1 /*
2 * Generic PPP layer for Linux.
3 *
4 * Copyright 1999-2002 Paul Mackerras.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 * The generic PPP layer handles the PPP network interfaces, the
12 * /dev/ppp device, packet and VJ compression, and multilink.
13 * It talks to PPP `channels' via the interface defined in
14 * include/linux/ppp_channel.h. Channels provide the basic means for
15 * sending and receiving PPP frames on some kind of communications
16 * channel.
17 *
18 * Part of the code in this driver was inspired by the old async-only
19 * PPP driver, written by Michael Callahan and Al Longyear, and
20 * subsequently hacked by Paul Mackerras.
21 *
22 * ==FILEVERSION 20041108==
23 */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/idr.h>
31 #include <linux/netdevice.h>
32 #include <linux/poll.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/filter.h>
35 #include <linux/ppp-ioctl.h>
36 #include <linux/ppp_channel.h>
37 #include <linux/ppp-comp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/if_arp.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <linux/slab.h>
49 #include <asm/unaligned.h>
50 #include <net/slhc_vj.h>
51 #include <linux/atomic.h>
52
53 #include <linux/nsproxy.h>
54 #include <net/net_namespace.h>
55 #include <net/netns/generic.h>
56
57 #define PPP_VERSION "2.4.2"
58
59 /*
60 * Network protocols we support.
61 */
62 #define NP_IP 0 /* Internet Protocol V4 */
63 #define NP_IPV6 1 /* Internet Protocol V6 */
64 #define NP_IPX 2 /* IPX protocol */
65 #define NP_AT 3 /* Appletalk protocol */
66 #define NP_MPLS_UC 4 /* MPLS unicast */
67 #define NP_MPLS_MC 5 /* MPLS multicast */
68 #define NUM_NP 6 /* Number of NPs. */
69
70 #define MPHDRLEN 6 /* multilink protocol header length */
71 #define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */
72
73 /*
74 * An instance of /dev/ppp can be associated with either a ppp
75 * interface unit or a ppp channel. In both cases, file->private_data
76 * points to one of these.
77 */
78 struct ppp_file {
79 enum {
80 INTERFACE=1, CHANNEL
81 } kind;
82 struct sk_buff_head xq; /* pppd transmit queue */
83 struct sk_buff_head rq; /* receive queue for pppd */
84 wait_queue_head_t rwait; /* for poll on reading /dev/ppp */
85 atomic_t refcnt; /* # refs (incl /dev/ppp attached) */
86 int hdrlen; /* space to leave for headers */
87 int index; /* interface unit / channel number */
88 int dead; /* unit/channel has been shut down */
89 };
90
91 #define PF_TO_X(pf, X) container_of(pf, X, file)
92
93 #define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp)
94 #define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel)
95
96 /*
97 * Data structure to hold primary network stats for which
98 * we want to use 64 bit storage. Other network stats
99 * are stored in dev->stats of the ppp strucute.
100 */
101 struct ppp_link_stats {
102 u64 rx_packets;
103 u64 tx_packets;
104 u64 rx_bytes;
105 u64 tx_bytes;
106 };
107
108 /*
109 * Data structure describing one ppp unit.
110 * A ppp unit corresponds to a ppp network interface device
111 * and represents a multilink bundle.
112 * It can have 0 or more ppp channels connected to it.
113 */
114 struct ppp {
115 struct ppp_file file; /* stuff for read/write/poll 0 */
116 struct file *owner; /* file that owns this unit 48 */
117 struct list_head channels; /* list of attached channels 4c */
118 int n_channels; /* how many channels are attached 54 */
119 spinlock_t rlock; /* lock for receive side 58 */
120 spinlock_t wlock; /* lock for transmit side 5c */
121 int mru; /* max receive unit 60 */
122 unsigned int flags; /* control bits 64 */
123 unsigned int xstate; /* transmit state bits 68 */
124 unsigned int rstate; /* receive state bits 6c */
125 int debug; /* debug flags 70 */
126 struct slcompress *vj; /* state for VJ header compression */
127 enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */
128 struct sk_buff *xmit_pending; /* a packet ready to go out 88 */
129 struct compressor *xcomp; /* transmit packet compressor 8c */
130 void *xc_state; /* its internal state 90 */
131 struct compressor *rcomp; /* receive decompressor 94 */
132 void *rc_state; /* its internal state 98 */
133 unsigned long last_xmit; /* jiffies when last pkt sent 9c */
134 unsigned long last_recv; /* jiffies when last pkt rcvd a0 */
135 struct net_device *dev; /* network interface device a4 */
136 int closing; /* is device closing down? a8 */
137 #ifdef CONFIG_PPP_MULTILINK
138 int nxchan; /* next channel to send something on */
139 u32 nxseq; /* next sequence number to send */
140 int mrru; /* MP: max reconst. receive unit */
141 u32 nextseq; /* MP: seq no of next packet */
142 u32 minseq; /* MP: min of most recent seqnos */
143 struct sk_buff_head mrq; /* MP: receive reconstruction queue */
144 #endif /* CONFIG_PPP_MULTILINK */
145 #ifdef CONFIG_PPP_FILTER
146 struct bpf_prog *pass_filter; /* filter for packets to pass */
147 struct bpf_prog *active_filter; /* filter for pkts to reset idle */
148 #endif /* CONFIG_PPP_FILTER */
149 struct net *ppp_net; /* the net we belong to */
150 struct ppp_link_stats stats64; /* 64 bit network stats */
151 };
152
153 /*
154 * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
155 * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
156 * SC_MUST_COMP
157 * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
158 * Bits in xstate: SC_COMP_RUN
159 */
160 #define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
161 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
162 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
163
164 /*
165 * Private data structure for each channel.
166 * This includes the data structure used for multilink.
167 */
168 struct channel {
169 struct ppp_file file; /* stuff for read/write/poll */
170 struct list_head list; /* link in all/new_channels list */
171 struct ppp_channel *chan; /* public channel data structure */
172 struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */
173 spinlock_t downl; /* protects `chan', file.xq dequeue */
174 struct ppp *ppp; /* ppp unit we're connected to */
175 struct net *chan_net; /* the net channel belongs to */
176 struct list_head clist; /* link in list of channels per unit */
177 rwlock_t upl; /* protects `ppp' */
178 #ifdef CONFIG_PPP_MULTILINK
179 u8 avail; /* flag used in multilink stuff */
180 u8 had_frag; /* >= 1 fragments have been sent */
181 u32 lastseq; /* MP: last sequence # received */
182 int speed; /* speed of the corresponding ppp channel*/
183 #endif /* CONFIG_PPP_MULTILINK */
184 };
185
186 /*
187 * SMP locking issues:
188 * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
189 * list and the ppp.n_channels field, you need to take both locks
190 * before you modify them.
191 * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
192 * channel.downl.
193 */
194
195 static DEFINE_MUTEX(ppp_mutex);
196 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
197 static atomic_t channel_count = ATOMIC_INIT(0);
198
199 /* per-net private data for this module */
200 static int ppp_net_id __read_mostly;
201 struct ppp_net {
202 /* units to ppp mapping */
203 struct idr units_idr;
204
205 /*
206 * all_ppp_mutex protects the units_idr mapping.
207 * It also ensures that finding a ppp unit in the units_idr
208 * map and updating its file.refcnt field is atomic.
209 */
210 struct mutex all_ppp_mutex;
211
212 /* channels */
213 struct list_head all_channels;
214 struct list_head new_channels;
215 int last_channel_index;
216
217 /*
218 * all_channels_lock protects all_channels and
219 * last_channel_index, and the atomicity of find
220 * a channel and updating its file.refcnt field.
221 */
222 spinlock_t all_channels_lock;
223 };
224
225 /* Get the PPP protocol number from a skb */
226 #define PPP_PROTO(skb) get_unaligned_be16((skb)->data)
227
228 /* We limit the length of ppp->file.rq to this (arbitrary) value */
229 #define PPP_MAX_RQLEN 32
230
231 /*
232 * Maximum number of multilink fragments queued up.
233 * This has to be large enough to cope with the maximum latency of
234 * the slowest channel relative to the others. Strictly it should
235 * depend on the number of channels and their characteristics.
236 */
237 #define PPP_MP_MAX_QLEN 128
238
239 /* Multilink header bits. */
240 #define B 0x80 /* this fragment begins a packet */
241 #define E 0x40 /* this fragment ends a packet */
242
243 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
244 #define seq_before(a, b) ((s32)((a) - (b)) < 0)
245 #define seq_after(a, b) ((s32)((a) - (b)) > 0)
246
247 /* Prototypes. */
248 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
249 struct file *file, unsigned int cmd, unsigned long arg);
250 static void ppp_xmit_process(struct ppp *ppp);
251 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
252 static void ppp_push(struct ppp *ppp);
253 static void ppp_channel_push(struct channel *pch);
254 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
255 struct channel *pch);
256 static void ppp_receive_error(struct ppp *ppp);
257 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
258 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
259 struct sk_buff *skb);
260 #ifdef CONFIG_PPP_MULTILINK
261 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
262 struct channel *pch);
263 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
264 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
265 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
266 #endif /* CONFIG_PPP_MULTILINK */
267 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
268 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
269 static void ppp_ccp_closed(struct ppp *ppp);
270 static struct compressor *find_compressor(int type);
271 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
272 static struct ppp *ppp_create_interface(struct net *net, int unit, int *retp);
273 static void init_ppp_file(struct ppp_file *pf, int kind);
274 static void ppp_shutdown_interface(struct ppp *ppp);
275 static void ppp_destroy_interface(struct ppp *ppp);
276 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
277 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
278 static int ppp_connect_channel(struct channel *pch, int unit);
279 static int ppp_disconnect_channel(struct channel *pch);
280 static void ppp_destroy_channel(struct channel *pch);
281 static int unit_get(struct idr *p, void *ptr);
282 static int unit_set(struct idr *p, void *ptr, int n);
283 static void unit_put(struct idr *p, int n);
284 static void *unit_find(struct idr *p, int n);
285
286 static struct class *ppp_class;
287
288 /* per net-namespace data */
ppp_pernet(struct net * net)289 static inline struct ppp_net *ppp_pernet(struct net *net)
290 {
291 BUG_ON(!net);
292
293 return net_generic(net, ppp_net_id);
294 }
295
296 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
proto_to_npindex(int proto)297 static inline int proto_to_npindex(int proto)
298 {
299 switch (proto) {
300 case PPP_IP:
301 return NP_IP;
302 case PPP_IPV6:
303 return NP_IPV6;
304 case PPP_IPX:
305 return NP_IPX;
306 case PPP_AT:
307 return NP_AT;
308 case PPP_MPLS_UC:
309 return NP_MPLS_UC;
310 case PPP_MPLS_MC:
311 return NP_MPLS_MC;
312 }
313 return -EINVAL;
314 }
315
316 /* Translates an NP index into a PPP protocol number */
317 static const int npindex_to_proto[NUM_NP] = {
318 PPP_IP,
319 PPP_IPV6,
320 PPP_IPX,
321 PPP_AT,
322 PPP_MPLS_UC,
323 PPP_MPLS_MC,
324 };
325
326 /* Translates an ethertype into an NP index */
ethertype_to_npindex(int ethertype)327 static inline int ethertype_to_npindex(int ethertype)
328 {
329 switch (ethertype) {
330 case ETH_P_IP:
331 return NP_IP;
332 case ETH_P_IPV6:
333 return NP_IPV6;
334 case ETH_P_IPX:
335 return NP_IPX;
336 case ETH_P_PPPTALK:
337 case ETH_P_ATALK:
338 return NP_AT;
339 case ETH_P_MPLS_UC:
340 return NP_MPLS_UC;
341 case ETH_P_MPLS_MC:
342 return NP_MPLS_MC;
343 }
344 return -1;
345 }
346
347 /* Translates an NP index into an ethertype */
348 static const int npindex_to_ethertype[NUM_NP] = {
349 ETH_P_IP,
350 ETH_P_IPV6,
351 ETH_P_IPX,
352 ETH_P_PPPTALK,
353 ETH_P_MPLS_UC,
354 ETH_P_MPLS_MC,
355 };
356
357 /*
358 * Locking shorthand.
359 */
360 #define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock)
361 #define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock)
362 #define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock)
363 #define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock)
364 #define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \
365 ppp_recv_lock(ppp); } while (0)
366 #define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \
367 ppp_xmit_unlock(ppp); } while (0)
368
369 /*
370 * /dev/ppp device routines.
