1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48 #include <linux/ctype.h>
49
50 #include <asm/uaccess.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54
55 #include "console_cmdline.h"
56 #include "braille.h"
57
58 #ifdef CONFIG_EARLY_PRINTK_DIRECT
59 extern void printascii(char *);
60 #endif
61
62 int console_printk[4] = {
63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
67 };
68
69 /* Deferred messaged from sched code are marked by this special level */
70 #define SCHED_MESSAGE_LOGLEVEL -2
71
72 /*
73 * Low level drivers may need that to know if they can schedule in
74 * their unblank() callback or not. So let's export it.
75 */
76 int oops_in_progress;
77 EXPORT_SYMBOL(oops_in_progress);
78
79 /*
80 * console_sem protects the console_drivers list, and also
81 * provides serialisation for access to the entire console
82 * driver system.
83 */
84 static DEFINE_SEMAPHORE(console_sem);
85 struct console *console_drivers;
86 EXPORT_SYMBOL_GPL(console_drivers);
87
88 #ifdef CONFIG_LOCKDEP
89 static struct lockdep_map console_lock_dep_map = {
90 .name = "console_lock"
91 };
92 #endif
93
94 /*
95 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
96 * macros instead of functions so that _RET_IP_ contains useful information.
97 */
98 #define down_console_sem() do { \
99 down(&console_sem);\
100 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
101 } while (0)
102
__down_trylock_console_sem(unsigned long ip)103 static int __down_trylock_console_sem(unsigned long ip)
104 {
105 if (down_trylock(&console_sem))
106 return 1;
107 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
108 return 0;
109 }
110 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
111
112 #define up_console_sem() do { \
113 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
114 up(&console_sem);\
115 } while (0)
116
117 /*
118 * This is used for debugging the mess that is the VT code by
119 * keeping track if we have the console semaphore held. It's
120 * definitely not the perfect debug tool (we don't know if _WE_
121 * hold it and are racing, but it helps tracking those weird code
122 * paths in the console code where we end up in places I want
123 * locked without the console sempahore held).
124 */
125 static int console_locked, console_suspended;
126
127 /*
128 * If exclusive_console is non-NULL then only this console is to be printed to.
129 */
130 static struct console *exclusive_console;
131
132 /*
133 * Array of consoles built from command line options (console=)
134 */
135
136 #define MAX_CMDLINECONSOLES 8
137
138 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
139
140 static int selected_console = -1;
141 static int preferred_console = -1;
142 int console_set_on_cmdline;
143 EXPORT_SYMBOL(console_set_on_cmdline);
144
145 /* Flag: console code may call schedule() */
146 static int console_may_schedule;
147
148 /*
149 * The printk log buffer consists of a chain of concatenated variable
150 * length records. Every record starts with a record header, containing
151 * the overall length of the record.
152 *
153 * The heads to the first and last entry in the buffer, as well as the
154 * sequence numbers of these entries are maintained when messages are
155 * stored.
156 *
157 * If the heads indicate available messages, the length in the header
158 * tells the start next message. A length == 0 for the next message
159 * indicates a wrap-around to the beginning of the buffer.
160 *
161 * Every record carries the monotonic timestamp in microseconds, as well as
162 * the standard userspace syslog level and syslog facility. The usual
163 * kernel messages use LOG_KERN; userspace-injected messages always carry
164 * a matching syslog facility, by default LOG_USER. The origin of every
165 * message can be reliably determined that way.
166 *
167 * The human readable log message directly follows the message header. The
168 * length of the message text is stored in the header, the stored message
169 * is not terminated.
170 *
171 * Optionally, a message can carry a dictionary of properties (key/value pairs),
172 * to provide userspace with a machine-readable message context.
173 *
174 * Examples for well-defined, commonly used property names are:
175 * DEVICE=b12:8 device identifier
176 * b12:8 block dev_t
177 * c127:3 char dev_t
178 * n8 netdev ifindex
179 * +sound:card0 subsystem:devname
180 * SUBSYSTEM=pci driver-core subsystem name
181 *
182 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
183 * follows directly after a '=' character. Every property is terminated by
184 * a '\0' character. The last property is not terminated.
185 *
186 * Example of a message structure:
187 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
188 * 0008 34 00 record is 52 bytes long
189 * 000a 0b 00 text is 11 bytes long
190 * 000c 1f 00 dictionary is 23 bytes long
191 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
192 * 0010 69 74 27 73 20 61 20 6c "it's a l"
193 * 69 6e 65 "ine"
194 * 001b 44 45 56 49 43 "DEVIC"
195 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
196 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
197 * 67 "g"
198 * 0032 00 00 00 padding to next message header
199 *
200 * The 'struct printk_log' buffer header must never be directly exported to
201 * userspace, it is a kernel-private implementation detail that might
202 * need to be changed in the future, when the requirements change.
203 *
204 * /dev/kmsg exports the structured data in the following line format:
205 * "level,sequnum,timestamp;<message text>\n"
206 *
207 * The optional key/value pairs are attached as continuation lines starting
208 * with a space character and terminated by a newline. All possible
209 * non-prinatable characters are escaped in the "\xff" notation.
210 *
211 * Users of the export format should ignore possible additional values
212 * separated by ',', and find the message after the ';' character.
213 */
214
215 enum log_flags {
216 LOG_NOCONS = 1, /* already flushed, do not print to console */
217 LOG_NEWLINE = 2, /* text ended with a newline */
218 LOG_PREFIX = 4, /* text started with a prefix */
219 LOG_CONT = 8, /* text is a fragment of a continuation line */
220 };
221
222 struct printk_log {
223 u64 ts_nsec; /* timestamp in nanoseconds */
224 u16 len; /* length of entire record */
225 u16 text_len; /* length of text buffer */
226 u16 dict_len; /* length of dictionary buffer */
227 u8 facility; /* syslog facility */
228 u8 flags:5; /* internal record flags */
229 u8 level:3; /* syslog level */
230 };
231
232 /*
233 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
234 * within the scheduler's rq lock. It must be released before calling
235 * console_unlock() or anything else that might wake up a process.
236 */
237 static DEFINE_RAW_SPINLOCK(logbuf_lock);
238
239 #ifdef CONFIG_PRINTK
240 DECLARE_WAIT_QUEUE_HEAD(log_wait);
241 /* the next printk record to read by syslog(READ) or /proc/kmsg */
242 static u64 syslog_seq;
243 static u32 syslog_idx;
244 static enum log_flags syslog_prev;
245 static size_t syslog_partial;
246
247 /* index and sequence number of the first record stored in the buffer */
248 static u64 log_first_seq;
249 static u32 log_first_idx;
250
251 /* index and sequence number of the next record to store in the buffer */
252 static u64 log_next_seq;
253 static u32 log_next_idx;
254
255 /* the next printk record to write to the console */
256 static u64 console_seq;
257 static u32 console_idx;
258 static enum log_flags console_prev;
259
260 /* the next printk record to read after the last 'clear' command */
261 static u64 clear_seq;
262 static u32 clear_idx;
263
264 #define PREFIX_MAX 32
265 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
266
267 /* record buffer */
268 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
269 #define LOG_ALIGN 4
270 #else
271 #define LOG_ALIGN __alignof__(struct printk_log)
272 #endif
273 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
274 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
275 static char *log_buf = __log_buf;
276 static u32 log_buf_len = __LOG_BUF_LEN;
277
278 /* Return log buffer address */
log_buf_addr_get(void)279 char *log_buf_addr_get(void)
280 {
281 return log_buf;
282 }
283
284 /* Return log buffer size */
log_buf_len_get(void)285 u32 log_buf_len_get(void)
286 {
287 return log_buf_len;
288 }
289
290 /* human readable text of the record */
log_text(const struct printk_log * msg)291 static char *log_text(const struct printk_log *msg)
292 {
293 return (char *)msg + sizeof(struct printk_log);
294 }
295
296 /* optional key/value pair dictionary attached to the record */
log_dict(const struct printk_log * msg)297 static char *log_dict(const struct printk_log *msg)
298 {
299 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
300 }
301
302 /* get record by index; idx must point to valid msg */
log_from_idx(u32 idx)303 static struct printk_log *log_from_idx(u32 idx)
304 {
305 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
306
307 /*
308 * A length == 0 record is the end of buffer marker. Wrap around and
309 * read the message at the start of the buffer.
310 */
311 if (!msg->len)
312 return (struct printk_log *)log_buf;
313 return msg;
314 }
315
316 /* get next record; idx must point to valid msg */
log_next(u32 idx)317 static u32 log_next(u32 idx)
318 {
319 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
320
321 /* length == 0 indicates the end of the buffer; wrap */
322 /*
323 * A length == 0 record is the end of buffer marker. Wrap around and
324 * read the message at the start of the buffer as *this* one, and
325 * return the one after that.
326 */
327 if (!msg->len) {
328 msg = (struct printk_log *)log_buf;
329 return msg->len;
330 }
331 return idx + msg->len;
332 }
333
334 /*
335 * Check whether there is enough free space for the given message.
336 *
337 * The same values of first_idx and next_idx mean that the buffer
338 * is either empty or full.
339 *
340 * If the buffer is empty, we must respect the position of the indexes.
341 * They cannot be reset to the beginning of the buffer.
342 */
logbuf_has_space(u32 msg_size,bool empty)343 static int logbuf_has_space(u32 msg_size, bool empty)
344 {
345 u32 free;
346
347 if (log_next_idx > log_first_idx || empty)
348 free = max(log_buf_len - log_next_idx, log_first_idx);
349 else
350 free = log_first_idx - log_next_idx;
351
352 /*
353 * We need space also for an empty header that signalizes wrapping
354 * of the buffer.
355 */
356 return free >= msg_size + sizeof(struct printk_log);
357 }
358
log_make_free_space(u32 msg_size)359 static int log_make_free_space(u32 msg_size)
360 {
361 while (log_first_seq < log_next_seq) {
362 if (logbuf_has_space(msg_size, false))
363 return 0;
364 /* drop old messages until we have enough contiguous space */
365 log_first_idx = log_next(log_first_idx);
366 log_first_seq++;
367 }
368
369 /* sequence numbers are equal, so the log buffer is empty */
370 if (logbuf_has_space(msg_size, true))
371 return 0;
372
373 return -ENOMEM;
374 }
375
376 /* compute the message size including the padding bytes */
msg_used_size(u16 text_len,u16 dict_len,u32 * pad_len)377 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
378 {
379 u32 size;
380
381 size = sizeof(struct printk_log) + text_len + dict_len;
382 *pad_len = (-size) & (LOG_ALIGN - 1);
383 size += *pad_len;
384
385 return size;
386 }
387
388 /*
389 * Define how much of the log buffer we could take at maximum. The value
390 * must be greater than two. Note that only half of the buffer is available
391 * when the index points to the middle.
392 */
393 #define MAX_LOG_TAKE_PART 4
394 static const char trunc_msg[] = "<truncated>";
395
truncate_msg(u16 * text_len,u16 * trunc_msg_len,u16 * dict_len,u32 * pad_len)396 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
397 u16 *dict_len, u32 *pad_len)
398 {
399 /*
400 * The message should not take the whole buffer. Otherwise, it might
401 * get removed too soon.
402 */
403 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
404 if (*text_len > max_text_len)
405 *text_len = max_text_len;
406 /* enable the warning message */
407 *trunc_msg_len = strlen(trunc_msg);
408 /* disable the "dict" completely */
409 *dict_len = 0;
410 /* compute the size again, count also the warning message */
411 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
412 }
413
414 /* insert record into the buffer, discard old ones, update heads */
log_store(int facility,int level,enum log_flags flags,u64 ts_nsec,const char * dict,u16 dict_len,const char * text,u16 text_len)415 static int log_store(int facility, int level,
416 enum log_flags flags, u64 ts_nsec,
417 const char *dict, u16 dict_len,
418 const char *text, u16 text_len)
419 {
420 struct printk_log *msg;
421 u32 size, pad_len;
422 u16 trunc_msg_len = 0;
423
424 /* number of '\0' padding bytes to next message */
425 size = msg_used_size(text_len, dict_len, &pad_len);
426
427 if (log_make_free_space(size)) {
428 /* truncate the message if it is too long for empty buffer */
429 size = truncate_msg(&text_len, &trunc_msg_len,
430 &dict_len, &pad_len);
431 /* survive when the log buffer is too small for trunc_msg */
432 if (log_make_free_space(size))
433 return 0;
434 }
435
436 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
437 /*
438 * This message + an additional empty header does not fit
439 * at the end of the buffer. Add an empty header with len == 0
440 * to signify a wrap around.
