• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/debugfs.h>
50 
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56 
57 #include "internal.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61 
62 struct scan_control {
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	/* This context's GFP mask */
67 	gfp_t gfp_mask;
68 
69 	/* Allocation order */
70 	int order;
71 
72 	/*
73 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 	 * are scanned.
75 	 */
76 	nodemask_t	*nodemask;
77 
78 	/*
79 	 * The memory cgroup that hit its limit and as a result is the
80 	 * primary target of this reclaim invocation.
81 	 */
82 	struct mem_cgroup *target_mem_cgroup;
83 
84 	/* Scan (total_size >> priority) pages at once */
85 	int priority;
86 
87 	unsigned int may_writepage:1;
88 
89 	/* Can mapped pages be reclaimed? */
90 	unsigned int may_unmap:1;
91 
92 	/* Can pages be swapped as part of reclaim? */
93 	unsigned int may_swap:1;
94 
95 	unsigned int hibernation_mode:1;
96 
97 	/* One of the zones is ready for compaction */
98 	unsigned int compaction_ready:1;
99 
100 	/* Incremented by the number of inactive pages that were scanned */
101 	unsigned long nr_scanned;
102 
103 	/* Number of pages freed so far during a call to shrink_zones() */
104 	unsigned long nr_reclaimed;
105 };
106 
107 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
108 
109 #ifdef ARCH_HAS_PREFETCH
110 #define prefetch_prev_lru_page(_page, _base, _field)			\
111 	do {								\
112 		if ((_page)->lru.prev != _base) {			\
113 			struct page *prev;				\
114 									\
115 			prev = lru_to_page(&(_page->lru));		\
116 			prefetch(&prev->_field);			\
117 		}							\
118 	} while (0)
119 #else
120 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
121 #endif
122 
123 #ifdef ARCH_HAS_PREFETCHW
124 #define prefetchw_prev_lru_page(_page, _base, _field)			\
125 	do {								\
126 		if ((_page)->lru.prev != _base) {			\
127 			struct page *prev;				\
128 									\
129 			prev = lru_to_page(&(_page->lru));		\
130 			prefetchw(&prev->_field);			\
131 		}							\
132 	} while (0)
133 #else
134 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
135 #endif
136 
137 /*
138  * From 0 .. 100.  Higher means more swappy.
139  */
140 int vm_swappiness = 60;
141 /*
142  * The total number of pages which are beyond the high watermark within all
143  * zones.
144  */
145 unsigned long vm_total_pages;
146 
147 static LIST_HEAD(shrinker_list);
148 static DECLARE_RWSEM(shrinker_rwsem);
149 
150 #ifdef CONFIG_MEMCG
global_reclaim(struct scan_control * sc)151 static bool global_reclaim(struct scan_control *sc)
152 {
153 	return !sc->target_mem_cgroup;
154 }
155 #else
global_reclaim(struct scan_control * sc)156 static bool global_reclaim(struct scan_control *sc)
157 {
158 	return true;
159 }
160 #endif
161 
zone_reclaimable_pages(struct zone * zone)162 static unsigned long zone_reclaimable_pages(struct zone *zone)
163 {
164 	int nr;
165 
166 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
167 	     zone_page_state(zone, NR_INACTIVE_FILE);
168 
169 	if (get_nr_swap_pages() > 0)
170 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
171 		      zone_page_state(zone, NR_INACTIVE_ANON);
172 
173 	return nr;
174 }
175 
zone_reclaimable(struct zone * zone)176 bool zone_reclaimable(struct zone *zone)
177 {
178 	return zone_page_state(zone, NR_PAGES_SCANNED) <
179 		zone_reclaimable_pages(zone) * 6;
180 }
181 
get_lru_size(struct lruvec * lruvec,enum lru_list lru)182 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
183 {
184 	if (!mem_cgroup_disabled())
185 		return mem_cgroup_get_lru_size(lruvec, lru);
186 
187 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
188 }
189 
190 struct dentry *debug_file;
191 
debug_shrinker_show(struct seq_file * s,void * unused)192 static int debug_shrinker_show(struct seq_file *s, void *unused)
193 {
194 	struct shrinker *shrinker;
195 	struct shrink_control sc;
196 
197 	sc.gfp_mask = -1;
198 	sc.nr_to_scan = 0;
199 
200 	down_read(&shrinker_rwsem);
201 	list_for_each_entry(shrinker, &shrinker_list, list) {
202 		int num_objs;
203 
204 		num_objs = shrinker->count_objects(shrinker, &sc);
205 		seq_printf(s, "%pf %d\n", shrinker->scan_objects, num_objs);
206 	}
207 	up_read(&shrinker_rwsem);
208 	return 0;
209 }
210 
debug_shrinker_open(struct inode * inode,struct file * file)211 static int debug_shrinker_open(struct inode *inode, struct file *file)
212 {
213         return single_open(file, debug_shrinker_show, inode->i_private);
214 }
215 
216 static const struct file_operations debug_shrinker_fops = {
217         .open = debug_shrinker_open,
218         .read = seq_read,
219         .llseek = seq_lseek,
220         .release = single_release,
221 };
222 
223 /*
224  * Add a shrinker callback to be called from the vm.