371 * The /dev/ppp device is used by pppd to control the ppp unit.
372 * It supports the read, write, ioctl and poll functions.
373 * Open instances of /dev/ppp can be in one of three states:
374 * unattached, attached to a ppp unit, or attached to a ppp channel.
375 */
ppp_open(struct inode * inode,struct file * file)376 static int ppp_open(struct inode *inode, struct file *file)
377 {
378 /*
379 * This could (should?) be enforced by the permissions on /dev/ppp.
380 */
381 if (!capable(CAP_NET_ADMIN))
382 return -EPERM;
383 return 0;
384 }
385
ppp_release(struct inode * unused,struct file * file)386 static int ppp_release(struct inode *unused, struct file *file)
387 {
388 struct ppp_file *pf = file->private_data;
389 struct ppp *ppp;
390
391 if (pf) {
392 file->private_data = NULL;
393 if (pf->kind == INTERFACE) {
394 ppp = PF_TO_PPP(pf);
395 if (file == ppp->owner)
396 ppp_shutdown_interface(ppp);
397 }
398 if (atomic_dec_and_test(&pf->refcnt)) {
399 switch (pf->kind) {
400 case INTERFACE:
401 ppp_destroy_interface(PF_TO_PPP(pf));
402 break;
403 case CHANNEL:
404 ppp_destroy_channel(PF_TO_CHANNEL(pf));
405 break;
406 }
407 }
408 }
409 return 0;
410 }
411
ppp_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)412 static ssize_t ppp_read(struct file *file, char __user *buf,
413 size_t count, loff_t *ppos)
414 {
415 struct ppp_file *pf = file->private_data;
416 DECLARE_WAITQUEUE(wait, current);
417 ssize_t ret;
418 struct sk_buff *skb = NULL;
419 struct iovec iov;
420
421 ret = count;
422
423 if (!pf)
424 return -ENXIO;
425 add_wait_queue(&pf->rwait, &wait);
426 for (;;) {
427 set_current_state(TASK_INTERRUPTIBLE);
428 skb = skb_dequeue(&pf->rq);
429 if (skb)
430 break;
431 ret = 0;
432 if (pf->dead)
433 break;
434 if (pf->kind == INTERFACE) {
435 /*
436 * Return 0 (EOF) on an interface that has no
437 * channels connected, unless it is looping
438 * network traffic (demand mode).
439 */
440 struct ppp *ppp = PF_TO_PPP(pf);
441 if (ppp->n_channels == 0 &&
442 (ppp->flags & SC_LOOP_TRAFFIC) == 0)
443 break;
444 }
445 ret = -EAGAIN;
446 if (file->f_flags & O_NONBLOCK)
447 break;
448 ret = -ERESTARTSYS;
449 if (signal_pending(current))
450 break;
451 schedule();
452 }
453 set_current_state(TASK_RUNNING);
454 remove_wait_queue(&pf->rwait, &wait);
455
456 if (!skb)
457 goto out;
458
459 ret = -EOVERFLOW;
460 if (skb->len > count)
461 goto outf;
462 ret = -EFAULT;
463 iov.iov_base = buf;
464 iov.iov_len = count;
465 if (skb_copy_datagram_iovec(skb, 0, &iov, skb->len))
466 goto outf;
467 ret = skb->len;
468
469 outf:
470 kfree_skb(skb);
471 out:
472 return ret;
473 }
474
ppp_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)475 static ssize_t ppp_write(struct file *file, const char __user *buf,
476 size_t count, loff_t *ppos)
477 {
478 struct ppp_file *pf = file->private_data;
479 struct sk_buff *skb;
480 ssize_t ret;
481
482 if (!pf)
483 return -ENXIO;
484 ret = -ENOMEM;
485 skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
486 if (!skb)
487 goto out;
488 skb_reserve(skb, pf->hdrlen);
489 ret = -EFAULT;
490 if (copy_from_user(skb_put(skb, count), buf, count)) {
491 kfree_skb(skb);
492 goto out;
493 }
494
495 skb_queue_tail(&pf->xq, skb);
496
497 switch (pf->kind) {
498 case INTERFACE:
499 ppp_xmit_process(PF_TO_PPP(pf));
500 break;
501 case CHANNEL:
502 ppp_channel_push(PF_TO_CHANNEL(pf));
503 break;
504 }
505
506 ret = count;
507
508 out:
509 return ret;
510 }
511
512 /* No kernel lock - fine */
ppp_poll(struct file * file,poll_table * wait)513 static unsigned int ppp_poll(struct file *file, poll_table *wait)
514 {
515 struct ppp_file *pf = file->private_data;
516 unsigned int mask;
517
518 if (!pf)
519 return 0;
520 poll_wait(file, &pf->rwait, wait);
521 mask = POLLOUT | POLLWRNORM;
522 if (skb_peek(&pf->rq))
523 mask |= POLLIN | POLLRDNORM;
524 if (pf->dead)
525 mask |= POLLHUP;
526 else if (pf->kind == INTERFACE) {
527 /* see comment in ppp_read */
528 struct ppp *ppp = PF_TO_PPP(pf);
529 if (ppp->n_channels == 0 &&
530 (ppp->flags & SC_LOOP_TRAFFIC) == 0)
531 mask |= POLLIN | POLLRDNORM;
532 }
533
534 return mask;
535 }
536
537 #ifdef CONFIG_PPP_FILTER
get_filter(void __user * arg,struct sock_filter ** p)538 static int get_filter(void __user *arg, struct sock_filter **p)
539 {
540 struct sock_fprog uprog;
541 struct sock_filter *code = NULL;
542 int len;
543
544 if (copy_from_user(&uprog, arg, sizeof(uprog)))
545 return -EFAULT;
546
547 if (!uprog.len) {
548 *p = NULL;
549 return 0;
550 }
551
552 len = uprog.len * sizeof(struct sock_filter);
553 code = memdup_user(uprog.filter, len);
554 if (IS_ERR(code))
555 return PTR_ERR(code);
556
557 *p = code;
558 return uprog.len;
559 }
560 #endif /* CONFIG_PPP_FILTER */
561
ppp_ioctl(struct file * file,unsigned int cmd,unsigned long arg)562 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
563 {
564 struct ppp_file *pf;
565 struct ppp *ppp;
566 int err = -EFAULT, val, val2, i;
567 struct ppp_idle idle;
568 struct npioctl npi;
569 int unit, cflags;
570 struct slcompress *vj;
571 void __user *argp = (void __user *)arg;
572 int __user *p = argp;
573
574 mutex_lock(&ppp_mutex);
575
576 pf = file->private_data;
577 if (!pf) {
578 err = ppp_unattached_ioctl(current->nsproxy->net_ns,
579 pf, file, cmd, arg);
580 goto out;
581 }
582
583 if (cmd == PPPIOCDETACH) {
584 /*
585 * We have to be careful here... if the file descriptor
586 * has been dup'd, we could have another process in the
587 * middle of a poll using the same file *, so we had
588 * better not free the interface data structures -
589 * instead we fail the ioctl. Even in this case, we
590 * shut down the interface if we are the owner of it.
591 * Actually, we should get rid of PPPIOCDETACH, userland
592 * (i.e. pppd) could achieve the same effect by closing
593 * this fd and reopening /dev/ppp.
594 */
595 err = -EINVAL;
596 if (pf->kind == INTERFACE) {
597 ppp = PF_TO_PPP(pf);
598 if (file == ppp->owner)
599 ppp_shutdown_interface(ppp);
600 }
601 if (atomic_long_read(&file->f_count) < 2) {
602 ppp_release(NULL, file);
603 err = 0;
604 } else
605 pr_warn("PPPIOCDETACH file->f_count=%ld\n",
606 atomic_long_read(&file->f_count));
607 goto out;
608 }
609
610 if (pf->kind == CHANNEL) {
611 struct channel *pch;
612 struct ppp_channel *chan;
613
614 pch = PF_TO_CHANNEL(pf);
615
616 switch (cmd) {
617 case PPPIOCCONNECT:
618 if (get_user(unit, p))
619 break;
620 err = ppp_connect_channel(pch, unit);
621 break;
622
623 case PPPIOCDISCONN:
624 err = ppp_disconnect_channel(pch);
625 break;
626
627 default:
628 down_read(&pch->chan_sem);
629 chan = pch->chan;
630 err = -ENOTTY;
631 if (chan && chan->ops->ioctl)
632 err = chan->ops->ioctl(chan, cmd, arg);
633 up_read(&pch->chan_sem);
634 }
635 goto out;
636 }
637
638 if (pf->kind != INTERFACE) {
639 /* can't happen */
640 pr_err("PPP: not interface or channel??\n");
641 err = -EINVAL;
642 goto out;
643 }
644
645 ppp = PF_TO_PPP(pf);
646 switch (cmd) {
647 case PPPIOCSMRU:
648 if (get_user(val, p))
649 break;
650 ppp->mru = val;
651 err = 0;
652 break;
653
654 case PPPIOCSFLAGS:
655 if (get_user(val, p))
656 break;
657 ppp_lock(ppp);
658 cflags = ppp->flags & ~val;
659 #ifdef CONFIG_PPP_MULTILINK
660 if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK))
661 ppp->nextseq = 0;
662 #endif
663 ppp->flags = val & SC_FLAG_BITS;
664 ppp_unlock(ppp);
665 if (cflags & SC_CCP_OPEN)
666 ppp_ccp_closed(ppp);
667 err = 0;
668 break;
669
670 case PPPIOCGFLAGS:
671 val = ppp->flags | ppp->xstate | ppp->rstate;
672 if (put_user(val, p))
673 break;
674 err = 0;
675 break;
676
677 case PPPIOCSCOMPRESS:
678 err = ppp_set_compress(ppp, arg);
679 break;
680
681 case PPPIOCGUNIT:
682 if (put_user(ppp->file.index, p))
683 break;
684 err = 0;
685 break;
686
687 case PPPIOCSDEBUG:
688 if (get_user(val, p))
689 break;
690 ppp->debug = val;
691 err = 0;
692 break;
693
694 case PPPIOCGDEBUG:
695 if (put_user(ppp->debug, p))
696 break;
697 err = 0;
698 break;
699
700 case PPPIOCGIDLE:
701 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
702 idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
703 if (copy_to_user(argp, &idle, sizeof(idle)))
704 break;
705 err = 0;
706 break;
707
708 case PPPIOCSMAXCID:
709 if (get_user(val, p))
710 break;
711 val2 = 15;
712 if ((val >> 16) != 0) {
713 val2 = val >> 16;
714 val &= 0xffff;
715 }
716 vj = slhc_init(val2+1, val+1);
717 if (IS_ERR(vj)) {
718 err = PTR_ERR(vj);
719 break;
720 }
721 ppp_lock(ppp);
722 if (ppp->vj)
723 slhc_free(ppp->vj);
724 ppp->vj = vj;
725 ppp_unlock(ppp);
726 err = 0;
727 break;
728
729 case PPPIOCGNPMODE:
730 case PPPIOCSNPMODE:
731 if (copy_from_user(&npi, argp, sizeof(npi)))
732 break;
733 err = proto_to_npindex(npi.protocol);
734 if (err < 0)
735 break;
736 i = err;
737 if (cmd == PPPIOCGNPMODE) {
738 err = -EFAULT;
739 npi.mode = ppp->npmode[i];
740 if (copy_to_user(argp, &npi, sizeof(npi)))
741 break;
742 } else {
743 ppp->npmode[i] = npi.mode;
744 /* we may be able to transmit more packets now (??) */
745 netif_wake_queue(ppp->dev);
746 }
747 err = 0;
748 break;
749
750 #ifdef CONFIG_PPP_FILTER
751 case PPPIOCSPASS:
752 {
753 struct sock_filter *code;
754
755 err = get_filter(argp, &code);
756 if (err >= 0) {
757 struct bpf_prog *pass_filter = NULL;
758 struct sock_fprog_kern fprog = {
759 .len = err,
760 .filter = code,
761 };
762
763 err = 0;
764 if (fprog.filter)
765 err = bpf_prog_create(&pass_filter, &fprog);
766 if (!err) {
767 ppp_lock(ppp);
768 if (ppp->pass_filter)
769 bpf_prog_destroy(ppp->pass_filter);
770 ppp->pass_filter = pass_filter;
771 ppp_unlock(ppp);
772 }
773 kfree(code);
774 }
775 break;
776 }
777 case PPPIOCSACTIVE:
778 {
779 struct sock_filter *code;
780
781 err = get_filter(argp, &code);
782 if (err >= 0) {
783 struct bpf_prog *active_filter = NULL;
784 struct sock_fprog_kern fprog = {
785 .len = err,
786 .filter = code,
787 };
788
789 err = 0;
790 if (fprog.filter)
791 err = bpf_prog_create(&active_filter, &fprog);
792 if (!err) {
793 ppp_lock(ppp);
794 if (ppp->active_filter)
795 bpf_prog_destroy(ppp->active_filter);
796 ppp->active_filter = active_filter;
797 ppp_unlock(ppp);
798 }
799 kfree(code);
800 }
801 break;