441 */
442 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
443 log_next_idx = 0;
444 }
445
446 /* fill message */
447 msg = (struct printk_log *)(log_buf + log_next_idx);
448 memcpy(log_text(msg), text, text_len);
449 msg->text_len = text_len;
450 if (trunc_msg_len) {
451 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
452 msg->text_len += trunc_msg_len;
453 }
454 memcpy(log_dict(msg), dict, dict_len);
455 msg->dict_len = dict_len;
456 msg->facility = facility;
457 msg->level = level & 7;
458 msg->flags = flags & 0x1f;
459 if (ts_nsec > 0)
460 msg->ts_nsec = ts_nsec;
461 else
462 msg->ts_nsec = local_clock();
463 memset(log_dict(msg) + dict_len, 0, pad_len);
464 msg->len = size;
465
466 /* insert message */
467 log_next_idx += msg->len;
468 log_next_seq++;
469
470 return msg->text_len;
471 }
472
473 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
474
syslog_action_restricted(int type)475 static int syslog_action_restricted(int type)
476 {
477 if (dmesg_restrict)
478 return 1;
479 /*
480 * Unless restricted, we allow "read all" and "get buffer size"
481 * for everybody.
482 */
483 return type != SYSLOG_ACTION_READ_ALL &&
484 type != SYSLOG_ACTION_SIZE_BUFFER;
485 }
486
check_syslog_permissions(int type,bool from_file)487 static int check_syslog_permissions(int type, bool from_file)
488 {
489 /*
490 * If this is from /proc/kmsg and we've already opened it, then we've
491 * already done the capabilities checks at open time.
492 */
493 if (from_file && type != SYSLOG_ACTION_OPEN)
494 goto ok;
495
496 if (syslog_action_restricted(type)) {
497 if (capable(CAP_SYSLOG))
498 goto ok;
499 /*
500 * For historical reasons, accept CAP_SYS_ADMIN too, with
501 * a warning.
502 */
503 if (capable(CAP_SYS_ADMIN)) {
504 pr_warn_once("%s (%d): Attempt to access syslog with "
505 "CAP_SYS_ADMIN but no CAP_SYSLOG "
506 "(deprecated).\n",
507 current->comm, task_pid_nr(current));
508 goto ok;
509 }
510 return -EPERM;
511 }
512 ok:
513 return security_syslog(type);
514 }
515
516
517 /* /dev/kmsg - userspace message inject/listen interface */
518 struct devkmsg_user {
519 u64 seq;
520 u32 idx;
521 enum log_flags prev;
522 struct mutex lock;
523 char buf[8192];
524 };
525
devkmsg_write(struct kiocb * iocb,struct iov_iter * from)526 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
527 {
528 char *buf, *line;
529 int i;
530 int level = default_message_loglevel;
531 int facility = 1; /* LOG_USER */
532 size_t len = iocb->ki_nbytes;
533 ssize_t ret = len;
534
535 if (len > LOG_LINE_MAX)
536 return -EINVAL;
537 buf = kmalloc(len+1, GFP_KERNEL);
538 if (buf == NULL)
539 return -ENOMEM;
540
541 buf[len] = '\0';
542 if (copy_from_iter(buf, len, from) != len) {
543 kfree(buf);
544 return -EFAULT;
545 }
546
547 /*
548 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
549 * the decimal value represents 32bit, the lower 3 bit are the log
550 * level, the rest are the log facility.
551 *
552 * If no prefix or no userspace facility is specified, we
553 * enforce LOG_USER, to be able to reliably distinguish
554 * kernel-generated messages from userspace-injected ones.
555 */
556 line = buf;
557 if (line[0] == '<') {
558 char *endp = NULL;
559
560 i = simple_strtoul(line+1, &endp, 10);
561 if (endp && endp[0] == '>') {
562 level = i & 7;
563 if (i >> 3)
564 facility = i >> 3;
565 endp++;
566 len -= endp - line;
567 line = endp;
568 }
569 }
570
571 printk_emit(facility, level, NULL, 0, "%s", line);
572 kfree(buf);
573 return ret;
574 }
575
devkmsg_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)576 static ssize_t devkmsg_read(struct file *file, char __user *buf,
577 size_t count, loff_t *ppos)
578 {
579 struct devkmsg_user *user = file->private_data;
580 struct printk_log *msg;
581 u64 ts_usec;
582 size_t i;
583 char cont = '-';
584 size_t len;
585 ssize_t ret;
586
587 if (!user)
588 return -EBADF;
589
590 ret = mutex_lock_interruptible(&user->lock);
591 if (ret)
592 return ret;
593 raw_spin_lock_irq(&logbuf_lock);
594 while (user->seq == log_next_seq) {
595 if (file->f_flags & O_NONBLOCK) {
596 ret = -EAGAIN;
597 raw_spin_unlock_irq(&logbuf_lock);
598 goto out;
599 }
600
601 raw_spin_unlock_irq(&logbuf_lock);
602 ret = wait_event_interruptible(log_wait,
603 user->seq != log_next_seq);
604 if (ret)
605 goto out;
606 raw_spin_lock_irq(&logbuf_lock);
607 }
608
609 if (user->seq < log_first_seq) {
610 /* our last seen message is gone, return error and reset */
611 user->idx = log_first_idx;
612 user->seq = log_first_seq;
613 ret = -EPIPE;
614 raw_spin_unlock_irq(&logbuf_lock);
615 goto out;
616 }
617
618 msg = log_from_idx(user->idx);
619 ts_usec = msg->ts_nsec;
620 do_div(ts_usec, 1000);
621
622 /*
623 * If we couldn't merge continuation line fragments during the print,
624 * export the stored flags to allow an optional external merge of the
625 * records. Merging the records isn't always neccessarily correct, like
626 * when we hit a race during printing. In most cases though, it produces
627 * better readable output. 'c' in the record flags mark the first
628 * fragment of a line, '+' the following.
629 */
630 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
631 cont = 'c';
632 else if ((msg->flags & LOG_CONT) ||
633 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
634 cont = '+';
635
636 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
637 (msg->facility << 3) | msg->level,
638 user->seq, ts_usec, cont);
639 user->prev = msg->flags;
640
641 /* escape non-printable characters */
642 for (i = 0; i < msg->text_len; i++) {
643 unsigned char c = log_text(msg)[i];
644
645 if (c < ' ' || c >= 127 || c == '\\')
646 len += sprintf(user->buf + len, "\\x%02x", c);
647 else
648 user->buf[len++] = c;
649 }
650 user->buf[len++] = '\n';
651
652 if (msg->dict_len) {
653 bool line = true;
654
655 for (i = 0; i < msg->dict_len; i++) {
656 unsigned char c = log_dict(msg)[i];
657
658 if (line) {
659 user->buf[len++] = ' ';
660 line = false;
661 }
662
663 if (c == '\0') {
664 user->buf[len++] = '\n';
665 line = true;
666 continue;
667 }
668
669 if (c < ' ' || c >= 127 || c == '\\') {
670 len += sprintf(user->buf + len, "\\x%02x", c);
671 continue;
672 }
673
674 user->buf[len++] = c;
675 }
676 user->buf[len++] = '\n';
677 }
678
679 user->idx = log_next(user->idx);
680 user->seq++;
681 raw_spin_unlock_irq(&logbuf_lock);
682
683 if (len > count) {
684 ret = -EINVAL;
685 goto out;
686 }
687
688 if (copy_to_user(buf, user->buf, len)) {
689 ret = -EFAULT;
690 goto out;
691 }
692 ret = len;
693 out:
694 mutex_unlock(&user->lock);
695 return ret;
696 }
697
devkmsg_llseek(struct file * file,loff_t offset,int whence)698 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
699 {
700 struct devkmsg_user *user = file->private_data;
701 loff_t ret = 0;
702
703 if (!user)
704 return -EBADF;
705 if (offset)
706 return -ESPIPE;
707
708 raw_spin_lock_irq(&logbuf_lock);
709 switch (whence) {
710 case SEEK_SET:
711 /* the first record */
712 user->idx = log_first_idx;
713 user->seq = log_first_seq;
714 break;
715 case SEEK_DATA:
716 /*
717 * The first record after the last SYSLOG_ACTION_CLEAR,
718 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
719 * changes no global state, and does not clear anything.
720 */
721 user->idx = clear_idx;
722 user->seq = clear_seq;
723 break;
724 case SEEK_END:
725 /* after the last record */
726 user->idx = log_next_idx;
727 user->seq = log_next_seq;
728 break;
729 default:
730 ret = -EINVAL;
731 }
732 raw_spin_unlock_irq(&logbuf_lock);
733 return ret;
734 }
735
devkmsg_poll(struct file * file,poll_table * wait)736 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
737 {
738 struct devkmsg_user *user = file->private_data;
739 int ret = 0;
740
741 if (!user)
742 return POLLERR|POLLNVAL;
743
744 poll_wait(file, &log_wait, wait);
745
746 raw_spin_lock_irq(&logbuf_lock);
747 if (user->seq < log_next_seq) {
748 /* return error when data has vanished underneath us */
749 if (user->seq < log_first_seq)
750 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
751 else
752 ret = POLLIN|POLLRDNORM;
753 }
754 raw_spin_unlock_irq(&logbuf_lock);
755
756 return ret;
757 }
758
devkmsg_open(struct inode * inode,struct file * file)759 static int devkmsg_open(struct inode *inode, struct file *file)
760 {
761 struct devkmsg_user *user;
762 int err;
763
764 /* write-only does not need any file context */
765 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
766 return 0;
767
768 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
769 SYSLOG_FROM_READER);
770 if (err)
771 return err;
772
773 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
774 if (!user)
775 return -ENOMEM;
776
777 mutex_init(&user->lock);
778
779 raw_spin_lock_irq(&logbuf_lock);
780 user->idx = log_first_idx;
781 user->seq = log_first_seq;
782 raw_spin_unlock_irq(&logbuf_lock);
783
784 file->private_data = user;
785 return 0;
786 }
787
devkmsg_release(struct inode * inode,struct file * file)788 static int devkmsg_release(struct inode *inode, struct file *file)
789 {
790 struct devkmsg_user *user = file->private_data;
791
792 if (!user)
793 return 0;
794
795 mutex_destroy(&user->lock);
796 kfree(user);
797 return 0;
798 }
799
800 const struct file_operations kmsg_fops = {
801 .open = devkmsg_open,
802 .read = devkmsg_read,
803 .write_iter = devkmsg_write,
804 .llseek = devkmsg_llseek,
805 .poll = devkmsg_poll,
806 .release = devkmsg_release,
807 };
808
809 #ifdef CONFIG_KEXEC
810 /*
811 * This appends the listed symbols to /proc/vmcore
812 *
813 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
814 * obtain access to symbols that are otherwise very difficult to locate. These
815 * symbols are specifically used so that utilities can access and extract the
816 * dmesg log from a vmcore file after a crash.
817 */
log_buf_kexec_setup(void)818 void log_buf_kexec_setup(void)
819 {
820 VMCOREINFO_SYMBOL(log_buf);
821 VMCOREINFO_SYMBOL(log_buf_len);
822 VMCOREINFO_SYMBOL(log_first_idx);
823 VMCOREINFO_SYMBOL(log_next_idx);
824 /*
825 * Export struct printk_log size and field offsets. User space tools can
826 * parse it and detect any changes to structure down the line.
