• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 
34 #include <trace/events/scsi.h>
35 
36 #include "scsi_priv.h"
37 #include "scsi_logging.h"
38 
39 
40 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
41 #define SG_MEMPOOL_SIZE		2
42 
43 struct scsi_host_sg_pool {
44 	size_t		size;
45 	char		*name;
46 	struct kmem_cache	*slab;
47 	mempool_t	*pool;
48 };
49 
50 #define SP(x) { x, "sgpool-" __stringify(x) }
51 #if (SCSI_MAX_SG_SEGMENTS < 32)
52 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
53 #endif
54 static struct scsi_host_sg_pool scsi_sg_pools[] = {
55 	SP(8),
56 	SP(16),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58 	SP(32),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60 	SP(64),
61 #if (SCSI_MAX_SG_SEGMENTS > 128)
62 	SP(128),
63 #if (SCSI_MAX_SG_SEGMENTS > 256)
64 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65 #endif
66 #endif
67 #endif
68 #endif
69 	SP(SCSI_MAX_SG_SEGMENTS)
70 };
71 #undef SP
72 
73 struct kmem_cache *scsi_sdb_cache;
74 
75 /*
76  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
77  * not change behaviour from the previous unplug mechanism, experimentation
78  * may prove this needs changing.
79  */
80 #define SCSI_QUEUE_DELAY	3
81 
82 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)83 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
84 {
85 	struct Scsi_Host *host = cmd->device->host;
86 	struct scsi_device *device = cmd->device;
87 	struct scsi_target *starget = scsi_target(device);
88 
89 	/*
90 	 * Set the appropriate busy bit for the device/host.
91 	 *
92 	 * If the host/device isn't busy, assume that something actually
93 	 * completed, and that we should be able to queue a command now.
94 	 *
95 	 * Note that the prior mid-layer assumption that any host could
96 	 * always queue at least one command is now broken.  The mid-layer
97 	 * will implement a user specifiable stall (see
98 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
99 	 * if a command is requeued with no other commands outstanding
100 	 * either for the device or for the host.
101 	 */
102 	switch (reason) {
103 	case SCSI_MLQUEUE_HOST_BUSY:
104 		atomic_set(&host->host_blocked, host->max_host_blocked);
105 		break;
106 	case SCSI_MLQUEUE_DEVICE_BUSY:
107 	case SCSI_MLQUEUE_EH_RETRY:
108 		atomic_set(&device->device_blocked,
109 			   device->max_device_blocked);
110 		break;
111 	case SCSI_MLQUEUE_TARGET_BUSY:
112 		atomic_set(&starget->target_blocked,
113 			   starget->max_target_blocked);
114 		break;
115 	}
116 }
117 
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd)118 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
119 {
120 	struct scsi_device *sdev = cmd->device;
121 	struct request_queue *q = cmd->request->q;
122 
123 	blk_mq_requeue_request(cmd->request);
124 	blk_mq_kick_requeue_list(q);
125 	put_device(&sdev->sdev_gendev);
126 }
127 
128 /**
129  * __scsi_queue_insert - private queue insertion
130  * @cmd: The SCSI command being requeued
131  * @reason:  The reason for the requeue
132  * @unbusy: Whether the queue should be unbusied
133  *
134  * This is a private queue insertion.  The public interface
135  * scsi_queue_insert() always assumes the queue should be unbusied
136  * because it's always called before the completion.  This function is
137  * for a requeue after completion, which should only occur in this
138  * file.
139  */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,int unbusy)140 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
141 {
142 	struct scsi_device *device = cmd->device;
143 	struct request_queue *q = device->request_queue;
144 	unsigned long flags;
145 
146 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 		"Inserting command %p into mlqueue\n", cmd));
148 
149 	scsi_set_blocked(cmd, reason);
150 
151 	/*
152 	 * Decrement the counters, since these commands are no longer
153 	 * active on the host/device.
154 	 */
155 	if (unbusy)
156 		scsi_device_unbusy(device);
157 
158 	/*
159 	 * Requeue this command.  It will go before all other commands
160 	 * that are already in the queue. Schedule requeue work under
161 	 * lock such that the kblockd_schedule_work() call happens
162 	 * before blk_cleanup_queue() finishes.
163 	 */
164 	cmd->result = 0;
165 	if (q->mq_ops) {
166 		scsi_mq_requeue_cmd(cmd);
167 		return;
168 	}
169 	spin_lock_irqsave(q->queue_lock, flags);
170 	blk_requeue_request(q, cmd->request);
171 	kblockd_schedule_work(&device->requeue_work);
172 	spin_unlock_irqrestore(q->queue_lock, flags);
173 }
174 
175 /*
176  * Function:    scsi_queue_insert()
177  *
178  * Purpose:     Insert a command in the midlevel queue.
179  *
180  * Arguments:   cmd    - command that we are adding to queue.
181  *              reason - why we are inserting command to queue.
182  *
183  * Lock status: Assumed that lock is not held upon entry.
184  *
185  * Returns:     Nothing.
186  *
187  * Notes:       We do this for one of two cases.  Either the host is busy
188  *              and it cannot accept any more commands for the time being,
189  *              or the device returned QUEUE_FULL and can accept no more
190  *              commands.
191  * Notes:       This could be called either from an interrupt context or a
192  *              normal process context.
193  */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)194 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
195 {
196 	__scsi_queue_insert(cmd, reason, 1);
197 }
198 /**
199  * scsi_execute - insert request and wait for the result
200  * @sdev:	scsi device
201  * @cmd:	scsi command
202  * @data_direction: data direction
203  * @buffer:	data buffer
204  * @bufflen:	len of buffer
205  * @sense:	optional sense buffer
206  * @timeout:	request timeout in seconds
207  * @retries:	number of times to retry request
208  * @flags:	or into request flags;
209  * @resid:	optional residual length
210  *
211  * returns the req->errors value which is the scsi_cmnd result
212  * field.
213  */
scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,int timeout,int retries,u64 flags,int * resid)214 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
215 		 int data_direction, void *buffer, unsigned bufflen,
216 		 unsigned char *sense, int timeout, int retries, u64 flags,
217 		 int *resid)
218 {
219 	struct request *req;
220 	int write = (data_direction == DMA_TO_DEVICE);
221 	int ret = DRIVER_ERROR << 24;
222 
223 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
224 	if (IS_ERR(req))
225 		return ret;
226 	blk_rq_set_block_pc(req);
227 
228 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
229 					buffer, bufflen, __GFP_WAIT))
230 		goto out;
231 
232 	req->cmd_len = COMMAND_SIZE(cmd[0]);
233 	memcpy(req->cmd, cmd, req->cmd_len);
234 	req->sense = sense;
235 	req->sense_len = 0;
236 	req->retries = retries;
237 	req->timeout = timeout;
238 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
239 
240 	/*
241 	 * head injection *required* here otherwise quiesce won't work
242 	 */
243 	blk_execute_rq(req->q, NULL, req, 1);
244 
245 	/*
246 	 * Some devices (USB mass-storage in particular) may transfer
247 	 * garbage data together with a residue indicating that the data
248 	 * is invalid.  Prevent the garbage from being misinterpreted
249 	 * and prevent security leaks by zeroing out the excess data.
250 	 */
251 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
252 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
253 
254 	if (resid)
255 		*resid = req->resid_len;
256 	ret = req->errors;
257  out:
258 	blk_put_request(req);
259 
260 	return ret;
261 }
262 EXPORT_SYMBOL(scsi_execute);
263 
scsi_execute_req_flags(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,struct scsi_sense_hdr * sshdr,int timeout,int retries,int * resid,u64 flags)264 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
265 		     int data_direction, void *buffer, unsigned bufflen,
266 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
267 		     int *resid, u64 flags)
268 {
269 	char *sense = NULL;
270 	int result;
271 
272 	if (sshdr) {
273 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
274 		if (!sense)
275 			return DRIVER_ERROR << 24;
276 	}
277 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
278 			      sense, timeout, retries, flags, resid);
279 	if (sshdr)
280 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
281 
282 	kfree(sense);
283 	return result;
284 }
285 EXPORT_SYMBOL(scsi_execute_req_flags);
286 
287 /*
288  * Function:    scsi_init_cmd_errh()
289  *
290  * Purpose:     Initialize cmd fields related to error handling.
291  *
292  * Arguments:   cmd	- command that is ready to be queued.
293  *
294  * Notes:       This function has the job of initializing a number of
295  *              fields related to error handling.   Typically this will
296  *              be called once for each command, as required.
297  */
scsi_init_cmd_errh(struct scsi_cmnd * cmd)298 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
299 {
300 	cmd->serial_number = 0;
301 	scsi_set_resid(cmd, 0);
302 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
303 	if (cmd->cmd_len == 0)
304 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
305 }
306 
scsi_device_unbusy(struct scsi_device * sdev)307 void scsi_device_unbusy(struct scsi_device *sdev)
308 {
309 	struct Scsi_Host *shost = sdev->host;
310 	struct scsi_target *starget = scsi_target(sdev);
311 	unsigned long flags;
312 
313 	atomic_dec(&shost->host_busy);
314 	if (starget->can_queue > 0)
315 		atomic_dec(&starget->target_busy);
316 
317 	if (unlikely(scsi_host_in_recovery(shost) &&
318 		     (shost->host_failed || shost->host_eh_scheduled))) {
319 		spin_lock_irqsave(shost->host_lock, flags);
320 		scsi_eh_wakeup(shost);
321 		spin_unlock_irqrestore(shost->host_lock, flags);
322 	}
323 
324 	atomic_dec(&sdev->device_busy);
325 }
326 
scsi_kick_queue(struct request_queue * q)327 static void scsi_kick_queue(struct request_queue *q)
328 {
329 	if (q->mq_ops)
330 		blk_mq_start_hw_queues(q);
331 	else
332 		blk_run_queue(q);
333 }
334 
335 /*
336  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
337  * and call blk_run_queue for all the scsi_devices on the target -
338  * including current_sdev first.
339  *
340  * Called with *no* scsi locks held.
341  */
scsi_single_lun_run(struct scsi_device * current_sdev)342 static void scsi_single_lun_run(struct scsi_device *current_sdev)
343 {
344 	struct Scsi_Host *shost = current_sdev->host;
345 	struct scsi_device *sdev, *tmp;
346 	struct scsi_target *starget = scsi_target(current_sdev);
347 	unsigned long flags;
348 
349 	spin_lock_irqsave(shost->host_lock, flags);
350 	starget->starget_sdev_user = NULL;
351 	spin_unlock_irqrestore(shost->host_lock, flags);
352 
353 	/*
354 	 * Call blk_run_queue for all LUNs on the target, starting with
355 	 * current_sdev. We race with others (to set starget_sdev_user),
356 	 * but in most cases, we will be first. Ideally, each LU on the
357 	 * target would get some limited time or requests on the target.
358 	 */
359 	scsi_kick_queue(current_sdev->request_queue);
360 
361 	spin_lock_irqsave(shost->host_lock, flags);
362 	if (starget->starget_sdev_user)
363 		goto out;
364 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
365 			same_target_siblings) {
366 		if (sdev == current_sdev)
367 			continue;
368 		if (scsi_device_get(sdev))
369 			continue;
370 
371 		spin_unlock_irqrestore(shost->host_lock, flags);
372 		scsi_kick_queue(sdev->request_queue);
373 		spin_lock_irqsave(shost->host_lock, flags);
374 
375 		scsi_device_put(sdev);
376 	}
377  out:
378 	spin_unlock_irqrestore(shost->host_lock, flags);
379 }
380 
scsi_device_is_busy(struct scsi_device * sdev)381 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
382 {
383 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
384 		return true;
385 	if (atomic_read(&sdev->device_blocked) > 0)
386 		return true;
387 	return false;
388 }
389 
scsi_target_is_busy(struct scsi_target * starget)390 static inline bool scsi_target_is_busy(struct scsi_target *starget)
391 {
392 	if (starget->can_queue > 0) {
393 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
394 			return true;
395 		if (atomic_read(&starget->target_blocked) > 0)
396 			return true;
397 	}
398 	return false;
399 }
400 
scsi_host_is_busy(struct Scsi_Host * shost)401 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403 	if (shost->can_queue > 0 &&
404 	    atomic_read(&shost->host_busy) >= shost->can_queue)
405 		return true;
406 	if (atomic_read(&shost->host_blocked) > 0)
407 		return true;
408 	if (shost->host_self_blocked)
409 		return true;
410 	return false;
411 }
412 
scsi_starved_list_run(struct Scsi_Host * shost)413 static void scsi_starved_list_run(struct Scsi_Host *shost)
414 {
415 	LIST_HEAD(starved_list);
416 	struct scsi_device *sdev;
417 	unsigned long flags;
418 
419 	spin_lock_irqsave(shost->host_lock, flags);
420 	list_splice_init(&shost->starved_list, &starved_list);
421 
422 	while (!list_empty(&starved_list)) {
423 		struct request_queue *slq;
424 
425 		/*
426 		 * As long as shost is accepting commands and we have
427 		 * starved queues, call blk_run_queue. scsi_request_fn
428 		 * drops the queue_lock and can add us back to the
429 		 * starved_list.