802 }
803 #endif /* CONFIG_PPP_FILTER */
804
805 #ifdef CONFIG_PPP_MULTILINK
806 case PPPIOCSMRRU:
807 if (get_user(val, p))
808 break;
809 ppp_recv_lock(ppp);
810 ppp->mrru = val;
811 ppp_recv_unlock(ppp);
812 err = 0;
813 break;
814 #endif /* CONFIG_PPP_MULTILINK */
815
816 default:
817 err = -ENOTTY;
818 }
819
820 out:
821 mutex_unlock(&ppp_mutex);
822
823 return err;
824 }
825
ppp_unattached_ioctl(struct net * net,struct ppp_file * pf,struct file * file,unsigned int cmd,unsigned long arg)826 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
827 struct file *file, unsigned int cmd, unsigned long arg)
828 {
829 int unit, err = -EFAULT;
830 struct ppp *ppp;
831 struct channel *chan;
832 struct ppp_net *pn;
833 int __user *p = (int __user *)arg;
834
835 switch (cmd) {
836 case PPPIOCNEWUNIT:
837 /* Create a new ppp unit */
838 if (get_user(unit, p))
839 break;
840 ppp = ppp_create_interface(net, unit, &err);
841 if (!ppp)
842 break;
843 file->private_data = &ppp->file;
844 ppp->owner = file;
845 err = -EFAULT;
846 if (put_user(ppp->file.index, p))
847 break;
848 err = 0;
849 break;
850
851 case PPPIOCATTACH:
852 /* Attach to an existing ppp unit */
853 if (get_user(unit, p))
854 break;
855 err = -ENXIO;
856 pn = ppp_pernet(net);
857 mutex_lock(&pn->all_ppp_mutex);
858 ppp = ppp_find_unit(pn, unit);
859 if (ppp) {
860 atomic_inc(&ppp->file.refcnt);
861 file->private_data = &ppp->file;
862 err = 0;
863 }
864 mutex_unlock(&pn->all_ppp_mutex);
865 break;
866
867 case PPPIOCATTCHAN:
868 if (get_user(unit, p))
869 break;
870 err = -ENXIO;
871 pn = ppp_pernet(net);
872 spin_lock_bh(&pn->all_channels_lock);
873 chan = ppp_find_channel(pn, unit);
874 if (chan) {
875 atomic_inc(&chan->file.refcnt);
876 file->private_data = &chan->file;
877 err = 0;
878 }
879 spin_unlock_bh(&pn->all_channels_lock);
880 break;
881
882 default:
883 err = -ENOTTY;
884 }
885
886 return err;
887 }
888
889 static const struct file_operations ppp_device_fops = {
890 .owner = THIS_MODULE,
891 .read = ppp_read,
892 .write = ppp_write,
893 .poll = ppp_poll,
894 .unlocked_ioctl = ppp_ioctl,
895 .open = ppp_open,
896 .release = ppp_release,
897 .llseek = noop_llseek,
898 };
899
ppp_init_net(struct net * net)900 static __net_init int ppp_init_net(struct net *net)
901 {
902 struct ppp_net *pn = net_generic(net, ppp_net_id);
903
904 idr_init(&pn->units_idr);
905 mutex_init(&pn->all_ppp_mutex);
906
907 INIT_LIST_HEAD(&pn->all_channels);
908 INIT_LIST_HEAD(&pn->new_channels);
909
910 spin_lock_init(&pn->all_channels_lock);
911
912 return 0;
913 }
914
ppp_exit_net(struct net * net)915 static __net_exit void ppp_exit_net(struct net *net)
916 {
917 struct ppp_net *pn = net_generic(net, ppp_net_id);
918
919 mutex_destroy(&pn->all_ppp_mutex);
920 idr_destroy(&pn->units_idr);
921 }
922
923 static struct pernet_operations ppp_net_ops = {
924 .init = ppp_init_net,
925 .exit = ppp_exit_net,
926 .id = &ppp_net_id,
927 .size = sizeof(struct ppp_net),
928 };
929
930 #define PPP_MAJOR 108
931
932 /* Called at boot time if ppp is compiled into the kernel,
933 or at module load time (from init_module) if compiled as a module. */
ppp_init(void)934 static int __init ppp_init(void)
935 {
936 int err;
937
938 pr_info("PPP generic driver version " PPP_VERSION "\n");
939
940 err = register_pernet_device(&ppp_net_ops);
941 if (err) {
942 pr_err("failed to register PPP pernet device (%d)\n", err);
943 goto out;
944 }
945
946 err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
947 if (err) {
948 pr_err("failed to register PPP device (%d)\n", err);
949 goto out_net;
950 }
951
952 ppp_class = class_create(THIS_MODULE, "ppp");
953 if (IS_ERR(ppp_class)) {
954 err = PTR_ERR(ppp_class);
955 goto out_chrdev;
956 }
957
958 /* not a big deal if we fail here :-) */
959 device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
960
961 return 0;
962
963 out_chrdev:
964 unregister_chrdev(PPP_MAJOR, "ppp");
965 out_net:
966 unregister_pernet_device(&ppp_net_ops);
967 out:
968 return err;
969 }
970
971 /*
972 * Network interface unit routines.
973 */
974 static netdev_tx_t
ppp_start_xmit(struct sk_buff * skb,struct net_device * dev)975 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
976 {
977 struct ppp *ppp = netdev_priv(dev);
978 int npi, proto;
979 unsigned char *pp;
980
981 npi = ethertype_to_npindex(ntohs(skb->protocol));
982 if (npi < 0)
983 goto outf;
984
985 /* Drop, accept or reject the packet */
986 switch (ppp->npmode[npi]) {
987 case NPMODE_PASS:
988 break;
989 case NPMODE_QUEUE:
990 /* it would be nice to have a way to tell the network
991 system to queue this one up for later. */
992 goto outf;
993 case NPMODE_DROP:
994 case NPMODE_ERROR:
995 goto outf;
996 }
997
998 /* Put the 2-byte PPP protocol number on the front,
999 making sure there is room for the address and control fields. */
1000 if (skb_cow_head(skb, PPP_HDRLEN))
1001 goto outf;
1002
1003 pp = skb_push(skb, 2);
1004 proto = npindex_to_proto[npi];
1005 put_unaligned_be16(proto, pp);
1006
1007 skb_queue_tail(&ppp->file.xq, skb);
1008 ppp_xmit_process(ppp);
1009 return NETDEV_TX_OK;
1010
1011 outf:
1012 kfree_skb(skb);
1013 ++dev->stats.tx_dropped;
1014 return NETDEV_TX_OK;
1015 }
1016
1017 static int
ppp_net_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1018 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1019 {
1020 struct ppp *ppp = netdev_priv(dev);
1021 int err = -EFAULT;
1022 void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1023 struct ppp_stats stats;
1024 struct ppp_comp_stats cstats;
1025 char *vers;
1026
1027 switch (cmd) {
1028 case SIOCGPPPSTATS:
1029 ppp_get_stats(ppp, &stats);
1030 if (copy_to_user(addr, &stats, sizeof(stats)))
1031 break;
1032 err = 0;
1033 break;
1034
1035 case SIOCGPPPCSTATS:
1036 memset(&cstats, 0, sizeof(cstats));
1037 if (ppp->xc_state)
1038 ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1039 if (ppp->rc_state)
1040 ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1041 if (copy_to_user(addr, &cstats, sizeof(cstats)))
1042 break;
1043 err = 0;
1044 break;
1045
1046 case SIOCGPPPVER:
1047 vers = PPP_VERSION;
1048 if (copy_to_user(addr, vers, strlen(vers) + 1))
1049 break;
1050 err = 0;
1051 break;
1052
1053 default:
1054 err = -EINVAL;
1055 }
1056
1057 return err;
1058 }
1059
1060 static struct rtnl_link_stats64*
ppp_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats64)1061 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1062 {
1063 struct ppp *ppp = netdev_priv(dev);
1064
1065 ppp_recv_lock(ppp);
1066 stats64->rx_packets = ppp->stats64.rx_packets;
1067 stats64->rx_bytes = ppp->stats64.rx_bytes;
1068 ppp_recv_unlock(ppp);
1069
1070 ppp_xmit_lock(ppp);
1071 stats64->tx_packets = ppp->stats64.tx_packets;
1072 stats64->tx_bytes = ppp->stats64.tx_bytes;
1073 ppp_xmit_unlock(ppp);
1074
1075 stats64->rx_errors = dev->stats.rx_errors;
1076 stats64->tx_errors = dev->stats.tx_errors;
1077 stats64->rx_dropped = dev->stats.rx_dropped;
1078 stats64->tx_dropped = dev->stats.tx_dropped;
1079 stats64->rx_length_errors = dev->stats.rx_length_errors;
1080
1081 return stats64;
1082 }
1083
1084 static struct lock_class_key ppp_tx_busylock;
ppp_dev_init(struct net_device * dev)1085 static int ppp_dev_init(struct net_device *dev)
1086 {
1087 dev->qdisc_tx_busylock = &ppp_tx_busylock;
1088 return 0;
1089 }
1090
1091 static const struct net_device_ops ppp_netdev_ops = {
1092 .ndo_init = ppp_dev_init,
1093 .ndo_start_xmit = ppp_start_xmit,
1094 .ndo_do_ioctl = ppp_net_ioctl,
1095 .ndo_get_stats64 = ppp_get_stats64,
1096 };
1097
ppp_setup(struct net_device * dev)1098 static void ppp_setup(struct net_device *dev)
1099 {
1100 dev->netdev_ops = &ppp_netdev_ops;
1101 dev->hard_header_len = PPP_HDRLEN;
1102 dev->mtu = PPP_MRU;
1103 dev->addr_len = 0;
1104 dev->tx_queue_len = 3;
1105 dev->type = ARPHRD_PPP;
1106 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1107 dev->features |= NETIF_F_NETNS_LOCAL;
1108 netif_keep_dst(dev);
1109 }
1110
1111 /*
1112 * Transmit-side routines.
1113 */
1114
1115 /*
1116 * Called to do any work queued up on the transmit side
1117 * that can now be done.
1118 */
1119 static void
ppp_xmit_process(struct ppp * ppp)1120 ppp_xmit_process(struct ppp *ppp)
1121 {
1122 struct sk_buff *skb;
1123
1124 ppp_xmit_lock(ppp);
1125 if (!ppp->closing) {
1126 ppp_push(ppp);
1127 while (!ppp->xmit_pending &&
1128 (skb = skb_dequeue(&ppp->file.xq)))
1129 ppp_send_frame(ppp, skb);
1130 /* If there's no work left to do, tell the core net
1131 code that we can accept some more. */
1132 if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1133 netif_wake_queue(ppp->dev);
1134 else
1135 netif_stop_queue(ppp->dev);
1136 }
1137 ppp_xmit_unlock(ppp);
1138 }
1139
1140 static inline struct sk_buff *
pad_compress_skb(struct ppp * ppp,struct sk_buff * skb)1141 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1142 {
1143 struct sk_buff *new_skb;
1144 int len;
1145 int new_skb_size = ppp->dev->mtu +
1146 ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1147 int compressor_skb_size = ppp->dev->mtu +
1148 ppp->xcomp->comp_extra + PPP_HDRLEN;
1149 new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1150 if (!new_skb) {
1151 if (net_ratelimit())
1152 netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1153 return NULL;
1154 }
1155 if (ppp->dev->hard_header_len > PPP_HDRLEN)
1156 skb_reserve(new_skb,
1157 ppp->dev->hard_header_len - PPP_HDRLEN);
1158
1159 /* compressor still expects A/C bytes in hdr */
1160 len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1161 new_skb->data, skb->len + 2,
1162 compressor_skb_size);
1163 if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1164 consume_skb(skb);
1165 skb = new_skb;
1166 skb_put(skb, len);
1167 skb_pull(skb, 2); /* pull off A/C bytes */
1168 } else if (len == 0) {
1169 /* didn't compress, or CCP not up yet */
1170 consume_skb(new_skb);
1171 new_skb = skb;
1172 } else {
1173 /*
1174 * (len < 0)
1175 * MPPE requires that we do not send unencrypted
1176 * frames. The compressor will return -1 if we
1177 * should drop the frame. We cannot simply test
1178 * the compress_proto because MPPE and MPPC share
1179 * the same number.