827 */
828 VMCOREINFO_STRUCT_SIZE(printk_log);
829 VMCOREINFO_OFFSET(printk_log, ts_nsec);
830 VMCOREINFO_OFFSET(printk_log, len);
831 VMCOREINFO_OFFSET(printk_log, text_len);
832 VMCOREINFO_OFFSET(printk_log, dict_len);
833 }
834 #endif
835
836 /* requested log_buf_len from kernel cmdline */
837 static unsigned long __initdata new_log_buf_len;
838
839 /* we practice scaling the ring buffer by powers of 2 */
log_buf_len_update(unsigned size)840 static void __init log_buf_len_update(unsigned size)
841 {
842 if (size)
843 size = roundup_pow_of_two(size);
844 if (size > log_buf_len)
845 new_log_buf_len = size;
846 }
847
848 /* save requested log_buf_len since it's too early to process it */
log_buf_len_setup(char * str)849 static int __init log_buf_len_setup(char *str)
850 {
851 unsigned size = memparse(str, &str);
852
853 log_buf_len_update(size);
854
855 return 0;
856 }
857 early_param("log_buf_len", log_buf_len_setup);
858
859 #ifdef CONFIG_SMP
860 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
861
log_buf_add_cpu(void)862 static void __init log_buf_add_cpu(void)
863 {
864 unsigned int cpu_extra;
865
866 /*
867 * archs should set up cpu_possible_bits properly with
868 * set_cpu_possible() after setup_arch() but just in
869 * case lets ensure this is valid.
870 */
871 if (num_possible_cpus() == 1)
872 return;
873
874 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
875
876 /* by default this will only continue through for large > 64 CPUs */
877 if (cpu_extra <= __LOG_BUF_LEN / 2)
878 return;
879
880 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
881 __LOG_CPU_MAX_BUF_LEN);
882 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
883 cpu_extra);
884 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
885
886 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
887 }
888 #else /* !CONFIG_SMP */
log_buf_add_cpu(void)889 static inline void log_buf_add_cpu(void) {}
890 #endif /* CONFIG_SMP */
891
setup_log_buf(int early)892 void __init setup_log_buf(int early)
893 {
894 unsigned long flags;
895 char *new_log_buf;
896 int free;
897
898 if (log_buf != __log_buf)
899 return;
900
901 if (!early && !new_log_buf_len)
902 log_buf_add_cpu();
903
904 if (!new_log_buf_len)
905 return;
906
907 if (early) {
908 new_log_buf =
909 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
910 } else {
911 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
912 LOG_ALIGN);
913 }
914
915 if (unlikely(!new_log_buf)) {
916 pr_err("log_buf_len: %ld bytes not available\n",
917 new_log_buf_len);
918 return;
919 }
920
921 raw_spin_lock_irqsave(&logbuf_lock, flags);
922 log_buf_len = new_log_buf_len;
923 log_buf = new_log_buf;
924 new_log_buf_len = 0;
925 free = __LOG_BUF_LEN - log_next_idx;
926 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
927 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
928
929 pr_info("log_buf_len: %d bytes\n", log_buf_len);
930 pr_info("early log buf free: %d(%d%%)\n",
931 free, (free * 100) / __LOG_BUF_LEN);
932 }
933
934 static bool __read_mostly ignore_loglevel;
935
ignore_loglevel_setup(char * str)936 static int __init ignore_loglevel_setup(char *str)
937 {
938 ignore_loglevel = true;
939 pr_info("debug: ignoring loglevel setting.\n");
940
941 return 0;
942 }
943
944 early_param("ignore_loglevel", ignore_loglevel_setup);
945 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
946 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
947 "print all kernel messages to the console.");
948
949 #ifdef CONFIG_BOOT_PRINTK_DELAY
950
951 static int boot_delay; /* msecs delay after each printk during bootup */
952 static unsigned long long loops_per_msec; /* based on boot_delay */
953
boot_delay_setup(char * str)954 static int __init boot_delay_setup(char *str)
955 {
956 unsigned long lpj;
957
958 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
959 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
960
961 get_option(&str, &boot_delay);
962 if (boot_delay > 10 * 1000)
963 boot_delay = 0;
964
965 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
966 "HZ: %d, loops_per_msec: %llu\n",
967 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
968 return 0;
969 }
970 early_param("boot_delay", boot_delay_setup);
971
boot_delay_msec(int level)972 static void boot_delay_msec(int level)
973 {
974 unsigned long long k;
975 unsigned long timeout;
976
977 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
978 || (level >= console_loglevel && !ignore_loglevel)) {
979 return;
980 }
981
982 k = (unsigned long long)loops_per_msec * boot_delay;
983
984 timeout = jiffies + msecs_to_jiffies(boot_delay);
985 while (k) {
986 k--;
987 cpu_relax();
988 /*
989 * use (volatile) jiffies to prevent
990 * compiler reduction; loop termination via jiffies
991 * is secondary and may or may not happen.
992 */
993 if (time_after(jiffies, timeout))
994 break;
995 touch_nmi_watchdog();
996 }
997 }
998 #else
boot_delay_msec(int level)999 static inline void boot_delay_msec(int level)
1000 {
1001 }
1002 #endif
1003
1004 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1005 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1006
print_time(u64 ts,char * buf)1007 static size_t print_time(u64 ts, char *buf)
1008 {
1009 unsigned long rem_nsec;
1010
1011 if (!printk_time)
1012 return 0;
1013
1014 rem_nsec = do_div(ts, 1000000000);
1015
1016 if (!buf)
1017 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1018
1019 return sprintf(buf, "[%5lu.%06lu] ",
1020 (unsigned long)ts, rem_nsec / 1000);
1021 }
1022
print_prefix(const struct printk_log * msg,bool syslog,char * buf)1023 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1024 {
1025 size_t len = 0;
1026 unsigned int prefix = (msg->facility << 3) | msg->level;
1027
1028 if (syslog) {
1029 if (buf) {
1030 len += sprintf(buf, "<%u>", prefix);
1031 } else {
1032 len += 3;
1033 if (prefix > 999)
1034 len += 3;
1035 else if (prefix > 99)
1036 len += 2;
1037 else if (prefix > 9)
1038 len++;
1039 }
1040 }
1041
1042 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1043 return len;
1044 }
1045
msg_print_text(const struct printk_log * msg,enum log_flags prev,bool syslog,char * buf,size_t size)1046 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1047 bool syslog, char *buf, size_t size)
1048 {
1049 const char *text = log_text(msg);
1050 size_t text_size = msg->text_len;
1051 bool prefix = true;
1052 bool newline = true;
1053 size_t len = 0;
1054
1055 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1056 prefix = false;
1057
1058 if (msg->flags & LOG_CONT) {
1059 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1060 prefix = false;
1061
1062 if (!(msg->flags & LOG_NEWLINE))
1063 newline = false;
1064 }
1065
1066 do {
1067 const char *next = memchr(text, '\n', text_size);
1068 size_t text_len;
1069
1070 if (next) {
1071 text_len = next - text;
1072 next++;
1073 text_size -= next - text;
1074 } else {
1075 text_len = text_size;
1076 }
1077
1078 if (buf) {
1079 if (print_prefix(msg, syslog, NULL) +
1080 text_len + 1 >= size - len)
1081 break;
1082
1083 if (prefix)
1084 len += print_prefix(msg, syslog, buf + len);
1085 memcpy(buf + len, text, text_len);
1086 len += text_len;
1087 if (next || newline)
1088 buf[len++] = '\n';
1089 } else {
1090 /* SYSLOG_ACTION_* buffer size only calculation */
1091 if (prefix)
1092 len += print_prefix(msg, syslog, NULL);
1093 len += text_len;
1094 if (next || newline)
1095 len++;
1096 }
1097
1098 prefix = true;
1099 text = next;
1100 } while (text);
1101
1102 return len;
1103 }
1104
syslog_print(char __user * buf,int size)1105 static int syslog_print(char __user *buf, int size)
1106 {
1107 char *text;
1108 struct printk_log *msg;
1109 int len = 0;
1110
1111 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1112 if (!text)
1113 return -ENOMEM;
1114
1115 while (size > 0) {
1116 size_t n;
1117 size_t skip;
1118
1119 raw_spin_lock_irq(&logbuf_lock);
1120 if (syslog_seq < log_first_seq) {
1121 /* messages are gone, move to first one */
1122 syslog_seq = log_first_seq;
1123 syslog_idx = log_first_idx;
1124 syslog_prev = 0;
1125 syslog_partial = 0;
1126 }
1127 if (syslog_seq == log_next_seq) {
1128 raw_spin_unlock_irq(&logbuf_lock);
1129 break;
1130 }
1131
1132 skip = syslog_partial;
1133 msg = log_from_idx(syslog_idx);
1134 n = msg_print_text(msg, syslog_prev, true, text,
1135 LOG_LINE_MAX + PREFIX_MAX);
1136 if (n - syslog_partial <= size) {
1137 /* message fits into buffer, move forward */
1138 syslog_idx = log_next(syslog_idx);
1139 syslog_seq++;
1140 syslog_prev = msg->flags;
1141 n -= syslog_partial;
1142 syslog_partial = 0;
1143 } else if (!len){
1144 /* partial read(), remember position */
1145 n = size;
1146 syslog_partial += n;
1147 } else
1148 n = 0;
1149 raw_spin_unlock_irq(&logbuf_lock);
1150
1151 if (!n)
1152 break;
1153
1154 if (copy_to_user(buf, text + skip, n)) {
1155 if (!len)
1156 len = -EFAULT;
1157 break;
1158 }
1159
1160 len += n;
1161 size -= n;
1162 buf += n;
1163 }
1164
1165 kfree(text);
1166 return len;
1167 }
1168
syslog_print_all(char __user * buf,int size,bool clear)1169 static int syslog_print_all(char __user *buf, int size, bool clear)
1170 {
1171 char *text;
1172 int len = 0;
1173
1174 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1175 if (!text)
1176 return -ENOMEM;
1177
1178 raw_spin_lock_irq(&logbuf_lock);
1179 if (buf) {
1180 u64 next_seq;
1181 u64 seq;
1182 u32 idx;
1183 enum log_flags prev;
1184
1185 if (clear_seq < log_first_seq) {
1186 /* messages are gone, move to first available one */
1187 clear_seq = log_first_seq;
1188 clear_idx = log_first_idx;
1189 }
1190
1191 /*
1192 * Find first record that fits, including all following records,
1193 * into the user-provided buffer for this dump.
