1 /*
2 * Copyright © 2006-2011 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * Authors:
18 * Eric Anholt <eric@anholt.net>
19 */
20
21 #include <linux/i2c.h>
22
23 #include <drm/drmP.h>
24 #include "framebuffer.h"
25 #include "psb_drv.h"
26 #include "psb_intel_drv.h"
27 #include "psb_intel_reg.h"
28 #include "gma_display.h"
29 #include "power.h"
30
31 #define INTEL_LIMIT_I9XX_SDVO_DAC 0
32 #define INTEL_LIMIT_I9XX_LVDS 1
33
34 static const struct gma_limit_t psb_intel_limits[] = {
35 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
36 .dot = {.min = 20000, .max = 400000},
37 .vco = {.min = 1400000, .max = 2800000},
38 .n = {.min = 1, .max = 6},
39 .m = {.min = 70, .max = 120},
40 .m1 = {.min = 8, .max = 18},
41 .m2 = {.min = 3, .max = 7},
42 .p = {.min = 5, .max = 80},
43 .p1 = {.min = 1, .max = 8},
44 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
45 .find_pll = gma_find_best_pll,
46 },
47 { /* INTEL_LIMIT_I9XX_LVDS */
48 .dot = {.min = 20000, .max = 400000},
49 .vco = {.min = 1400000, .max = 2800000},
50 .n = {.min = 1, .max = 6},
51 .m = {.min = 70, .max = 120},
52 .m1 = {.min = 8, .max = 18},
53 .m2 = {.min = 3, .max = 7},
54 .p = {.min = 7, .max = 98},
55 .p1 = {.min = 1, .max = 8},
56 /* The single-channel range is 25-112Mhz, and dual-channel
57 * is 80-224Mhz. Prefer single channel as much as possible.
58 */
59 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
60 .find_pll = gma_find_best_pll,
61 },
62 };
63
psb_intel_limit(struct drm_crtc * crtc,int refclk)64 static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
65 int refclk)
66 {
67 const struct gma_limit_t *limit;
68
69 if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
70 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
71 else
72 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
73 return limit;
74 }
75
psb_intel_clock(int refclk,struct gma_clock_t * clock)76 static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
77 {
78 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
79 clock->p = clock->p1 * clock->p2;
80 clock->vco = refclk * clock->m / (clock->n + 2);
81 clock->dot = clock->vco / clock->p;
82 }
83
84 /**
85 * Return the pipe currently connected to the panel fitter,
86 * or -1 if the panel fitter is not present or not in use
87 */
psb_intel_panel_fitter_pipe(struct drm_device * dev)88 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
89 {
90 u32 pfit_control;
91
92 pfit_control = REG_READ(PFIT_CONTROL);
93
94 /* See if the panel fitter is in use */
95 if ((pfit_control & PFIT_ENABLE) == 0)
96 return -1;
97 /* Must be on PIPE 1 for PSB */
98 return 1;
99 }
100
psb_intel_crtc_mode_set(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode,int x,int y,struct drm_framebuffer * old_fb)101 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
102 struct drm_display_mode *mode,
103 struct drm_display_mode *adjusted_mode,
104 int x, int y,
105 struct drm_framebuffer *old_fb)
106 {
107 struct drm_device *dev = crtc->dev;
108 struct drm_psb_private *dev_priv = dev->dev_private;
109 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
110 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
111 int pipe = gma_crtc->pipe;
112 const struct psb_offset *map = &dev_priv->regmap[pipe];
113 int refclk;
114 struct gma_clock_t clock;
115 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
116 bool ok, is_sdvo = false;
117 bool is_lvds = false, is_tv = false;
118 struct drm_mode_config *mode_config = &dev->mode_config;
119 struct drm_connector *connector;
120 const struct gma_limit_t *limit;
121
122 /* No scan out no play */
123 if (crtc->primary->fb == NULL) {
124 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
125 return 0;
126 }
127
128 list_for_each_entry(connector, &mode_config->connector_list, head) {
129 struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
130
131 if (!connector->encoder
132 || connector->encoder->crtc != crtc)
133 continue;
134
135 switch (gma_encoder->type) {
136 case INTEL_OUTPUT_LVDS:
137 is_lvds = true;
138 break;
139 case INTEL_OUTPUT_SDVO:
140 is_sdvo = true;
141 break;