1180 */
1181 if (net_ratelimit())
1182 netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1183 kfree_skb(skb);
1184 consume_skb(new_skb);
1185 new_skb = NULL;
1186 }
1187 return new_skb;
1188 }
1189
1190 /*
1191 * Compress and send a frame.
1192 * The caller should have locked the xmit path,
1193 * and xmit_pending should be 0.
1194 */
1195 static void
ppp_send_frame(struct ppp * ppp,struct sk_buff * skb)1196 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1197 {
1198 int proto = PPP_PROTO(skb);
1199 struct sk_buff *new_skb;
1200 int len;
1201 unsigned char *cp;
1202
1203 if (proto < 0x8000) {
1204 #ifdef CONFIG_PPP_FILTER
1205 /* check if we should pass this packet */
1206 /* the filter instructions are constructed assuming
1207 a four-byte PPP header on each packet */
1208 *skb_push(skb, 2) = 1;
1209 if (ppp->pass_filter &&
1210 BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1211 if (ppp->debug & 1)
1212 netdev_printk(KERN_DEBUG, ppp->dev,
1213 "PPP: outbound frame "
1214 "not passed\n");
1215 kfree_skb(skb);
1216 return;
1217 }
1218 /* if this packet passes the active filter, record the time */
1219 if (!(ppp->active_filter &&
1220 BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1221 ppp->last_xmit = jiffies;
1222 skb_pull(skb, 2);
1223 #else
1224 /* for data packets, record the time */
1225 ppp->last_xmit = jiffies;
1226 #endif /* CONFIG_PPP_FILTER */
1227 }
1228
1229 ++ppp->stats64.tx_packets;
1230 ppp->stats64.tx_bytes += skb->len - 2;
1231
1232 switch (proto) {
1233 case PPP_IP:
1234 if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1235 break;
1236 /* try to do VJ TCP header compression */
1237 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1238 GFP_ATOMIC);
1239 if (!new_skb) {
1240 netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1241 goto drop;
1242 }
1243 skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1244 cp = skb->data + 2;
1245 len = slhc_compress(ppp->vj, cp, skb->len - 2,
1246 new_skb->data + 2, &cp,
1247 !(ppp->flags & SC_NO_TCP_CCID));
1248 if (cp == skb->data + 2) {
1249 /* didn't compress */
1250 consume_skb(new_skb);
1251 } else {
1252 if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1253 proto = PPP_VJC_COMP;
1254 cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1255 } else {
1256 proto = PPP_VJC_UNCOMP;
1257 cp[0] = skb->data[2];
1258 }
1259 consume_skb(skb);
1260 skb = new_skb;
1261 cp = skb_put(skb, len + 2);
1262 cp[0] = 0;
1263 cp[1] = proto;
1264 }
1265 break;
1266
1267 case PPP_CCP:
1268 /* peek at outbound CCP frames */
1269 ppp_ccp_peek(ppp, skb, 0);
1270 break;
1271 }
1272
1273 /* try to do packet compression */
1274 if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1275 proto != PPP_LCP && proto != PPP_CCP) {
1276 if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1277 if (net_ratelimit())
1278 netdev_err(ppp->dev,
1279 "ppp: compression required but "
1280 "down - pkt dropped.\n");
1281 goto drop;
1282 }
1283 skb = pad_compress_skb(ppp, skb);
1284 if (!skb)
1285 goto drop;
1286 }
1287
1288 /*
1289 * If we are waiting for traffic (demand dialling),
1290 * queue it up for pppd to receive.
1291 */
1292 if (ppp->flags & SC_LOOP_TRAFFIC) {
1293 if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1294 goto drop;
1295 skb_queue_tail(&ppp->file.rq, skb);
1296 wake_up_interruptible(&ppp->file.rwait);
1297 return;
1298 }
1299
1300 ppp->xmit_pending = skb;
1301 ppp_push(ppp);
1302 return;
1303
1304 drop:
1305 kfree_skb(skb);
1306 ++ppp->dev->stats.tx_errors;
1307 }
1308
1309 /*
1310 * Try to send the frame in xmit_pending.
1311 * The caller should have the xmit path locked.
1312 */
1313 static void
ppp_push(struct ppp * ppp)1314 ppp_push(struct ppp *ppp)
1315 {
1316 struct list_head *list;
1317 struct channel *pch;
1318 struct sk_buff *skb = ppp->xmit_pending;
1319
1320 if (!skb)
1321 return;
1322
1323 list = &ppp->channels;
1324 if (list_empty(list)) {
1325 /* nowhere to send the packet, just drop it */
1326 ppp->xmit_pending = NULL;
1327 kfree_skb(skb);
1328 return;
1329 }
1330
1331 if ((ppp->flags & SC_MULTILINK) == 0) {
1332 /* not doing multilink: send it down the first channel */
1333 list = list->next;
1334 pch = list_entry(list, struct channel, clist);
1335
1336 spin_lock_bh(&pch->downl);
1337 if (pch->chan) {
1338 if (pch->chan->ops->start_xmit(pch->chan, skb))
1339 ppp->xmit_pending = NULL;
1340 } else {
1341 /* channel got unregistered */
1342 kfree_skb(skb);
1343 ppp->xmit_pending = NULL;
1344 }
1345 spin_unlock_bh(&pch->downl);
1346 return;
1347 }
1348
1349 #ifdef CONFIG_PPP_MULTILINK
1350 /* Multilink: fragment the packet over as many links
1351 as can take the packet at the moment. */
1352 if (!ppp_mp_explode(ppp, skb))
1353 return;
1354 #endif /* CONFIG_PPP_MULTILINK */
1355
1356 ppp->xmit_pending = NULL;
1357 kfree_skb(skb);
1358 }
1359
1360 #ifdef CONFIG_PPP_MULTILINK
1361 static bool mp_protocol_compress __read_mostly = true;
1362 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1363 MODULE_PARM_DESC(mp_protocol_compress,
1364 "compress protocol id in multilink fragments");
1365
1366 /*
1367 * Divide a packet to be transmitted into fragments and
1368 * send them out the individual links.
1369 */
ppp_mp_explode(struct ppp * ppp,struct sk_buff * skb)1370 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1371 {
1372 int len, totlen;
1373 int i, bits, hdrlen, mtu;
1374 int flen;
1375 int navail, nfree, nzero;
1376 int nbigger;
1377 int totspeed;
1378 int totfree;
1379 unsigned char *p, *q;
1380 struct list_head *list;
1381 struct channel *pch;
1382 struct sk_buff *frag;
1383 struct ppp_channel *chan;
1384
1385 totspeed = 0; /*total bitrate of the bundle*/
1386 nfree = 0; /* # channels which have no packet already queued */
1387 navail = 0; /* total # of usable channels (not deregistered) */
1388 nzero = 0; /* number of channels with zero speed associated*/
1389 totfree = 0; /*total # of channels available and
1390 *having no queued packets before
1391 *starting the fragmentation*/
1392
1393 hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1394 i = 0;
1395 list_for_each_entry(pch, &ppp->channels, clist) {
1396 if (pch->chan) {
1397 pch->avail = 1;
1398 navail++;
1399 pch->speed = pch->chan->speed;
1400 } else {
1401 pch->avail = 0;
1402 }
1403 if (pch->avail) {
1404 if (skb_queue_empty(&pch->file.xq) ||
1405 !pch->had_frag) {
1406 if (pch->speed == 0)
1407 nzero++;
1408 else
1409 totspeed += pch->speed;
1410
1411 pch->avail = 2;
1412 ++nfree;
1413 ++totfree;
1414 }
1415 if (!pch->had_frag && i < ppp->nxchan)
1416 ppp->nxchan = i;
1417 }
1418 ++i;
1419 }
1420 /*
1421 * Don't start sending this packet unless at least half of
1422 * the channels are free. This gives much better TCP
1423 * performance if we have a lot of channels.
1424 */
1425 if (nfree == 0 || nfree < navail / 2)
1426 return 0; /* can't take now, leave it in xmit_pending */
1427
1428 /* Do protocol field compression */
1429 p = skb->data;
1430 len = skb->len;
1431 if (*p == 0 && mp_protocol_compress) {
1432 ++p;
1433 --len;
1434 }
1435
1436 totlen = len;
1437 nbigger = len % nfree;
1438
1439 /* skip to the channel after the one we last used
1440 and start at that one */
1441 list = &ppp->channels;
1442 for (i = 0; i < ppp->nxchan; ++i) {
1443 list = list->next;
1444 if (list == &ppp->channels) {
1445 i = 0;
1446 break;
1447 }
1448 }
1449
1450 /* create a fragment for each channel */
1451 bits = B;
1452 while (len > 0) {
1453 list = list->next;
1454 if (list == &ppp->channels) {
1455 i = 0;
1456 continue;
1457 }
1458 pch = list_entry(list, struct channel, clist);
1459 ++i;
1460 if (!pch->avail)
1461 continue;
1462
1463 /*
1464 * Skip this channel if it has a fragment pending already and
1465 * we haven't given a fragment to all of the free channels.
1466 */
1467 if (pch->avail == 1) {
1468 if (nfree > 0)
1469 continue;
1470 } else {
1471 pch->avail = 1;
1472 }
1473
1474 /* check the channel's mtu and whether it is still attached. */
1475 spin_lock_bh(&pch->downl);
1476 if (pch->chan == NULL) {
1477 /* can't use this channel, it's being deregistered */
1478 if (pch->speed == 0)
1479 nzero--;
1480 else
1481 totspeed -= pch->speed;
1482
1483 spin_unlock_bh(&pch->downl);
1484 pch->avail = 0;
1485 totlen = len;
1486 totfree--;
1487 nfree--;
1488 if (--navail == 0)
1489 break;
1490 continue;
1491 }
1492
1493 /*
1494 *if the channel speed is not set divide
1495 *the packet evenly among the free channels;
1496 *otherwise divide it according to the speed
1497 *of the channel we are going to transmit on
1498 */
1499 flen = len;
1500 if (nfree > 0) {
1501 if (pch->speed == 0) {
1502 flen = len/nfree;
1503 if (nbigger > 0) {
1504 flen++;
1505 nbigger--;
1506 }
1507 } else {
1508 flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1509 ((totspeed*totfree)/pch->speed)) - hdrlen;
1510 if (nbigger > 0) {
1511 flen += ((totfree - nzero)*pch->speed)/totspeed;
1512 nbigger -= ((totfree - nzero)*pch->speed)/
1513 totspeed;
1514 }
1515 }
1516 nfree--;
1517 }
1518
1519 /*
1520 *check if we are on the last channel or
1521 *we exceded the length of the data to
1522 *fragment
1523 */
1524 if ((nfree <= 0) || (flen > len))
1525 flen = len;
1526 /*
1527 *it is not worth to tx on slow channels:
1528 *in that case from the resulting flen according to the
1529 *above formula will be equal or less than zero.
1530 *Skip the channel in this case
1531 */
1532 if (flen <= 0) {
1533 pch->avail = 2;
1534 spin_unlock_bh(&pch->downl);
1535 continue;
1536 }
1537
1538 /*
1539 * hdrlen includes the 2-byte PPP protocol field, but the
1540 * MTU counts only the payload excluding the protocol field.