1194 */
1195 seq = clear_seq;
1196 idx = clear_idx;
1197 prev = 0;
1198 while (seq < log_next_seq) {
1199 struct printk_log *msg = log_from_idx(idx);
1200
1201 len += msg_print_text(msg, prev, true, NULL, 0);
1202 prev = msg->flags;
1203 idx = log_next(idx);
1204 seq++;
1205 }
1206
1207 /* move first record forward until length fits into the buffer */
1208 seq = clear_seq;
1209 idx = clear_idx;
1210 prev = 0;
1211 while (len > size && seq < log_next_seq) {
1212 struct printk_log *msg = log_from_idx(idx);
1213
1214 len -= msg_print_text(msg, prev, true, NULL, 0);
1215 prev = msg->flags;
1216 idx = log_next(idx);
1217 seq++;
1218 }
1219
1220 /* last message fitting into this dump */
1221 next_seq = log_next_seq;
1222
1223 len = 0;
1224 while (len >= 0 && seq < next_seq) {
1225 struct printk_log *msg = log_from_idx(idx);
1226 int textlen;
1227
1228 textlen = msg_print_text(msg, prev, true, text,
1229 LOG_LINE_MAX + PREFIX_MAX);
1230 if (textlen < 0) {
1231 len = textlen;
1232 break;
1233 }
1234 idx = log_next(idx);
1235 seq++;
1236 prev = msg->flags;
1237
1238 raw_spin_unlock_irq(&logbuf_lock);
1239 if (copy_to_user(buf + len, text, textlen))
1240 len = -EFAULT;
1241 else
1242 len += textlen;
1243 raw_spin_lock_irq(&logbuf_lock);
1244
1245 if (seq < log_first_seq) {
1246 /* messages are gone, move to next one */
1247 seq = log_first_seq;
1248 idx = log_first_idx;
1249 prev = 0;
1250 }
1251 }
1252 }
1253
1254 if (clear) {
1255 clear_seq = log_next_seq;
1256 clear_idx = log_next_idx;
1257 }
1258 raw_spin_unlock_irq(&logbuf_lock);
1259
1260 kfree(text);
1261 return len;
1262 }
1263
do_syslog(int type,char __user * buf,int len,bool from_file)1264 int do_syslog(int type, char __user *buf, int len, bool from_file)
1265 {
1266 bool clear = false;
1267 static int saved_console_loglevel = -1;
1268 int error;
1269
1270 error = check_syslog_permissions(type, from_file);
1271 if (error)
1272 goto out;
1273
1274 switch (type) {
1275 case SYSLOG_ACTION_CLOSE: /* Close log */
1276 break;
1277 case SYSLOG_ACTION_OPEN: /* Open log */
1278 break;
1279 case SYSLOG_ACTION_READ: /* Read from log */
1280 error = -EINVAL;
1281 if (!buf || len < 0)
1282 goto out;
1283 error = 0;
1284 if (!len)
1285 goto out;
1286 if (!access_ok(VERIFY_WRITE, buf, len)) {
1287 error = -EFAULT;
1288 goto out;
1289 }
1290 error = wait_event_interruptible(log_wait,
1291 syslog_seq != log_next_seq);
1292 if (error)
1293 goto out;
1294 error = syslog_print(buf, len);
1295 break;
1296 /* Read/clear last kernel messages */
1297 case SYSLOG_ACTION_READ_CLEAR:
1298 clear = true;
1299 /* FALL THRU */
1300 /* Read last kernel messages */
1301 case SYSLOG_ACTION_READ_ALL:
1302 error = -EINVAL;
1303 if (!buf || len < 0)
1304 goto out;
1305 error = 0;
1306 if (!len)
1307 goto out;
1308 if (!access_ok(VERIFY_WRITE, buf, len)) {
1309 error = -EFAULT;
1310 goto out;
1311 }
1312 error = syslog_print_all(buf, len, clear);
1313 break;
1314 /* Clear ring buffer */
1315 case SYSLOG_ACTION_CLEAR:
1316 syslog_print_all(NULL, 0, true);
1317 break;
1318 /* Disable logging to console */
1319 case SYSLOG_ACTION_CONSOLE_OFF:
1320 if (saved_console_loglevel == -1)
1321 saved_console_loglevel = console_loglevel;
1322 console_loglevel = minimum_console_loglevel;
1323 break;
1324 /* Enable logging to console */
1325 case SYSLOG_ACTION_CONSOLE_ON:
1326 if (saved_console_loglevel != -1) {
1327 console_loglevel = saved_console_loglevel;
1328 saved_console_loglevel = -1;
1329 }
1330 break;
1331 /* Set level of messages printed to console */
1332 case SYSLOG_ACTION_CONSOLE_LEVEL:
1333 error = -EINVAL;
1334 if (len < 1 || len > 8)
1335 goto out;
1336 if (len < minimum_console_loglevel)
1337 len = minimum_console_loglevel;
1338 console_loglevel = len;
1339 /* Implicitly re-enable logging to console */
1340 saved_console_loglevel = -1;
1341 error = 0;
1342 break;
1343 /* Number of chars in the log buffer */
1344 case SYSLOG_ACTION_SIZE_UNREAD:
1345 raw_spin_lock_irq(&logbuf_lock);
1346 if (syslog_seq < log_first_seq) {
1347 /* messages are gone, move to first one */
1348 syslog_seq = log_first_seq;
1349 syslog_idx = log_first_idx;
1350 syslog_prev = 0;
1351 syslog_partial = 0;
1352 }
1353 if (from_file) {
1354 /*
1355 * Short-cut for poll(/"proc/kmsg") which simply checks
1356 * for pending data, not the size; return the count of
1357 * records, not the length.
1358 */
1359 error = log_next_seq - syslog_seq;
1360 } else {
1361 u64 seq = syslog_seq;
1362 u32 idx = syslog_idx;
1363 enum log_flags prev = syslog_prev;
1364
1365 error = 0;
1366 while (seq < log_next_seq) {
1367 struct printk_log *msg = log_from_idx(idx);
1368
1369 error += msg_print_text(msg, prev, true, NULL, 0);
1370 idx = log_next(idx);
1371 seq++;
1372 prev = msg->flags;
1373 }
1374 error -= syslog_partial;
1375 }
1376 raw_spin_unlock_irq(&logbuf_lock);
1377 break;
1378 /* Size of the log buffer */
1379 case SYSLOG_ACTION_SIZE_BUFFER:
1380 error = log_buf_len;
1381 break;
1382 default:
1383 error = -EINVAL;
1384 break;
1385 }
1386 out:
1387 return error;
1388 }
1389
SYSCALL_DEFINE3(syslog,int,type,char __user *,buf,int,len)1390 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1391 {
1392 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1393 }
1394
1395 /*
1396 * Call the console drivers, asking them to write out
1397 * log_buf[start] to log_buf[end - 1].
1398 * The console_lock must be held.
1399 */
call_console_drivers(int level,const char * text,size_t len)1400 static void call_console_drivers(int level, const char *text, size_t len)
1401 {
1402 struct console *con;
1403
1404 trace_console(text, len);
1405
1406 if (level >= console_loglevel && !ignore_loglevel)
1407 return;
1408 if (!console_drivers)
1409 return;
1410
1411 for_each_console(con) {
1412 if (exclusive_console && con != exclusive_console)
1413 continue;
1414 if (!(con->flags & CON_ENABLED))
1415 continue;
1416 if (!con->write)
1417 continue;
1418 if (!cpu_online(smp_processor_id()) &&
1419 !(con->flags & CON_ANYTIME))
1420 continue;
1421 con->write(con, text, len);
1422 }
1423 }
1424
1425 /*
1426 * Zap console related locks when oopsing. Only zap at most once
1427 * every 10 seconds, to leave time for slow consoles to print a
1428 * full oops.
1429 */
zap_locks(void)1430 static void zap_locks(void)
1431 {
1432 static unsigned long oops_timestamp;
1433
1434 if (time_after_eq(jiffies, oops_timestamp) &&
1435 !time_after(jiffies, oops_timestamp + 30 * HZ))
1436 return;
1437
1438 oops_timestamp = jiffies;
1439
1440 debug_locks_off();
1441 /* If a crash is occurring, make sure we can't deadlock */
1442 raw_spin_lock_init(&logbuf_lock);
1443 /* And make sure that we print immediately */
1444 sema_init(&console_sem, 1);
1445 }
1446
1447 /*
1448 * Check if we have any console that is capable of printing while cpu is
1449 * booting or shutting down. Requires console_sem.
1450 */
have_callable_console(void)1451 static int have_callable_console(void)
1452 {
1453 struct console *con;
1454
1455 for_each_console(con)
1456 if (con->flags & CON_ANYTIME)
1457 return 1;
1458
1459 return 0;
1460 }
1461
1462 /*
1463 * Can we actually use the console at this time on this cpu?
1464 *
1465 * Console drivers may assume that per-cpu resources have been allocated. So
1466 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1467 * call them until this CPU is officially up.
1468 */
can_use_console(unsigned int cpu)1469 static inline int can_use_console(unsigned int cpu)
1470 {
1471 return cpu_online(cpu) || have_callable_console();
1472 }
1473
1474 /*
1475 * Try to get console ownership to actually show the kernel
1476 * messages from a 'printk'. Return true (and with the
1477 * console_lock held, and 'console_locked' set) if it
1478 * is successful, false otherwise.
1479 */
console_trylock_for_printk(void)1480 static int console_trylock_for_printk(void)
1481 {
1482 unsigned int cpu = smp_processor_id();
1483
1484 if (!console_trylock())
1485 return 0;
1486 /*
1487 * If we can't use the console, we need to release the console
1488 * semaphore by hand to avoid flushing the buffer. We need to hold the
1489 * console semaphore in order to do this test safely.
1490 */
1491 if (!can_use_console(cpu)) {
1492 console_locked = 0;
1493 up_console_sem();
1494 return 0;
1495 }
1496 return 1;
1497 }
1498
1499 int printk_delay_msec __read_mostly;
1500
printk_delay(void)1501 static inline void printk_delay(void)
1502 {
1503 if (unlikely(printk_delay_msec)) {
1504 int m = printk_delay_msec;
1505
1506 while (m--) {
1507 mdelay(1);
1508 touch_nmi_watchdog();
1509 }
1510 }
1511 }
1512
1513 /*
1514 * Continuation lines are buffered, and not committed to the record buffer
1515 * until the line is complete, or a race forces it. The line fragments
1516 * though, are printed immediately to the consoles to ensure everything has
1517 * reached the console in case of a kernel crash.
1518 */
1519 static struct cont {
1520 char buf[LOG_LINE_MAX];
1521 size_t len; /* length == 0 means unused buffer */
1522 size_t cons; /* bytes written to console */
1523 struct task_struct *owner; /* task of first print*/
1524 u64 ts_nsec; /* time of first print */
1525 u8 level; /* log level of first message */
1526 u8 facility; /* log facility of first message */
1527 enum log_flags flags; /* prefix, newline flags */
1528 bool flushed:1; /* buffer sealed and committed */
1529 } cont;
1530
cont_flush(enum log_flags flags)1531 static void cont_flush(enum log_flags flags)
1532 {
1533 if (cont.flushed)
1534 return;
1535 if (cont.len == 0)
1536 return;
1537
1538 if (cont.cons) {
1539 /*
1540 * If a fragment of this line was directly flushed to the
1541 * console; wait for the console to pick up the rest of the
1542 * line. LOG_NOCONS suppresses a duplicated output.
1543 */
1544 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1545 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1546 cont.flags = flags;
1547 cont.flushed = true;
1548 } else {
1549 /*
1550 * If no fragment of this line ever reached the console,
1551 * just submit it to the store and free the buffer.
1552 */
1553 log_store(cont.facility, cont.level, flags, 0,
1554 NULL, 0, cont.buf, cont.len);
1555 cont.len = 0;
1556 }
1557 }
1558
cont_add(int facility,int level,const char * text,size_t len)1559 static bool cont_add(int facility, int level, const char *text, size_t len)
1560 {
1561 if (cont.len && cont.flushed)
1562 return false;
1563
1564 if (cont.len + len > sizeof(cont.buf)) {
1565 /* the line gets too long, split it up in separate records */
1566 cont_flush(LOG_CONT);
1567 return false;
1568 }
1569
1570 if (!cont.len) {
1571 cont.facility = facility;
1572 cont.level = level;
1573 cont.owner = current;
1574 cont.ts_nsec = local_clock();
1575 cont.flags = 0;
1576 cont.cons = 0;
1577 cont.flushed = false;
1578 }
1579
1580 memcpy(cont.buf + cont.len, text, len);
1581 cont.len += len;
1582
1583 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1584 cont_flush(LOG_CONT);
1585
1586 return true;
1587 }
1588
cont_print_text(char * text,size_t size)1589 static size_t cont_print_text(char *text, size_t size)
1590 {
1591 size_t textlen = 0;
1592 size_t len;
1593
1594 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1595 textlen += print_time(cont.ts_nsec, text);
1596 size -= textlen;
1597 }
1598
1599 len = cont.len - cont.cons;
1600 if (len > 0) {
1601 if (len+1 > size)
1602 len = size-1;
1603 memcpy(text + textlen, cont.buf + cont.cons, len);
1604 textlen += len;
1605 cont.cons = cont.len;
1606 }
1607
1608 if (cont.flushed) {
1609 if (cont.flags & LOG_NEWLINE)
1610 text[textlen++] = '\n';
1611 /* got everything, release buffer */
1612 cont.len = 0;
1613 }
1614 return textlen;
1615 }
1616
vprintk_emit(int facility,int level,const char * dict,size_t dictlen,const char * fmt,va_list args)1617 asmlinkage int vprintk_emit(int facility, int level,
1618 const char *dict, size_t dictlen,
1619 const char *fmt, va_list args)
1620 {
1621 static int recursion_bug;
1622 static char textbuf[LOG_LINE_MAX];
1623 char *text = textbuf;
1624 size_t text_len = 0;
1625 enum log_flags lflags = 0;
1626 unsigned long flags;
1627 int this_cpu;
1628 int printed_len = 0;
1629 bool in_sched = false;
1630 /* cpu currently holding logbuf_lock in this function */
1631 static volatile unsigned int logbuf_cpu = UINT_MAX;
1632
1633 if (level == SCHED_MESSAGE_LOGLEVEL) {
1634 level = -1;
1635 in_sched = true;
1636 }
1637
1638 boot_delay_msec(level);
1639 printk_delay();
1640
1641 /* This stops the holder of console_sem just where we want him */
1642 local_irq_save(flags);
1643 this_cpu = smp_processor_id();
1644
1645 /*
1646 * Ouch, printk recursed into itself!