430 		 *
431 		 * host_lock protects the starved_list and starved_entry.
432 		 * scsi_request_fn must get the host_lock before checking
433 		 * or modifying starved_list or starved_entry.
434 		 */
435 		if (scsi_host_is_busy(shost))
436 			break;
437 
438 		sdev = list_entry(starved_list.next,
439 				  struct scsi_device, starved_entry);
440 		list_del_init(&sdev->starved_entry);
441 		if (scsi_target_is_busy(scsi_target(sdev))) {
442 			list_move_tail(&sdev->starved_entry,
443 				       &shost->starved_list);
444 			continue;
445 		}
446 
447 		/*
448 		 * Once we drop the host lock, a racing scsi_remove_device()
449 		 * call may remove the sdev from the starved list and destroy
450 		 * it and the queue.  Mitigate by taking a reference to the
451 		 * queue and never touching the sdev again after we drop the
452 		 * host lock.  Note: if __scsi_remove_device() invokes
453 		 * blk_cleanup_queue() before the queue is run from this
454 		 * function then blk_run_queue() will return immediately since
455 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
456 		 */
457 		slq = sdev->request_queue;
458 		if (!blk_get_queue(slq))
459 			continue;
460 		spin_unlock_irqrestore(shost->host_lock, flags);
461 
462 		scsi_kick_queue(slq);
463 		blk_put_queue(slq);
464 
465 		spin_lock_irqsave(shost->host_lock, flags);
466 	}
467 	/* put any unprocessed entries back */
468 	list_splice(&starved_list, &shost->starved_list);
469 	spin_unlock_irqrestore(shost->host_lock, flags);
470 }
471 
472 /*
473  * Function:   scsi_run_queue()
474  *
475  * Purpose:    Select a proper request queue to serve next
476  *
477  * Arguments:  q       - last request's queue
478  *
479  * Returns:     Nothing
480  *
481  * Notes:      The previous command was completely finished, start
482  *             a new one if possible.
483  */
scsi_run_queue(struct request_queue * q)484 static void scsi_run_queue(struct request_queue *q)
485 {
486 	struct scsi_device *sdev = q->queuedata;
487 
488 	if (scsi_target(sdev)->single_lun)
489 		scsi_single_lun_run(sdev);
490 	if (!list_empty(&sdev->host->starved_list))
491 		scsi_starved_list_run(sdev->host);
492 
493 	if (q->mq_ops)
494 		blk_mq_start_stopped_hw_queues(q, false);
495 	else
496 		blk_run_queue(q);
497 }
498 
scsi_requeue_run_queue(struct work_struct * work)499 void scsi_requeue_run_queue(struct work_struct *work)
500 {
501 	struct scsi_device *sdev;
502 	struct request_queue *q;
503 
504 	sdev = container_of(work, struct scsi_device, requeue_work);
505 	q = sdev->request_queue;
506 	scsi_run_queue(q);
507 }
508 
509 /*
510  * Function:	scsi_requeue_command()
511  *
512  * Purpose:	Handle post-processing of completed commands.
513  *
514  * Arguments:	q	- queue to operate on
515  *		cmd	- command that may need to be requeued.
516  *
517  * Returns:	Nothing
518  *
519  * Notes:	After command completion, there may be blocks left
520  *		over which weren't finished by the previous command
521  *		this can be for a number of reasons - the main one is
522  *		I/O errors in the middle of the request, in which case
523  *		we need to request the blocks that come after the bad
524  *		sector.
525  * Notes:	Upon return, cmd is a stale pointer.
526  */
scsi_requeue_command(struct request_queue * q,struct scsi_cmnd * cmd)527 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
528 {
529 	struct scsi_device *sdev = cmd->device;
530 	struct request *req = cmd->request;
531 	unsigned long flags;
532 
533 	spin_lock_irqsave(q->queue_lock, flags);
534 	blk_unprep_request(req);
535 	req->special = NULL;
536 	scsi_put_command(cmd);
537 	blk_requeue_request(q, req);
538 	spin_unlock_irqrestore(q->queue_lock, flags);
539 
540 	scsi_run_queue(q);
541 
542 	put_device(&sdev->sdev_gendev);
543 }
544 
scsi_next_command(struct scsi_cmnd * cmd)545 void scsi_next_command(struct scsi_cmnd *cmd)
546 {
547 	struct scsi_device *sdev = cmd->device;
548 	struct request_queue *q = sdev->request_queue;
549 
550 	scsi_put_command(cmd);
551 	scsi_run_queue(q);
552 
553 	put_device(&sdev->sdev_gendev);
554 }
555 
scsi_run_host_queues(struct Scsi_Host * shost)556 void scsi_run_host_queues(struct Scsi_Host *shost)
557 {
558 	struct scsi_device *sdev;
559 
560 	shost_for_each_device(sdev, shost)
561 		scsi_run_queue(sdev->request_queue);
562 }
563 
scsi_sgtable_index(unsigned short nents)564 static inline unsigned int scsi_sgtable_index(unsigned short nents)
565 {
566 	unsigned int index;
567 
568 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
569 
570 	if (nents <= 8)
571 		index = 0;
572 	else
573 		index = get_count_order(nents) - 3;
574 
575 	return index;
576 }
577 
scsi_sg_free(struct scatterlist * sgl,unsigned int nents)578 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
579 {
580 	struct scsi_host_sg_pool *sgp;
581 
582 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
583 	mempool_free(sgl, sgp->pool);
584 }
585 
scsi_sg_alloc(unsigned int nents,gfp_t gfp_mask)586 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
587 {
588 	struct scsi_host_sg_pool *sgp;
589 
590 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
591 	return mempool_alloc(sgp->pool, gfp_mask);
592 }
593 
scsi_free_sgtable(struct scsi_data_buffer * sdb,bool mq)594 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
595 {
596 	if (mq && sdb->table.nents <= SCSI_MAX_SG_SEGMENTS)
597 		return;
598 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
599 }
600 
scsi_alloc_sgtable(struct scsi_data_buffer * sdb,int nents,gfp_t gfp_mask,bool mq)601 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
602 			      gfp_t gfp_mask, bool mq)
603 {
604 	struct scatterlist *first_chunk = NULL;
605 	int ret;
606 
607 	BUG_ON(!nents);
608 
609 	if (mq) {
610 		if (nents <= SCSI_MAX_SG_SEGMENTS) {
611 			sdb->table.nents = nents;
612 			sg_init_table(sdb->table.sgl, sdb->table.nents);
613 			return 0;
614 		}
615 		first_chunk = sdb->table.sgl;
616 	}
617 
618 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
619 			       first_chunk, gfp_mask, scsi_sg_alloc);
620 	if (unlikely(ret))
621 		scsi_free_sgtable(sdb, mq);
622 	return ret;
623 }
624 
scsi_uninit_cmd(struct scsi_cmnd * cmd)625 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
626 {
627 	if (cmd->request->cmd_type == REQ_TYPE_FS) {
628 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
629 
630 		if (drv->uninit_command)
631 			drv->uninit_command(cmd);
632 	}
633 }
634 
scsi_mq_free_sgtables(struct scsi_cmnd * cmd)635 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
636 {
637 	if (cmd->sdb.table.nents)
638 		scsi_free_sgtable(&cmd->sdb, true);
639 	if (cmd->request->next_rq && cmd->request->next_rq->special)
640 		scsi_free_sgtable(cmd->request->next_rq->special, true);
641 	if (scsi_prot_sg_count(cmd))
642 		scsi_free_sgtable(cmd->prot_sdb, true);
643 }
644 
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)645 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
646 {
647 	struct scsi_device *sdev = cmd->device;
648 	struct Scsi_Host *shost = sdev->host;
649 	unsigned long flags;
650 
651 	scsi_mq_free_sgtables(cmd);
652 	scsi_uninit_cmd(cmd);
653 
654 	if (shost->use_cmd_list) {
655 		BUG_ON(list_empty(&cmd->list));
656 		spin_lock_irqsave(&sdev->list_lock, flags);
657 		list_del_init(&cmd->list);
658 		spin_unlock_irqrestore(&sdev->list_lock, flags);
659 	}
660 }
661 
662 /*
663  * Function:    scsi_release_buffers()
664  *
665  * Purpose:     Free resources allocate for a scsi_command.
666  *
667  * Arguments:   cmd	- command that we are bailing.
668  *
669  * Lock status: Assumed that no lock is held upon entry.
670  *
671  * Returns:     Nothing
672  *
673  * Notes:       In the event that an upper level driver rejects a
674  *		command, we must release resources allocated during
675  *		the __init_io() function.  Primarily this would involve
676  *		the scatter-gather table.
677  */
scsi_release_buffers(struct scsi_cmnd * cmd)678 static void scsi_release_buffers(struct scsi_cmnd *cmd)
679 {
680 	if (cmd->sdb.table.nents)
681 		scsi_free_sgtable(&cmd->sdb, false);
682 
683 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
684 
685 	if (scsi_prot_sg_count(cmd))
686 		scsi_free_sgtable(cmd->prot_sdb, false);
687 }
688 
scsi_release_bidi_buffers(struct scsi_cmnd * cmd)689 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
690 {
691 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
692 
693 	scsi_free_sgtable(bidi_sdb, false);
694 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
695 	cmd->request->next_rq->special = NULL;
696 }
697 
scsi_end_request(struct request * req,int error,unsigned int bytes,unsigned int bidi_bytes)698 static bool scsi_end_request(struct request *req, int error,
699 		unsigned int bytes, unsigned int bidi_bytes)
700 {
701 	struct scsi_cmnd *cmd = req->special;
702 	struct scsi_device *sdev = cmd->device;
703 	struct request_queue *q = sdev->request_queue;
704 
705 	if (blk_update_request(req, error, bytes))
706 		return true;
707 
708 	/* Bidi request must be completed as a whole */
709 	if (unlikely(bidi_bytes) &&
710 	    blk_update_request(req->next_rq, error, bidi_bytes))
711 		return true;
712 
713 	if (blk_queue_add_random(q))
714 		add_disk_randomness(req->rq_disk);
715 
716 	if (req->mq_ctx) {
717 		/*
718 		 * In the MQ case the command gets freed by __blk_mq_end_request,
719 		 * so we have to do all cleanup that depends on it earlier.
720 		 *
721 		 * We also can't kick the queues from irq context, so we
722 		 * will have to defer it to a workqueue.
723 		 */
724 		scsi_mq_uninit_cmd(cmd);
725 
726 		__blk_mq_end_request(req, error);
727 
728 		if (scsi_target(sdev)->single_lun ||
729 		    !list_empty(&sdev->host->starved_list))
730 			kblockd_schedule_work(&sdev->requeue_work);
731 		else
732 			blk_mq_start_stopped_hw_queues(q, true);
733 
734 		put_device(&sdev->sdev_gendev);
735 	} else {
736 		unsigned long flags;
737 
738 		if (bidi_bytes)
739 			scsi_release_bidi_buffers(cmd);
740 
741 		spin_lock_irqsave(q->queue_lock, flags);
742 		blk_finish_request(req, error);
743 		spin_unlock_irqrestore(q->queue_lock, flags);
744 
745 		scsi_release_buffers(cmd);
746 		scsi_next_command(cmd);
747 	}
748 
749 	return false;
750 }
751 
752 /**
753  * __scsi_error_from_host_byte - translate SCSI error code into errno
754  * @cmd:	SCSI command (unused)
755  * @result:	scsi error code
756  *
757  * Translate SCSI error code into standard UNIX errno.