225  */
register_shrinker(struct shrinker * shrinker)226 int register_shrinker(struct shrinker *shrinker)
227 {
228 	size_t size = sizeof(*shrinker->nr_deferred);
229 
230 	/*
231 	 * If we only have one possible node in the system anyway, save
232 	 * ourselves the trouble and disable NUMA aware behavior. This way we
233 	 * will save memory and some small loop time later.
234 	 */
235 	if (nr_node_ids == 1)
236 		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
237 
238 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 		size *= nr_node_ids;
240 
241 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 	if (!shrinker->nr_deferred)
243 		return -ENOMEM;
244 
245 	down_write(&shrinker_rwsem);
246 	list_add_tail(&shrinker->list, &shrinker_list);
247 	up_write(&shrinker_rwsem);
248 	return 0;
249 }
250 EXPORT_SYMBOL(register_shrinker);
251 
add_shrinker_debug(void)252 static int __init add_shrinker_debug(void)
253 {
254 	debugfs_create_file("shrinker", 0644, NULL, NULL,
255 			    &debug_shrinker_fops);
256 	return 0;
257 }
258 
259 late_initcall(add_shrinker_debug);
260 
261 /*
262  * Remove one
263  */
unregister_shrinker(struct shrinker * shrinker)264 void unregister_shrinker(struct shrinker *shrinker)
265 {
266 	down_write(&shrinker_rwsem);
267 	list_del(&shrinker->list);
268 	up_write(&shrinker_rwsem);
269 	kfree(shrinker->nr_deferred);
270 }
271 EXPORT_SYMBOL(unregister_shrinker);
272 
273 #define SHRINK_BATCH 128
274 
275 static unsigned long
shrink_slab_node(struct shrink_control * shrinkctl,struct shrinker * shrinker,unsigned long nr_pages_scanned,unsigned long lru_pages)276 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
277 		 unsigned long nr_pages_scanned, unsigned long lru_pages)
278 {
279 	unsigned long freed = 0;
280 	unsigned long long delta;
281 	long total_scan;
282 	long freeable;
283 	long nr;
284 	long new_nr;
285 	int nid = shrinkctl->nid;
286 	long batch_size = shrinker->batch ? shrinker->batch
287 					  : SHRINK_BATCH;
288 
289 	freeable = shrinker->count_objects(shrinker, shrinkctl);
290 	if (freeable == 0)
291 		return 0;
292 
293 	/*
294 	 * copy the current shrinker scan count into a local variable
295 	 * and zero it so that other concurrent shrinker invocations
296 	 * don't also do this scanning work.
297 	 */
298 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
299 
300 	total_scan = nr;
301 	delta = (4 * nr_pages_scanned) / shrinker->seeks;
302 	delta *= freeable;
303 	do_div(delta, lru_pages + 1);
304 	total_scan += delta;
305 	if (total_scan < 0) {
306 		printk(KERN_ERR
307 		"shrink_slab: %pF negative objects to delete nr=%ld\n",
308 		       shrinker->scan_objects, total_scan);
309 		total_scan = freeable;
310 	}
311 
312 	/*
313 	 * We need to avoid excessive windup on filesystem shrinkers
314 	 * due to large numbers of GFP_NOFS allocations causing the
315 	 * shrinkers to return -1 all the time. This results in a large
316 	 * nr being built up so when a shrink that can do some work
317 	 * comes along it empties the entire cache due to nr >>>
318 	 * freeable. This is bad for sustaining a working set in
319 	 * memory.
320 	 *
321 	 * Hence only allow the shrinker to scan the entire cache when
322 	 * a large delta change is calculated directly.
323 	 */
324 	if (delta < freeable / 4)
325 		total_scan = min(total_scan, freeable / 2);
326 
327 	/*
328 	 * Avoid risking looping forever due to too large nr value:
329 	 * never try to free more than twice the estimate number of
330 	 * freeable entries.
331 	 */
332 	if (total_scan > freeable * 2)
333 		total_scan = freeable * 2;
334 
335 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
336 				nr_pages_scanned, lru_pages,
337 				freeable, delta, total_scan);
338 
339 	/*
340 	 * Normally, we should not scan less than batch_size objects in one
341 	 * pass to avoid too frequent shrinker calls, but if the slab has less
342 	 * than batch_size objects in total and we are really tight on memory,
343 	 * we will try to reclaim all available objects, otherwise we can end
344 	 * up failing allocations although there are plenty of reclaimable
345 	 * objects spread over several slabs with usage less than the
346 	 * batch_size.
347 	 *
348 	 * We detect the "tight on memory" situations by looking at the total
349 	 * number of objects we want to scan (total_scan). If it is greater
350 	 * than the total number of objects on slab (freeable), we must be
351 	 * scanning at high prio and therefore should try to reclaim as much as
352 	 * possible.
353 	 */
354 	while (total_scan >= batch_size ||
355 	       total_scan >= freeable) {
356 		unsigned long ret;
357 		unsigned long nr_to_scan = min(batch_size, total_scan);
358 
359 		shrinkctl->nr_to_scan = nr_to_scan;
360 		ret = shrinker->scan_objects(shrinker, shrinkctl);
361 		if (ret == SHRINK_STOP)
362 			break;
363 		freed += ret;
364 
365 		count_vm_events(SLABS_SCANNED, nr_to_scan);
366 		total_scan -= nr_to_scan;
367 
368 		cond_resched();
369 	}
370 
371 	/*
372 	 * move the unused scan count back into the shrinker in a
373 	 * manner that handles concurrent updates. If we exhausted the
374 	 * scan, there is no need to do an update.