1647 */
1648 if (unlikely(logbuf_cpu == this_cpu)) {
1649 /*
1650 * If a crash is occurring during printk() on this CPU,
1651 * then try to get the crash message out but make sure
1652 * we can't deadlock. Otherwise just return to avoid the
1653 * recursion and return - but flag the recursion so that
1654 * it can be printed at the next appropriate moment:
1655 */
1656 if (!oops_in_progress && !lockdep_recursing(current)) {
1657 recursion_bug = 1;
1658 local_irq_restore(flags);
1659 return 0;
1660 }
1661 zap_locks();
1662 }
1663
1664 lockdep_off();
1665 raw_spin_lock(&logbuf_lock);
1666 logbuf_cpu = this_cpu;
1667
1668 if (unlikely(recursion_bug)) {
1669 static const char recursion_msg[] =
1670 "BUG: recent printk recursion!";
1671
1672 recursion_bug = 0;
1673 /* emit KERN_CRIT message */
1674 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1675 NULL, 0, recursion_msg,
1676 strlen(recursion_msg));
1677 }
1678
1679 /*
1680 * The printf needs to come first; we need the syslog
1681 * prefix which might be passed-in as a parameter.
1682 */
1683 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1684
1685 /* mark and strip a trailing newline */
1686 if (text_len && text[text_len-1] == '\n') {
1687 text_len--;
1688 lflags |= LOG_NEWLINE;
1689 }
1690
1691 /* strip kernel syslog prefix and extract log level or control flags */
1692 if (facility == 0) {
1693 int kern_level = printk_get_level(text);
1694
1695 if (kern_level) {
1696 const char *end_of_header = printk_skip_level(text);
1697 switch (kern_level) {
1698 case '0' ... '7':
1699 if (level == -1)
1700 level = kern_level - '0';
1701 case 'd': /* KERN_DEFAULT */
1702 lflags |= LOG_PREFIX;
1703 }
1704 /*
1705 * No need to check length here because vscnprintf
1706 * put '\0' at the end of the string. Only valid and
1707 * newly printed level is detected.
1708 */
1709 text_len -= end_of_header - text;
1710 text = (char *)end_of_header;
1711 }
1712 }
1713
1714 #ifdef CONFIG_EARLY_PRINTK_DIRECT
1715 printascii(text);
1716 #endif
1717
1718 if (level == -1)
1719 level = default_message_loglevel;
1720
1721 if (dict)
1722 lflags |= LOG_PREFIX|LOG_NEWLINE;
1723
1724 if (!(lflags & LOG_NEWLINE)) {
1725 /*
1726 * Flush the conflicting buffer. An earlier newline was missing,
1727 * or another task also prints continuation lines.
1728 */
1729 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1730 cont_flush(LOG_NEWLINE);
1731
1732 /* buffer line if possible, otherwise store it right away */
1733 if (cont_add(facility, level, text, text_len))
1734 printed_len += text_len;
1735 else
1736 printed_len += log_store(facility, level,
1737 lflags | LOG_CONT, 0,
1738 dict, dictlen, text, text_len);
1739 } else {
1740 bool stored = false;
1741
1742 /*
1743 * If an earlier newline was missing and it was the same task,
1744 * either merge it with the current buffer and flush, or if
1745 * there was a race with interrupts (prefix == true) then just
1746 * flush it out and store this line separately.
1747 * If the preceding printk was from a different task and missed
1748 * a newline, flush and append the newline.
1749 */
1750 if (cont.len) {
1751 if (cont.owner == current && !(lflags & LOG_PREFIX))
1752 stored = cont_add(facility, level, text,
1753 text_len);
1754 cont_flush(LOG_NEWLINE);
1755 }
1756
1757 if (stored)
1758 printed_len += text_len;
1759 else
1760 printed_len += log_store(facility, level, lflags, 0,
1761 dict, dictlen, text, text_len);
1762 }
1763
1764 logbuf_cpu = UINT_MAX;
1765 raw_spin_unlock(&logbuf_lock);
1766 lockdep_on();
1767 local_irq_restore(flags);
1768
1769 /* If called from the scheduler, we can not call up(). */
1770 if (!in_sched) {
1771 lockdep_off();
1772 /*
1773 * Disable preemption to avoid being preempted while holding
1774 * console_sem which would prevent anyone from printing to
1775 * console
1776 */
1777 preempt_disable();
1778
1779 /*
1780 * Try to acquire and then immediately release the console
1781 * semaphore. The release will print out buffers and wake up
1782 * /dev/kmsg and syslog() users.
1783 */
1784 if (console_trylock_for_printk())
1785 console_unlock();
1786 preempt_enable();
1787 lockdep_on();
1788 }
1789
1790 return printed_len;
1791 }
1792 EXPORT_SYMBOL(vprintk_emit);
1793
vprintk(const char * fmt,va_list args)1794 asmlinkage int vprintk(const char *fmt, va_list args)
1795 {
1796 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1797 }
1798 EXPORT_SYMBOL(vprintk);
1799
printk_emit(int facility,int level,const char * dict,size_t dictlen,const char * fmt,...)1800 asmlinkage int printk_emit(int facility, int level,
1801 const char *dict, size_t dictlen,
1802 const char *fmt, ...)
1803 {
1804 va_list args;
1805 int r;
1806
1807 va_start(args, fmt);
1808 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1809 va_end(args);
1810
1811 return r;
1812 }
1813 EXPORT_SYMBOL(printk_emit);
1814
1815 /**
1816 * printk - print a kernel message
1817 * @fmt: format string
1818 *
1819 * This is printk(). It can be called from any context. We want it to work.
1820 *
1821 * We try to grab the console_lock. If we succeed, it's easy - we log the
1822 * output and call the console drivers. If we fail to get the semaphore, we
1823 * place the output into the log buffer and return. The current holder of
1824 * the console_sem will notice the new output in console_unlock(); and will
1825 * send it to the consoles before releasing the lock.
1826 *
1827 * One effect of this deferred printing is that code which calls printk() and
1828 * then changes console_loglevel may break. This is because console_loglevel
1829 * is inspected when the actual printing occurs.
1830 *
1831 * See also:
1832 * printf(3)
1833 *
1834 * See the vsnprintf() documentation for format string extensions over C99.
1835 */
printk(const char * fmt,...)1836 asmlinkage __visible int printk(const char *fmt, ...)
1837 {
1838 va_list args;
1839 int r;
1840
1841 #ifdef CONFIG_KGDB_KDB
1842 if (unlikely(kdb_trap_printk)) {
1843 va_start(args, fmt);
1844 r = vkdb_printf(fmt, args);
1845 va_end(args);
1846 return r;
1847 }
1848 #endif
1849 va_start(args, fmt);
1850 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1851 va_end(args);
1852
1853 return r;
1854 }
1855 EXPORT_SYMBOL(printk);
1856
1857 #else /* CONFIG_PRINTK */
1858
1859 #define LOG_LINE_MAX 0
1860 #define PREFIX_MAX 0
1861
1862 static u64 syslog_seq;
1863 static u32 syslog_idx;
1864 static u64 console_seq;
1865 static u32 console_idx;
1866 static enum log_flags syslog_prev;
1867 static u64 log_first_seq;
1868 static u32 log_first_idx;
1869 static u64 log_next_seq;
1870 static enum log_flags console_prev;
1871 static struct cont {
1872 size_t len;
1873 size_t cons;
1874 u8 level;
1875 bool flushed:1;
1876 } cont;
log_from_idx(u32 idx)1877 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
log_next(u32 idx)1878 static u32 log_next(u32 idx) { return 0; }
call_console_drivers(int level,const char * text,size_t len)1879 static void call_console_drivers(int level, const char *text, size_t len) {}
msg_print_text(const struct printk_log * msg,enum log_flags prev,bool syslog,char * buf,size_t size)1880 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1881 bool syslog, char *buf, size_t size) { return 0; }
cont_print_text(char * text,size_t size)1882 static size_t cont_print_text(char *text, size_t size) { return 0; }
1883
1884 #endif /* CONFIG_PRINTK */
1885
1886 #ifdef CONFIG_EARLY_PRINTK
1887 struct console *early_console;
1888
early_vprintk(const char * fmt,va_list ap)1889 void early_vprintk(const char *fmt, va_list ap)
1890 {
1891 if (early_console) {
1892 char buf[512];
1893 int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1894
1895 early_console->write(early_console, buf, n);
1896 }
1897 }
1898
early_printk(const char * fmt,...)1899 asmlinkage __visible void early_printk(const char *fmt, ...)
1900 {
1901 va_list ap;
1902
1903 va_start(ap, fmt);
1904 early_vprintk(fmt, ap);
1905 va_end(ap);
1906 }
1907 #endif
1908
__add_preferred_console(char * name,int idx,char * options,char * brl_options)1909 static int __add_preferred_console(char *name, int idx, char *options,
1910 char *brl_options)
1911 {
1912 struct console_cmdline *c;
1913 int i;
1914
1915 /*
1916 * See if this tty is not yet registered, and
1917 * if we have a slot free.
1918 */
1919 for (i = 0, c = console_cmdline;
1920 i < MAX_CMDLINECONSOLES && c->name[0];
1921 i++, c++) {
1922 if (strcmp(c->name, name) == 0 && c->index == idx) {
1923 if (!brl_options)
1924 selected_console = i;
1925 return 0;
1926 }
1927 }
1928 if (i == MAX_CMDLINECONSOLES)
1929 return -E2BIG;
1930 if (!brl_options)
1931 selected_console = i;
1932 strlcpy(c->name, name, sizeof(c->name));
1933 c->options = options;
1934 braille_set_options(c, brl_options);
1935
1936 c->index = idx;
1937 return 0;
1938 }
1939 /*
1940 * Set up a console. Called via do_early_param() in init/main.c
1941 * for each "console=" parameter in the boot command line.
1942 */
console_setup(char * str)1943 static int __init console_setup(char *str)
1944 {
1945 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1946 char *s, *options, *brl_options = NULL;
1947 int idx;
1948
1949 if (_braille_console_setup(&str, &brl_options))
1950 return 1;
1951
1952 /*
1953 * Decode str into name, index, options.
1954 */
1955 if (str[0] >= '0' && str[0] <= '9') {
1956 strcpy(buf, "ttyS");
1957 strncpy(buf + 4, str, sizeof(buf) - 5);
1958 } else {
1959 strncpy(buf, str, sizeof(buf) - 1);
1960 }
1961 buf[sizeof(buf) - 1] = 0;
1962 options = strchr(str, ',');
1963 if (options)
1964 *(options++) = 0;
1965 #ifdef __sparc__
1966 if (!strcmp(str, "ttya"))
1967 strcpy(buf, "ttyS0");
1968 if (!strcmp(str, "ttyb"))
1969 strcpy(buf, "ttyS1");
1970 #endif
1971 for (s = buf; *s; s++)
1972 if (isdigit(*s) || *s == ',')
1973 break;
1974 idx = simple_strtoul(s, NULL, 10);
1975 *s = 0;
1976
1977 __add_preferred_console(buf, idx, options, brl_options);
1978 console_set_on_cmdline = 1;
1979 return 1;
1980 }
1981 __setup("console=", console_setup);
1982
1983 /**
1984 * add_preferred_console - add a device to the list of preferred consoles.