758  * Return values:
759  * -ENOLINK	temporary transport failure
760  * -EREMOTEIO	permanent target failure, do not retry
761  * -EBADE	permanent nexus failure, retry on other path
762  * -ENOSPC	No write space available
763  * -ENODATA	Medium error
764  * -EIO		unspecified I/O error
765  */
__scsi_error_from_host_byte(struct scsi_cmnd * cmd,int result)766 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
767 {
768 	int error = 0;
769 
770 	switch(host_byte(result)) {
771 	case DID_TRANSPORT_FAILFAST:
772 		error = -ENOLINK;
773 		break;
774 	case DID_TARGET_FAILURE:
775 		set_host_byte(cmd, DID_OK);
776 		error = -EREMOTEIO;
777 		break;
778 	case DID_NEXUS_FAILURE:
779 		set_host_byte(cmd, DID_OK);
780 		error = -EBADE;
781 		break;
782 	case DID_ALLOC_FAILURE:
783 		set_host_byte(cmd, DID_OK);
784 		error = -ENOSPC;
785 		break;
786 	case DID_MEDIUM_ERROR:
787 		set_host_byte(cmd, DID_OK);
788 		error = -ENODATA;
789 		break;
790 	default:
791 		error = -EIO;
792 		break;
793 	}
794 
795 	return error;
796 }
797 
798 /*
799  * Function:    scsi_io_completion()
800  *
801  * Purpose:     Completion processing for block device I/O requests.
802  *
803  * Arguments:   cmd   - command that is finished.
804  *
805  * Lock status: Assumed that no lock is held upon entry.
806  *
807  * Returns:     Nothing
808  *
809  * Notes:       We will finish off the specified number of sectors.  If we
810  *		are done, the command block will be released and the queue
811  *		function will be goosed.  If we are not done then we have to
812  *		figure out what to do next:
813  *
814  *		a) We can call scsi_requeue_command().  The request
815  *		   will be unprepared and put back on the queue.  Then
816  *		   a new command will be created for it.  This should
817  *		   be used if we made forward progress, or if we want
818  *		   to switch from READ(10) to READ(6) for example.
819  *
820  *		b) We can call __scsi_queue_insert().  The request will
821  *		   be put back on the queue and retried using the same
822  *		   command as before, possibly after a delay.
823  *
824  *		c) We can call scsi_end_request() with -EIO to fail
825  *		   the remainder of the request.
826  */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)827 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
828 {
829 	int result = cmd->result;
830 	struct request_queue *q = cmd->device->request_queue;
831 	struct request *req = cmd->request;
832 	int error = 0;
833 	struct scsi_sense_hdr sshdr;
834 	int sense_valid = 0;
835 	int sense_deferred = 0;
836 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
837 	      ACTION_DELAYED_RETRY} action;
838 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
839 
840 	if (result) {
841 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
842 		if (sense_valid)
843 			sense_deferred = scsi_sense_is_deferred(&sshdr);
844 	}
845 
846 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
847 		if (result) {
848 			if (sense_valid && req->sense) {
849 				/*
850 				 * SG_IO wants current and deferred errors
851 				 */
852 				int len = 8 + cmd->sense_buffer[7];
853 
854 				if (len > SCSI_SENSE_BUFFERSIZE)
855 					len = SCSI_SENSE_BUFFERSIZE;
856 				memcpy(req->sense, cmd->sense_buffer,  len);
857 				req->sense_len = len;
858 			}
859 			if (!sense_deferred)
860 				error = __scsi_error_from_host_byte(cmd, result);
861 		}
862 		/*
863 		 * __scsi_error_from_host_byte may have reset the host_byte
864 		 */
865 		req->errors = cmd->result;
866 
867 		req->resid_len = scsi_get_resid(cmd);
868 
869 		if (scsi_bidi_cmnd(cmd)) {
870 			/*
871 			 * Bidi commands Must be complete as a whole,
872 			 * both sides at once.
873 			 */
874 			req->next_rq->resid_len = scsi_in(cmd)->resid;
875 			if (scsi_end_request(req, 0, blk_rq_bytes(req),
876 					blk_rq_bytes(req->next_rq)))
877 				BUG();
878 			return;
879 		}
880 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
881 		/*
882 		 * Certain non BLOCK_PC requests are commands that don't
883 		 * actually transfer anything (FLUSH), so cannot use
884 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
885 		 * This sets the error explicitly for the problem case.
886 		 */
887 		error = __scsi_error_from_host_byte(cmd, result);
888 	}
889 
890 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
891 	BUG_ON(blk_bidi_rq(req));
892 
893 	/*
894 	 * Next deal with any sectors which we were able to correctly
895 	 * handle.
896 	 */
897 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
898 		"%u sectors total, %d bytes done.\n",
899 		blk_rq_sectors(req), good_bytes));
900 
901 	/*
902 	 * Recovered errors need reporting, but they're always treated
903 	 * as success, so fiddle the result code here.  For BLOCK_PC
904 	 * we already took a copy of the original into rq->errors which
905 	 * is what gets returned to the user
906 	 */
907 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
908 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
909 		 * print since caller wants ATA registers. Only occurs on
910 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
911 		 */
912 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
913 			;
914 		else if (!(req->cmd_flags & REQ_QUIET))
915 			scsi_print_sense("", cmd);
916 		result = 0;
917 		/* BLOCK_PC may have set error */
918 		error = 0;
919 	}
920 
921 	/*
922 	 * special case: failed zero length commands always need to
923 	 * drop down into the retry code. Otherwise, if we finished
924 	 * all bytes in the request we are done now.
925 	 */
926 	if (!(blk_rq_bytes(req) == 0 && error) &&
927 	    !scsi_end_request(req, error, good_bytes, 0))
928 		return;
929 
930 	/*
931 	 * Kill remainder if no retrys.
932 	 */
933 	if (error && scsi_noretry_cmd(cmd)) {
934 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
935 			BUG();
936 		return;
937 	}
938 
939 	/*
940 	 * If there had been no error, but we have leftover bytes in the
941 	 * requeues just queue the command up again.
942 	 */
943 	if (result == 0)
944 		goto requeue;
945 
946 	error = __scsi_error_from_host_byte(cmd, result);
947 
948 	if (host_byte(result) == DID_RESET) {
949 		/* Third party bus reset or reset for error recovery
950 		 * reasons.  Just retry the command and see what
951 		 * happens.
952 		 */
953 		action = ACTION_RETRY;
954 	} else if (sense_valid && !sense_deferred) {
955 		switch (sshdr.sense_key) {
956 		case UNIT_ATTENTION:
957 			if (cmd->device->removable) {
958 				/* Detected disc change.  Set a bit
959 				 * and quietly refuse further access.
960 				 */
961 				cmd->device->changed = 1;
962 				action = ACTION_FAIL;
963 			} else {
964 				/* Must have been a power glitch, or a
965 				 * bus reset.  Could not have been a
966 				 * media change, so we just retry the
967 				 * command and see what happens.
968 				 */
969 				action = ACTION_RETRY;
970 			}
971 			break;
972 		case ILLEGAL_REQUEST:
973 			/* If we had an ILLEGAL REQUEST returned, then
974 			 * we may have performed an unsupported
975 			 * command.  The only thing this should be
976 			 * would be a ten byte read where only a six
977 			 * byte read was supported.  Also, on a system
978 			 * where READ CAPACITY failed, we may have
979 			 * read past the end of the disk.
980 			 */
981 			if ((cmd->device->use_10_for_rw &&
982 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
983 			    (cmd->cmnd[0] == READ_10 ||
984 			     cmd->cmnd[0] == WRITE_10)) {
985 				/* This will issue a new 6-byte command. */
986 				cmd->device->use_10_for_rw = 0;
987 				action = ACTION_REPREP;
988 			} else if (sshdr.asc == 0x10) /* DIX */ {
989 				action = ACTION_FAIL;
990 				error = -EILSEQ;
991 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
992 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
993 				action = ACTION_FAIL;
994 				error = -EREMOTEIO;
995 			} else
996 				action = ACTION_FAIL;
997 			break;
998 		case ABORTED_COMMAND:
999 			action = ACTION_FAIL;
1000 			if (sshdr.asc == 0x10) /* DIF */
1001 				error = -EILSEQ;
1002 			break;
1003 		case NOT_READY:
1004 			/* If the device is in the process of becoming
1005 			 * ready, or has a temporary blockage, retry.
1006 			 */
1007 			if (sshdr.asc == 0x04) {
1008 				switch (sshdr.ascq) {
1009 				case 0x01: /* becoming ready */
1010 				case 0x04: /* format in progress */
1011 				case 0x05: /* rebuild in progress */
1012 				case 0x06: /* recalculation in progress */
1013 				case 0x07: /* operation in progress */
1014 				case 0x08: /* Long write in progress */
1015 				case 0x09: /* self test in progress */
1016 				case 0x14: /* space allocation in progress */
1017 					action = ACTION_DELAYED_RETRY;
1018 					break;
1019 				default:
1020 					action = ACTION_FAIL;
1021 					break;
1022 				}
1023 			} else
1024 				action = ACTION_FAIL;
1025 			break;
1026 		case VOLUME_OVERFLOW:
1027 			/* See SSC3rXX or current. */
1028 			action = ACTION_FAIL;
1029 			break;
1030 		default:
1031 			action = ACTION_FAIL;
1032 			break;
1033 		}
1034 	} else
1035 		action = ACTION_FAIL;
1036 
1037 	if (action != ACTION_FAIL &&
1038 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1039 		action = ACTION_FAIL;
1040 
1041 	switch (action) {
1042 	case ACTION_FAIL:
1043 		/* Give up and fail the remainder of the request */
1044 		if (!(req->cmd_flags & REQ_QUIET)) {
1045 			scsi_print_result(cmd);
1046 			if (driver_byte(result) & DRIVER_SENSE)
1047 				scsi_print_sense("", cmd);
1048 			scsi_print_command(cmd);
1049 		}
1050 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1051 			return;
1052 		/*FALLTHRU*/
1053 	case ACTION_REPREP:
1054 	requeue:
1055 		/* Unprep the request and put it back at the head of the queue.
1056 		 * A new command will be prepared and issued.
1057 		 */
1058 		if (q->mq_ops) {
1059 			cmd->request->cmd_flags &= ~REQ_DONTPREP;
1060 			scsi_mq_uninit_cmd(cmd);
1061 			scsi_mq_requeue_cmd(cmd);
1062 		} else {
1063 			scsi_release_buffers(cmd);
1064 			scsi_requeue_command(q, cmd);
1065 		}
1066 		break;
1067 	case ACTION_RETRY:
1068 		/* Retry the same command immediately */
1069 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1070 		break;
1071 	case ACTION_DELAYED_RETRY:
1072 		/* Retry the same command after a delay */
1073 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1074 		break;
1075 	}
1076 }
1077 
scsi_init_sgtable(struct request * req,struct scsi_data_buffer * sdb,gfp_t gfp_mask)1078 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1079 			     gfp_t gfp_mask)
1080 {
1081 	int count;
1082 
1083 	/*
1084 	 * If sg table allocation fails, requeue request later.
1085 	 */
1086 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1087 					gfp_mask, req->mq_ctx != NULL)))
1088 		return BLKPREP_DEFER;
1089 
1090 	/*
1091 	 * Next, walk the list, and fill in the addresses and sizes of
1092 	 * each segment.
1093 	 */
1094 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1095 	BUG_ON(count > sdb->table.nents);
1096 	sdb->table.nents = count;
1097 	sdb->length = blk_rq_bytes(req);
1098 	return BLKPREP_OK;
1099 }
1100 
1101 /*
1102  * Function:    scsi_init_io()
1103  *
1104  * Purpose:     SCSI I/O initialize function.