375 	 */
376 	if (total_scan > 0)
377 		new_nr = atomic_long_add_return(total_scan,
378 						&shrinker->nr_deferred[nid]);
379 	else
380 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
381 
382 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
383 	return freed;
384 }
385 
386 /*
387  * Call the shrink functions to age shrinkable caches
388  *
389  * Here we assume it costs one seek to replace a lru page and that it also
390  * takes a seek to recreate a cache object.  With this in mind we age equal
391  * percentages of the lru and ageable caches.  This should balance the seeks
392  * generated by these structures.
393  *
394  * If the vm encountered mapped pages on the LRU it increase the pressure on
395  * slab to avoid swapping.
396  *
397  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
398  *
399  * `lru_pages' represents the number of on-LRU pages in all the zones which
400  * are eligible for the caller's allocation attempt.  It is used for balancing
401  * slab reclaim versus page reclaim.
402  *
403  * Returns the number of slab objects which we shrunk.
404  */
shrink_slab(struct shrink_control * shrinkctl,unsigned long nr_pages_scanned,unsigned long lru_pages)405 unsigned long shrink_slab(struct shrink_control *shrinkctl,
406 			  unsigned long nr_pages_scanned,
407 			  unsigned long lru_pages)
408 {
409 	struct shrinker *shrinker;
410 	unsigned long freed = 0;
411 
412 	if (nr_pages_scanned == 0)
413 		nr_pages_scanned = SWAP_CLUSTER_MAX;
414 
415 	if (!down_read_trylock(&shrinker_rwsem)) {
416 		/*
417 		 * If we would return 0, our callers would understand that we
418 		 * have nothing else to shrink and give up trying. By returning
419 		 * 1 we keep it going and assume we'll be able to shrink next
420 		 * time.
421 		 */
422 		freed = 1;
423 		goto out;
424 	}
425 
426 	list_for_each_entry(shrinker, &shrinker_list, list) {
427 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
428 			shrinkctl->nid = 0;
429 			freed += shrink_slab_node(shrinkctl, shrinker,
430 					nr_pages_scanned, lru_pages);
431 			continue;
432 		}
433 
434 		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
435 			if (node_online(shrinkctl->nid))
436 				freed += shrink_slab_node(shrinkctl, shrinker,
437 						nr_pages_scanned, lru_pages);
438 
439 		}
440 	}
441 	up_read(&shrinker_rwsem);
442 out:
443 	cond_resched();
444 	return freed;
445 }
446 
is_page_cache_freeable(struct page * page)447 static inline int is_page_cache_freeable(struct page *page)
448 {
449 	/*
450 	 * A freeable page cache page is referenced only by the caller
451 	 * that isolated the page, the page cache radix tree and
452 	 * optional buffer heads at page->private.
453 	 */
454 	return page_count(page) - page_has_private(page) == 2;
455 }
456 
may_write_to_queue(struct backing_dev_info * bdi,struct scan_control * sc)457 static int may_write_to_queue(struct backing_dev_info *bdi,
458 			      struct scan_control *sc)
459 {
460 	if (current->flags & PF_SWAPWRITE)
461 		return 1;
462 	if (!bdi_write_congested(bdi))
463 		return 1;
464 	if (bdi == current->backing_dev_info)
465 		return 1;
466 	return 0;
467 }
468 
469 /*
470  * We detected a synchronous write error writing a page out.  Probably
471  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
472  * fsync(), msync() or close().
473  *
474  * The tricky part is that after writepage we cannot touch the mapping: nothing
475  * prevents it from being freed up.  But we have a ref on the page and once
476  * that page is locked, the mapping is pinned.
477  *
478  * We're allowed to run sleeping lock_page() here because we know the caller has
479  * __GFP_FS.
480  */
handle_write_error(struct address_space * mapping,struct page * page,int error)481 static void handle_write_error(struct address_space *mapping,
482 				struct page *page, int error)
483 {
484 	lock_page(page);
485 	if (page_mapping(page) == mapping)
486 		mapping_set_error(mapping, error);
487 	unlock_page(page);
488 }
489 
490 /* possible outcome of pageout() */
491 typedef enum {
492 	/* failed to write page out, page is locked */
493 	PAGE_KEEP,
494 	/* move page to the active list, page is locked */
495 	PAGE_ACTIVATE,
496 	/* page has been sent to the disk successfully, page is unlocked */
497 	PAGE_SUCCESS,
498 	/* page is clean and locked */
499 	PAGE_CLEAN,
500 } pageout_t;
501 
502 /*
503  * pageout is called by shrink_page_list() for each dirty page.
504  * Calls ->writepage().
505  */
pageout(struct page * page,struct address_space * mapping,struct scan_control * sc)506 static pageout_t pageout(struct page *page, struct address_space *mapping,
507 			 struct scan_control *sc)
508 {
509 	/*
510 	 * If the page is dirty, only perform writeback if that write
511 	 * will be non-blocking.  To prevent this allocation from being
512 	 * stalled by pagecache activity.  But note that there may be
513 	 * stalls if we need to run get_block().  We could test
514 	 * PagePrivate for that.
515 	 *
516 	 * If this process is currently in __generic_file_write_iter() against
517 	 * this page's queue, we can perform writeback even if that
518 	 * will block.