1985 * @name: device name
1986 * @idx: device index
1987 * @options: options for this console
1988 *
1989 * The last preferred console added will be used for kernel messages
1990 * and stdin/out/err for init. Normally this is used by console_setup
1991 * above to handle user-supplied console arguments; however it can also
1992 * be used by arch-specific code either to override the user or more
1993 * commonly to provide a default console (ie from PROM variables) when
1994 * the user has not supplied one.
1995 */
add_preferred_console(char * name,int idx,char * options)1996 int add_preferred_console(char *name, int idx, char *options)
1997 {
1998 return __add_preferred_console(name, idx, options, NULL);
1999 }
2000
update_console_cmdline(char * name,int idx,char * name_new,int idx_new,char * options)2001 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
2002 {
2003 struct console_cmdline *c;
2004 int i;
2005
2006 for (i = 0, c = console_cmdline;
2007 i < MAX_CMDLINECONSOLES && c->name[0];
2008 i++, c++)
2009 if (strcmp(c->name, name) == 0 && c->index == idx) {
2010 strlcpy(c->name, name_new, sizeof(c->name));
2011 c->options = options;
2012 c->index = idx_new;
2013 return i;
2014 }
2015 /* not found */
2016 return -1;
2017 }
2018
2019 bool console_suspend_enabled = true;
2020 EXPORT_SYMBOL(console_suspend_enabled);
2021
console_suspend_disable(char * str)2022 static int __init console_suspend_disable(char *str)
2023 {
2024 console_suspend_enabled = false;
2025 return 1;
2026 }
2027 __setup("no_console_suspend", console_suspend_disable);
2028 module_param_named(console_suspend, console_suspend_enabled,
2029 bool, S_IRUGO | S_IWUSR);
2030 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2031 " and hibernate operations");
2032
2033 /**
2034 * suspend_console - suspend the console subsystem
2035 *
2036 * This disables printk() while we go into suspend states
2037 */
suspend_console(void)2038 void suspend_console(void)
2039 {
2040 if (!console_suspend_enabled)
2041 return;
2042 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2043 console_lock();
2044 console_suspended = 1;
2045 up_console_sem();
2046 }
2047
resume_console(void)2048 void resume_console(void)
2049 {
2050 if (!console_suspend_enabled)
2051 return;
2052 down_console_sem();
2053 console_suspended = 0;
2054 console_unlock();
2055 }
2056
2057 /**
2058 * console_cpu_notify - print deferred console messages after CPU hotplug
2059 * @self: notifier struct
2060 * @action: CPU hotplug event
2061 * @hcpu: unused
2062 *
2063 * If printk() is called from a CPU that is not online yet, the messages
2064 * will be spooled but will not show up on the console. This function is
2065 * called when a new CPU comes online (or fails to come up), and ensures
2066 * that any such output gets printed.
2067 */
console_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)2068 static int console_cpu_notify(struct notifier_block *self,
2069 unsigned long action, void *hcpu)
2070 {
2071 switch (action) {
2072 case CPU_ONLINE:
2073 case CPU_DEAD:
2074 case CPU_DOWN_FAILED:
2075 case CPU_UP_CANCELED:
2076 console_lock();
2077 console_unlock();
2078 }
2079 return NOTIFY_OK;
2080 }
2081
2082 /**
2083 * console_lock - lock the console system for exclusive use.
2084 *
2085 * Acquires a lock which guarantees that the caller has
2086 * exclusive access to the console system and the console_drivers list.
2087 *
2088 * Can sleep, returns nothing.
2089 */
console_lock(void)2090 void console_lock(void)
2091 {
2092 might_sleep();
2093
2094 down_console_sem();
2095 if (console_suspended)
2096 return;
2097 console_locked = 1;
2098 console_may_schedule = 1;
2099 }
2100 EXPORT_SYMBOL(console_lock);
2101
2102 /**
2103 * console_trylock - try to lock the console system for exclusive use.
2104 *
2105 * Try to acquire a lock which guarantees that the caller has exclusive
2106 * access to the console system and the console_drivers list.
2107 *
2108 * returns 1 on success, and 0 on failure to acquire the lock.
2109 */
console_trylock(void)2110 int console_trylock(void)
2111 {
2112 if (down_trylock_console_sem())
2113 return 0;
2114 if (console_suspended) {
2115 up_console_sem();
2116 return 0;
2117 }
2118 console_locked = 1;
2119 console_may_schedule = 0;
2120 return 1;
2121 }
2122 EXPORT_SYMBOL(console_trylock);
2123
is_console_locked(void)2124 int is_console_locked(void)
2125 {
2126 return console_locked;
2127 }
2128
console_cont_flush(char * text,size_t size)2129 static void console_cont_flush(char *text, size_t size)
2130 {
2131 unsigned long flags;
2132 size_t len;
2133
2134 raw_spin_lock_irqsave(&logbuf_lock, flags);
2135
2136 if (!cont.len)
2137 goto out;
2138
2139 /*
2140 * We still queue earlier records, likely because the console was
2141 * busy. The earlier ones need to be printed before this one, we
2142 * did not flush any fragment so far, so just let it queue up.
2143 */
2144 if (console_seq < log_next_seq && !cont.cons)
2145 goto out;
2146
2147 len = cont_print_text(text, size);
2148 raw_spin_unlock(&logbuf_lock);
2149 stop_critical_timings();
2150 call_console_drivers(cont.level, text, len);
2151 start_critical_timings();
2152 local_irq_restore(flags);
2153 return;
2154 out:
2155 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2156 }
2157
2158 /**
2159 * console_unlock - unlock the console system
2160 *
2161 * Releases the console_lock which the caller holds on the console system
2162 * and the console driver list.
2163 *
2164 * While the console_lock was held, console output may have been buffered
2165 * by printk(). If this is the case, console_unlock(); emits
2166 * the output prior to releasing the lock.
2167 *
2168 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2169 *
2170 * console_unlock(); may be called from any context.
2171 */
console_unlock(void)2172 void console_unlock(void)
2173 {
2174 static char text[LOG_LINE_MAX + PREFIX_MAX];
2175 static u64 seen_seq;
2176 unsigned long flags;
2177 bool wake_klogd = false;
2178 bool do_cond_resched, retry;
2179
2180 if (console_suspended) {
2181 up_console_sem();
2182 return;
2183 }
2184
2185 /*
2186 * Console drivers are called under logbuf_lock, so
2187 * @console_may_schedule should be cleared before; however, we may
2188 * end up dumping a lot of lines, for example, if called from
2189 * console registration path, and should invoke cond_resched()
2190 * between lines if allowable. Not doing so can cause a very long
2191 * scheduling stall on a slow console leading to RCU stall and
2192 * softlockup warnings which exacerbate the issue with more
2193 * messages practically incapacitating the system.
2194 */
2195 do_cond_resched = console_may_schedule;
2196 console_may_schedule = 0;
2197
2198 /* flush buffered message fragment immediately to console */
2199 console_cont_flush(text, sizeof(text));
2200 again:
2201 for (;;) {
2202 struct printk_log *msg;
2203 size_t len;
2204 int level;
2205
2206 raw_spin_lock_irqsave(&logbuf_lock, flags);
2207 if (seen_seq != log_next_seq) {
2208 wake_klogd = true;
2209 seen_seq = log_next_seq;
2210 }
2211
2212 if (console_seq < log_first_seq) {
2213 len = sprintf(text, "** %u printk messages dropped ** ",
2214 (unsigned)(log_first_seq - console_seq));
2215
2216 /* messages are gone, move to first one */
2217 console_seq = log_first_seq;
2218 console_idx = log_first_idx;
2219 console_prev = 0;
2220 } else {
2221 len = 0;
2222 }
2223 skip:
2224 if (console_seq == log_next_seq)
2225 break;
2226
2227 msg = log_from_idx(console_idx);
2228 if (msg->flags & LOG_NOCONS) {
2229 /*
2230 * Skip record we have buffered and already printed
2231 * directly to the console when we received it.
2232 */
2233 console_idx = log_next(console_idx);
2234 console_seq++;
2235 /*
2236 * We will get here again when we register a new
2237 * CON_PRINTBUFFER console. Clear the flag so we
2238 * will properly dump everything later.
2239 */
2240 msg->flags &= ~LOG_NOCONS;
2241 console_prev = msg->flags;
2242 goto skip;
2243 }
2244
2245 level = msg->level;
2246 len += msg_print_text(msg, console_prev, false,
2247 text + len, sizeof(text) - len);
2248 console_idx = log_next(console_idx);
2249 console_seq++;
2250 console_prev = msg->flags;
2251 raw_spin_unlock(&logbuf_lock);
2252
2253 stop_critical_timings(); /* don't trace print latency */
2254 call_console_drivers(level, text, len);
2255 start_critical_timings();
2256 local_irq_restore(flags);
2257
2258 if (do_cond_resched)
2259 cond_resched();
2260 }
2261 console_locked = 0;
2262
2263 /* Release the exclusive_console once it is used */
2264 if (unlikely(exclusive_console))
2265 exclusive_console = NULL;
2266
2267 raw_spin_unlock(&logbuf_lock);
2268
2269 up_console_sem();
2270
2271 /*
2272 * Someone could have filled up the buffer again, so re-check if there's
2273 * something to flush. In case we cannot trylock the console_sem again,
2274 * there's a new owner and the console_unlock() from them will do the
2275 * flush, no worries.
2276 */
2277 raw_spin_lock(&logbuf_lock);
2278 retry = console_seq != log_next_seq;
2279 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2280
2281 if (retry && console_trylock())
2282 goto again;
2283
2284 if (wake_klogd)
2285 wake_up_klogd();
2286 }
2287 EXPORT_SYMBOL(console_unlock);
2288
2289 /**
2290 * console_conditional_schedule - yield the CPU if required
2291 *
2292 * If the console code is currently allowed to sleep, and
2293 * if this CPU should yield the CPU to another task, do
2294 * so here.
2295 *
2296 * Must be called within console_lock();.
2297 */
console_conditional_schedule(void)2298 void __sched console_conditional_schedule(void)
2299 {
2300 if (console_may_schedule)
2301 cond_resched();
2302 }
2303 EXPORT_SYMBOL(console_conditional_schedule);
2304
console_unblank(void)2305 void console_unblank(void)
2306 {
2307 struct console *c;
2308
2309 /*
2310 * console_unblank can no longer be called in interrupt context unless
2311 * oops_in_progress is set to 1..
2312 */
2313 if (oops_in_progress) {
2314 if (down_trylock_console_sem() != 0)
2315 return;
2316 } else
2317 console_lock();
2318
2319 console_locked = 1;
2320 console_may_schedule = 0;
2321 for_each_console(c)
2322 if ((c->flags & CON_ENABLED) && c->unblank)
2323 c->unblank();
2324 console_unlock();
2325 }
2326
2327 /**
2328 * console_flush_on_panic - flush console content on panic
2329 *
2330 * Immediately output all pending messages no matter what.
2331 */
console_flush_on_panic(void)2332 void console_flush_on_panic(void)
2333 {
2334 /*
2335 * If someone else is holding the console lock, trylock will fail
2336 * and may_schedule may be set. Ignore and proceed to unlock so
2337 * that messages are flushed out. As this can be called from any
2338 * context and we don't want to get preempted while flushing,
2339 * ensure may_schedule is cleared.