1105  *
1106  * Arguments:   cmd   - Command descriptor we wish to initialize
1107  *
1108  * Returns:     0 on success
1109  *		BLKPREP_DEFER if the failure is retryable
1110  *		BLKPREP_KILL if the failure is fatal
1111  */
scsi_init_io(struct scsi_cmnd * cmd,gfp_t gfp_mask)1112 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1113 {
1114 	struct scsi_device *sdev = cmd->device;
1115 	struct request *rq = cmd->request;
1116 	bool is_mq = (rq->mq_ctx != NULL);
1117 	int error;
1118 
1119 	BUG_ON(!rq->nr_phys_segments);
1120 
1121 	error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1122 	if (error)
1123 		goto err_exit;
1124 
1125 	if (blk_bidi_rq(rq)) {
1126 		if (!rq->q->mq_ops) {
1127 			struct scsi_data_buffer *bidi_sdb =
1128 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1129 			if (!bidi_sdb) {
1130 				error = BLKPREP_DEFER;
1131 				goto err_exit;
1132 			}
1133 
1134 			rq->next_rq->special = bidi_sdb;
1135 		}
1136 
1137 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special,
1138 					  GFP_ATOMIC);
1139 		if (error)
1140 			goto err_exit;
1141 	}
1142 
1143 	if (blk_integrity_rq(rq)) {
1144 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1145 		int ivecs, count;
1146 
1147 		BUG_ON(prot_sdb == NULL);
1148 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1149 
1150 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask, is_mq)) {
1151 			error = BLKPREP_DEFER;
1152 			goto err_exit;
1153 		}
1154 
1155 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1156 						prot_sdb->table.sgl);
1157 		BUG_ON(unlikely(count > ivecs));
1158 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1159 
1160 		cmd->prot_sdb = prot_sdb;
1161 		cmd->prot_sdb->table.nents = count;
1162 	}
1163 
1164 	return BLKPREP_OK;
1165 err_exit:
1166 	if (is_mq) {
1167 		scsi_mq_free_sgtables(cmd);
1168 	} else {
1169 		scsi_release_buffers(cmd);
1170 		cmd->request->special = NULL;
1171 		scsi_put_command(cmd);
1172 		put_device(&sdev->sdev_gendev);
1173 	}
1174 	return error;
1175 }
1176 EXPORT_SYMBOL(scsi_init_io);
1177 
scsi_get_cmd_from_req(struct scsi_device * sdev,struct request * req)1178 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1179 		struct request *req)
1180 {
1181 	struct scsi_cmnd *cmd;
1182 
1183 	if (!req->special) {
1184 		/* Bail if we can't get a reference to the device */
1185 		if (!get_device(&sdev->sdev_gendev))
1186 			return NULL;
1187 
1188 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1189 		if (unlikely(!cmd)) {
1190 			put_device(&sdev->sdev_gendev);
1191 			return NULL;
1192 		}
1193 		req->special = cmd;
1194 	} else {
1195 		cmd = req->special;
1196 	}
1197 
1198 	/* pull a tag out of the request if we have one */
1199 	cmd->tag = req->tag;
1200 	cmd->request = req;
1201 
1202 	cmd->cmnd = req->cmd;
1203 	cmd->prot_op = SCSI_PROT_NORMAL;
1204 
1205 	return cmd;
1206 }
1207 
scsi_setup_blk_pc_cmnd(struct scsi_device * sdev,struct request * req)1208 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1209 {
1210 	struct scsi_cmnd *cmd = req->special;
1211 
1212 	/*
1213 	 * BLOCK_PC requests may transfer data, in which case they must
1214 	 * a bio attached to them.  Or they might contain a SCSI command
1215 	 * that does not transfer data, in which case they may optionally
1216 	 * submit a request without an attached bio.
1217 	 */
1218 	if (req->bio) {
1219 		int ret = scsi_init_io(cmd, GFP_ATOMIC);
1220 		if (unlikely(ret))
1221 			return ret;
1222 	} else {
1223 		BUG_ON(blk_rq_bytes(req));
1224 
1225 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1226 	}
1227 
1228 	cmd->cmd_len = req->cmd_len;
1229 	cmd->transfersize = blk_rq_bytes(req);
1230 	cmd->allowed = req->retries;
1231 	return BLKPREP_OK;
1232 }
1233 
1234 /*
1235  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1236  * that still need to be translated to SCSI CDBs from the ULD.
1237  */
scsi_setup_fs_cmnd(struct scsi_device * sdev,struct request * req)1238 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1239 {
1240 	struct scsi_cmnd *cmd = req->special;
1241 
1242 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1243 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1244 		int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1245 		if (ret != BLKPREP_OK)
1246 			return ret;
1247 	}
1248 
1249 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1250 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1251 }
1252 
scsi_setup_cmnd(struct scsi_device * sdev,struct request * req)1253 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1254 {
1255 	struct scsi_cmnd *cmd = req->special;
1256 
1257 	if (!blk_rq_bytes(req))
1258 		cmd->sc_data_direction = DMA_NONE;
1259 	else if (rq_data_dir(req) == WRITE)
1260 		cmd->sc_data_direction = DMA_TO_DEVICE;
1261 	else
1262 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1263 
1264 	switch (req->cmd_type) {
1265 	case REQ_TYPE_FS:
1266 		return scsi_setup_fs_cmnd(sdev, req);
1267 	case REQ_TYPE_BLOCK_PC:
1268 		return scsi_setup_blk_pc_cmnd(sdev, req);
1269 	default:
1270 		return BLKPREP_KILL;
1271 	}
1272 }
1273 
1274 static int
scsi_prep_state_check(struct scsi_device * sdev,struct request * req)1275 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1276 {
1277 	int ret = BLKPREP_OK;
1278 
1279 	/*
1280 	 * If the device is not in running state we will reject some
1281 	 * or all commands.
1282 	 */
1283 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1284 		switch (sdev->sdev_state) {
1285 		case SDEV_OFFLINE:
1286 		case SDEV_TRANSPORT_OFFLINE:
1287 			/*
1288 			 * If the device is offline we refuse to process any
1289 			 * commands.  The device must be brought online
1290 			 * before trying any recovery commands.
1291 			 */
1292 			sdev_printk(KERN_ERR, sdev,
1293 				    "rejecting I/O to offline device\n");
1294 			ret = BLKPREP_KILL;
1295 			break;
1296 		case SDEV_DEL:
1297 			/*
1298 			 * If the device is fully deleted, we refuse to
1299 			 * process any commands as well.
1300 			 */
1301 			sdev_printk(KERN_ERR, sdev,
1302 				    "rejecting I/O to dead device\n");
1303 			ret = BLKPREP_KILL;
1304 			break;
1305 		case SDEV_BLOCK:
1306 		case SDEV_CREATED_BLOCK:
1307 			ret = BLKPREP_DEFER;
1308 			break;
1309 		case SDEV_QUIESCE:
1310 			/*
1311 			 * If the devices is blocked we defer normal commands.
1312 			 */
1313 			if (!(req->cmd_flags & REQ_PREEMPT))
1314 				ret = BLKPREP_DEFER;
1315 			break;
1316 		default:
1317 			/*
1318 			 * For any other not fully online state we only allow
1319 			 * special commands.  In particular any user initiated
1320 			 * command is not allowed.
1321 			 */
1322 			if (!(req->cmd_flags & REQ_PREEMPT))
1323 				ret = BLKPREP_KILL;
1324 			break;
1325 		}
1326 	}
1327 	return ret;
1328 }
1329 
1330 static int
scsi_prep_return(struct request_queue * q,struct request * req,int ret)1331 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1332 {
1333 	struct scsi_device *sdev = q->queuedata;
1334 
1335 	switch (ret) {
1336 	case BLKPREP_KILL:
1337 		req->errors = DID_NO_CONNECT << 16;
1338 		/* release the command and kill it */
1339 		if (req->special) {
1340 			struct scsi_cmnd *cmd = req->special;
1341 			scsi_release_buffers(cmd);
1342 			scsi_put_command(cmd);
1343 			put_device(&sdev->sdev_gendev);
1344 			req->special = NULL;
1345 		}
1346 		break;
1347 	case BLKPREP_DEFER:
1348 		/*
1349 		 * If we defer, the blk_peek_request() returns NULL, but the
1350 		 * queue must be restarted, so we schedule a callback to happen
1351 		 * shortly.
1352 		 */
1353 		if (atomic_read(&sdev->device_busy) == 0)
1354 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1355 		break;
1356 	default:
1357 		req->cmd_flags |= REQ_DONTPREP;
1358 	}
1359 
1360 	return ret;
1361 }
1362 
scsi_prep_fn(struct request_queue * q,struct request * req)1363 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1364 {
1365 	struct scsi_device *sdev = q->queuedata;
1366 	struct scsi_cmnd *cmd;
1367 	int ret;
1368 
1369 	ret = scsi_prep_state_check(sdev, req);
1370 	if (ret != BLKPREP_OK)
1371 		goto out;
1372 
1373 	cmd = scsi_get_cmd_from_req(sdev, req);
1374 	if (unlikely(!cmd)) {
1375 		ret = BLKPREP_DEFER;
1376 		goto out;
1377 	}
1378 
1379 	ret = scsi_setup_cmnd(sdev, req);
1380 out:
1381 	return scsi_prep_return(q, req, ret);
1382 }
1383 
scsi_unprep_fn(struct request_queue * q,struct request * req)1384 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1385 {
1386 	scsi_uninit_cmd(req->special);
1387 }
1388 
1389 /*
1390  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1391  * return 0.
1392  *
1393  * Called with the queue_lock held.
1394  */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1395 static inline int scsi_dev_queue_ready(struct request_queue *q,
1396 				  struct scsi_device *sdev)
1397 {
1398 	unsigned int busy;
1399 
1400 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1401 	if (atomic_read(&sdev->device_blocked)) {
1402 		if (busy)
1403 			goto out_dec;
1404 
1405 		/*
1406 		 * unblock after device_blocked iterates to zero
1407 		 */
1408 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1409 			/*
1410 			 * For the MQ case we take care of this in the caller.
1411 			 */
1412 			if (!q->mq_ops)
1413 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1414 			goto out_dec;
1415 		}
1416 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1417 				   "unblocking device at zero depth\n"));
1418 	}
1419 
1420 	if (busy >= sdev->queue_depth)
1421 		goto out_dec;
1422 
1423 	return 1;
1424 out_dec:
1425 	atomic_dec(&sdev->device_busy);
1426 	return 0;
1427 }
1428 
1429 /*
1430  * scsi_target_queue_ready: checks if there we can send commands to target
1431  * @sdev: scsi device on starget to check.
1432  */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1433 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1434 					   struct scsi_device *sdev)
1435 {
1436 	struct scsi_target *starget = scsi_target(sdev);
1437 	unsigned int busy;
1438 
1439 	if (starget->single_lun) {
1440 		spin_lock_irq(shost->host_lock);
1441 		if (starget->starget_sdev_user &&
1442 		    starget->starget_sdev_user != sdev) {
1443 			spin_unlock_irq(shost->host_lock);
1444 			return 0;
1445 		}
1446 		starget->starget_sdev_user = sdev;
1447 		spin_unlock_irq(shost->host_lock);
1448 	}
1449 
1450 	if (starget->can_queue <= 0)
1451 		return 1;
1452 
1453 	busy = atomic_inc_return(&starget->target_busy) - 1;
1454 	if (atomic_read(&starget->target_blocked) > 0) {
1455 		if (busy)
1456 			goto starved;
1457 
1458 		/*
1459 		 * unblock after target_blocked iterates to zero
1460 		 */
1461 		if (atomic_dec_return(&starget->target_blocked) > 0)
1462 			goto out_dec;
1463 
1464 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1465 				 "unblocking target at zero depth\n"));
1466 	}
1467 
1468 	if (busy >= starget->can_queue)
1469 		goto starved;
1470 
1471 	return 1;
1472 
1473 starved:
1474 	spin_lock_irq(shost->host_lock);
1475 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1476 	spin_unlock_irq(shost->host_lock);
1477 out_dec:
1478 	if (starget->can_queue > 0)
1479 		atomic_dec(&starget->target_busy);
1480 	return 0;
1481 }
1482 
1483 /*
1484  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1485  * return 0. We must end up running the queue again whenever 0 is
1486  * returned, else IO can hang.
1487  */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev)1488 static inline int scsi_host_queue_ready(struct request_queue *q,
1489 				   struct Scsi_Host *shost,
1490 				   struct scsi_device *sdev)
1491 {
1492 	unsigned int busy;
1493 
1494 	if (scsi_host_in_recovery(shost))
1495 		return 0;
1496 
1497 	busy = atomic_inc_return(&shost->host_busy) - 1;
1498 	if (atomic_read(&shost->host_blocked) > 0) {
1499 		if (busy)
1500 			goto starved;
1501 
1502 		/*
1503 		 * unblock after host_blocked iterates to zero
1504 		 */
1505 		if (atomic_dec_return(&shost->host_blocked) > 0)
1506 			goto out_dec;
1507 
1508 		SCSI_LOG_MLQUEUE(3,
1509 			shost_printk(KERN_INFO, shost,
1510 				     "unblocking host at zero depth\n"));
1511 	}
1512 
1513 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1514 		goto starved;
1515 	if (shost->host_self_blocked)
1516 		goto starved;
1517 
1518 	/* We're OK to process the command, so we can't be starved */
1519 	if (!list_empty(&sdev->starved_entry)) {
1520 		spin_lock_irq(shost->host_lock);
1521 		if (!list_empty(&sdev->starved_entry))
1522 			list_del_init(&sdev->starved_entry);
1523 		spin_unlock_irq(shost->host_lock);
1524 	}
1525 
1526 	return 1;
1527 
1528 starved:
1529 	spin_lock_irq(shost->host_lock);
1530 	if (list_empty(&sdev->starved_entry))
1531 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1532 	spin_unlock_irq(shost->host_lock);
1533 out_dec:
1534 	atomic_dec(&shost->host_busy);
1535 	return 0;
1536 }
1537 
1538 /*
1539  * Busy state exporting function for request stacking drivers.