142 case INTEL_OUTPUT_TVOUT:
143 is_tv = true;
144 break;
145 }
146 }
147
148 refclk = 96000;
149
150 limit = gma_crtc->clock_funcs->limit(crtc, refclk);
151
152 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
153 &clock);
154 if (!ok) {
155 DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
156 adjusted_mode->clock, clock.dot);
157 return 0;
158 }
159
160 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
161
162 dpll = DPLL_VGA_MODE_DIS;
163 if (is_lvds) {
164 dpll |= DPLLB_MODE_LVDS;
165 dpll |= DPLL_DVO_HIGH_SPEED;
166 } else
167 dpll |= DPLLB_MODE_DAC_SERIAL;
168 if (is_sdvo) {
169 int sdvo_pixel_multiply =
170 adjusted_mode->clock / mode->clock;
171 dpll |= DPLL_DVO_HIGH_SPEED;
172 dpll |=
173 (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
174 }
175
176 /* compute bitmask from p1 value */
177 dpll |= (1 << (clock.p1 - 1)) << 16;
178 switch (clock.p2) {
179 case 5:
180 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
181 break;
182 case 7:
183 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
184 break;
185 case 10:
186 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
187 break;
188 case 14:
189 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
190 break;
191 }
192
193 if (is_tv) {
194 /* XXX: just matching BIOS for now */
195 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
196 dpll |= 3;
197 }
198 dpll |= PLL_REF_INPUT_DREFCLK;
199
200 /* setup pipeconf */
201 pipeconf = REG_READ(map->conf);
202
203 /* Set up the display plane register */
204 dspcntr = DISPPLANE_GAMMA_ENABLE;
205
206 if (pipe == 0)
207 dspcntr |= DISPPLANE_SEL_PIPE_A;
208 else
209 dspcntr |= DISPPLANE_SEL_PIPE_B;
210
211 dspcntr |= DISPLAY_PLANE_ENABLE;
212 pipeconf |= PIPEACONF_ENABLE;
213 dpll |= DPLL_VCO_ENABLE;
214
215
216 /* Disable the panel fitter if it was on our pipe */
217 if (psb_intel_panel_fitter_pipe(dev) == pipe)
218 REG_WRITE(PFIT_CONTROL, 0);
219
220 drm_mode_debug_printmodeline(mode);
221
222 if (dpll & DPLL_VCO_ENABLE) {
223 REG_WRITE(map->fp0, fp);
224 REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
225 REG_READ(map->dpll);
226 udelay(150);
227 }
228
229 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
230 * This is an exception to the general rule that mode_set doesn't turn
231 * things on.
232 */
233 if (is_lvds) {
234 u32 lvds = REG_READ(LVDS);
235
236 lvds &= ~LVDS_PIPEB_SELECT;
237 if (pipe == 1)
238 lvds |= LVDS_PIPEB_SELECT;
239
240 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
241 /* Set the B0-B3 data pairs corresponding to
242 * whether we're going to
243 * set the DPLLs for dual-channel mode or not.
244 */
245 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
246 if (clock.p2 == 7)
247 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
248
249 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
250 * appropriately here, but we need to look more
251 * thoroughly into how panels behave in the two modes.
252 */
253
254 REG_WRITE(LVDS, lvds);
255 REG_READ(LVDS);
256 }
257
258 REG_WRITE(map->fp0, fp);
259 REG_WRITE(map->dpll, dpll);
260 REG_READ(map->dpll);
261 /* Wait for the clocks to stabilize. */
262 udelay(150);
263
264 /* write it again -- the BIOS does, after all */
265 REG_WRITE(map->dpll, dpll);
266
267 REG_READ(map->dpll);
268 /* Wait for the clocks to stabilize. */
269 udelay(150);
270
271 REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
272 ((adjusted_mode->crtc_htotal - 1) << 16));
273 REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
274 ((adjusted_mode->crtc_hblank_end - 1) << 16));
275 REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
276 ((adjusted_mode->crtc_hsync_end - 1) << 16));
277 REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
278 ((adjusted_mode->crtc_vtotal - 1) << 16));
279 REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
280 ((adjusted_mode->crtc_vblank_end - 1) << 16));
281 REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
282 ((adjusted_mode->crtc_vsync_end - 1) << 16));
283 /* pipesrc and dspsize control the size that is scaled from,
284 * which should always be the user's requested size.