2340 */
2341 console_trylock();
2342 console_may_schedule = 0;
2343 console_unlock();
2344 }
2345
2346 /*
2347 * Return the console tty driver structure and its associated index
2348 */
console_device(int * index)2349 struct tty_driver *console_device(int *index)
2350 {
2351 struct console *c;
2352 struct tty_driver *driver = NULL;
2353
2354 console_lock();
2355 for_each_console(c) {
2356 if (!c->device)
2357 continue;
2358 driver = c->device(c, index);
2359 if (driver)
2360 break;
2361 }
2362 console_unlock();
2363 return driver;
2364 }
2365
2366 /*
2367 * Prevent further output on the passed console device so that (for example)
2368 * serial drivers can disable console output before suspending a port, and can
2369 * re-enable output afterwards.
2370 */
console_stop(struct console * console)2371 void console_stop(struct console *console)
2372 {
2373 console_lock();
2374 console->flags &= ~CON_ENABLED;
2375 console_unlock();
2376 }
2377 EXPORT_SYMBOL(console_stop);
2378
console_start(struct console * console)2379 void console_start(struct console *console)
2380 {
2381 console_lock();
2382 console->flags |= CON_ENABLED;
2383 console_unlock();
2384 }
2385 EXPORT_SYMBOL(console_start);
2386
2387 static int __read_mostly keep_bootcon;
2388
keep_bootcon_setup(char * str)2389 static int __init keep_bootcon_setup(char *str)
2390 {
2391 keep_bootcon = 1;
2392 pr_info("debug: skip boot console de-registration.\n");
2393
2394 return 0;
2395 }
2396
2397 early_param("keep_bootcon", keep_bootcon_setup);
2398
2399 /*
2400 * The console driver calls this routine during kernel initialization
2401 * to register the console printing procedure with printk() and to
2402 * print any messages that were printed by the kernel before the
2403 * console driver was initialized.
2404 *
2405 * This can happen pretty early during the boot process (because of
2406 * early_printk) - sometimes before setup_arch() completes - be careful
2407 * of what kernel features are used - they may not be initialised yet.
2408 *
2409 * There are two types of consoles - bootconsoles (early_printk) and
2410 * "real" consoles (everything which is not a bootconsole) which are
2411 * handled differently.
2412 * - Any number of bootconsoles can be registered at any time.
2413 * - As soon as a "real" console is registered, all bootconsoles
2414 * will be unregistered automatically.
2415 * - Once a "real" console is registered, any attempt to register a
2416 * bootconsoles will be rejected
2417 */
register_console(struct console * newcon)2418 void register_console(struct console *newcon)
2419 {
2420 int i;
2421 unsigned long flags;
2422 struct console *bcon = NULL;
2423 struct console_cmdline *c;
2424
2425 if (console_drivers)
2426 for_each_console(bcon)
2427 if (WARN(bcon == newcon,
2428 "console '%s%d' already registered\n",
2429 bcon->name, bcon->index))
2430 return;
2431
2432 /*
2433 * before we register a new CON_BOOT console, make sure we don't
2434 * already have a valid console
2435 */
2436 if (console_drivers && newcon->flags & CON_BOOT) {
2437 /* find the last or real console */
2438 for_each_console(bcon) {
2439 if (!(bcon->flags & CON_BOOT)) {
2440 pr_info("Too late to register bootconsole %s%d\n",
2441 newcon->name, newcon->index);
2442 return;
2443 }
2444 }
2445 }
2446
2447 if (console_drivers && console_drivers->flags & CON_BOOT)
2448 bcon = console_drivers;
2449
2450 if (preferred_console < 0 || bcon || !console_drivers)
2451 preferred_console = selected_console;
2452
2453 if (newcon->early_setup)
2454 newcon->early_setup();
2455
2456 /*
2457 * See if we want to use this console driver. If we
2458 * didn't select a console we take the first one
2459 * that registers here.
2460 */
2461 if (preferred_console < 0) {
2462 if (newcon->index < 0)
2463 newcon->index = 0;
2464 if (newcon->setup == NULL ||
2465 newcon->setup(newcon, NULL) == 0) {
2466 newcon->flags |= CON_ENABLED;
2467 if (newcon->device) {
2468 newcon->flags |= CON_CONSDEV;
2469 preferred_console = 0;
2470 }
2471 }
2472 }
2473
2474 /*
2475 * See if this console matches one we selected on
2476 * the command line.
2477 */
2478 for (i = 0, c = console_cmdline;
2479 i < MAX_CMDLINECONSOLES && c->name[0];
2480 i++, c++) {
2481 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2482 if (strcmp(c->name, newcon->name) != 0)
2483 continue;
2484 if (newcon->index >= 0 &&
2485 newcon->index != c->index)
2486 continue;
2487 if (newcon->index < 0)
2488 newcon->index = c->index;
2489
2490 if (_braille_register_console(newcon, c))
2491 return;
2492
2493 if (newcon->setup &&
2494 newcon->setup(newcon, console_cmdline[i].options) != 0)
2495 break;
2496 newcon->flags |= CON_ENABLED;
2497 newcon->index = c->index;
2498 if (i == selected_console) {
2499 newcon->flags |= CON_CONSDEV;
2500 preferred_console = selected_console;
2501 }
2502 break;
2503 }
2504
2505 if (!(newcon->flags & CON_ENABLED))
2506 return;
2507
2508 /*
2509 * If we have a bootconsole, and are switching to a real console,
2510 * don't print everything out again, since when the boot console, and
2511 * the real console are the same physical device, it's annoying to
2512 * see the beginning boot messages twice
2513 */
2514 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2515 newcon->flags &= ~CON_PRINTBUFFER;
2516
2517 /*
2518 * Put this console in the list - keep the
2519 * preferred driver at the head of the list.
2520 */
2521 console_lock();
2522 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2523 newcon->next = console_drivers;
2524 console_drivers = newcon;
2525 if (newcon->next)
2526 newcon->next->flags &= ~CON_CONSDEV;
2527 } else {
2528 newcon->next = console_drivers->next;
2529 console_drivers->next = newcon;
2530 }
2531 if (newcon->flags & CON_PRINTBUFFER) {
2532 /*
2533 * console_unlock(); will print out the buffered messages
2534 * for us.
2535 */
2536 raw_spin_lock_irqsave(&logbuf_lock, flags);
2537 console_seq = syslog_seq;
2538 console_idx = syslog_idx;
2539 console_prev = syslog_prev;
2540 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2541 /*
2542 * We're about to replay the log buffer. Only do this to the
2543 * just-registered console to avoid excessive message spam to
2544 * the already-registered consoles.
2545 */
2546 exclusive_console = newcon;
2547 }
2548 console_unlock();
2549 console_sysfs_notify();
2550
2551 /*
2552 * By unregistering the bootconsoles after we enable the real console
2553 * we get the "console xxx enabled" message on all the consoles -
2554 * boot consoles, real consoles, etc - this is to ensure that end
2555 * users know there might be something in the kernel's log buffer that
2556 * went to the bootconsole (that they do not see on the real console)
2557 */
2558 pr_info("%sconsole [%s%d] enabled\n",
2559 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2560 newcon->name, newcon->index);
2561 if (bcon &&
2562 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2563 !keep_bootcon) {
2564 /* We need to iterate through all boot consoles, to make
2565 * sure we print everything out, before we unregister them.
2566 */
2567 for_each_console(bcon)
2568 if (bcon->flags & CON_BOOT)
2569 unregister_console(bcon);
2570 }
2571 }
2572 EXPORT_SYMBOL(register_console);
2573
unregister_console(struct console * console)2574 int unregister_console(struct console *console)
2575 {
2576 struct console *a, *b;
2577 int res;
2578
2579 pr_info("%sconsole [%s%d] disabled\n",
2580 (console->flags & CON_BOOT) ? "boot" : "" ,
2581 console->name, console->index);
2582
2583 res = _braille_unregister_console(console);
2584 if (res)
2585 return res;
2586
2587 res = 1;
2588 console_lock();
2589 if (console_drivers == console) {
2590 console_drivers=console->next;
2591 res = 0;
2592 } else if (console_drivers) {
2593 for (a=console_drivers->next, b=console_drivers ;
2594 a; b=a, a=b->next) {
2595 if (a == console) {
2596 b->next = a->next;
2597 res = 0;
2598 break;
2599 }
2600 }
2601 }
2602
2603 /*
2604 * If this isn't the last console and it has CON_CONSDEV set, we
2605 * need to set it on the next preferred console.
2606 */
2607 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2608 console_drivers->flags |= CON_CONSDEV;
2609
2610 console->flags &= ~CON_ENABLED;
2611 console_unlock();
2612 console_sysfs_notify();
2613 return res;
2614 }
2615 EXPORT_SYMBOL(unregister_console);
2616
printk_late_init(void)2617 static int __init printk_late_init(void)
2618 {
2619 struct console *con;
2620
2621 for_each_console(con) {
2622 if (!keep_bootcon && con->flags & CON_BOOT) {
2623 unregister_console(con);
2624 }
2625 }
2626 hotcpu_notifier(console_cpu_notify, 0);
2627 return 0;
2628 }
2629 late_initcall(printk_late_init);
2630
2631 #if defined CONFIG_PRINTK
2632 /*
2633 * Delayed printk version, for scheduler-internal messages:
2634 */
2635 #define PRINTK_PENDING_WAKEUP 0x01
2636 #define PRINTK_PENDING_OUTPUT 0x02
2637
2638 static DEFINE_PER_CPU(int, printk_pending);
2639
wake_up_klogd_work_func(struct irq_work * irq_work)2640 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2641 {
2642 int pending = __this_cpu_xchg(printk_pending, 0);
2643
2644 if (pending & PRINTK_PENDING_OUTPUT) {
2645 /* If trylock fails, someone else is doing the printing */
2646 if (console_trylock())
2647 console_unlock();
2648 }
2649
2650 if (pending & PRINTK_PENDING_WAKEUP)
2651 wake_up_interruptible(&log_wait);
2652 }
2653
2654 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2655 .func = wake_up_klogd_work_func,
2656 .flags = IRQ_WORK_LAZY,
2657 };
2658
wake_up_klogd(void)2659 void wake_up_klogd(void)
2660 {
2661 preempt_disable();
2662 if (waitqueue_active(&log_wait)) {
2663 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2664 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2665 }
2666 preempt_enable();
2667 }
2668
printk_deferred(const char * fmt,...)2669 int printk_deferred(const char *fmt, ...)
2670 {
2671 va_list args;
2672 int r;
2673
2674 preempt_disable();
2675 va_start(args, fmt);
2676 r = vprintk_emit(0, SCHED_MESSAGE_LOGLEVEL, NULL, 0, fmt, args);
2677 va_end(args);
2678
2679 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2680 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2681 preempt_enable();
2682
2683 return r;
2684 }
2685
2686 /*
2687 * printk rate limiting, lifted from the networking subsystem.
2688 *
2689 * This enforces a rate limit: not more than 10 kernel messages
2690 * every 5s to make a denial-of-service attack impossible.
2691 */
2692 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2693
__printk_ratelimit(const char * func)2694 int __printk_ratelimit(const char *func)
2695 {
2696 return ___ratelimit(&printk_ratelimit_state, func);
2697 }
2698 EXPORT_SYMBOL(__printk_ratelimit);
2699
2700 /**
2701 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2702 * @caller_jiffies: pointer to caller's state
2703 * @interval_msecs: minimum interval between prints
2704 *
2705 * printk_timed_ratelimit() returns true if more than @interval_msecs
2706 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2707 * returned true.
2708 */
printk_timed_ratelimit(unsigned long * caller_jiffies,unsigned int interval_msecs)2709 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2710 unsigned int interval_msecs)
2711 {
2712 unsigned long elapsed = jiffies - *caller_jiffies;
2713
2714 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2715 return false;
2716
2717 *caller_jiffies = jiffies;
2718 return true;
2719 }
2720 EXPORT_SYMBOL(printk_timed_ratelimit);
2721
2722 static DEFINE_SPINLOCK(dump_list_lock);
2723 static LIST_HEAD(dump_list);
2724
2725 /**
2726 * kmsg_dump_register - register a kernel log dumper.