1540  *
1541  * For efficiency, no lock is taken to check the busy state of
1542  * shost/starget/sdev, since the returned value is not guaranteed and
1543  * may be changed after request stacking drivers call the function,
1544  * regardless of taking lock or not.
1545  *
1546  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1547  * needs to return 'not busy'. Otherwise, request stacking drivers
1548  * may hold requests forever.
1549  */
scsi_lld_busy(struct request_queue * q)1550 static int scsi_lld_busy(struct request_queue *q)
1551 {
1552 	struct scsi_device *sdev = q->queuedata;
1553 	struct Scsi_Host *shost;
1554 
1555 	if (blk_queue_dying(q))
1556 		return 0;
1557 
1558 	shost = sdev->host;
1559 
1560 	/*
1561 	 * Ignore host/starget busy state.
1562 	 * Since block layer does not have a concept of fairness across
1563 	 * multiple queues, congestion of host/starget needs to be handled
1564 	 * in SCSI layer.
1565 	 */
1566 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1567 		return 1;
1568 
1569 	return 0;
1570 }
1571 
1572 /*
1573  * Kill a request for a dead device
1574  */
scsi_kill_request(struct request * req,struct request_queue * q)1575 static void scsi_kill_request(struct request *req, struct request_queue *q)
1576 {
1577 	struct scsi_cmnd *cmd = req->special;
1578 	struct scsi_device *sdev;
1579 	struct scsi_target *starget;
1580 	struct Scsi_Host *shost;
1581 
1582 	blk_start_request(req);
1583 
1584 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1585 
1586 	sdev = cmd->device;
1587 	starget = scsi_target(sdev);
1588 	shost = sdev->host;
1589 	scsi_init_cmd_errh(cmd);
1590 	cmd->result = DID_NO_CONNECT << 16;
1591 	atomic_inc(&cmd->device->iorequest_cnt);
1592 
1593 	/*
1594 	 * SCSI request completion path will do scsi_device_unbusy(),
1595 	 * bump busy counts.  To bump the counters, we need to dance
1596 	 * with the locks as normal issue path does.
1597 	 */
1598 	atomic_inc(&sdev->device_busy);
1599 	atomic_inc(&shost->host_busy);
1600 	if (starget->can_queue > 0)
1601 		atomic_inc(&starget->target_busy);
1602 
1603 	blk_complete_request(req);
1604 }
1605 
scsi_softirq_done(struct request * rq)1606 static void scsi_softirq_done(struct request *rq)
1607 {
1608 	struct scsi_cmnd *cmd = rq->special;
1609 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1610 	int disposition;
1611 
1612 	INIT_LIST_HEAD(&cmd->eh_entry);
1613 
1614 	atomic_inc(&cmd->device->iodone_cnt);
1615 	if (cmd->result)
1616 		atomic_inc(&cmd->device->ioerr_cnt);
1617 
1618 	disposition = scsi_decide_disposition(cmd);
1619 	if (disposition != SUCCESS &&
1620 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1621 		sdev_printk(KERN_ERR, cmd->device,
1622 			    "timing out command, waited %lus\n",
1623 			    wait_for/HZ);
1624 		disposition = SUCCESS;
1625 	}
1626 
1627 	scsi_log_completion(cmd, disposition);
1628 
1629 	switch (disposition) {
1630 		case SUCCESS:
1631 			scsi_finish_command(cmd);
1632 			break;
1633 		case NEEDS_RETRY:
1634 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1635 			break;
1636 		case ADD_TO_MLQUEUE:
1637 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1638 			break;
1639 		default:
1640 			if (!scsi_eh_scmd_add(cmd, 0))
1641 				scsi_finish_command(cmd);
1642 	}
1643 }
1644 
1645 /**
1646  * scsi_done - Invoke completion on finished SCSI command.
1647  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1648  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1649  *
1650  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1651  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1652  * calls blk_complete_request() for further processing.
1653  *
1654  * This function is interrupt context safe.
1655  */
scsi_done(struct scsi_cmnd * cmd)1656 static void scsi_done(struct scsi_cmnd *cmd)
1657 {
1658 	trace_scsi_dispatch_cmd_done(cmd);
1659 	blk_complete_request(cmd->request);
1660 }
1661 
1662 /*
1663  * Function:    scsi_request_fn()
1664  *
1665  * Purpose:     Main strategy routine for SCSI.
1666  *
1667  * Arguments:   q       - Pointer to actual queue.
1668  *
1669  * Returns:     Nothing
1670  *
1671  * Lock status: IO request lock assumed to be held when called.
1672  */
scsi_request_fn(struct request_queue * q)1673 static void scsi_request_fn(struct request_queue *q)
1674 	__releases(q->queue_lock)
1675 	__acquires(q->queue_lock)
1676 {
1677 	struct scsi_device *sdev = q->queuedata;
1678 	struct Scsi_Host *shost;
1679 	struct scsi_cmnd *cmd;
1680 	struct request *req;
1681 
1682 	/*
1683 	 * To start with, we keep looping until the queue is empty, or until
1684 	 * the host is no longer able to accept any more requests.
1685 	 */
1686 	shost = sdev->host;
1687 	for (;;) {
1688 		int rtn;
1689 		/*
1690 		 * get next queueable request.  We do this early to make sure
1691 		 * that the request is fully prepared even if we cannot
1692 		 * accept it.
1693 		 */
1694 		req = blk_peek_request(q);
1695 		if (!req)
1696 			break;
1697 
1698 		if (unlikely(!scsi_device_online(sdev))) {
1699 			sdev_printk(KERN_ERR, sdev,
1700 				    "rejecting I/O to offline device\n");
1701 			scsi_kill_request(req, q);
1702 			continue;
1703 		}
1704 
1705 		if (!scsi_dev_queue_ready(q, sdev))
1706 			break;
1707 
1708 		/*
1709 		 * Remove the request from the request list.
1710 		 */
1711 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1712 			blk_start_request(req);
1713 
1714 		spin_unlock_irq(q->queue_lock);
1715 		cmd = req->special;
1716 		if (unlikely(cmd == NULL)) {
1717 			printk(KERN_CRIT "impossible request in %s.\n"
1718 					 "please mail a stack trace to "
1719 					 "linux-scsi@vger.kernel.org\n",
1720 					 __func__);
1721 			blk_dump_rq_flags(req, "foo");
1722 			BUG();
1723 		}
1724 
1725 		/*
1726 		 * We hit this when the driver is using a host wide
1727 		 * tag map. For device level tag maps the queue_depth check
1728 		 * in the device ready fn would prevent us from trying
1729 		 * to allocate a tag. Since the map is a shared host resource
1730 		 * we add the dev to the starved list so it eventually gets
1731 		 * a run when a tag is freed.
1732 		 */
1733 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1734 			spin_lock_irq(shost->host_lock);
1735 			if (list_empty(&sdev->starved_entry))
1736 				list_add_tail(&sdev->starved_entry,
1737 					      &shost->starved_list);
1738 			spin_unlock_irq(shost->host_lock);
1739 			goto not_ready;
1740 		}
1741 
1742 		if (!scsi_target_queue_ready(shost, sdev))
1743 			goto not_ready;
1744 
1745 		if (!scsi_host_queue_ready(q, shost, sdev))
1746 			goto host_not_ready;
1747 
1748 		/*
1749 		 * Finally, initialize any error handling parameters, and set up
1750 		 * the timers for timeouts.
1751 		 */
1752 		scsi_init_cmd_errh(cmd);
1753 
1754 		/*
1755 		 * Dispatch the command to the low-level driver.
1756 		 */
1757 		cmd->scsi_done = scsi_done;
1758 		rtn = scsi_dispatch_cmd(cmd);
1759 		if (rtn) {
1760 			scsi_queue_insert(cmd, rtn);
1761 			spin_lock_irq(q->queue_lock);
1762 			goto out_delay;
1763 		}
1764 		spin_lock_irq(q->queue_lock);
1765 	}
1766 
1767 	return;
1768 
1769  host_not_ready:
1770 	if (scsi_target(sdev)->can_queue > 0)
1771 		atomic_dec(&scsi_target(sdev)->target_busy);
1772  not_ready:
1773 	/*
1774 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1775 	 * must return with queue_lock held.
1776 	 *
1777 	 * Decrementing device_busy without checking it is OK, as all such
1778 	 * cases (host limits or settings) should run the queue at some
1779 	 * later time.
1780 	 */
1781 	spin_lock_irq(q->queue_lock);
1782 	blk_requeue_request(q, req);
1783 	atomic_dec(&sdev->device_busy);
1784 out_delay:
1785 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1786 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1787 }
1788 
prep_to_mq(int ret)1789 static inline int prep_to_mq(int ret)
1790 {
1791 	switch (ret) {
1792 	case BLKPREP_OK:
1793 		return 0;
1794 	case BLKPREP_DEFER:
1795 		return BLK_MQ_RQ_QUEUE_BUSY;
1796 	default:
1797 		return BLK_MQ_RQ_QUEUE_ERROR;
1798 	}
1799 }
1800 
scsi_mq_prep_fn(struct request * req)1801 static int scsi_mq_prep_fn(struct request *req)
1802 {
1803 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1804 	struct scsi_device *sdev = req->q->queuedata;
1805 	struct Scsi_Host *shost = sdev->host;
1806 	unsigned char *sense_buf = cmd->sense_buffer;
1807 	struct scatterlist *sg;
1808 
1809 	memset(cmd, 0, sizeof(struct scsi_cmnd));
1810 
1811 	req->special = cmd;
1812 
1813 	cmd->request = req;
1814 	cmd->device = sdev;
1815 	cmd->sense_buffer = sense_buf;
1816 
1817 	cmd->tag = req->tag;
1818 
1819 	cmd->cmnd = req->cmd;
1820 	cmd->prot_op = SCSI_PROT_NORMAL;
1821 
1822 	INIT_LIST_HEAD(&cmd->list);
1823 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1824 	cmd->jiffies_at_alloc = jiffies;
1825 
1826 	if (shost->use_cmd_list) {
1827 		spin_lock_irq(&sdev->list_lock);
1828 		list_add_tail(&cmd->list, &sdev->cmd_list);
1829 		spin_unlock_irq(&sdev->list_lock);
1830 	}
1831 
1832 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1833 	cmd->sdb.table.sgl = sg;
1834 
1835 	if (scsi_host_get_prot(shost)) {
1836 		cmd->prot_sdb = (void *)sg +
1837 			min_t(unsigned int,
1838 			      shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1839 			sizeof(struct scatterlist);
1840 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1841 
1842 		cmd->prot_sdb->table.sgl =
1843 			(struct scatterlist *)(cmd->prot_sdb + 1);
1844 	}
1845 
1846 	if (blk_bidi_rq(req)) {
1847 		struct request *next_rq = req->next_rq;
1848 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1849 
1850 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1851 		bidi_sdb->table.sgl =
1852 			(struct scatterlist *)(bidi_sdb + 1);
1853 
1854 		next_rq->special = bidi_sdb;
1855 	}
1856 
1857 	blk_mq_start_request(req);
1858 
1859 	return scsi_setup_cmnd(sdev, req);
1860 }
1861 
scsi_mq_done(struct scsi_cmnd * cmd)1862 static void scsi_mq_done(struct scsi_cmnd *cmd)
1863 {
1864 	trace_scsi_dispatch_cmd_done(cmd);
1865 	blk_mq_complete_request(cmd->request);
1866 }
1867 
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,struct request * req,bool last)1868 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, struct request *req,
1869 		bool last)
1870 {
1871 	struct request_queue *q = req->q;
1872 	struct scsi_device *sdev = q->queuedata;
1873 	struct Scsi_Host *shost = sdev->host;
1874 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1875 	int ret;
1876 	int reason;
1877 
1878 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1879 	if (ret)
1880 		goto out;
1881 
1882 	ret = BLK_MQ_RQ_QUEUE_BUSY;
1883 	if (!get_device(&sdev->sdev_gendev))
1884 		goto out;
1885 
1886 	if (!scsi_dev_queue_ready(q, sdev))
1887 		goto out_put_device;
1888 	if (!scsi_target_queue_ready(shost, sdev))
1889 		goto out_dec_device_busy;
1890 	if (!scsi_host_queue_ready(q, shost, sdev))
1891 		goto out_dec_target_busy;
1892 
1893 
1894 	if (!(req->cmd_flags & REQ_DONTPREP)) {
1895 		ret = prep_to_mq(scsi_mq_prep_fn(req));
1896 		if (ret)
1897 			goto out_dec_host_busy;
1898 		req->cmd_flags |= REQ_DONTPREP;
1899 	} else {
1900 		blk_mq_start_request(req);
1901 	}
1902 
1903 	if (blk_queue_tagged(q))
1904 		req->cmd_flags |= REQ_QUEUED;
1905 	else
1906 		req->cmd_flags &= ~REQ_QUEUED;
1907 
1908 	scsi_init_cmd_errh(cmd);
1909 	cmd->scsi_done = scsi_mq_done;
1910 
1911 	reason = scsi_dispatch_cmd(cmd);
1912 	if (reason) {
1913 		scsi_set_blocked(cmd, reason);
1914 		ret = BLK_MQ_RQ_QUEUE_BUSY;
1915 		goto out_dec_host_busy;
1916 	}
1917 
1918 	return BLK_MQ_RQ_QUEUE_OK;
1919 
1920 out_dec_host_busy:
1921 	atomic_dec(&shost->host_busy);
1922 out_dec_target_busy:
1923 	if (scsi_target(sdev)->can_queue > 0)
1924 		atomic_dec(&scsi_target(sdev)->target_busy);
1925 out_dec_device_busy:
1926 	atomic_dec(&sdev->device_busy);
1927 out_put_device:
1928 	put_device(&sdev->sdev_gendev);
1929 out:
1930 	switch (ret) {
1931 	case BLK_MQ_RQ_QUEUE_BUSY:
1932 		blk_mq_stop_hw_queue(hctx);
1933 		if (atomic_read(&sdev->device_busy) == 0 &&
1934 		    !scsi_device_blocked(sdev))
1935 			blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1936 		break;
1937 	case BLK_MQ_RQ_QUEUE_ERROR:
1938 		/*
1939 		 * Make sure to release all allocated ressources when
1940 		 * we hit an error, as we will never see this command
1941 		 * again.