519 	 *
520 	 * If the page is swapcache, write it back even if that would
521 	 * block, for some throttling. This happens by accident, because
522 	 * swap_backing_dev_info is bust: it doesn't reflect the
523 	 * congestion state of the swapdevs.  Easy to fix, if needed.
524 	 */
525 	if (!is_page_cache_freeable(page))
526 		return PAGE_KEEP;
527 	if (!mapping) {
528 		/*
529 		 * Some data journaling orphaned pages can have
530 		 * page->mapping == NULL while being dirty with clean buffers.
531 		 */
532 		if (page_has_private(page)) {
533 			if (try_to_free_buffers(page)) {
534 				ClearPageDirty(page);
535 				pr_info("%s: orphaned page\n", __func__);
536 				return PAGE_CLEAN;
537 			}
538 		}
539 		return PAGE_KEEP;
540 	}
541 	if (mapping->a_ops->writepage == NULL)
542 		return PAGE_ACTIVATE;
543 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
544 		return PAGE_KEEP;
545 
546 	if (clear_page_dirty_for_io(page)) {
547 		int res;
548 		struct writeback_control wbc = {
549 			.sync_mode = WB_SYNC_NONE,
550 			.nr_to_write = SWAP_CLUSTER_MAX,
551 			.range_start = 0,
552 			.range_end = LLONG_MAX,
553 			.for_reclaim = 1,
554 		};
555 
556 		SetPageReclaim(page);
557 		res = mapping->a_ops->writepage(page, &wbc);
558 		if (res < 0)
559 			handle_write_error(mapping, page, res);
560 		if (res == AOP_WRITEPAGE_ACTIVATE) {
561 			ClearPageReclaim(page);
562 			return PAGE_ACTIVATE;
563 		}
564 
565 		if (!PageWriteback(page)) {
566 			/* synchronous write or broken a_ops? */
567 			ClearPageReclaim(page);
568 		}
569 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
570 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
571 		return PAGE_SUCCESS;
572 	}
573 
574 	return PAGE_CLEAN;
575 }
576 
577 /*
578  * Same as remove_mapping, but if the page is removed from the mapping, it
579  * gets returned with a refcount of 0.
580  */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed)581 static int __remove_mapping(struct address_space *mapping, struct page *page,
582 			    bool reclaimed)
583 {
584 	BUG_ON(!PageLocked(page));
585 	BUG_ON(mapping != page_mapping(page));
586 
587 	spin_lock_irq(&mapping->tree_lock);
588 	/*
589 	 * The non racy check for a busy page.
590 	 *
591 	 * Must be careful with the order of the tests. When someone has
592 	 * a ref to the page, it may be possible that they dirty it then
593 	 * drop the reference. So if PageDirty is tested before page_count
594 	 * here, then the following race may occur:
595 	 *
596 	 * get_user_pages(&page);
597 	 * [user mapping goes away]
598 	 * write_to(page);
599 	 *				!PageDirty(page)    [good]
600 	 * SetPageDirty(page);
601 	 * put_page(page);
602 	 *				!page_count(page)   [good, discard it]
603 	 *
604 	 * [oops, our write_to data is lost]
605 	 *
606 	 * Reversing the order of the tests ensures such a situation cannot
607 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
608 	 * load is not satisfied before that of page->_count.
609 	 *
610 	 * Note that if SetPageDirty is always performed via set_page_dirty,
611 	 * and thus under tree_lock, then this ordering is not required.
612 	 */
613 	if (!page_freeze_refs(page, 2))
614 		goto cannot_free;
615 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
616 	if (unlikely(PageDirty(page))) {
617 		page_unfreeze_refs(page, 2);
618 		goto cannot_free;
619 	}
620 
621 	if (PageSwapCache(page)) {
622 		swp_entry_t swap = { .val = page_private(page) };
623 		mem_cgroup_swapout(page, swap);
624 		__delete_from_swap_cache(page);
625 		spin_unlock_irq(&mapping->tree_lock);
626 		swapcache_free(swap);
627 	} else {
628 		void (*freepage)(struct page *);
629 		void *shadow = NULL;
630 
631 		freepage = mapping->a_ops->freepage;
632 		/*
633 		 * Remember a shadow entry for reclaimed file cache in
634 		 * order to detect refaults, thus thrashing, later on.
635 		 *
636 		 * But don't store shadows in an address space that is
637 		 * already exiting.  This is not just an optizimation,
638 		 * inode reclaim needs to empty out the radix tree or
639 		 * the nodes are lost.  Don't plant shadows behind its
640 		 * back.
641 		 */
642 		if (reclaimed && page_is_file_cache(page) &&
643 		    !mapping_exiting(mapping))
644 			shadow = workingset_eviction(mapping, page);
645 		__delete_from_page_cache(page, shadow);
646 		spin_unlock_irq(&mapping->tree_lock);
647 
648 		if (freepage != NULL)
649 			freepage(page);
650 	}
651 
652 	return 1;
653 
654 cannot_free:
655 	spin_unlock_irq(&mapping->tree_lock);
656 	return 0;
657 }
658 
659 /*
660  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
661  * someone else has a ref on the page, abort and return 0.  If it was
662  * successfully detached, return 1.  Assumes the caller has a single ref on
663  * this page.