285 */
286 REG_WRITE(map->size,
287 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
288 REG_WRITE(map->pos, 0);
289 REG_WRITE(map->src,
290 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
291 REG_WRITE(map->conf, pipeconf);
292 REG_READ(map->conf);
293
294 gma_wait_for_vblank(dev);
295
296 REG_WRITE(map->cntr, dspcntr);
297
298 /* Flush the plane changes */
299 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
300
301 gma_wait_for_vblank(dev);
302
303 return 0;
304 }
305
306 /* Returns the clock of the currently programmed mode of the given pipe. */
psb_intel_crtc_clock_get(struct drm_device * dev,struct drm_crtc * crtc)307 static int psb_intel_crtc_clock_get(struct drm_device *dev,
308 struct drm_crtc *crtc)
309 {
310 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
311 struct drm_psb_private *dev_priv = dev->dev_private;
312 int pipe = gma_crtc->pipe;
313 const struct psb_offset *map = &dev_priv->regmap[pipe];
314 u32 dpll;
315 u32 fp;
316 struct gma_clock_t clock;
317 bool is_lvds;
318 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
319
320 if (gma_power_begin(dev, false)) {
321 dpll = REG_READ(map->dpll);
322 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
323 fp = REG_READ(map->fp0);
324 else
325 fp = REG_READ(map->fp1);
326 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
327 gma_power_end(dev);
328 } else {
329 dpll = p->dpll;
330
331 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
332 fp = p->fp0;
333 else
334 fp = p->fp1;
335
336 is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
337 LVDS_PORT_EN);
338 }
339
340 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
341 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
342 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
343
344 if (is_lvds) {
345 clock.p1 =
346 ffs((dpll &
347 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
348 DPLL_FPA01_P1_POST_DIV_SHIFT);
349 clock.p2 = 14;
350
351 if ((dpll & PLL_REF_INPUT_MASK) ==
352 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
353 /* XXX: might not be 66MHz */
354 psb_intel_clock(66000, &clock);
355 } else
356 psb_intel_clock(48000, &clock);
357 } else {
358 if (dpll & PLL_P1_DIVIDE_BY_TWO)
359 clock.p1 = 2;
360 else {
361 clock.p1 =
362 ((dpll &
363 DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
364 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
365 }
366 if (dpll & PLL_P2_DIVIDE_BY_4)
367 clock.p2 = 4;
368 else
369 clock.p2 = 2;
370
371 psb_intel_clock(48000, &clock);
372 }
373
374 /* XXX: It would be nice to validate the clocks, but we can't reuse
375 * i830PllIsValid() because it relies on the xf86_config connector
376 * configuration being accurate, which it isn't necessarily.
377 */
378
379 return clock.dot;
380 }
381
382 /** Returns the currently programmed mode of the given pipe. */
psb_intel_crtc_mode_get(struct drm_device * dev,struct drm_crtc * crtc)383 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
384 struct drm_crtc *crtc)
385 {
386 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
387 int pipe = gma_crtc->pipe;
388 struct drm_display_mode *mode;
389 int htot;
390 int hsync;
391 int vtot;
392 int vsync;
393 struct drm_psb_private *dev_priv = dev->dev_private;
394 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
395 const struct psb_offset *map = &dev_priv->regmap[pipe];
396
397 if (gma_power_begin(dev, false)) {
398 htot = REG_READ(map->htotal);
399 hsync = REG_READ(map->hsync);
400 vtot = REG_READ(map->vtotal);
401 vsync = REG_READ(map->vsync);
402 gma_power_end(dev);
403 } else {
404 htot = p->htotal;
405 hsync = p->hsync;
406 vtot = p->vtotal;
407 vsync = p->vsync;
408 }
409
410 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
411 if (!mode)
412 return NULL;
413
414 mode->clock = psb_intel_crtc_clock_get(dev, crtc);
415 mode->hdisplay = (htot & 0xffff) + 1;
416 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
417 mode->hsync_start = (hsync & 0xffff) + 1;
418 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
419 mode->vdisplay = (vtot & 0xffff) + 1;
420 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
421 mode->vsync_start = (vsync & 0xffff) + 1;
422 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
423
424 drm_mode_set_name(mode);
425 drm_mode_set_crtcinfo(mode, 0);
426
427 return mode;
428 }
429
430 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
431 .dpms = gma_crtc_dpms,
432 .mode_fixup = gma_crtc_mode_fixup,
433 .mode_set = psb_intel_crtc_mode_set,
434 .mode_set_base = gma_pipe_set_base,
435 .prepare = gma_crtc_prepare,
436 .commit = gma_crtc_commit,
437 .disable = gma_crtc_disable,
438 };
439
440 const struct drm_crtc_funcs psb_intel_crtc_funcs = {
441 .save = gma_crtc_save,
442 .restore = gma_crtc_restore,
443 .cursor_set = gma_crtc_cursor_set,
444 .cursor_move = gma_crtc_cursor_move,
445 .gamma_set = gma_crtc_gamma_set,
446 .set_config = gma_crtc_set_config,
447 .destroy = gma_crtc_destroy,
448 };
449
450 const struct gma_clock_funcs psb_clock_funcs = {
451 .clock = psb_intel_clock,
452 .limit = psb_intel_limit,
453 .pll_is_valid = gma_pll_is_valid,
454 };
455
456 /*
457 * Set the default value of cursor control and base register
458 * to zero. This is a workaround for h/w defect on Oaktrail
459 */
psb_intel_cursor_init(struct drm_device * dev,struct gma_crtc * gma_crtc)460 static void psb_intel_cursor_init(struct drm_device *dev,
461 struct gma_crtc *gma_crtc)
462 {
463 struct drm_psb_private *dev_priv = dev->dev_private;
464 u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
465 u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
466 struct gtt_range *cursor_gt;
467
468 if (dev_priv->ops->cursor_needs_phys) {
469 /* Allocate 4 pages of stolen mem for a hardware cursor. That
470 * is enough for the 64 x 64 ARGB cursors we support.