1942 		 */
1943 		if (req->cmd_flags & REQ_DONTPREP)
1944 			scsi_mq_uninit_cmd(cmd);
1945 		break;
1946 	default:
1947 		break;
1948 	}
1949 	return ret;
1950 }
1951 
scsi_timeout(struct request * req,bool reserved)1952 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1953 		bool reserved)
1954 {
1955 	if (reserved)
1956 		return BLK_EH_RESET_TIMER;
1957 	return scsi_times_out(req);
1958 }
1959 
scsi_init_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx,unsigned int numa_node)1960 static int scsi_init_request(void *data, struct request *rq,
1961 		unsigned int hctx_idx, unsigned int request_idx,
1962 		unsigned int numa_node)
1963 {
1964 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1965 
1966 	cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1967 			numa_node);
1968 	if (!cmd->sense_buffer)
1969 		return -ENOMEM;
1970 	return 0;
1971 }
1972 
scsi_exit_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx)1973 static void scsi_exit_request(void *data, struct request *rq,
1974 		unsigned int hctx_idx, unsigned int request_idx)
1975 {
1976 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1977 
1978 	kfree(cmd->sense_buffer);
1979 }
1980 
scsi_calculate_bounce_limit(struct Scsi_Host * shost)1981 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1982 {
1983 	struct device *host_dev;
1984 	u64 bounce_limit = 0xffffffff;
1985 
1986 	if (shost->unchecked_isa_dma)
1987 		return BLK_BOUNCE_ISA;
1988 	/*
1989 	 * Platforms with virtual-DMA translation
1990 	 * hardware have no practical limit.
1991 	 */
1992 	if (!PCI_DMA_BUS_IS_PHYS)
1993 		return BLK_BOUNCE_ANY;
1994 
1995 	host_dev = scsi_get_device(shost);
1996 	if (host_dev && host_dev->dma_mask)
1997 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1998 
1999 	return bounce_limit;
2000 }
2001 
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)2002 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2003 {
2004 	struct device *dev = shost->dma_dev;
2005 
2006 	/*
2007 	 * this limit is imposed by hardware restrictions
2008 	 */
2009 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2010 					SCSI_MAX_SG_CHAIN_SEGMENTS));
2011 
2012 	if (scsi_host_prot_dma(shost)) {
2013 		shost->sg_prot_tablesize =
2014 			min_not_zero(shost->sg_prot_tablesize,
2015 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2016 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2017 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2018 	}
2019 
2020 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2021 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2022 	blk_queue_segment_boundary(q, shost->dma_boundary);
2023 	dma_set_seg_boundary(dev, shost->dma_boundary);
2024 
2025 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2026 
2027 	if (!shost->use_clustering)
2028 		q->limits.cluster = 0;
2029 
2030 	/*
2031 	 * set a reasonable default alignment on word boundaries: the
2032 	 * host and device may alter it using
2033 	 * blk_queue_update_dma_alignment() later.
2034 	 */
2035 	blk_queue_dma_alignment(q, 0x03);
2036 }
2037 
__scsi_alloc_queue(struct Scsi_Host * shost,request_fn_proc * request_fn)2038 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2039 					 request_fn_proc *request_fn)
2040 {
2041 	struct request_queue *q;
2042 
2043 	q = blk_init_queue(request_fn, NULL);
2044 	if (!q)
2045 		return NULL;
2046 	__scsi_init_queue(shost, q);
2047 	return q;
2048 }
2049 EXPORT_SYMBOL(__scsi_alloc_queue);
2050 
scsi_alloc_queue(struct scsi_device * sdev)2051 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2052 {
2053 	struct request_queue *q;
2054 
2055 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2056 	if (!q)
2057 		return NULL;
2058 
2059 	blk_queue_prep_rq(q, scsi_prep_fn);
2060 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2061 	blk_queue_softirq_done(q, scsi_softirq_done);
2062 	blk_queue_rq_timed_out(q, scsi_times_out);
2063 	blk_queue_lld_busy(q, scsi_lld_busy);
2064 	return q;
2065 }
2066 
2067 static struct blk_mq_ops scsi_mq_ops = {
2068 	.map_queue	= blk_mq_map_queue,
2069 	.queue_rq	= scsi_queue_rq,
2070 	.complete	= scsi_softirq_done,
2071 	.timeout	= scsi_timeout,
2072 	.init_request	= scsi_init_request,
2073 	.exit_request	= scsi_exit_request,
2074 };
2075 
scsi_mq_alloc_queue(struct scsi_device * sdev)2076 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2077 {
2078 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2079 	if (IS_ERR(sdev->request_queue))
2080 		return NULL;
2081 
2082 	sdev->request_queue->queuedata = sdev;
2083 	__scsi_init_queue(sdev->host, sdev->request_queue);
2084 	return sdev->request_queue;
2085 }
2086 
scsi_mq_setup_tags(struct Scsi_Host * shost)2087 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2088 {
2089 	unsigned int cmd_size, sgl_size, tbl_size;
2090 
2091 	tbl_size = shost->sg_tablesize;
2092 	if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2093 		tbl_size = SCSI_MAX_SG_SEGMENTS;
2094 	sgl_size = tbl_size * sizeof(struct scatterlist);
2095 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2096 	if (scsi_host_get_prot(shost))
2097 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2098 
2099 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2100 	shost->tag_set.ops = &scsi_mq_ops;
2101 	shost->tag_set.nr_hw_queues = 1;
2102 	shost->tag_set.queue_depth = shost->can_queue;
2103 	shost->tag_set.cmd_size = cmd_size;
2104 	shost->tag_set.numa_node = NUMA_NO_NODE;
2105 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2106 	shost->tag_set.driver_data = shost;
2107 
2108 	return blk_mq_alloc_tag_set(&shost->tag_set);
2109 }
2110 
scsi_mq_destroy_tags(struct Scsi_Host * shost)2111 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2112 {
2113 	blk_mq_free_tag_set(&shost->tag_set);
2114 }
2115 
2116 /*
2117  * Function:    scsi_block_requests()
2118  *
2119  * Purpose:     Utility function used by low-level drivers to prevent further
2120  *		commands from being queued to the device.
2121  *
2122  * Arguments:   shost       - Host in question
2123  *
2124  * Returns:     Nothing
2125  *
2126  * Lock status: No locks are assumed held.
2127  *
2128  * Notes:       There is no timer nor any other means by which the requests
2129  *		get unblocked other than the low-level driver calling
2130  *		scsi_unblock_requests().
2131  */
scsi_block_requests(struct Scsi_Host * shost)2132 void scsi_block_requests(struct Scsi_Host *shost)
2133 {
2134 	shost->host_self_blocked = 1;
2135 }
2136 EXPORT_SYMBOL(scsi_block_requests);
2137 
2138 /*
2139  * Function:    scsi_unblock_requests()
2140  *
2141  * Purpose:     Utility function used by low-level drivers to allow further
2142  *		commands from being queued to the device.
2143  *
2144  * Arguments:   shost       - Host in question
2145  *
2146  * Returns:     Nothing
2147  *
2148  * Lock status: No locks are assumed held.
2149  *
2150  * Notes:       There is no timer nor any other means by which the requests
2151  *		get unblocked other than the low-level driver calling
2152  *		scsi_unblock_requests().
2153  *
2154  *		This is done as an API function so that changes to the
2155  *		internals of the scsi mid-layer won't require wholesale
2156  *		changes to drivers that use this feature.
2157  */
scsi_unblock_requests(struct Scsi_Host * shost)2158 void scsi_unblock_requests(struct Scsi_Host *shost)
2159 {
2160 	shost->host_self_blocked = 0;
2161 	scsi_run_host_queues(shost);
2162 }
2163 EXPORT_SYMBOL(scsi_unblock_requests);
2164 
scsi_init_queue(void)2165 int __init scsi_init_queue(void)
2166 {
2167 	int i;
2168 
2169 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2170 					   sizeof(struct scsi_data_buffer),
2171 					   0, 0, NULL);
2172 	if (!scsi_sdb_cache) {
2173 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2174 		return -ENOMEM;
2175 	}
2176 
2177 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2178 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2179 		int size = sgp->size * sizeof(struct scatterlist);
2180 
2181 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
2182 				SLAB_HWCACHE_ALIGN, NULL);
2183 		if (!sgp->slab) {
2184 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2185 					sgp->name);
2186 			goto cleanup_sdb;
2187 		}
2188 
2189 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2190 						     sgp->slab);
2191 		if (!sgp->pool) {
2192 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2193 					sgp->name);
2194 			goto cleanup_sdb;
2195 		}
2196 	}
2197 
2198 	return 0;
2199 
2200 cleanup_sdb:
2201 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2202 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2203 		if (sgp->pool)
2204 			mempool_destroy(sgp->pool);
2205 		if (sgp->slab)
2206 			kmem_cache_destroy(sgp->slab);
2207 	}
2208 	kmem_cache_destroy(scsi_sdb_cache);
2209 
2210 	return -ENOMEM;
2211 }
2212 
scsi_exit_queue(void)2213 void scsi_exit_queue(void)
2214 {
2215 	int i;
2216 
2217 	kmem_cache_destroy(scsi_sdb_cache);
2218 
2219 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2220 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2221 		mempool_destroy(sgp->pool);
2222 		kmem_cache_destroy(sgp->slab);
2223 	}
2224 }
2225 
2226 /**
2227  *	scsi_mode_select - issue a mode select
2228  *	@sdev:	SCSI device to be queried
2229  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2230  *	@sp:	Save page bit (0 == don't save, 1 == save)
2231  *	@modepage: mode page being requested
2232  *	@buffer: request buffer (may not be smaller than eight bytes)
2233  *	@len:	length of request buffer.
2234  *	@timeout: command timeout
2235  *	@retries: number of retries before failing
2236  *	@data: returns a structure abstracting the mode header data
2237  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2238  *		must be SCSI_SENSE_BUFFERSIZE big.