664  */
remove_mapping(struct address_space * mapping,struct page * page)665 int remove_mapping(struct address_space *mapping, struct page *page)
666 {
667 	if (__remove_mapping(mapping, page, false)) {
668 		/*
669 		 * Unfreezing the refcount with 1 rather than 2 effectively
670 		 * drops the pagecache ref for us without requiring another
671 		 * atomic operation.
672 		 */
673 		page_unfreeze_refs(page, 1);
674 		return 1;
675 	}
676 	return 0;
677 }
678 
679 /**
680  * putback_lru_page - put previously isolated page onto appropriate LRU list
681  * @page: page to be put back to appropriate lru list
682  *
683  * Add previously isolated @page to appropriate LRU list.
684  * Page may still be unevictable for other reasons.
685  *
686  * lru_lock must not be held, interrupts must be enabled.
687  */
putback_lru_page(struct page * page)688 void putback_lru_page(struct page *page)
689 {
690 	bool is_unevictable;
691 	int was_unevictable = PageUnevictable(page);
692 
693 	VM_BUG_ON_PAGE(PageLRU(page), page);
694 
695 redo:
696 	ClearPageUnevictable(page);
697 
698 	if (page_evictable(page)) {
699 		/*
700 		 * For evictable pages, we can use the cache.
701 		 * In event of a race, worst case is we end up with an
702 		 * unevictable page on [in]active list.
703 		 * We know how to handle that.
704 		 */
705 		is_unevictable = false;
706 		lru_cache_add(page);
707 	} else {
708 		/*
709 		 * Put unevictable pages directly on zone's unevictable
710 		 * list.
711 		 */
712 		is_unevictable = true;
713 		add_page_to_unevictable_list(page);
714 		/*
715 		 * When racing with an mlock or AS_UNEVICTABLE clearing
716 		 * (page is unlocked) make sure that if the other thread
717 		 * does not observe our setting of PG_lru and fails
718 		 * isolation/check_move_unevictable_pages,
719 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
720 		 * the page back to the evictable list.
721 		 *
722 		 * The other side is TestClearPageMlocked() or shmem_lock().
723 		 */
724 		smp_mb();
725 	}
726 
727 	/*
728 	 * page's status can change while we move it among lru. If an evictable
729 	 * page is on unevictable list, it never be freed. To avoid that,
730 	 * check after we added it to the list, again.
731 	 */
732 	if (is_unevictable && page_evictable(page)) {
733 		if (!isolate_lru_page(page)) {
734 			put_page(page);
735 			goto redo;
736 		}
737 		/* This means someone else dropped this page from LRU
738 		 * So, it will be freed or putback to LRU again. There is
739 		 * nothing to do here.
740 		 */
741 	}
742 
743 	if (was_unevictable && !is_unevictable)
744 		count_vm_event(UNEVICTABLE_PGRESCUED);
745 	else if (!was_unevictable && is_unevictable)
746 		count_vm_event(UNEVICTABLE_PGCULLED);
747 
748 	put_page(page);		/* drop ref from isolate */
749 }
750 
751 enum page_references {
752 	PAGEREF_RECLAIM,
753 	PAGEREF_RECLAIM_CLEAN,
754 	PAGEREF_KEEP,
755 	PAGEREF_ACTIVATE,
756 };
757 
page_check_references(struct page * page,struct scan_control * sc)758 static enum page_references page_check_references(struct page *page,
759 						  struct scan_control *sc)
760 {
761 	int referenced_ptes, referenced_page;
762 	unsigned long vm_flags;
763 
764 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
765 					  &vm_flags);
766 	referenced_page = TestClearPageReferenced(page);
767 
768 	/*
769 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
770 	 * move the page to the unevictable list.
771 	 */
772 	if (vm_flags & VM_LOCKED)
773 		return PAGEREF_RECLAIM;
774 
775 	if (referenced_ptes) {
776 		if (PageSwapBacked(page))
777 			return PAGEREF_ACTIVATE;
778 		/*
779 		 * All mapped pages start out with page table
780 		 * references from the instantiating fault, so we need
781 		 * to look twice if a mapped file page is used more
782 		 * than once.
783 		 *
784 		 * Mark it and spare it for another trip around the
785 		 * inactive list.  Another page table reference will
786 		 * lead to its activation.
787 		 *
788 		 * Note: the mark is set for activated pages as well
789 		 * so that recently deactivated but used pages are
790 		 * quickly recovered.
791 		 */
792 		SetPageReferenced(page);
793 
794 		if (referenced_page || referenced_ptes > 1)
795 			return PAGEREF_ACTIVATE;
796 
797 		/*
798 		 * Activate file-backed executable pages after first usage.