2727 * @dumper: pointer to the kmsg_dumper structure
2728 *
2729 * Adds a kernel log dumper to the system. The dump callback in the
2730 * structure will be called when the kernel oopses or panics and must be
2731 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2732 */
kmsg_dump_register(struct kmsg_dumper * dumper)2733 int kmsg_dump_register(struct kmsg_dumper *dumper)
2734 {
2735 unsigned long flags;
2736 int err = -EBUSY;
2737
2738 /* The dump callback needs to be set */
2739 if (!dumper->dump)
2740 return -EINVAL;
2741
2742 spin_lock_irqsave(&dump_list_lock, flags);
2743 /* Don't allow registering multiple times */
2744 if (!dumper->registered) {
2745 dumper->registered = 1;
2746 list_add_tail_rcu(&dumper->list, &dump_list);
2747 err = 0;
2748 }
2749 spin_unlock_irqrestore(&dump_list_lock, flags);
2750
2751 return err;
2752 }
2753 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2754
2755 /**
2756 * kmsg_dump_unregister - unregister a kmsg dumper.
2757 * @dumper: pointer to the kmsg_dumper structure
2758 *
2759 * Removes a dump device from the system. Returns zero on success and
2760 * %-EINVAL otherwise.
2761 */
kmsg_dump_unregister(struct kmsg_dumper * dumper)2762 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2763 {
2764 unsigned long flags;
2765 int err = -EINVAL;
2766
2767 spin_lock_irqsave(&dump_list_lock, flags);
2768 if (dumper->registered) {
2769 dumper->registered = 0;
2770 list_del_rcu(&dumper->list);
2771 err = 0;
2772 }
2773 spin_unlock_irqrestore(&dump_list_lock, flags);
2774 synchronize_rcu();
2775
2776 return err;
2777 }
2778 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2779
2780 static bool always_kmsg_dump;
2781 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2782
2783 /**
2784 * kmsg_dump - dump kernel log to kernel message dumpers.
2785 * @reason: the reason (oops, panic etc) for dumping
2786 *
2787 * Call each of the registered dumper's dump() callback, which can
2788 * retrieve the kmsg records with kmsg_dump_get_line() or
2789 * kmsg_dump_get_buffer().
2790 */
kmsg_dump(enum kmsg_dump_reason reason)2791 void kmsg_dump(enum kmsg_dump_reason reason)
2792 {
2793 struct kmsg_dumper *dumper;
2794 unsigned long flags;
2795
2796 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2797 return;
2798
2799 rcu_read_lock();
2800 list_for_each_entry_rcu(dumper, &dump_list, list) {
2801 if (dumper->max_reason && reason > dumper->max_reason)
2802 continue;
2803
2804 /* initialize iterator with data about the stored records */
2805 dumper->active = true;
2806
2807 raw_spin_lock_irqsave(&logbuf_lock, flags);
2808 dumper->cur_seq = clear_seq;
2809 dumper->cur_idx = clear_idx;
2810 dumper->next_seq = log_next_seq;
2811 dumper->next_idx = log_next_idx;
2812 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2813
2814 /* invoke dumper which will iterate over records */
2815 dumper->dump(dumper, reason);
2816
2817 /* reset iterator */
2818 dumper->active = false;
2819 }
2820 rcu_read_unlock();
2821 }
2822
2823 /**
2824 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2825 * @dumper: registered kmsg dumper
2826 * @syslog: include the "<4>" prefixes
2827 * @line: buffer to copy the line to
2828 * @size: maximum size of the buffer
2829 * @len: length of line placed into buffer
2830 *
2831 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2832 * record, and copy one record into the provided buffer.
2833 *
2834 * Consecutive calls will return the next available record moving
2835 * towards the end of the buffer with the youngest messages.
2836 *
2837 * A return value of FALSE indicates that there are no more records to
2838 * read.
2839 *
2840 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2841 */
kmsg_dump_get_line_nolock(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)2842 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2843 char *line, size_t size, size_t *len)
2844 {
2845 struct printk_log *msg;
2846 size_t l = 0;
2847 bool ret = false;
2848
2849 if (!dumper->active)
2850 goto out;
2851
2852 if (dumper->cur_seq < log_first_seq) {
2853 /* messages are gone, move to first available one */
2854 dumper->cur_seq = log_first_seq;
2855 dumper->cur_idx = log_first_idx;
2856 }
2857
2858 /* last entry */
2859 if (dumper->cur_seq >= log_next_seq)
2860 goto out;
2861
2862 msg = log_from_idx(dumper->cur_idx);
2863 l = msg_print_text(msg, 0, syslog, line, size);
2864
2865 dumper->cur_idx = log_next(dumper->cur_idx);
2866 dumper->cur_seq++;
2867 ret = true;
2868 out:
2869 if (len)
2870 *len = l;
2871 return ret;
2872 }
2873
2874 /**
2875 * kmsg_dump_get_line - retrieve one kmsg log line
2876 * @dumper: registered kmsg dumper
2877 * @syslog: include the "<4>" prefixes
2878 * @line: buffer to copy the line to
2879 * @size: maximum size of the buffer
2880 * @len: length of line placed into buffer
2881 *
2882 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2883 * record, and copy one record into the provided buffer.
2884 *
2885 * Consecutive calls will return the next available record moving
2886 * towards the end of the buffer with the youngest messages.
2887 *
2888 * A return value of FALSE indicates that there are no more records to
2889 * read.
2890 */
kmsg_dump_get_line(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)2891 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2892 char *line, size_t size, size_t *len)
2893 {
2894 unsigned long flags;
2895 bool ret;
2896
2897 raw_spin_lock_irqsave(&logbuf_lock, flags);
2898 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2899 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2900
2901 return ret;
2902 }
2903 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2904
2905 /**
2906 * kmsg_dump_get_buffer - copy kmsg log lines
2907 * @dumper: registered kmsg dumper
2908 * @syslog: include the "<4>" prefixes
2909 * @buf: buffer to copy the line to
2910 * @size: maximum size of the buffer
2911 * @len: length of line placed into buffer
2912 *
2913 * Start at the end of the kmsg buffer and fill the provided buffer
2914 * with as many of the the *youngest* kmsg records that fit into it.
2915 * If the buffer is large enough, all available kmsg records will be
2916 * copied with a single call.
2917 *
2918 * Consecutive calls will fill the buffer with the next block of
2919 * available older records, not including the earlier retrieved ones.
2920 *
2921 * A return value of FALSE indicates that there are no more records to
2922 * read.
2923 */
kmsg_dump_get_buffer(struct kmsg_dumper * dumper,bool syslog,char * buf,size_t size,size_t * len)2924 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2925 char *buf, size_t size, size_t *len)
2926 {
2927 unsigned long flags;
2928 u64 seq;
2929 u32 idx;
2930 u64 next_seq;
2931 u32 next_idx;
2932 enum log_flags prev;
2933 size_t l = 0;
2934 bool ret = false;
2935
2936 if (!dumper->active)
2937 goto out;
2938
2939 raw_spin_lock_irqsave(&logbuf_lock, flags);
2940 if (dumper->cur_seq < log_first_seq) {
2941 /* messages are gone, move to first available one */
2942 dumper->cur_seq = log_first_seq;
2943 dumper->cur_idx = log_first_idx;
2944 }
2945
2946 /* last entry */
2947 if (dumper->cur_seq >= dumper->next_seq) {
2948 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2949 goto out;
2950 }
2951
2952 /* calculate length of entire buffer */
2953 seq = dumper->cur_seq;
2954 idx = dumper->cur_idx;
2955 prev = 0;
2956 while (seq < dumper->next_seq) {
2957 struct printk_log *msg = log_from_idx(idx);
2958
2959 l += msg_print_text(msg, prev, true, NULL, 0);
2960 idx = log_next(idx);
2961 seq++;
2962 prev = msg->flags;
2963 }
2964
2965 /* move first record forward until length fits into the buffer */
2966 seq = dumper->cur_seq;
2967 idx = dumper->cur_idx;
2968 prev = 0;
2969 while (l > size && seq < dumper->next_seq) {
2970 struct printk_log *msg = log_from_idx(idx);
2971
2972 l -= msg_print_text(msg, prev, true, NULL, 0);
2973 idx = log_next(idx);
2974 seq++;
2975 prev = msg->flags;
2976 }
2977
2978 /* last message in next interation */
2979 next_seq = seq;
2980 next_idx = idx;
2981
2982 l = 0;
2983 while (seq < dumper->next_seq) {
2984 struct printk_log *msg = log_from_idx(idx);
2985
2986 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2987 idx = log_next(idx);
2988 seq++;
2989 prev = msg->flags;
2990 }
2991
2992 dumper->next_seq = next_seq;
2993 dumper->next_idx = next_idx;
2994 ret = true;
2995 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2996 out:
2997 if (len)
2998 *len = l;
2999 return ret;
3000 }
3001 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3002
3003 /**
3004 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3005 * @dumper: registered kmsg dumper
3006 *
3007 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3008 * kmsg_dump_get_buffer() can be called again and used multiple
3009 * times within the same dumper.dump() callback.
3010 *
3011 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3012 */
kmsg_dump_rewind_nolock(struct kmsg_dumper * dumper)3013 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3014 {
3015 dumper->cur_seq = clear_seq;
3016 dumper->cur_idx = clear_idx;
3017 dumper->next_seq = log_next_seq;
3018 dumper->next_idx = log_next_idx;
3019 }
3020
3021 /**
3022 * kmsg_dump_rewind - reset the interator
3023 * @dumper: registered kmsg dumper
3024 *
3025 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3026 * kmsg_dump_get_buffer() can be called again and used multiple
3027 * times within the same dumper.dump() callback.
3028 */
kmsg_dump_rewind(struct kmsg_dumper * dumper)3029 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3030 {
3031 unsigned long flags;
3032
3033 raw_spin_lock_irqsave(&logbuf_lock, flags);
3034 kmsg_dump_rewind_nolock(dumper);
3035 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3036 }
3037 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3038
3039 static char dump_stack_arch_desc_str[128];
3040
3041 /**
3042 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3043 * @fmt: printf-style format string
3044 * @...: arguments for the format string
3045 *
3046 * The configured string will be printed right after utsname during task
3047 * dumps. Usually used to add arch-specific system identifiers. If an
3048 * arch wants to make use of such an ID string, it should initialize this
3049 * as soon as possible during boot.
3050 */
dump_stack_set_arch_desc(const char * fmt,...)3051 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3052 {
3053 va_list args;
3054
3055 va_start(args, fmt);
3056 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3057 fmt, args);
3058 va_end(args);
3059 }
3060
3061 /**
3062 * dump_stack_print_info - print generic debug info for dump_stack()
3063 * @log_lvl: log level
3064 *
3065 * Arch-specific dump_stack() implementations can use this function to
3066 * print out the same debug information as the generic dump_stack().
3067 */
dump_stack_print_info(const char * log_lvl)3068 void dump_stack_print_info(const char *log_lvl)
3069 {
3070 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3071 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3072 print_tainted(), init_utsname()->release,
3073 (int)strcspn(init_utsname()->version, " "),
3074 init_utsname()->version);
3075
3076 if (dump_stack_arch_desc_str[0] != '\0')
3077 printk("%sHardware name: %s\n",
3078 log_lvl, dump_stack_arch_desc_str);
3079
3080 print_worker_info(log_lvl, current);
3081 }
3082
3083 /**
3084 * show_regs_print_info - print generic debug info for show_regs()
3085 * @log_lvl: log level
3086 *
3087 * show_regs() implementations can use this function to print out generic
3088 * debug information.
3089 */
show_regs_print_info(const char * log_lvl)3090 void show_regs_print_info(const char *log_lvl)
3091 {
3092 dump_stack_print_info(log_lvl);
3093
3094 printk("%stask: %p ti: %p task.ti: %p\n",
3095 log_lvl, current, current_thread_info(),
3096 task_thread_info(current));
3097 }
3098
3099 #endif
3100