reason)
1591  *
1592  *    Disconnect indication, TSAP disconnected by peer?
1593  *
1594  */
irttp_disconnect_indication(void * instance,void * sap,LM_REASON reason,struct sk_buff * skb)1595 static void irttp_disconnect_indication(void *instance, void *sap,
1596 		LM_REASON reason, struct sk_buff *skb)
1597 {
1598 	struct tsap_cb *self;
1599 
1600 	IRDA_DEBUG(4, "%s()\n", __func__);
1601 
1602 	self = instance;
1603 
1604 	IRDA_ASSERT(self != NULL, return;);
1605 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1606 
1607 	/* Prevent higher layer to send more data */
1608 	self->connected = FALSE;
1609 
1610 	/* Check if client has already tried to close the TSAP */
1611 	if (self->close_pend) {
1612 		/* In this case, the higher layer is probably gone. Don't
1613 		 * bother it and clean up the remains - Jean II */
1614 		if (skb)
1615 			dev_kfree_skb(skb);
1616 		irttp_close_tsap(self);
1617 		return;
1618 	}
1619 
1620 	/* If we are here, we assume that is the higher layer is still
1621 	 * waiting for the disconnect notification and able to process it,
1622 	 * even if he tried to disconnect. Otherwise, it would have already
1623 	 * attempted to close the tsap and self->close_pend would be TRUE.
1624 	 * Jean II */
1625 
1626 	/* No need to notify the client if has already tried to disconnect */
1627 	if (self->notify.disconnect_indication)
1628 		self->notify.disconnect_indication(self->notify.instance, self,
1629 						   reason, skb);
1630 	else
1631 		if (skb)
1632 			dev_kfree_skb(skb);
1633 }
1634 
1635 /*
1636  * Function irttp_do_data_indication (self, skb)
1637  *
1638  *    Try to deliver reassembled skb to layer above, and requeue it if that
1639  *    for some reason should fail. We mark rx sdu as busy to apply back
1640  *    pressure is necessary.
1641  */
irttp_do_data_indication(struct tsap_cb * self,struct sk_buff * skb)1642 static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
1643 {
1644 	int err;
1645 
1646 	/* Check if client has already closed the TSAP and gone away */
1647 	if (self->close_pend) {
1648 		dev_kfree_skb(skb);
1649 		return;
1650 	}
1651 
1652 	err = self->notify.data_indication(self->notify.instance, self, skb);
1653 
1654 	/* Usually the layer above will notify that it's input queue is
1655 	 * starting to get filled by using the flow request, but this may
1656 	 * be difficult, so it can instead just refuse to eat it and just
1657 	 * give an error back
1658 	 */
1659 	if (err) {
1660 		IRDA_DEBUG(0, "%s() requeueing skb!\n", __func__);
1661 
1662 		/* Make sure we take a break */
1663 		self->rx_sdu_busy = TRUE;
1664 
1665 		/* Need to push the header in again */
1666 		skb_push(skb, TTP_HEADER);
1667 		skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
1668 
1669 		/* Put skb back on queue */
1670 		skb_queue_head(&self->rx_queue, skb);
1671 	}
1672 }
1673 
1674 /*
1675  * Function irttp_run_rx_queue (self)
1676  *
1677  *     Check if we have any frames to be transmitted, or if we have any
1678  *     available credit to give away.