1541 * (RFC1661 Section 2)
1542 */
1543 mtu = pch->chan->mtu - (hdrlen - 2);
1544 if (mtu < 4)
1545 mtu = 4;
1546 if (flen > mtu)
1547 flen = mtu;
1548 if (flen == len)
1549 bits |= E;
1550 frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1551 if (!frag)
1552 goto noskb;
1553 q = skb_put(frag, flen + hdrlen);
1554
1555 /* make the MP header */
1556 put_unaligned_be16(PPP_MP, q);
1557 if (ppp->flags & SC_MP_XSHORTSEQ) {
1558 q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1559 q[3] = ppp->nxseq;
1560 } else {
1561 q[2] = bits;
1562 q[3] = ppp->nxseq >> 16;
1563 q[4] = ppp->nxseq >> 8;
1564 q[5] = ppp->nxseq;
1565 }
1566
1567 memcpy(q + hdrlen, p, flen);
1568
1569 /* try to send it down the channel */
1570 chan = pch->chan;
1571 if (!skb_queue_empty(&pch->file.xq) ||
1572 !chan->ops->start_xmit(chan, frag))
1573 skb_queue_tail(&pch->file.xq, frag);
1574 pch->had_frag = 1;
1575 p += flen;
1576 len -= flen;
1577 ++ppp->nxseq;
1578 bits = 0;
1579 spin_unlock_bh(&pch->downl);
1580 }
1581 ppp->nxchan = i;
1582
1583 return 1;
1584
1585 noskb:
1586 spin_unlock_bh(&pch->downl);
1587 if (ppp->debug & 1)
1588 netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1589 ++ppp->dev->stats.tx_errors;
1590 ++ppp->nxseq;
1591 return 1; /* abandon the frame */
1592 }
1593 #endif /* CONFIG_PPP_MULTILINK */
1594
1595 /*
1596 * Try to send data out on a channel.
1597 */
1598 static void
ppp_channel_push(struct channel * pch)1599 ppp_channel_push(struct channel *pch)
1600 {
1601 struct sk_buff *skb;
1602 struct ppp *ppp;
1603
1604 spin_lock_bh(&pch->downl);
1605 if (pch->chan) {
1606 while (!skb_queue_empty(&pch->file.xq)) {
1607 skb = skb_dequeue(&pch->file.xq);
1608 if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1609 /* put the packet back and try again later */
1610 skb_queue_head(&pch->file.xq, skb);
1611 break;
1612 }
1613 }
1614 } else {
1615 /* channel got deregistered */
1616 skb_queue_purge(&pch->file.xq);
1617 }
1618 spin_unlock_bh(&pch->downl);
1619 /* see if there is anything from the attached unit to be sent */
1620 if (skb_queue_empty(&pch->file.xq)) {
1621 read_lock_bh(&pch->upl);
1622 ppp = pch->ppp;
1623 if (ppp)
1624 ppp_xmit_process(ppp);
1625 read_unlock_bh(&pch->upl);
1626 }
1627 }
1628
1629 /*
1630 * Receive-side routines.
1631 */
1632
1633 struct ppp_mp_skb_parm {
1634 u32 sequence;
1635 u8 BEbits;
1636 };
1637 #define PPP_MP_CB(skb) ((struct ppp_mp_skb_parm *)((skb)->cb))
1638
1639 static inline void
ppp_do_recv(struct ppp * ppp,struct sk_buff * skb,struct channel * pch)1640 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1641 {
1642 ppp_recv_lock(ppp);
1643 if (!ppp->closing)
1644 ppp_receive_frame(ppp, skb, pch);
1645 else
1646 kfree_skb(skb);
1647 ppp_recv_unlock(ppp);
1648 }
1649
1650 void
ppp_input(struct ppp_channel * chan,struct sk_buff * skb)1651 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1652 {
1653 struct channel *pch = chan->ppp;
1654 int proto;
1655
1656 if (!pch) {
1657 kfree_skb(skb);
1658 return;
1659 }
1660
1661 read_lock_bh(&pch->upl);
1662 if (!pskb_may_pull(skb, 2)) {
1663 kfree_skb(skb);
1664 if (pch->ppp) {
1665 ++pch->ppp->dev->stats.rx_length_errors;
1666 ppp_receive_error(pch->ppp);
1667 }
1668 goto done;
1669 }
1670
1671 proto = PPP_PROTO(skb);
1672 if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1673 /* put it on the channel queue */
1674 skb_queue_tail(&pch->file.rq, skb);
1675 /* drop old frames if queue too long */
1676 while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1677 (skb = skb_dequeue(&pch->file.rq)))
1678 kfree_skb(skb);
1679 wake_up_interruptible(&pch->file.rwait);
1680 } else {
1681 ppp_do_recv(pch->ppp, skb, pch);
1682 }
1683
1684 done:
1685 read_unlock_bh(&pch->upl);
1686 }
1687
1688 /* Put a 0-length skb in the receive queue as an error indication */
1689 void
ppp_input_error(struct ppp_channel * chan,int code)1690 ppp_input_error(struct ppp_channel *chan, int code)
1691 {
1692 struct channel *pch = chan->ppp;
1693 struct sk_buff *skb;
1694
1695 if (!pch)
1696 return;
1697
1698 read_lock_bh(&pch->upl);
1699 if (pch->ppp) {
1700 skb = alloc_skb(0, GFP_ATOMIC);
1701 if (skb) {
1702 skb->len = 0; /* probably unnecessary */
1703 skb->cb[0] = code;
1704 ppp_do_recv(pch->ppp, skb, pch);
1705 }
1706 }
1707 read_unlock_bh(&pch->upl);
1708 }
1709
1710 /*
1711 * We come in here to process a received frame.
1712 * The receive side of the ppp unit is locked.
1713 */
1714 static void
ppp_receive_frame(struct ppp * ppp,struct sk_buff * skb,struct channel * pch)1715 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1716 {
1717 /* note: a 0-length skb is used as an error indication */
1718 if (skb->len > 0) {
1719 skb_checksum_complete_unset(skb);
1720 #ifdef CONFIG_PPP_MULTILINK
1721 /* XXX do channel-level decompression here */
1722 if (PPP_PROTO(skb) == PPP_MP)
1723 ppp_receive_mp_frame(ppp, skb, pch);
1724 else
1725 #endif /* CONFIG_PPP_MULTILINK */
1726 ppp_receive_nonmp_frame(ppp, skb);
1727 } else {
1728 kfree_skb(skb);
1729 ppp_receive_error(ppp);
1730 }
1731 }
1732
1733 static void
ppp_receive_error(struct ppp * ppp)1734 ppp_receive_error(struct ppp *ppp)
1735 {
1736 ++ppp->dev->stats.rx_errors;
1737 if (ppp->vj)
1738 slhc_toss(ppp->vj);
1739 }
1740
1741 static void
ppp_receive_nonmp_frame(struct ppp * ppp,struct sk_buff * skb)1742 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1743 {
1744 struct sk_buff *ns;
1745 int proto, len, npi;
1746
1747 /*
1748 * Decompress the frame, if compressed.
1749 * Note that some decompressors need to see uncompressed frames
1750 * that come in as well as compressed frames.
1751 */
1752 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
1753 (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1754 skb = ppp_decompress_frame(ppp, skb);
1755
1756 if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1757 goto err;
1758
1759 proto = PPP_PROTO(skb);
1760 switch (proto) {
1761 case PPP_VJC_COMP:
1762 /* decompress VJ compressed packets */
1763 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1764 goto err;
1765
1766 if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1767 /* copy to a new sk_buff with more tailroom */
1768 ns = dev_alloc_skb(skb->len + 128);
1769 if (!ns) {
1770 netdev_err(ppp->dev, "PPP: no memory "
1771 "(VJ decomp)\n");
1772 goto err;
1773 }
1774 skb_reserve(ns, 2);
1775 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1776 consume_skb(skb);
1777 skb = ns;
1778 }
1779 else
1780 skb->ip_summed = CHECKSUM_NONE;
1781
1782 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1783 if (len <= 0) {
1784 netdev_printk(KERN_DEBUG, ppp->dev,
1785 "PPP: VJ decompression error\n");
1786 goto err;
1787 }
1788 len += 2;
1789 if (len > skb->len)
1790 skb_put(skb, len - skb->len);
1791 else if (len < skb->len)
1792 skb_trim(skb, len);
1793 proto = PPP_IP;
1794 break;
1795
1796 case PPP_VJC_UNCOMP:
1797 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1798 goto err;
1799
1800 /* Until we fix the decompressor need to make sure
1801 * data portion is linear.
1802 */
1803 if (!pskb_may_pull(skb, skb->len))
1804 goto err;
1805
1806 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1807 netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
1808 goto err;
1809 }
1810 proto = PPP_IP;
1811 break;
1812
1813 case PPP_CCP:
1814 ppp_ccp_peek(ppp, skb, 1);
1815 break;
1816 }
1817
1818 ++ppp->stats64.rx_packets;
1819 ppp->stats64.rx_bytes += skb->len - 2;
1820
1821 npi = proto_to_npindex(proto);
1822 if (npi < 0) {
1823 /* control or unknown frame - pass it to pppd */
1824 skb_queue_tail(&ppp->file.rq, skb);
1825 /* limit queue length by dropping old frames */
1826 while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
1827 (skb = skb_dequeue(&ppp->file.rq)))
1828 kfree_skb(skb);
1829 /* wake up any process polling or blocking on read */
1830 wake_up_interruptible(&ppp->file.rwait);
1831
1832 } else {
1833 /* network protocol frame - give it to the kernel */
1834
1835 #ifdef CONFIG_PPP_FILTER
1836 /* check if the packet passes the pass and active filters */
1837 /* the filter instructions are constructed assuming
1838 a four-byte PPP header on each packet */
1839 if (ppp->pass_filter || ppp->active_filter) {
1840 if (skb_unclone(skb, GFP_ATOMIC))
1841 goto err;
1842
1843 *skb_push(skb, 2) = 0;
1844 if (ppp->pass_filter &&
1845 BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1846 if (ppp->debug & 1)
1847 netdev_printk(KERN_DEBUG, ppp->dev,
1848 "PPP: inbound frame "
1849 "not passed\n");
1850 kfree_skb(skb);
1851 return;
1852 }
1853 if (!(ppp->active_filter &&
1854 BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1855 ppp->last_recv = jiffies;
1856 __skb_pull(skb, 2);
1857 } else
1858 #endif /* CONFIG_PPP_FILTER */
1859 ppp->last_recv = jiffies;
1860
1861 if ((ppp->dev->flags & IFF_UP) == 0 ||
1862 ppp->npmode[npi] != NPMODE_PASS) {
1863 kfree_skb(skb);
1864 } else {
1865 /* chop off protocol */
1866 skb_pull_rcsum(skb, 2);
1867 skb->dev = ppp->dev;
1868 skb->protocol = htons(npindex_to_ethertype[npi]);
1869 skb_reset_mac_header(skb);
1870 netif_rx(skb);
1871 }
1872 }
1873 return;
1874
1875 err:
1876 kfree_skb(skb);
1877 ppp_receive_error(ppp);
1878 }
1879
1880 static struct sk_buff *
ppp_decompress_frame(struct ppp * ppp,struct sk_buff * skb)1881 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1882 {
1883 int proto = PPP_PROTO(skb);
1884 struct sk_buff *ns;
1885 int len;
1886
1887 /* Until we fix all the decompressor's need to make sure
1888 * data portion is linear.
1889 */
1890 if (!pskb_may_pull(skb, skb->len))
1891 goto err;
1892
1893 if (proto == PPP_COMP) {
1894 int obuff_size;
1895
1896 switch(ppp->rcomp->compress_proto) {
1897 case CI_MPPE:
1898 obuff_size = ppp->mru + PPP_HDRLEN + 1;
1899 break;
1900 default:
1901 obuff_size = ppp->mru + PPP_HDRLEN;
1902 break;
1903 }
1904
1905 ns = dev_alloc_skb(obuff_size);
1906 if (!ns) {
1907 netdev_err(ppp->dev, "ppp_decompress_frame: "
1908 "no memory\n");
1909 goto err;
1910 }
1911 /* the decompressor still expects the A/C bytes in the hdr */
1912 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1913 skb->len + 2, ns->data, obuff_size);
1914 if (len < 0) {
1915 /* Pass the compressed frame to pppd as an
1916 error indication. */
1917 if (len == DECOMP_FATALERROR)
1918 ppp->rstate |= SC_DC_FERROR;
1919 kfree_skb(ns);
1920 goto err;
1921 }
1922
1923 consume_skb(skb);
1924 skb = ns;
1925 skb_put(skb, len);
1926 skb_pull(skb, 2); /* pull off the A/C bytes */
1927
1928 } else {
1929 /* Uncompressed frame - pass to decompressor so it
1930 can update its dictionary if necessary. */
1931 if (ppp->rcomp->incomp)
1932 ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1933 skb->len + 2);
1934 }
1935
1936 return skb;
1937
1938 err:
1939 ppp->rstate |= SC_DC_ERROR;
1940 ppp_receive_error(ppp);
1941 return skb;
1942 }
1943
1944 #ifdef CONFIG_PPP_MULTILINK
1945 /*
1946 * Receive a multilink frame.