471 */
472 cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1,
473 PAGE_SIZE);
474 if (!cursor_gt) {
475 gma_crtc->cursor_gt = NULL;
476 goto out;
477 }
478 gma_crtc->cursor_gt = cursor_gt;
479 gma_crtc->cursor_addr = dev_priv->stolen_base +
480 cursor_gt->offset;
481 } else {
482 gma_crtc->cursor_gt = NULL;
483 }
484
485 out:
486 REG_WRITE(control[gma_crtc->pipe], 0);
487 REG_WRITE(base[gma_crtc->pipe], 0);
488 }
489
psb_intel_crtc_init(struct drm_device * dev,int pipe,struct psb_intel_mode_device * mode_dev)490 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
491 struct psb_intel_mode_device *mode_dev)
492 {
493 struct drm_psb_private *dev_priv = dev->dev_private;
494 struct gma_crtc *gma_crtc;
495 int i;
496 uint16_t *r_base, *g_base, *b_base;
497
498 /* We allocate a extra array of drm_connector pointers
499 * for fbdev after the crtc */
500 gma_crtc = kzalloc(sizeof(struct gma_crtc) +
501 (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
502 GFP_KERNEL);
503 if (gma_crtc == NULL)
504 return;
505
506 gma_crtc->crtc_state =
507 kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
508 if (!gma_crtc->crtc_state) {
509 dev_err(dev->dev, "Crtc state error: No memory\n");
510 kfree(gma_crtc);
511 return;
512 }
513
514 /* Set the CRTC operations from the chip specific data */
515 drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs);
516
517 /* Set the CRTC clock functions from chip specific data */
518 gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
519
520 drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
521 gma_crtc->pipe = pipe;
522 gma_crtc->plane = pipe;
523
524 r_base = gma_crtc->base.gamma_store;
525 g_base = r_base + 256;
526 b_base = g_base + 256;
527 for (i = 0; i < 256; i++) {
528 gma_crtc->lut_r[i] = i;
529 gma_crtc->lut_g[i] = i;
530 gma_crtc->lut_b[i] = i;
531 r_base[i] = i << 8;
532 g_base[i] = i << 8;
533 b_base[i] = i << 8;
534
535 gma_crtc->lut_adj[i] = 0;
536 }
537
538 gma_crtc->mode_dev = mode_dev;
539 gma_crtc->cursor_addr = 0;
540
541 drm_crtc_helper_add(&gma_crtc->base,
542 dev_priv->ops->crtc_helper);
543
544 /* Setup the array of drm_connector pointer array */
545 gma_crtc->mode_set.crtc = &gma_crtc->base;
546 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
547 dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
548 dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
549 dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
550 gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
551 gma_crtc->mode_set.num_connectors = 0;
552 psb_intel_cursor_init(dev, gma_crtc);
553
554 /* Set to true so that the pipe is forced off on initial config. */
555 gma_crtc->active = true;
556 }
557
psb_intel_get_crtc_from_pipe(struct drm_device * dev,int pipe)558 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
559 {
560 struct drm_crtc *crtc = NULL;
561
562 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
563 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
564 if (gma_crtc->pipe == pipe)
565 break;
566 }
567 return crtc;
568 }
569
gma_connector_clones(struct drm_device * dev,int type_mask)570 int gma_connector_clones(struct drm_device *dev, int type_mask)
571 {
572 int index_mask = 0;
573 struct drm_connector *connector;
574 int entry = 0;
575
576 list_for_each_entry(connector, &dev->mode_config.connector_list,
577 head) {
578 struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
579 if (type_mask & (1 << gma_encoder->type))
580 index_mask |= (1 << entry);
581 entry++;
582 }
583 return index_mask;
584 }
585