799 		 */
800 		if (vm_flags & VM_EXEC)
801 			return PAGEREF_ACTIVATE;
802 
803 		return PAGEREF_KEEP;
804 	}
805 
806 	/* Reclaim if clean, defer dirty pages to writeback */
807 	if (referenced_page && !PageSwapBacked(page))
808 		return PAGEREF_RECLAIM_CLEAN;
809 
810 	return PAGEREF_RECLAIM;
811 }
812 
813 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)814 static void page_check_dirty_writeback(struct page *page,
815 				       bool *dirty, bool *writeback)
816 {
817 	struct address_space *mapping;
818 
819 	/*
820 	 * Anonymous pages are not handled by flushers and must be written
821 	 * from reclaim context. Do not stall reclaim based on them
822 	 */
823 	if (!page_is_file_cache(page)) {
824 		*dirty = false;
825 		*writeback = false;
826 		return;
827 	}
828 
829 	/* By default assume that the page flags are accurate */
830 	*dirty = PageDirty(page);
831 	*writeback = PageWriteback(page);
832 
833 	/* Verify dirty/writeback state if the filesystem supports it */
834 	if (!page_has_private(page))
835 		return;
836 
837 	mapping = page_mapping(page);
838 	if (mapping && mapping->a_ops->is_dirty_writeback)
839 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
840 }
841 
842 /*
843  * shrink_page_list() returns the number of reclaimed pages
844  */
shrink_page_list(struct list_head * page_list,struct zone * zone,struct scan_control * sc,enum ttu_flags ttu_flags,unsigned long * ret_nr_dirty,unsigned long * ret_nr_unqueued_dirty,unsigned long * ret_nr_congested,unsigned long * ret_nr_writeback,unsigned long * ret_nr_immediate,bool force_reclaim)845 static unsigned long shrink_page_list(struct list_head *page_list,
846 				      struct zone *zone,
847 				      struct scan_control *sc,
848 				      enum ttu_flags ttu_flags,
849 				      unsigned long *ret_nr_dirty,
850 				      unsigned long *ret_nr_unqueued_dirty,
851 				      unsigned long *ret_nr_congested,
852 				      unsigned long *ret_nr_writeback,
853 				      unsigned long *ret_nr_immediate,
854 				      bool force_reclaim)
855 {
856 	LIST_HEAD(ret_pages);
857 	LIST_HEAD(free_pages);
858 	int pgactivate = 0;
859 	unsigned long nr_unqueued_dirty = 0;
860 	unsigned long nr_dirty = 0;
861 	unsigned long nr_congested = 0;
862 	unsigned long nr_reclaimed = 0;
863 	unsigned long nr_writeback = 0;
864 	unsigned long nr_immediate = 0;
865 
866 	cond_resched();
867 
868 	while (!list_empty(page_list)) {
869 		struct address_space *mapping;
870 		struct page *page;
871 		int may_enter_fs;
872 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
873 		bool dirty, writeback;
874 
875 		cond_resched();
876 
877 		page = lru_to_page(page_list);
878 		list_del(&page->lru);
879 
880 		if (!trylock_page(page))
881 			goto keep;
882 
883 		VM_BUG_ON_PAGE(PageActive(page), page);
884 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
885 
886 		sc->nr_scanned++;
887 
888 		if (unlikely(!page_evictable(page)))
889 			goto cull_mlocked;
890 
891 		if (!sc->may_unmap && page_mapped(page))
892 			goto keep_locked;
893 
894 		/* Double the slab pressure for mapped and swapcache pages */
895 		if (page_mapped(page) || PageSwapCache(page))
896 			sc->nr_scanned++;
897 
898 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
899 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
900 
901 		/*
902 		 * The number of dirty pages determines if a zone is marked
903 		 * reclaim_congested which affects wait_iff_congested. kswapd
904 		 * will stall and start writing pages if the tail of the LRU
905 		 * is all dirty unqueued pages.
906 		 */
907 		page_check_dirty_writeback(page, &dirty, &writeback);
908 		if (dirty || writeback)
909 			nr_dirty++;
910 
911 		if (dirty && !writeback)
912 			nr_unqueued_dirty++;
913 
914 		/*
915 		 * Treat this page as congested if the underlying BDI is or if
916 		 * pages are cycling through the LRU so quickly that the
917 		 * pages marked for immediate reclaim are making it to the
918 		 * end of the LRU a second time.
919 		 */
920 		mapping = page_mapping(page);
921 		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
922 		    (writeback && PageReclaim(page)))
923 			nr_congested++;
924 
925 		/*
926 		 * If a page at the tail of the LRU is under writeback, there
927 		 * are three cases to consider.
928 		 *
929 		 * 1) If reclaim is encountering an excessive number of pages
930 		 *    under writeback and this page is both under writeback and
931 		 *    PageReclaim then it indicates that pages are being queued
932 		 *    for IO but are being recycled through the LRU before the
933 		 *    IO can complete. Waiting on the page itself risks an
934 		 *    indefinite stall if it is impossible to writeback the
935 		 *    page due to IO error or disconnected storage so instead
936 		 *    note that the LRU is being scanned too quickly and the
937 		 *    caller can stall after page list has been processed.
938 		 *
939 		 * 2) Global reclaim encounters a page, memcg encounters a
940 		 *    page that is not marked for immediate reclaim or
941 		 *    the caller does not have __GFP_FS (or __GFP_IO if it's
942 		 *    simply going to swap, not to fs). In this case mark
943 		 *    the page for immediate reclaim and continue scanning.
944 		 *
945 		 *    Require may_enter_fs because we would wait on fs, which
946 		 *    may not have submitted IO yet. And the loop driver might
947 		 *    enter reclaim, and deadlock if it waits on a page for
948 		 *    which it is needed to do the write (loop masks off
949 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
950 		 *    would probably show more reasons.
951 		 *
952 		 * 3) memcg encounters a page that is not already marked
953 		 *    PageReclaim. memcg does not have any dirty pages
954 		 *    throttling so we could easily OOM just because too many
955 		 *    pages are in writeback and there is nothing else to
956 		 *    reclaim. Wait for the writeback to complete.