1947 * We put it on the reconstruction queue and then pull off
1948 * as many completed frames as we can.
1949 */
1950 static void
ppp_receive_mp_frame(struct ppp * ppp,struct sk_buff * skb,struct channel * pch)1951 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1952 {
1953 u32 mask, seq;
1954 struct channel *ch;
1955 int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1956
1957 if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
1958 goto err; /* no good, throw it away */
1959
1960 /* Decode sequence number and begin/end bits */
1961 if (ppp->flags & SC_MP_SHORTSEQ) {
1962 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
1963 mask = 0xfff;
1964 } else {
1965 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
1966 mask = 0xffffff;
1967 }
1968 PPP_MP_CB(skb)->BEbits = skb->data[2];
1969 skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */
1970
1971 /*
1972 * Do protocol ID decompression on the first fragment of each packet.
1973 */
1974 if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
1975 *skb_push(skb, 1) = 0;
1976
1977 /*
1978 * Expand sequence number to 32 bits, making it as close
1979 * as possible to ppp->minseq.
1980 */
1981 seq |= ppp->minseq & ~mask;
1982 if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
1983 seq += mask + 1;
1984 else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
1985 seq -= mask + 1; /* should never happen */
1986 PPP_MP_CB(skb)->sequence = seq;
1987 pch->lastseq = seq;
1988
1989 /*
1990 * If this packet comes before the next one we were expecting,
1991 * drop it.
1992 */
1993 if (seq_before(seq, ppp->nextseq)) {
1994 kfree_skb(skb);
1995 ++ppp->dev->stats.rx_dropped;
1996 ppp_receive_error(ppp);
1997 return;
1998 }
1999
2000 /*
2001 * Reevaluate minseq, the minimum over all channels of the
2002 * last sequence number received on each channel. Because of
2003 * the increasing sequence number rule, we know that any fragment
2004 * before `minseq' which hasn't arrived is never going to arrive.
2005 * The list of channels can't change because we have the receive
2006 * side of the ppp unit locked.
2007 */
2008 list_for_each_entry(ch, &ppp->channels, clist) {
2009 if (seq_before(ch->lastseq, seq))
2010 seq = ch->lastseq;
2011 }
2012 if (seq_before(ppp->minseq, seq))
2013 ppp->minseq = seq;
2014
2015 /* Put the fragment on the reconstruction queue */
2016 ppp_mp_insert(ppp, skb);
2017
2018 /* If the queue is getting long, don't wait any longer for packets
2019 before the start of the queue. */
2020 if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
2021 struct sk_buff *mskb = skb_peek(&ppp->mrq);
2022 if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
2023 ppp->minseq = PPP_MP_CB(mskb)->sequence;
2024 }
2025
2026 /* Pull completed packets off the queue and receive them. */
2027 while ((skb = ppp_mp_reconstruct(ppp))) {
2028 if (pskb_may_pull(skb, 2))
2029 ppp_receive_nonmp_frame(ppp, skb);
2030 else {
2031 ++ppp->dev->stats.rx_length_errors;
2032 kfree_skb(skb);
2033 ppp_receive_error(ppp);
2034 }
2035 }
2036
2037 return;
2038
2039 err:
2040 kfree_skb(skb);
2041 ppp_receive_error(ppp);
2042 }
2043
2044 /*
2045 * Insert a fragment on the MP reconstruction queue.
2046 * The queue is ordered by increasing sequence number.
2047 */
2048 static void
ppp_mp_insert(struct ppp * ppp,struct sk_buff * skb)2049 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2050 {
2051 struct sk_buff *p;
2052 struct sk_buff_head *list = &ppp->mrq;
2053 u32 seq = PPP_MP_CB(skb)->sequence;
2054
2055 /* N.B. we don't need to lock the list lock because we have the
2056 ppp unit receive-side lock. */
2057 skb_queue_walk(list, p) {
2058 if (seq_before(seq, PPP_MP_CB(p)->sequence))
2059 break;
2060 }
2061 __skb_queue_before(list, p, skb);
2062 }
2063
2064 /*
2065 * Reconstruct a packet from the MP fragment queue.
2066 * We go through increasing sequence numbers until we find a
2067 * complete packet, or we get to the sequence number for a fragment
2068 * which hasn't arrived but might still do so.
2069 */
2070 static struct sk_buff *
ppp_mp_reconstruct(struct ppp * ppp)2071 ppp_mp_reconstruct(struct ppp *ppp)
2072 {
2073 u32 seq = ppp->nextseq;
2074 u32 minseq = ppp->minseq;
2075 struct sk_buff_head *list = &ppp->mrq;
2076 struct sk_buff *p, *tmp;
2077 struct sk_buff *head, *tail;
2078 struct sk_buff *skb = NULL;
2079 int lost = 0, len = 0;
2080
2081 if (ppp->mrru == 0) /* do nothing until mrru is set */
2082 return NULL;
2083 head = list->next;
2084 tail = NULL;
2085 skb_queue_walk_safe(list, p, tmp) {
2086 again:
2087 if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2088 /* this can't happen, anyway ignore the skb */
2089 netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2090 "seq %u < %u\n",
2091 PPP_MP_CB(p)->sequence, seq);
2092 __skb_unlink(p, list);
2093 kfree_skb(p);
2094 continue;
2095 }
2096 if (PPP_MP_CB(p)->sequence != seq) {
2097 u32 oldseq;
2098 /* Fragment `seq' is missing. If it is after
2099 minseq, it might arrive later, so stop here. */
2100 if (seq_after(seq, minseq))
2101 break;
2102 /* Fragment `seq' is lost, keep going. */
2103 lost = 1;
2104 oldseq = seq;
2105 seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2106 minseq + 1: PPP_MP_CB(p)->sequence;
2107
2108 if (ppp->debug & 1)
2109 netdev_printk(KERN_DEBUG, ppp->dev,
2110 "lost frag %u..%u\n",
2111 oldseq, seq-1);
2112
2113 goto again;
2114 }
2115
2116 /*
2117 * At this point we know that all the fragments from
2118 * ppp->nextseq to seq are either present or lost.
2119 * Also, there are no complete packets in the queue
2120 * that have no missing fragments and end before this
2121 * fragment.
2122 */
2123
2124 /* B bit set indicates this fragment starts a packet */
2125 if (PPP_MP_CB(p)->BEbits & B) {
2126 head = p;
2127 lost = 0;
2128 len = 0;
2129 }
2130
2131 len += p->len;
2132
2133 /* Got a complete packet yet? */
2134 if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2135 (PPP_MP_CB(head)->BEbits & B)) {
2136 if (len > ppp->mrru + 2) {
2137 ++ppp->dev->stats.rx_length_errors;
2138 netdev_printk(KERN_DEBUG, ppp->dev,
2139 "PPP: reconstructed packet"
2140 " is too long (%d)\n", len);
2141 } else {
2142 tail = p;
2143 break;
2144 }
2145 ppp->nextseq = seq + 1;
2146 }
2147
2148 /*
2149 * If this is the ending fragment of a packet,
2150 * and we haven't found a complete valid packet yet,
2151 * we can discard up to and including this fragment.
2152 */
2153 if (PPP_MP_CB(p)->BEbits & E) {
2154 struct sk_buff *tmp2;
2155
2156 skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2157 if (ppp->debug & 1)
2158 netdev_printk(KERN_DEBUG, ppp->dev,
2159 "discarding frag %u\n",
2160 PPP_MP_CB(p)->sequence);
2161 __skb_unlink(p, list);
2162 kfree_skb(p);
2163 }
2164 head = skb_peek(list);
2165 if (!head)
2166 break;
2167 }
2168 ++seq;
2169 }
2170
2171 /* If we have a complete packet, copy it all into one skb. */
2172 if (tail != NULL) {
2173 /* If we have discarded any fragments,
2174 signal a receive error. */
2175 if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2176 skb_queue_walk_safe(list, p, tmp) {
2177 if (p == head)
2178 break;
2179 if (ppp->debug & 1)
2180 netdev_printk(KERN_DEBUG, ppp->dev,
2181 "discarding frag %u\n",
2182 PPP_MP_CB(p)->sequence);
2183 __skb_unlink(p, list);
2184 kfree_skb(p);
2185 }
2186
2187 if (ppp->debug & 1)
2188 netdev_printk(KERN_DEBUG, ppp->dev,
2189 " missed pkts %u..%u\n",
2190 ppp->nextseq,
2191 PPP_MP_CB(head)->sequence-1);
2192 ++ppp->dev->stats.rx_dropped;
2193 ppp_receive_error(ppp);
2194 }
2195
2196 skb = head;
2197 if (head != tail) {
2198 struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2199 p = skb_queue_next(list, head);
2200 __skb_unlink(skb, list);
2201 skb_queue_walk_from_safe(list, p, tmp) {
2202 __skb_unlink(p, list);
2203 *fragpp = p;
2204 p->next = NULL;
2205 fragpp = &p->next;
2206
2207 skb->len += p->len;
2208 skb->data_len += p->len;
2209 skb->truesize += p->truesize;
2210
2211 if (p == tail)
2212 break;
2213 }
2214 } else {
2215 __skb_unlink(skb, list);
2216 }
2217
2218 ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2219 }
2220
2221 return skb;
2222 }
2223 #endif /* CONFIG_PPP_MULTILINK */
2224
2225 /*
2226 * Channel interface.
2227 */
2228
2229 /* Create a new, unattached ppp channel. */
ppp_register_channel(struct ppp_channel * chan)2230 int ppp_register_channel(struct ppp_channel *chan)
2231 {
2232 return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2233 }
2234
2235 /* Create a new, unattached ppp channel for specified net. */
ppp_register_net_channel(struct net * net,struct ppp_channel * chan)2236 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2237 {
2238 struct channel *pch;
2239 struct ppp_net *pn;
2240
2241 pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2242 if (!pch)
2243 return -ENOMEM;
2244
2245 pn = ppp_pernet(net);
2246
2247 pch->ppp = NULL;
2248 pch->chan = chan;
2249 pch->chan_net = get_net(net);
2250 chan->ppp = pch;
2251 init_ppp_file(&pch->file, CHANNEL);
2252 pch->file.hdrlen = chan->hdrlen;
2253 #ifdef CONFIG_PPP_MULTILINK
2254 pch->lastseq = -1;
2255 #endif /* CONFIG_PPP_MULTILINK */
2256 init_rwsem(&pch->chan_sem);
2257 spin_lock_init(&pch->downl);
2258 rwlock_init(&pch->upl);
2259
2260 spin_lock_bh(&pn->all_channels_lock);
2261 pch->file.index = ++pn->last_channel_index;
2262 list_add(&pch->list, &pn->new_channels);
2263 atomic_inc(&channel_count);
2264 spin_unlock_bh(&pn->all_channels_lock);
2265
2266 return 0;
2267 }
2268
2269 /*
2270 * Return the index of a channel.
2271 */
ppp_channel_index(struct ppp_channel * chan)2272 int ppp_channel_index(struct ppp_channel *chan)
2273 {
2274 struct channel *pch = chan->ppp;
2275
2276 if (pch)
2277 return pch->file.index;
2278 return -1;
2279 }
2280
2281 /*
2282 * Return the PPP unit number to which a channel is connected.
2283 */
ppp_unit_number(struct ppp_channel * chan)2284 int ppp_unit_number(struct ppp_channel *chan)
2285 {
2286 struct channel *pch = chan->ppp;
2287 int unit = -1;
2288
2289 if (pch) {
2290 read_lock_bh(&pch->upl);
2291 if (pch->ppp)
2292 unit = pch->ppp->file.index;
2293 read_unlock_bh(&pch->upl);
2294 }
2295 return unit;
2296 }
2297
2298 /*
2299 * Return the PPP device interface name of a channel.
2300 */
ppp_dev_name(struct ppp_channel * chan)2301 char *ppp_dev_name(struct ppp_channel *chan)
2302 {
2303 struct channel *pch = chan->ppp;
2304 char *name = NULL;
2305
2306 if (pch) {
2307 read_lock_bh(&pch->upl);
2308 if (pch->ppp && pch->ppp->dev)
2309 name = pch->ppp->dev->name;
2310 read_unlock_bh(&pch->upl);
2311 }
2312 return name;
2313 }
2314
2315
2316 /*
2317 * Disconnect a channel from the generic layer.