1679  */
irttp_run_rx_queue(struct tsap_cb * self)1680 static void irttp_run_rx_queue(struct tsap_cb *self)
1681 {
1682 	struct sk_buff *skb;
1683 	int more = 0;
1684 
1685 	IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __func__,
1686 		   self->send_credit, self->avail_credit, self->remote_credit);
1687 
1688 	/* Get exclusive access to the rx queue, otherwise don't touch it */
1689 	if (irda_lock(&self->rx_queue_lock) == FALSE)
1690 		return;
1691 
1692 	/*
1693 	 *  Reassemble all frames in receive queue and deliver them
1694 	 */
1695 	while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
1696 		/* This bit will tell us if it's the last fragment or not */
1697 		more = skb->data[0] & 0x80;
1698 
1699 		/* Remove TTP header */
1700 		skb_pull(skb, TTP_HEADER);
1701 
1702 		/* Add the length of the remaining data */
1703 		self->rx_sdu_size += skb->len;
1704 
1705 		/*
1706 		 * If SAR is disabled, or user has requested no reassembly
1707 		 * of received fragments then we just deliver them
1708 		 * immediately. This can be requested by clients that
1709 		 * implements byte streams without any message boundaries
1710 		 */
1711 		if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
1712 			irttp_do_data_indication(self, skb);
1713 			self->rx_sdu_size = 0;
1714 
1715 			continue;
1716 		}
1717 
1718 		/* Check if this is a fragment, and not the last fragment */
1719 		if (more) {
1720 			/*
1721 			 *  Queue the fragment if we still are within the
1722 			 *  limits of the maximum size of the rx_sdu
1723 			 */
1724 			if (self->rx_sdu_size <= self->rx_max_sdu_size) {
1725 				IRDA_DEBUG(4, "%s(), queueing frag\n",
1726 					   __func__);
1727 				skb_queue_tail(&self->rx_fragments, skb);
1728 			} else {
1729 				/* Free the part of the SDU that is too big */
1730 				dev_kfree_skb(skb);
1731 			}
1732 			continue;
1733 		}
1734 		/*
1735 		 *  This is the last fragment, so time to reassemble!
1736 		 */
1737 		if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
1738 		    (self->rx_max_sdu_size == TTP_SAR_UNBOUND)) {
1739 			/*
1740 			 * A little optimizing. Only queue the fragment if
1741 			 * there are other fragments. Since if this is the
1742 			 * last and only fragment, there is no need to
1743 			 * reassemble :-)
1744 			 */
1745 			if (!skb_queue_empty(&self->rx_fragments)) {
1746 				skb_queue_tail(&self->rx_fragments,
1747 					       skb);
1748 
1749 				skb = irttp_reassemble_skb(self);
1750 			}
1751 
1752 			/* Now we can deliver the reassembled skb */
1753 			irttp_do_data_indication(self, skb);
1754 		} else {
1755 			IRDA_DEBUG(1, "%s(), Truncated frame\n", __func__);
1756 
1757 			/* Free the part of the SDU that is too big */
1758 			dev_kfree_skb(skb);
1759 
1760 			/* Deliver only the valid but truncated part of SDU */
1761 			skb = irttp_reassemble_skb(self);
1762 
1763 			irttp_do_data_indication(self, skb);
1764 		}
1765 		self->rx_sdu_size = 0;
1766 	}
1767 
1768 	/*
1769 	 * It's not trivial to keep track of how many credits are available
1770 	 * by incrementing at each packet, because delivery may fail
1771 	 * (irttp_do_data_indication() may requeue the frame) and because
1772 	 * we need to take care of fragmentation.
1773 	 * We want the other side to send up to initial_credit packets.
1774 	 * We have some frames in our queues, and we have already allowed it
1775 	 * to send remote_credit.
1776 	 * No need to spinlock, write is atomic and self correcting...
1777 	 * Jean II
1778 	 */
1779 	self->avail_credit = (self->initial_credit -
1780 			      (self->remote_credit +
1781 			       skb_queue_len(&self->rx_queue) +
1782 			       skb_queue_len(&self->rx_fragments)));
1783 
1784 	/* Do we have too much credits to send to peer ? */
1785 	if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
1786 	    (self->avail_credit > 0)) {
1787 		/* Send explicit credit frame */
1788 		irttp_give_credit(self);
1789 		/* Note : do *NOT* check if tx_queue is non-empty, that
1790 		 * will produce deadlocks. I repeat : send a credit frame
1791 		 * even if we have something to send in our Tx queue.
1792 		 * If we have credits, it means that our Tx queue is blocked.
1793 		 *
1794 		 * Let's suppose the peer can't keep up with our Tx. He will
1795 		 * flow control us by not sending us any credits, and we
1796 		 * will stop Tx and start accumulating credits here.
1797 		 * Up to the point where the peer will stop its Tx queue,
1798 		 * for lack of credits.
1799 		 * Let's assume the peer application is single threaded.
1800 		 * It will block on Tx and never consume any Rx buffer.