957 		 */
958 		if (PageWriteback(page)) {
959 			/* Case 1 above */
960 			if (current_is_kswapd() &&
961 			    PageReclaim(page) &&
962 			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
963 				nr_immediate++;
964 				goto keep_locked;
965 
966 			/* Case 2 above */
967 			} else if (global_reclaim(sc) ||
968 			    !PageReclaim(page) || !may_enter_fs) {
969 				/*
970 				 * This is slightly racy - end_page_writeback()
971 				 * might have just cleared PageReclaim, then
972 				 * setting PageReclaim here end up interpreted
973 				 * as PageReadahead - but that does not matter
974 				 * enough to care.  What we do want is for this
975 				 * page to have PageReclaim set next time memcg
976 				 * reclaim reaches the tests above, so it will
977 				 * then wait_on_page_writeback() to avoid OOM;
978 				 * and it's also appropriate in global reclaim.
979 				 */
980 				SetPageReclaim(page);
981 				nr_writeback++;
982 
983 				goto keep_locked;
984 
985 			/* Case 3 above */
986 			} else {
987 				wait_on_page_writeback(page);
988 			}
989 		}
990 
991 		if (!force_reclaim)
992 			references = page_check_references(page, sc);
993 
994 		switch (references) {
995 		case PAGEREF_ACTIVATE:
996 			goto activate_locked;
997 		case PAGEREF_KEEP:
998 			goto keep_locked;
999 		case PAGEREF_RECLAIM:
1000 		case PAGEREF_RECLAIM_CLEAN:
1001 			; /* try to reclaim the page below */
1002 		}
1003 
1004 		/*
1005 		 * Anonymous process memory has backing store?
1006 		 * Try to allocate it some swap space here.
1007 		 */
1008 		if (PageAnon(page) && !PageSwapCache(page)) {
1009 			if (!(sc->gfp_mask & __GFP_IO))
1010 				goto keep_locked;
1011 			if (!add_to_swap(page, page_list))
1012 				goto activate_locked;
1013 			may_enter_fs = 1;
1014 
1015 			/* Adding to swap updated mapping */
1016 			mapping = page_mapping(page);
1017 		}
1018 
1019 		/*
1020 		 * The page is mapped into the page tables of one or more
1021 		 * processes. Try to unmap it here.
1022 		 */
1023 		if (page_mapped(page) && mapping) {
1024 			switch (try_to_unmap(page, ttu_flags)) {
1025 			case SWAP_FAIL:
1026 				goto activate_locked;
1027 			case SWAP_AGAIN:
1028 				goto keep_locked;
1029 			case SWAP_MLOCK:
1030 				goto cull_mlocked;
1031 			case SWAP_SUCCESS:
1032 				; /* try to free the page below */
1033 			}
1034 		}
1035 
1036 		if (PageDirty(page)) {
1037 			/*
1038 			 * Only kswapd can writeback filesystem pages to
1039 			 * avoid risk of stack overflow but only writeback
1040 			 * if many dirty pages have been encountered.
1041 			 */
1042 			if (page_is_file_cache(page) &&
1043 					(!current_is_kswapd() ||
1044 					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1045 				/*
1046 				 * Immediately reclaim when written back.
1047 				 * Similar in principal to deactivate_page()
1048 				 * except we already have the page isolated
1049 				 * and know it's dirty
1050 				 */
1051 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1052 				SetPageReclaim(page);
1053 
1054 				goto keep_locked;
1055 			}
1056 
1057 			if (references == PAGEREF_RECLAIM_CLEAN)
1058 				goto keep_locked;
1059 			if (!may_enter_fs)
1060 				goto keep_locked;
1061 			if (!sc->may_writepage)
1062 				goto keep_locked;
1063 
1064 			/* Page is dirty, try to write it out here */
1065 			switch (pageout(page, mapping, sc)) {
1066 			case PAGE_KEEP:
1067 				goto keep_locked;
1068 			case PAGE_ACTIVATE:
1069 				goto activate_locked;
1070 			case PAGE_SUCCESS:
1071 				if (PageWriteback(page))
1072 					goto keep;
1073 				if (PageDirty(page))
1074 					goto keep;
1075 
1076 				/*
1077 				 * A synchronous write - probably a ramdisk.  Go
1078 				 * ahead and try to reclaim the page.
1079 				 */
1080 				if (!trylock_page(page))
1081 					goto keep;
1082 				if (PageDirty(page) || PageWriteback(page))
1083 					goto keep_locked;
1084 				mapping = page_mapping(page);
1085 			case PAGE_CLEAN:
1086 				; /* try to free the page below */
1087 			}
1088 		}
1089 
1090 		/*
1091 		 * If the page has buffers, try to free the buffer mappings
1092 		 * associated with this page. If we succeed we try to free
1093 		 * the page as well.
1094 		 *
1095 		 * We do this even if the page is PageDirty().
1096 		 * try_to_release_page() does not perform I/O, but it is
1097 		 * possible for a page to have PageDirty set, but it is actually
1098 		 * clean (all its buffers are clean).  This happens if the
1099 		 * buffers were written out directly, with submit_bh(). ext3
1100 		 * will do this, as well as the blockdev mapping.