2239  *
2240  *	Returns zero if successful; negative error number or scsi
2241  *	status on error
2242  *
2243  */
2244 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2245 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2246 		 unsigned char *buffer, int len, int timeout, int retries,
2247 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2248 {
2249 	unsigned char cmd[10];
2250 	unsigned char *real_buffer;
2251 	int ret;
2252 
2253 	memset(cmd, 0, sizeof(cmd));
2254 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2255 
2256 	if (sdev->use_10_for_ms) {
2257 		if (len > 65535)
2258 			return -EINVAL;
2259 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2260 		if (!real_buffer)
2261 			return -ENOMEM;
2262 		memcpy(real_buffer + 8, buffer, len);
2263 		len += 8;
2264 		real_buffer[0] = 0;
2265 		real_buffer[1] = 0;
2266 		real_buffer[2] = data->medium_type;
2267 		real_buffer[3] = data->device_specific;
2268 		real_buffer[4] = data->longlba ? 0x01 : 0;
2269 		real_buffer[5] = 0;
2270 		real_buffer[6] = data->block_descriptor_length >> 8;
2271 		real_buffer[7] = data->block_descriptor_length;
2272 
2273 		cmd[0] = MODE_SELECT_10;
2274 		cmd[7] = len >> 8;
2275 		cmd[8] = len;
2276 	} else {
2277 		if (len > 255 || data->block_descriptor_length > 255 ||
2278 		    data->longlba)
2279 			return -EINVAL;
2280 
2281 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2282 		if (!real_buffer)
2283 			return -ENOMEM;
2284 		memcpy(real_buffer + 4, buffer, len);
2285 		len += 4;
2286 		real_buffer[0] = 0;
2287 		real_buffer[1] = data->medium_type;
2288 		real_buffer[2] = data->device_specific;
2289 		real_buffer[3] = data->block_descriptor_length;
2290 
2291 
2292 		cmd[0] = MODE_SELECT;
2293 		cmd[4] = len;
2294 	}
2295 
2296 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2297 			       sshdr, timeout, retries, NULL);
2298 	kfree(real_buffer);
2299 	return ret;
2300 }
2301 EXPORT_SYMBOL_GPL(scsi_mode_select);
2302 
2303 /**
2304  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2305  *	@sdev:	SCSI device to be queried
2306  *	@dbd:	set if mode sense will allow block descriptors to be returned
2307  *	@modepage: mode page being requested
2308  *	@buffer: request buffer (may not be smaller than eight bytes)
2309  *	@len:	length of request buffer.
2310  *	@timeout: command timeout
2311  *	@retries: number of retries before failing
2312  *	@data: returns a structure abstracting the mode header data
2313  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2314  *		must be SCSI_SENSE_BUFFERSIZE big.
2315  *
2316  *	Returns zero if unsuccessful, or the header offset (either 4
2317  *	or 8 depending on whether a six or ten byte command was
2318  *	issued) if successful.
2319  */
2320 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2321 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2322 		  unsigned char *buffer, int len, int timeout, int retries,
2323 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2324 {
2325 	unsigned char cmd[12];
2326 	int use_10_for_ms;
2327 	int header_length;
2328 	int result;
2329 	struct scsi_sense_hdr my_sshdr;
2330 
2331 	memset(data, 0, sizeof(*data));
2332 	memset(&cmd[0], 0, 12);
2333 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2334 	cmd[2] = modepage;
2335 
2336 	/* caller might not be interested in sense, but we need it */
2337 	if (!sshdr)
2338 		sshdr = &my_sshdr;
2339 
2340  retry:
2341 	use_10_for_ms = sdev->use_10_for_ms;
2342 
2343 	if (use_10_for_ms) {
2344 		if (len < 8)
2345 			len = 8;
2346 
2347 		cmd[0] = MODE_SENSE_10;
2348 		cmd[8] = len;
2349 		header_length = 8;
2350 	} else {
2351 		if (len < 4)
2352 			len = 4;
2353 
2354 		cmd[0] = MODE_SENSE;
2355 		cmd[4] = len;
2356 		header_length = 4;
2357 	}
2358 
2359 	memset(buffer, 0, len);
2360 
2361 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2362 				  sshdr, timeout, retries, NULL);
2363 
2364 	/* This code looks awful: what it's doing is making sure an
2365 	 * ILLEGAL REQUEST sense return identifies the actual command
2366 	 * byte as the problem.  MODE_SENSE commands can return
2367 	 * ILLEGAL REQUEST if the code page isn't supported */
2368 
2369 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2370 	    (driver_byte(result) & DRIVER_SENSE)) {
2371 		if (scsi_sense_valid(sshdr)) {
2372 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2373 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2374 				/*
2375 				 * Invalid command operation code
2376 				 */
2377 				sdev->use_10_for_ms = 0;
2378 				goto retry;
2379 			}
2380 		}
2381 	}
2382 
2383 	if(scsi_status_is_good(result)) {
2384 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2385 			     (modepage == 6 || modepage == 8))) {
2386 			/* Initio breakage? */
2387 			header_length = 0;
2388 			data->length = 13;
2389 			data->medium_type = 0;
2390 			data->device_specific = 0;
2391 			data->longlba = 0;
2392 			data->block_descriptor_length = 0;
2393 		} else if(use_10_for_ms) {
2394 			data->length = buffer[0]*256 + buffer[1] + 2;
2395 			data->medium_type = buffer[2];
2396 			data->device_specific = buffer[3];
2397 			data->longlba = buffer[4] & 0x01;
2398 			data->block_descriptor_length = buffer[6]*256
2399 				+ buffer[7];
2400 		} else {
2401 			data->length = buffer[0] + 1;
2402 			data->medium_type = buffer[1];
2403 			data->device_specific = buffer[2];
2404 			data->block_descriptor_length = buffer[3];
2405 		}
2406 		data->header_length = header_length;
2407 	}
2408 
2409 	return result;
2410 }
2411 EXPORT_SYMBOL(scsi_mode_sense);
2412 
2413 /**
2414  *	scsi_test_unit_ready - test if unit is ready
2415  *	@sdev:	scsi device to change the state of.
2416  *	@timeout: command timeout
2417  *	@retries: number of retries before failing
2418  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2419  *		returning sense. Make sure that this is cleared before passing
2420  *		in.
2421  *
2422  *	Returns zero if unsuccessful or an error if TUR failed.  For
2423  *	removable media, UNIT_ATTENTION sets ->changed flag.
2424  **/
2425 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr_external)2426 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2427 		     struct scsi_sense_hdr *sshdr_external)
2428 {
2429 	char cmd[] = {
2430 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2431 	};
2432 	struct scsi_sense_hdr *sshdr;
2433 	int result;
2434 
2435 	if (!sshdr_external)
2436 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2437 	else
2438 		sshdr = sshdr_external;
2439 
2440 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2441 	do {
2442 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2443 					  timeout, retries, NULL);
2444 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2445 		    sshdr->sense_key == UNIT_ATTENTION)
2446 			sdev->changed = 1;
2447 	} while (scsi_sense_valid(sshdr) &&
2448 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2449 
2450 	if (!sshdr_external)
2451 		kfree(sshdr);
2452 	return result;
2453 }
2454 EXPORT_SYMBOL(scsi_test_unit_ready);
2455 
2456 /**
2457  *	scsi_device_set_state - Take the given device through the device state model.
2458  *	@sdev:	scsi device to change the state of.
2459  *	@state:	state to change to.
2460  *
2461  *	Returns zero if unsuccessful or an error if the requested
2462  *	transition is illegal.
2463  */
2464 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2465 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2466 {
2467 	enum scsi_device_state oldstate = sdev->sdev_state;
2468 
2469 	if (state == oldstate)
2470 		return 0;
2471 
2472 	switch (state) {
2473 	case SDEV_CREATED:
2474 		switch (oldstate) {
2475 		case SDEV_CREATED_BLOCK:
2476 			break;
2477 		default:
2478 			goto illegal;
2479 		}
2480 		break;
2481 
2482 	case SDEV_RUNNING:
2483 		switch (oldstate) {
2484 		case SDEV_CREATED:
2485 		case SDEV_OFFLINE:
2486 		case SDEV_TRANSPORT_OFFLINE:
2487 		case SDEV_QUIESCE:
2488 		case SDEV_BLOCK:
2489 			break;
2490 		default:
2491 			goto illegal;
2492 		}
2493 		break;
2494 
2495 	case SDEV_QUIESCE:
2496 		switch (oldstate) {
2497 		case SDEV_RUNNING:
2498 		case SDEV_OFFLINE:
2499 		case SDEV_TRANSPORT_OFFLINE:
2500 			break;
2501 		default:
2502 			goto illegal;
2503 		}
2504 		break;
2505 
2506 	case SDEV_OFFLINE:
2507 	case SDEV_TRANSPORT_OFFLINE:
2508 		switch (oldstate) {
2509 		case SDEV_CREATED:
2510 		case SDEV_RUNNING:
2511 		case SDEV_QUIESCE:
2512 		case SDEV_BLOCK:
2513 			break;
2514 		default:
2515 			goto illegal;
2516 		}
2517 		break;
2518 
2519 	case SDEV_BLOCK:
2520 		switch (oldstate) {
2521 		case SDEV_RUNNING:
2522 		case SDEV_CREATED_BLOCK:
2523 			break;
2524 		default:
2525 			goto illegal;
2526 		}
2527 		break;
2528 
2529 	case SDEV_CREATED_BLOCK:
2530 		switch (oldstate) {
2531 		case SDEV_CREATED:
2532 			break;
2533 		default:
2534 			goto illegal;
2535 		}
2536 		break;
2537 
2538 	case SDEV_CANCEL:
2539 		switch (oldstate) {
2540 		case SDEV_CREATED:
2541 		case SDEV_RUNNING:
2542 		case SDEV_QUIESCE:
2543 		case SDEV_OFFLINE:
2544 		case SDEV_TRANSPORT_OFFLINE:
2545 		case SDEV_BLOCK:
2546 			break;
2547 		default:
2548 			goto illegal;
2549 		}
2550 		break;
2551 
2552 	case SDEV_DEL:
2553 		switch (oldstate) {
2554 		case SDEV_CREATED:
2555 		case SDEV_RUNNING:
2556 		case SDEV_OFFLINE:
2557 		case SDEV_TRANSPORT_OFFLINE:
2558 		case SDEV_CANCEL:
2559 		case SDEV_CREATED_BLOCK:
2560 			break;
2561 		default:
2562 			goto illegal;
2563 		}
2564 		break;
2565 
2566 	}
2567 	sdev->sdev_state = state;
2568 	return 0;
2569 
2570  illegal:
2571 	SCSI_LOG_ERROR_RECOVERY(1,
2572 				sdev_printk(KERN_ERR, sdev,
2573 					    "Illegal state transition %s->%s",
2574 					    scsi_device_state_name(oldstate),
2575 					    scsi_device_state_name(state))
2576 				);
2577 	return -EINVAL;
2578 }
2579 EXPORT_SYMBOL(scsi_device_set_state);
2580 
2581 /**
2582  * 	sdev_evt_emit - emit a single SCSI device uevent
2583  *	@sdev: associated SCSI device
2584  *	@evt: event to emit
2585  *
2586  *	Send a single uevent (scsi_event) to the associated scsi_device.
2587  */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2588 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2589 {
2590 	int idx = 0;
2591 	char *envp[3];
2592 
2593 	switch (evt->evt_type) {
2594 	case SDEV_EVT_MEDIA_CHANGE:
2595 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2596 		break;
2597 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2598 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2599 		break;
2600 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2601 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2602 		break;
2603 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2604 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2605 		break;
2606 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2607 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2608 		break;
2609 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2610 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2611 		break;
2612 	default:
2613 		/* do nothing */
2614 		break;
2615 	}
2616 
2617 	envp[idx++] = NULL;
2618 
2619 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2620 }
2621 
2622 /**
2623  * 	sdev_evt_thread - send a uevent for each scsi event
2624  *	@work: work struct for scsi_device
2625  *
2626  *	Dispatch queued events to their associated scsi_device kobjects
2627  *	as uevents.
2628  */
scsi_evt_thread(struct work_struct * work)2629 void scsi_evt_thread(struct work_struct *work)
2630 {
2631 	struct scsi_device *sdev;
2632 	enum scsi_device_event evt_type;
2633 	LIST_HEAD(event_list);
2634 
2635 	sdev = container_of(work, struct scsi_device, event_work);
2636 
2637 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2638 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2639 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2640 
2641 	while (1) {
2642 		struct scsi_event *evt;
2643 		struct list_head *this, *tmp;
2644 		unsigned long flags;
2645 
2646 		spin_lock_irqsave(&sdev->list_lock, flags);
2647 		list_splice_init(&sdev->event_list, &event_list);
2648 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2649 
2650 		if (list_empty(&event_list))
2651 			break;
2652 
2653 		list_for_each_safe(this, tmp, &event_list) {
2654 			evt = list_entry(this, struct scsi_event, node);
2655 			list_del(&evt->node);
2656 			scsi_evt_emit(sdev, evt);
2657 			kfree(evt);
2658 		}
2659 	}
2660 }
2661 
2662 /**
2663  * 	sdev_evt_send - send asserted event to uevent thread
2664  *	@sdev: scsi_device event occurred on
2665  *	@evt: event to send
2666  *
2667  *	Assert scsi device event asynchronously.