1801 		 * Deadlock. Guaranteed. - Jean II
1802 		 */
1803 	}
1804 
1805 	/* Reset lock */
1806 	self->rx_queue_lock = 0;
1807 }
1808 
1809 #ifdef CONFIG_PROC_FS
1810 struct irttp_iter_state {
1811 	int id;
1812 };
1813 
irttp_seq_start(struct seq_file * seq,loff_t * pos)1814 static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
1815 {
1816 	struct irttp_iter_state *iter = seq->private;
1817 	struct tsap_cb *self;
1818 
1819 	/* Protect our access to the tsap list */
1820 	spin_lock_irq(&irttp->tsaps->hb_spinlock);
1821 	iter->id = 0;
1822 
1823 	for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
1824 	     self != NULL;
1825 	     self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
1826 		if (iter->id == *pos)
1827 			break;
1828 		++iter->id;
1829 	}
1830 
1831 	return self;
1832 }
1833 
irttp_seq_next(struct seq_file * seq,void * v,loff_t * pos)1834 static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1835 {
1836 	struct irttp_iter_state *iter = seq->private;
1837 
1838 	++*pos;
1839 	++iter->id;
1840 	return (void *) hashbin_get_next(irttp->tsaps);
1841 }
1842 
irttp_seq_stop(struct seq_file * seq,void * v)1843 static void irttp_seq_stop(struct seq_file *seq, void *v)
1844 {
1845 	spin_unlock_irq(&irttp->tsaps->hb_spinlock);
1846 }
1847 
irttp_seq_show(struct seq_file * seq,void * v)1848 static int irttp_seq_show(struct seq_file *seq, void *v)
1849 {
1850 	const struct irttp_iter_state *iter = seq->private;
1851 	const struct tsap_cb *self = v;
1852 
1853 	seq_printf(seq, "TSAP %d, ", iter->id);
1854 	seq_printf(seq, "stsap_sel: %02x, ",
1855 		   self->stsap_sel);
1856 	seq_printf(seq, "dtsap_sel: %02x\n",
1857 		   self->dtsap_sel);
1858 	seq_printf(seq, "  connected: %s, ",
1859 		   self->connected ? "TRUE" : "FALSE");
1860 	seq_printf(seq, "avail credit: %d, ",
1861 		   self->avail_credit);
1862 	seq_printf(seq, "remote credit: %d, ",
1863 		   self->remote_credit);
1864 	seq_printf(seq, "send credit: %d\n",
1865 		   self->send_credit);
1866 	seq_printf(seq, "  tx packets: %lu, ",
1867 		   self->stats.tx_packets);
1868 	seq_printf(seq, "rx packets: %lu, ",
1869 		   self->stats.rx_packets);
1870 	seq_printf(seq, "tx_queue len: %u ",
1871 		   skb_queue_len(&self->tx_queue));
1872 	seq_printf(seq, "rx_queue len: %u\n",
1873 		   skb_queue_len(&self->rx_queue));
1874 	seq_printf(seq, "  tx_sdu_busy: %s, ",
1875 		   self->tx_sdu_busy ? "TRUE" : "FALSE");
1876 	seq_printf(seq, "rx_sdu_busy: %s\n",
1877 		   self->rx_sdu_busy ? "TRUE" : "FALSE");
1878 	seq_printf(seq, "  max_seg_size: %u, ",
1879 		   self->max_seg_size);
1880 	seq_printf(seq, "tx_max_sdu_size: %u, ",
1881 		   self->tx_max_sdu_size);
1882 	seq_printf(seq, "rx_max_sdu_size: %u\n",
1883 		   self->rx_max_sdu_size);
1884 
1885 	seq_printf(seq, "  Used by (%s)\n\n",
1886 		   self->notify.name);
1887 	return 0;
1888 }
1889 
1890 static const struct seq_operations irttp_seq_ops = {
1891 	.start  = irttp_seq_start,
1892 	.next   = irttp_seq_next,
1893 	.stop   = irttp_seq_stop,
1894 	.show   = irttp_seq_show,
1895 };
1896 
irttp_seq_open(struct inode * inode,struct file * file)1897 static int irttp_seq_open(struct inode *inode, struct file *file)
1898 {
1899 	return seq_open_private(file, &irttp_seq_ops,
1900 			sizeof(struct irttp_iter_state));
1901 }
1902 
1903 const struct file_operations irttp_seq_fops = {
1904 	.owner		= THIS_MODULE,
1905 	.open           = irttp_seq_open,
1906 	.read           = seq_read,
1907 	.llseek         = seq_lseek,
1908 	.release	= seq_release_private,
1909 };
1910 
1911 #endif /* PROC_FS */
1912