2318 * This must be called in process context.
2319 */
2320 void
ppp_unregister_channel(struct ppp_channel * chan)2321 ppp_unregister_channel(struct ppp_channel *chan)
2322 {
2323 struct channel *pch = chan->ppp;
2324 struct ppp_net *pn;
2325
2326 if (!pch)
2327 return; /* should never happen */
2328
2329 chan->ppp = NULL;
2330
2331 /*
2332 * This ensures that we have returned from any calls into the
2333 * the channel's start_xmit or ioctl routine before we proceed.
2334 */
2335 down_write(&pch->chan_sem);
2336 spin_lock_bh(&pch->downl);
2337 pch->chan = NULL;
2338 spin_unlock_bh(&pch->downl);
2339 up_write(&pch->chan_sem);
2340 ppp_disconnect_channel(pch);
2341
2342 pn = ppp_pernet(pch->chan_net);
2343 spin_lock_bh(&pn->all_channels_lock);
2344 list_del(&pch->list);
2345 spin_unlock_bh(&pn->all_channels_lock);
2346
2347 pch->file.dead = 1;
2348 wake_up_interruptible(&pch->file.rwait);
2349 if (atomic_dec_and_test(&pch->file.refcnt))
2350 ppp_destroy_channel(pch);
2351 }
2352
2353 /*
2354 * Callback from a channel when it can accept more to transmit.
2355 * This should be called at BH/softirq level, not interrupt level.
2356 */
2357 void
ppp_output_wakeup(struct ppp_channel * chan)2358 ppp_output_wakeup(struct ppp_channel *chan)
2359 {
2360 struct channel *pch = chan->ppp;
2361
2362 if (!pch)
2363 return;
2364 ppp_channel_push(pch);
2365 }
2366
2367 /*
2368 * Compression control.
2369 */
2370
2371 /* Process the PPPIOCSCOMPRESS ioctl. */
2372 static int
ppp_set_compress(struct ppp * ppp,unsigned long arg)2373 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2374 {
2375 int err;
2376 struct compressor *cp, *ocomp;
2377 struct ppp_option_data data;
2378 void *state, *ostate;
2379 unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2380
2381 err = -EFAULT;
2382 if (copy_from_user(&data, (void __user *) arg, sizeof(data)) ||
2383 (data.length <= CCP_MAX_OPTION_LENGTH &&
2384 copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2385 goto out;
2386 err = -EINVAL;
2387 if (data.length > CCP_MAX_OPTION_LENGTH ||
2388 ccp_option[1] < 2 || ccp_option[1] > data.length)
2389 goto out;
2390
2391 cp = try_then_request_module(
2392 find_compressor(ccp_option[0]),
2393 "ppp-compress-%d", ccp_option[0]);
2394 if (!cp)
2395 goto out;
2396
2397 err = -ENOBUFS;
2398 if (data.transmit) {
2399 state = cp->comp_alloc(ccp_option, data.length);
2400 if (state) {
2401 ppp_xmit_lock(ppp);
2402 ppp->xstate &= ~SC_COMP_RUN;
2403 ocomp = ppp->xcomp;
2404 ostate = ppp->xc_state;
2405 ppp->xcomp = cp;
2406 ppp->xc_state = state;
2407 ppp_xmit_unlock(ppp);
2408 if (ostate) {
2409 ocomp->comp_free(ostate);
2410 module_put(ocomp->owner);
2411 }
2412 err = 0;
2413 } else
2414 module_put(cp->owner);
2415
2416 } else {
2417 state = cp->decomp_alloc(ccp_option, data.length);
2418 if (state) {
2419 ppp_recv_lock(ppp);
2420 ppp->rstate &= ~SC_DECOMP_RUN;
2421 ocomp = ppp->rcomp;
2422 ostate = ppp->rc_state;
2423 ppp->rcomp = cp;
2424 ppp->rc_state = state;
2425 ppp_recv_unlock(ppp);
2426 if (ostate) {
2427 ocomp->decomp_free(ostate);
2428 module_put(ocomp->owner);
2429 }
2430 err = 0;
2431 } else
2432 module_put(cp->owner);
2433 }
2434
2435 out:
2436 return err;
2437 }
2438
2439 /*
2440 * Look at a CCP packet and update our state accordingly.
2441 * We assume the caller has the xmit or recv path locked.
2442 */
2443 static void
ppp_ccp_peek(struct ppp * ppp,struct sk_buff * skb,int inbound)2444 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2445 {
2446 unsigned char *dp;
2447 int len;
2448
2449 if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2450 return; /* no header */
2451 dp = skb->data + 2;
2452
2453 switch (CCP_CODE(dp)) {
2454 case CCP_CONFREQ:
2455
2456 /* A ConfReq starts negotiation of compression
2457 * in one direction of transmission,
2458 * and hence brings it down...but which way?
2459 *
2460 * Remember:
2461 * A ConfReq indicates what the sender would like to receive
2462 */
2463 if(inbound)
2464 /* He is proposing what I should send */
2465 ppp->xstate &= ~SC_COMP_RUN;
2466 else
2467 /* I am proposing to what he should send */
2468 ppp->rstate &= ~SC_DECOMP_RUN;
2469
2470 break;
2471
2472 case CCP_TERMREQ:
2473 case CCP_TERMACK:
2474 /*
2475 * CCP is going down, both directions of transmission
2476 */
2477 ppp->rstate &= ~SC_DECOMP_RUN;
2478 ppp->xstate &= ~SC_COMP_RUN;
2479 break;
2480
2481 case CCP_CONFACK:
2482 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2483 break;
2484 len = CCP_LENGTH(dp);
2485 if (!pskb_may_pull(skb, len + 2))
2486 return; /* too short */
2487 dp += CCP_HDRLEN;
2488 len -= CCP_HDRLEN;
2489 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2490 break;
2491 if (inbound) {
2492 /* we will start receiving compressed packets */
2493 if (!ppp->rc_state)
2494 break;
2495 if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2496 ppp->file.index, 0, ppp->mru, ppp->debug)) {
2497 ppp->rstate |= SC_DECOMP_RUN;
2498 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2499 }
2500 } else {
2501 /* we will soon start sending compressed packets */
2502 if (!ppp->xc_state)
2503 break;
2504 if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2505 ppp->file.index, 0, ppp->debug))
2506 ppp->xstate |= SC_COMP_RUN;
2507 }
2508 break;
2509
2510 case CCP_RESETACK:
2511 /* reset the [de]compressor */
2512 if ((ppp->flags & SC_CCP_UP) == 0)
2513 break;
2514 if (inbound) {
2515 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2516 ppp->rcomp->decomp_reset(ppp->rc_state);
2517 ppp->rstate &= ~SC_DC_ERROR;
2518 }
2519 } else {
2520 if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2521 ppp->xcomp->comp_reset(ppp->xc_state);
2522 }
2523 break;
2524 }
2525 }
2526
2527 /* Free up compression resources. */
2528 static void
ppp_ccp_closed(struct ppp * ppp)2529 ppp_ccp_closed(struct ppp *ppp)
2530 {
2531 void *xstate, *rstate;
2532 struct compressor *xcomp, *rcomp;
2533
2534 ppp_lock(ppp);
2535 ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2536 ppp->xstate = 0;
2537 xcomp = ppp->xcomp;
2538 xstate = ppp->xc_state;
2539 ppp->xc_state = NULL;
2540 ppp->rstate = 0;
2541 rcomp = ppp->rcomp;
2542 rstate = ppp->rc_state;
2543 ppp->rc_state = NULL;
2544 ppp_unlock(ppp);
2545
2546 if (xstate) {
2547 xcomp->comp_free(xstate);
2548 module_put(xcomp->owner);
2549 }
2550 if (rstate) {
2551 rcomp->decomp_free(rstate);
2552 module_put(rcomp->owner);
2553 }
2554 }
2555
2556 /* List of compressors. */
2557 static LIST_HEAD(compressor_list);
2558 static DEFINE_SPINLOCK(compressor_list_lock);
2559
2560 struct compressor_entry {
2561 struct list_head list;
2562 struct compressor *comp;
2563 };
2564
2565 static struct compressor_entry *
find_comp_entry(int proto)2566 find_comp_entry(int proto)
2567 {
2568 struct compressor_entry *ce;
2569
2570 list_for_each_entry(ce, &compressor_list, list) {
2571 if (ce->comp->compress_proto == proto)
2572 return ce;
2573 }
2574 return NULL;
2575 }
2576
2577 /* Register a compressor */
2578 int
ppp_register_compressor(struct compressor * cp)2579 ppp_register_compressor(struct compressor *cp)
2580 {
2581 struct compressor_entry *ce;
2582 int ret;
2583 spin_lock(&compressor_list_lock);
2584 ret = -EEXIST;
2585 if (find_comp_entry(cp->compress_proto))
2586 goto out;
2587 ret = -ENOMEM;
2588 ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2589 if (!ce)
2590 goto out;
2591 ret = 0;
2592 ce->comp = cp;
2593 list_add(&ce->list, &compressor_list);
2594 out:
2595 spin_unlock(&compressor_list_lock);
2596 return ret;
2597 }
2598
2599 /* Unregister a compressor */
2600 void
ppp_unregister_compressor(struct compressor * cp)2601 ppp_unregister_compressor(struct compressor *cp)
2602 {
2603 struct compressor_entry *ce;
2604
2605 spin_lock(&compressor_list_lock);
2606 ce = find_comp_entry(cp->compress_proto);
2607 if (ce && ce->comp == cp) {
2608 list_del(&ce->list);
2609 kfree(ce);
2610 }
2611 spin_unlock(&compressor_list_lock);
2612 }
2613
2614 /* Find a compressor. */
2615 static struct compressor *
find_compressor(int type)2616 find_compressor(int type)
2617 {
2618 struct compressor_entry *ce;
2619 struct compressor *cp = NULL;
2620
2621 spin_lock(&compressor_list_lock);
2622 ce = find_comp_entry(type);
2623 if (ce) {
2624 cp = ce->comp;
2625 if (!try_module_get(cp->owner))
2626 cp = NULL;
2627 }
2628 spin_unlock(&compressor_list_lock);
2629 return cp;
2630 }
2631
2632 /*
2633 * Miscelleneous stuff.
2634 */
2635
2636 static void
ppp_get_stats(struct ppp * ppp,struct ppp_stats * st)2637 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2638 {
2639 struct slcompress *vj = ppp->vj;
2640
2641 memset(st, 0, sizeof(*st));
2642 st->p.ppp_ipackets = ppp->stats64.rx_packets;
2643 st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2644 st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2645 st->p.ppp_opackets = ppp->stats64.tx_packets;
2646 st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2647 st->p.ppp_obytes = ppp->stats64.tx_bytes;
2648 if (!vj)
2649 return;
2650 st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2651 st->vj.vjs_compressed = vj->sls_o_compressed;
2652 st->vj.vjs_searches = vj->sls_o_searches;
2653 st->vj.vjs_misses = vj->sls_o_misses;
2654 st->vj.vjs_errorin = vj->sls_i_error;
2655 st->vj.vjs_tossed = vj->sls_i_tossed;
2656 st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2657 st->vj.vjs_compressedin = vj->sls_i_compressed;
2658 }
2659
2660 /*
2661 * Stuff for handling the lists of ppp units and channels
2662 * and for initialization.
2663 */
2664
2665 /*
2666 * Create a new ppp interface unit. Fails if it can't allocate memory
2667 * or if there is already a unit with the requested number.
2668 * unit == -1 means allocate a new number.