2668  */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2669 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2670 {
2671 	unsigned long flags;
2672 
2673 #if 0
2674 	/* FIXME: currently this check eliminates all media change events
2675 	 * for polled devices.  Need to update to discriminate between AN
2676 	 * and polled events */
2677 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2678 		kfree(evt);
2679 		return;
2680 	}
2681 #endif
2682 
2683 	spin_lock_irqsave(&sdev->list_lock, flags);
2684 	list_add_tail(&evt->node, &sdev->event_list);
2685 	schedule_work(&sdev->event_work);
2686 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2687 }
2688 EXPORT_SYMBOL_GPL(sdev_evt_send);
2689 
2690 /**
2691  * 	sdev_evt_alloc - allocate a new scsi event
2692  *	@evt_type: type of event to allocate
2693  *	@gfpflags: GFP flags for allocation
2694  *
2695  *	Allocates and returns a new scsi_event.
2696  */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2697 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2698 				  gfp_t gfpflags)
2699 {
2700 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2701 	if (!evt)
2702 		return NULL;
2703 
2704 	evt->evt_type = evt_type;
2705 	INIT_LIST_HEAD(&evt->node);
2706 
2707 	/* evt_type-specific initialization, if any */
2708 	switch (evt_type) {
2709 	case SDEV_EVT_MEDIA_CHANGE:
2710 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2711 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2712 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2713 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2714 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2715 	default:
2716 		/* do nothing */
2717 		break;
2718 	}
2719 
2720 	return evt;
2721 }
2722 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2723 
2724 /**
2725  * 	sdev_evt_send_simple - send asserted event to uevent thread
2726  *	@sdev: scsi_device event occurred on
2727  *	@evt_type: type of event to send
2728  *	@gfpflags: GFP flags for allocation
2729  *
2730  *	Assert scsi device event asynchronously, given an event type.
2731  */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2732 void sdev_evt_send_simple(struct scsi_device *sdev,
2733 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2734 {
2735 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2736 	if (!evt) {
2737 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2738 			    evt_type);
2739 		return;
2740 	}
2741 
2742 	sdev_evt_send(sdev, evt);
2743 }
2744 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2745 
2746 /**
2747  *	scsi_device_quiesce - Block user issued commands.
2748  *	@sdev:	scsi device to quiesce.
2749  *
2750  *	This works by trying to transition to the SDEV_QUIESCE state
2751  *	(which must be a legal transition).  When the device is in this
2752  *	state, only special requests will be accepted, all others will
2753  *	be deferred.  Since special requests may also be requeued requests,
2754  *	a successful return doesn't guarantee the device will be
2755  *	totally quiescent.
2756  *
2757  *	Must be called with user context, may sleep.
2758  *
2759  *	Returns zero if unsuccessful or an error if not.
2760  */
2761 int
scsi_device_quiesce(struct scsi_device * sdev)2762 scsi_device_quiesce(struct scsi_device *sdev)
2763 {
2764 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2765 	if (err)
2766 		return err;
2767 
2768 	scsi_run_queue(sdev->request_queue);
2769 	while (atomic_read(&sdev->device_busy)) {
2770 		msleep_interruptible(200);
2771 		scsi_run_queue(sdev->request_queue);
2772 	}
2773 	return 0;
2774 }
2775 EXPORT_SYMBOL(scsi_device_quiesce);
2776 
2777 /**
2778  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2779  *	@sdev:	scsi device to resume.
2780  *
2781  *	Moves the device from quiesced back to running and restarts the
2782  *	queues.
2783  *
2784  *	Must be called with user context, may sleep.
2785  */
scsi_device_resume(struct scsi_device * sdev)2786 void scsi_device_resume(struct scsi_device *sdev)
2787 {
2788 	/* check if the device state was mutated prior to resume, and if
2789 	 * so assume the state is being managed elsewhere (for example
2790 	 * device deleted during suspend)
2791 	 */
2792 	if (sdev->sdev_state != SDEV_QUIESCE ||
2793 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2794 		return;
2795 	scsi_run_queue(sdev->request_queue);
2796 }
2797 EXPORT_SYMBOL(scsi_device_resume);
2798 
2799 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2800 device_quiesce_fn(struct scsi_device *sdev, void *data)
2801 {
2802 	scsi_device_quiesce(sdev);
2803 }
2804 
2805 void
scsi_target_quiesce(struct scsi_target * starget)2806 scsi_target_quiesce(struct scsi_target *starget)
2807 {
2808 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2809 }
2810 EXPORT_SYMBOL(scsi_target_quiesce);
2811 
2812 static void
device_resume_fn(struct scsi_device * sdev,void * data)2813 device_resume_fn(struct scsi_device *sdev, void *data)
2814 {
2815 	scsi_device_resume(sdev);
2816 }
2817 
2818 void
scsi_target_resume(struct scsi_target * starget)2819 scsi_target_resume(struct scsi_target *starget)
2820 {
2821 	starget_for_each_device(starget, NULL, device_resume_fn);
2822 }
2823 EXPORT_SYMBOL(scsi_target_resume);
2824 
2825 /**
2826  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2827  * @sdev:	device to block
2828  *
2829  * Block request made by scsi lld's to temporarily stop all
2830  * scsi commands on the specified device.  Called from interrupt
2831  * or normal process context.
2832  *
2833  * Returns zero if successful or error if not
2834  *
2835  * Notes:
2836  *	This routine transitions the device to the SDEV_BLOCK state
2837  *	(which must be a legal transition).  When the device is in this
2838  *	state, all commands are deferred until the scsi lld reenables
2839  *	the device with scsi_device_unblock or device_block_tmo fires.
2840  */
2841 int
scsi_internal_device_block(struct scsi_device * sdev)2842 scsi_internal_device_block(struct scsi_device *sdev)
2843 {
2844 	struct request_queue *q = sdev->request_queue;
2845 	unsigned long flags;
2846 	int err = 0;
2847 
2848 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2849 	if (err) {
2850 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2851 
2852 		if (err)
2853 			return err;
2854 	}
2855 
2856 	/*
2857 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2858 	 * block layer from calling the midlayer with this device's
2859 	 * request queue.
2860 	 */
2861 	if (q->mq_ops) {
2862 		blk_mq_stop_hw_queues(q);
2863 	} else {
2864 		spin_lock_irqsave(q->queue_lock, flags);
2865 		blk_stop_queue(q);
2866 		spin_unlock_irqrestore(q->queue_lock, flags);
2867 	}
2868 
2869 	return 0;
2870 }
2871 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2872 
2873 /**
2874  * scsi_internal_device_unblock - resume a device after a block request
2875  * @sdev:	device to resume
2876  * @new_state:	state to set devices to after unblocking
2877  *
2878  * Called by scsi lld's or the midlayer to restart the device queue
2879  * for the previously suspended scsi device.  Called from interrupt or
2880  * normal process context.
2881  *
2882  * Returns zero if successful or error if not.
2883  *
2884  * Notes:
2885  *	This routine transitions the device to the SDEV_RUNNING state
2886  *	or to one of the offline states (which must be a legal transition)
2887  *	allowing the midlayer to goose the queue for this device.
2888  */
2889 int
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2890 scsi_internal_device_unblock(struct scsi_device *sdev,
2891 			     enum scsi_device_state new_state)
2892 {
2893 	struct request_queue *q = sdev->request_queue;
2894 	unsigned long flags;
2895 
2896 	/*
2897 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2898 	 * offlined states and goose the device queue if successful.
2899 	 */
2900 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2901 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2902 		sdev->sdev_state = new_state;
2903 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2904 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2905 		    new_state == SDEV_OFFLINE)
2906 			sdev->sdev_state = new_state;
2907 		else
2908 			sdev->sdev_state = SDEV_CREATED;
2909 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2910 		 sdev->sdev_state != SDEV_OFFLINE)
2911 		return -EINVAL;
2912 
2913 	if (q->mq_ops) {
2914 		blk_mq_start_stopped_hw_queues(q, false);
2915 	} else {
2916 		spin_lock_irqsave(q->queue_lock, flags);
2917 		blk_start_queue(q);
2918 		spin_unlock_irqrestore(q->queue_lock, flags);
2919 	}
2920 
2921 	return 0;
2922 }
2923 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2924 
2925 static void
device_block(struct scsi_device * sdev,void * data)2926 device_block(struct scsi_device *sdev, void *data)
2927 {
2928 	scsi_internal_device_block(sdev);
2929 }
2930 
2931 static int
target_block(struct device * dev,void * data)2932 target_block(struct device *dev, void *data)
2933 {
2934 	if (scsi_is_target_device(dev))
2935 		starget_for_each_device(to_scsi_target(dev), NULL,
2936 					device_block);
2937 	return 0;
2938 }
2939 
2940 void
scsi_target_block(struct device * dev)2941 scsi_target_block(struct device *dev)
2942 {
2943 	if (scsi_is_target_device(dev))
2944 		starget_for_each_device(to_scsi_target(dev), NULL,
2945 					device_block);
2946 	else
2947 		device_for_each_child(dev, NULL, target_block);
2948 }
2949 EXPORT_SYMBOL_GPL(scsi_target_block);
2950 
2951 static void
device_unblock(struct scsi_device * sdev,void * data)2952 device_unblock(struct scsi_device *sdev, void *data)
2953 {
2954 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2955 }
2956 
2957 static int
target_unblock(struct device * dev,void * data)2958 target_unblock(struct device *dev, void *data)
2959 {
2960 	if (scsi_is_target_device(dev))
2961 		starget_for_each_device(to_scsi_target(dev), data,
2962 					device_unblock);
2963 	return 0;
2964 }
2965 
2966 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2967 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2968 {
2969 	if (scsi_is_target_device(dev))
2970 		starget_for_each_device(to_scsi_target(dev), &new_state,
2971 					device_unblock);
2972 	else
2973 		device_for_each_child(dev, &new_state, target_unblock);
2974 }
2975 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2976 
2977 /**
2978  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2979  * @sgl:	scatter-gather list
2980  * @sg_count:	number of segments in sg
2981  * @offset:	offset in bytes into sg, on return offset into the mapped area
2982  * @len:	bytes to map, on return number of bytes mapped
2983  *
2984  * Returns virtual address of the start of the mapped page
2985  */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)2986 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2987 			  size_t *offset, size_t *len)
2988 {
2989 	int i;
2990 	size_t sg_len = 0, len_complete = 0;
2991 	struct scatterlist *sg;
2992 	struct page *page;
2993 
2994 	WARN_ON(!irqs_disabled());
2995 
2996 	for_each_sg(sgl, sg, sg_count, i) {
2997 		len_complete = sg_len; /* Complete sg-entries */
2998 		sg_len += sg->length;
2999 		if (sg_len > *offset)
3000 			break;
3001 	}
3002 
3003 	if (unlikely(i == sg_count)) {
3004 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3005 			"elements %d\n",
3006 		       __func__, sg_len, *offset, sg_count);
3007 		WARN_ON(1);
3008 		return NULL;
3009 	}
3010 
3011 	/* Offset starting from the beginning of first page in this sg-entry */
3012 	*offset = *offset - len_complete + sg->offset;
3013 
3014 	/* Assumption: contiguous pages can be accessed as "page + i" */
3015 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3016 	*offset &= ~PAGE_MASK;
3017 
3018 	/* Bytes in this sg-entry from *offset to the end of the page */
3019 	sg_len = PAGE_SIZE - *offset;
3020 	if (*len > sg_len)
3021 		*len = sg_len;
3022 
3023 	return kmap_atomic(page);
3024 }
3025 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3026 
3027 /**
3028  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3029  * @virt:	virtual address to be unmapped
3030  */
scsi_kunmap_atomic_sg(void * virt)3031 void scsi_kunmap_atomic_sg(void *virt)
3032 {
3033 	kunmap_atomic(virt);
3034 }
3035 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3036 
sdev_disable_disk_events(struct scsi_device * sdev)3037 void sdev_disable_disk_events(struct scsi_device *sdev)
3038 {
3039 	atomic_inc(&sdev->disk_events_disable_depth);
3040 }
3041 EXPORT_SYMBOL(sdev_disable_disk_events);
3042 
sdev_enable_disk_events(struct scsi_device * sdev)3043 void sdev_enable_disk_events(struct scsi_device *sdev)
3044 {
3045 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3046 		return;
3047 	atomic_dec(&sdev->disk_events_disable_depth);
3048 }
3049 EXPORT_SYMBOL(sdev_enable_disk_events);
3050