2669 */
2670 static struct ppp *
ppp_create_interface(struct net * net,int unit,int * retp)2671 ppp_create_interface(struct net *net, int unit, int *retp)
2672 {
2673 struct ppp *ppp;
2674 struct ppp_net *pn;
2675 struct net_device *dev = NULL;
2676 int ret = -ENOMEM;
2677 int i;
2678
2679 dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_UNKNOWN,
2680 ppp_setup);
2681 if (!dev)
2682 goto out1;
2683
2684 pn = ppp_pernet(net);
2685
2686 ppp = netdev_priv(dev);
2687 ppp->dev = dev;
2688 ppp->mru = PPP_MRU;
2689 init_ppp_file(&ppp->file, INTERFACE);
2690 ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */
2691 for (i = 0; i < NUM_NP; ++i)
2692 ppp->npmode[i] = NPMODE_PASS;
2693 INIT_LIST_HEAD(&ppp->channels);
2694 spin_lock_init(&ppp->rlock);
2695 spin_lock_init(&ppp->wlock);
2696 #ifdef CONFIG_PPP_MULTILINK
2697 ppp->minseq = -1;
2698 skb_queue_head_init(&ppp->mrq);
2699 #endif /* CONFIG_PPP_MULTILINK */
2700 #ifdef CONFIG_PPP_FILTER
2701 ppp->pass_filter = NULL;
2702 ppp->active_filter = NULL;
2703 #endif /* CONFIG_PPP_FILTER */
2704
2705 /*
2706 * drum roll: don't forget to set
2707 * the net device is belong to
2708 */
2709 dev_net_set(dev, net);
2710
2711 mutex_lock(&pn->all_ppp_mutex);
2712
2713 if (unit < 0) {
2714 unit = unit_get(&pn->units_idr, ppp);
2715 if (unit < 0) {
2716 ret = unit;
2717 goto out2;
2718 }
2719 } else {
2720 ret = -EEXIST;
2721 if (unit_find(&pn->units_idr, unit))
2722 goto out2; /* unit already exists */
2723 /*
2724 * if caller need a specified unit number
2725 * lets try to satisfy him, otherwise --
2726 * he should better ask us for new unit number
2727 *
2728 * NOTE: yes I know that returning EEXIST it's not
2729 * fair but at least pppd will ask us to allocate
2730 * new unit in this case so user is happy :)
2731 */
2732 unit = unit_set(&pn->units_idr, ppp, unit);
2733 if (unit < 0)
2734 goto out2;
2735 }
2736
2737 /* Initialize the new ppp unit */
2738 ppp->file.index = unit;
2739 sprintf(dev->name, "ppp%d", unit);
2740
2741 ret = register_netdev(dev);
2742 if (ret != 0) {
2743 unit_put(&pn->units_idr, unit);
2744 netdev_err(ppp->dev, "PPP: couldn't register device %s (%d)\n",
2745 dev->name, ret);
2746 goto out2;
2747 }
2748
2749 ppp->ppp_net = net;
2750
2751 atomic_inc(&ppp_unit_count);
2752 mutex_unlock(&pn->all_ppp_mutex);
2753
2754 *retp = 0;
2755 return ppp;
2756
2757 out2:
2758 mutex_unlock(&pn->all_ppp_mutex);
2759 free_netdev(dev);
2760 out1:
2761 *retp = ret;
2762 return NULL;
2763 }
2764
2765 /*
2766 * Initialize a ppp_file structure.
2767 */
2768 static void
init_ppp_file(struct ppp_file * pf,int kind)2769 init_ppp_file(struct ppp_file *pf, int kind)
2770 {
2771 pf->kind = kind;
2772 skb_queue_head_init(&pf->xq);
2773 skb_queue_head_init(&pf->rq);
2774 atomic_set(&pf->refcnt, 1);
2775 init_waitqueue_head(&pf->rwait);
2776 }
2777
2778 /*
2779 * Take down a ppp interface unit - called when the owning file
2780 * (the one that created the unit) is closed or detached.
2781 */
ppp_shutdown_interface(struct ppp * ppp)2782 static void ppp_shutdown_interface(struct ppp *ppp)
2783 {
2784 struct ppp_net *pn;
2785
2786 pn = ppp_pernet(ppp->ppp_net);
2787 mutex_lock(&pn->all_ppp_mutex);
2788
2789 /* This will call dev_close() for us. */
2790 ppp_lock(ppp);
2791 if (!ppp->closing) {
2792 ppp->closing = 1;
2793 ppp_unlock(ppp);
2794 unregister_netdev(ppp->dev);
2795 unit_put(&pn->units_idr, ppp->file.index);
2796 } else
2797 ppp_unlock(ppp);
2798
2799 ppp->file.dead = 1;
2800 ppp->owner = NULL;
2801 wake_up_interruptible(&ppp->file.rwait);
2802
2803 mutex_unlock(&pn->all_ppp_mutex);
2804 }
2805
2806 /*
2807 * Free the memory used by a ppp unit. This is only called once
2808 * there are no channels connected to the unit and no file structs
2809 * that reference the unit.
2810 */
ppp_destroy_interface(struct ppp * ppp)2811 static void ppp_destroy_interface(struct ppp *ppp)
2812 {
2813 atomic_dec(&ppp_unit_count);
2814
2815 if (!ppp->file.dead || ppp->n_channels) {
2816 /* "can't happen" */
2817 netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
2818 "but dead=%d n_channels=%d !\n",
2819 ppp, ppp->file.dead, ppp->n_channels);
2820 return;
2821 }
2822
2823 ppp_ccp_closed(ppp);
2824 if (ppp->vj) {
2825 slhc_free(ppp->vj);
2826 ppp->vj = NULL;
2827 }
2828 skb_queue_purge(&ppp->file.xq);
2829 skb_queue_purge(&ppp->file.rq);
2830 #ifdef CONFIG_PPP_MULTILINK
2831 skb_queue_purge(&ppp->mrq);
2832 #endif /* CONFIG_PPP_MULTILINK */
2833 #ifdef CONFIG_PPP_FILTER
2834 if (ppp->pass_filter) {
2835 bpf_prog_destroy(ppp->pass_filter);
2836 ppp->pass_filter = NULL;
2837 }
2838
2839 if (ppp->active_filter) {
2840 bpf_prog_destroy(ppp->active_filter);
2841 ppp->active_filter = NULL;
2842 }
2843 #endif /* CONFIG_PPP_FILTER */
2844
2845 kfree_skb(ppp->xmit_pending);
2846
2847 free_netdev(ppp->dev);
2848 }
2849
2850 /*
2851 * Locate an existing ppp unit.
2852 * The caller should have locked the all_ppp_mutex.
2853 */
2854 static struct ppp *
ppp_find_unit(struct ppp_net * pn,int unit)2855 ppp_find_unit(struct ppp_net *pn, int unit)
2856 {
2857 return unit_find(&pn->units_idr, unit);
2858 }
2859
2860 /*
2861 * Locate an existing ppp channel.
2862 * The caller should have locked the all_channels_lock.
2863 * First we look in the new_channels list, then in the
2864 * all_channels list. If found in the new_channels list,
2865 * we move it to the all_channels list. This is for speed
2866 * when we have a lot of channels in use.
2867 */
2868 static struct channel *
ppp_find_channel(struct ppp_net * pn,int unit)2869 ppp_find_channel(struct ppp_net *pn, int unit)
2870 {
2871 struct channel *pch;
2872
2873 list_for_each_entry(pch, &pn->new_channels, list) {
2874 if (pch->file.index == unit) {
2875 list_move(&pch->list, &pn->all_channels);
2876 return pch;
2877 }
2878 }
2879
2880 list_for_each_entry(pch, &pn->all_channels, list) {
2881 if (pch->file.index == unit)
2882 return pch;
2883 }
2884
2885 return NULL;
2886 }
2887
2888 /*
2889 * Connect a PPP channel to a PPP interface unit.
2890 */
2891 static int
ppp_connect_channel(struct channel * pch,int unit)2892 ppp_connect_channel(struct channel *pch, int unit)
2893 {
2894 struct ppp *ppp;
2895 struct ppp_net *pn;
2896 int ret = -ENXIO;
2897 int hdrlen;
2898
2899 pn = ppp_pernet(pch->chan_net);
2900
2901 mutex_lock(&pn->all_ppp_mutex);
2902 ppp = ppp_find_unit(pn, unit);
2903 if (!ppp)
2904 goto out;
2905 write_lock_bh(&pch->upl);
2906 ret = -EINVAL;
2907 if (pch->ppp)
2908 goto outl;
2909
2910 ppp_lock(ppp);
2911 if (pch->file.hdrlen > ppp->file.hdrlen)
2912 ppp->file.hdrlen = pch->file.hdrlen;
2913 hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */
2914 if (hdrlen > ppp->dev->hard_header_len)
2915 ppp->dev->hard_header_len = hdrlen;
2916 list_add_tail(&pch->clist, &ppp->channels);
2917 ++ppp->n_channels;
2918 pch->ppp = ppp;
2919 atomic_inc(&ppp->file.refcnt);
2920 ppp_unlock(ppp);
2921 ret = 0;
2922
2923 outl:
2924 write_unlock_bh(&pch->upl);
2925 out:
2926 mutex_unlock(&pn->all_ppp_mutex);
2927 return ret;
2928 }
2929
2930 /*
2931 * Disconnect a channel from its ppp unit.
2932 */
2933 static int
ppp_disconnect_channel(struct channel * pch)2934 ppp_disconnect_channel(struct channel *pch)
2935 {
2936 struct ppp *ppp;
2937 int err = -EINVAL;
2938
2939 write_lock_bh(&pch->upl);
2940 ppp = pch->ppp;
2941 pch->ppp = NULL;
2942 write_unlock_bh(&pch->upl);
2943 if (ppp) {
2944 /* remove it from the ppp unit's list */
2945 ppp_lock(ppp);
2946 list_del(&pch->clist);
2947 if (--ppp->n_channels == 0)
2948 wake_up_interruptible(&ppp->file.rwait);
2949 ppp_unlock(ppp);
2950 if (atomic_dec_and_test(&ppp->file.refcnt))
2951 ppp_destroy_interface(ppp);
2952 err = 0;
2953 }
2954 return err;
2955 }
2956
2957 /*
2958 * Free up the resources used by a ppp channel.
2959 */
ppp_destroy_channel(struct channel * pch)2960 static void ppp_destroy_channel(struct channel *pch)
2961 {
2962 put_net(pch->chan_net);
2963 pch->chan_net = NULL;
2964
2965 atomic_dec(&channel_count);
2966
2967 if (!pch->file.dead) {
2968 /* "can't happen" */
2969 pr_err("ppp: destroying undead channel %p !\n", pch);
2970 return;
2971 }
2972 skb_queue_purge(&pch->file.xq);
2973 skb_queue_purge(&pch->file.rq);
2974 kfree(pch);
2975 }
2976
ppp_cleanup(void)2977 static void __exit ppp_cleanup(void)
2978 {
2979 /* should never happen */
2980 if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2981 pr_err("PPP: removing module but units remain!\n");
2982 unregister_chrdev(PPP_MAJOR, "ppp");
2983 device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
2984 class_destroy(ppp_class);
2985 unregister_pernet_device(&ppp_net_ops);
2986 }
2987
2988 /*
2989 * Units handling. Caller must protect concurrent access
2990 * by holding all_ppp_mutex
2991 */
2992
2993 /* associate pointer with specified number */
unit_set(struct idr * p,void * ptr,int n)2994 static int unit_set(struct idr *p, void *ptr, int n)
2995 {
2996 int unit;
2997
2998 unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
2999 if (unit == -ENOSPC)
3000 unit = -EINVAL;
3001 return unit;
3002 }
3003
3004 /* get new free unit number and associate pointer with it */
unit_get(struct idr * p,void * ptr)3005 static int unit_get(struct idr *p, void *ptr)
3006 {
3007 return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
3008 }
3009
3010 /* put unit number back to a pool */
unit_put(struct idr * p,int n)3011 static void unit_put(struct idr *p, int n)
3012 {
3013 idr_remove(p, n);
3014 }
3015
3016 /* get pointer associated with the number */
unit_find(struct idr * p,int n)3017 static void *unit_find(struct idr *p, int n)
3018 {
3019 return idr_find(p, n);
3020 }
3021
3022 /* Module/initialization stuff */
3023
3024 module_init(ppp_init);
3025 module_exit(ppp_cleanup);
3026
3027 EXPORT_SYMBOL(ppp_register_net_channel);
3028 EXPORT_SYMBOL(ppp_register_channel);
3029 EXPORT_SYMBOL(ppp_unregister_channel);
3030 EXPORT_SYMBOL(ppp_channel_index);
3031 EXPORT_SYMBOL(ppp_unit_number);
3032 EXPORT_SYMBOL(ppp_dev_name);
3033 EXPORT_SYMBOL(ppp_input);
3034 EXPORT_SYMBOL(ppp_input_error);
3035 EXPORT_SYMBOL(ppp_output_wakeup);
3036 EXPORT_SYMBOL(ppp_register_compressor);
3037 EXPORT_SYMBOL(ppp_unregister_compressor);
3038 MODULE_LICENSE("GPL");
3039 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3040 MODULE_ALIAS("devname:ppp");
3041