1101 		 * try_to_release_page() will discover that cleanness and will
1102 		 * drop the buffers and mark the page clean - it can be freed.
1103 		 *
1104 		 * Rarely, pages can have buffers and no ->mapping.  These are
1105 		 * the pages which were not successfully invalidated in
1106 		 * truncate_complete_page().  We try to drop those buffers here
1107 		 * and if that worked, and the page is no longer mapped into
1108 		 * process address space (page_count == 1) it can be freed.
1109 		 * Otherwise, leave the page on the LRU so it is swappable.
1110 		 */
1111 		if (page_has_private(page)) {
1112 			if (!try_to_release_page(page, sc->gfp_mask))
1113 				goto activate_locked;
1114 			if (!mapping && page_count(page) == 1) {
1115 				unlock_page(page);
1116 				if (put_page_testzero(page))
1117 					goto free_it;
1118 				else {
1119 					/*
1120 					 * rare race with speculative reference.
1121 					 * the speculative reference will free
1122 					 * this page shortly, so we may
1123 					 * increment nr_reclaimed here (and
1124 					 * leave it off the LRU).
1125 					 */
1126 					nr_reclaimed++;
1127 					continue;
1128 				}
1129 			}
1130 		}
1131 
1132 		if (!mapping || !__remove_mapping(mapping, page, true))
1133 			goto keep_locked;
1134 
1135 		/*
1136 		 * At this point, we have no other references and there is
1137 		 * no way to pick any more up (removed from LRU, removed
1138 		 * from pagecache). Can use non-atomic bitops now (and
1139 		 * we obviously don't have to worry about waking up a process
1140 		 * waiting on the page lock, because there are no references.
1141 		 */
1142 		__clear_page_locked(page);
1143 free_it:
1144 		nr_reclaimed++;
1145 
1146 		/*
1147 		 * Is there need to periodically free_page_list? It would
1148 		 * appear not as the counts should be low
1149 		 */
1150 		list_add(&page->lru, &free_pages);
1151 		continue;
1152 
1153 cull_mlocked:
1154 		if (PageSwapCache(page))
1155 			try_to_free_swap(page);
1156 		unlock_page(page);
1157 		list_add(&page->lru, &ret_pages);
1158 		continue;
1159 
1160 activate_locked:
1161 		/* Not a candidate for swapping, so reclaim swap space. */
1162 		if (PageSwapCache(page) && vm_swap_full())
1163 			try_to_free_swap(page);
1164 		VM_BUG_ON_PAGE(PageActive(page), page);
1165 		SetPageActive(page);
1166 		pgactivate++;
1167 keep_locked:
1168 		unlock_page(page);
1169 keep:
1170 		list_add(&page->lru, &ret_pages);
1171 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1172 	}
1173 
1174 	mem_cgroup_uncharge_list(&free_pages);
1175 	free_hot_cold_page_list(&free_pages, true);
1176 
1177 	list_splice(&ret_pages, page_list);
1178 	count_vm_events(PGACTIVATE, pgactivate);
1179 
1180 	*ret_nr_dirty += nr_dirty;
1181 	*ret_nr_congested += nr_congested;
1182 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1183 	*ret_nr_writeback += nr_writeback;
1184 	*ret_nr_immediate += nr_immediate;
1185 	return nr_reclaimed;
1186 }
1187 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1188 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1189 					    struct list_head *page_list)
1190 {
1191 	struct scan_control sc = {
1192 		.gfp_mask = GFP_KERNEL,
1193 		.priority = DEF_PRIORITY,
1194 		.may_unmap = 1,
1195 	};
1196 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1197 	struct page *page, *next;
1198 	LIST_HEAD(clean_pages);
1199 
1200 	list_for_each_entry_safe(page, next, page_list, lru) {
1201 		if (page_is_file_cache(page) && !PageDirty(page) &&
1202 		    !isolated_balloon_page(page)) {
1203 			ClearPageActive(page);
1204 			list_move(&page->lru, &clean_pages);
1205 		}
1206 	}
1207 
1208 	ret = shrink_page_list(&clean_pages, zone, &sc,
1209 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1210 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1211 	list_splice(&clean_pages, page_list);
1212 	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1213 	return ret;
1214 }
1215 
1216 /*
1217  * Attempt to remove the specified page from its LRU.  Only take this page
1218  * if it is of the appropriate PageActive status.  Pages which are being
1219  * freed elsewhere are also ignored.
1220  *
1221  * page:	page to consider
1222  * mode:	one of the LRU isolation modes defined above
1223  *
1224  * returns 0 on success, -ve errno on failure.
1225  */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1226 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1227 {
1228 	int ret = -EINVAL;
1229 
1230 	/* Only take pages on the LRU. */
1231 	if (!PageLRU(page))
1232 		return ret;
1233 
1234 	/* Compaction should not handle unevictable pages but CMA can do so */
1235 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1236 		return ret;
1237 
1238 	ret = -EBUSY;
1239 
1240 	/*
1241 	 * To minimise LRU disruption, the caller can indicate that it only
1242 	 * wants to isolate pages it will be able to operate on without
1243 	 * blocking - clean pages for the most part.
1244 	 *
1245 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1246 	 * is used by reclaim when it is cannot write to backing storage
1247 	 *
1248 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1249 	 * that it is possible to migrate without blocking
1250 	 */
1251 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1252 		/* All the caller can do on PageWriteback is block */
1253 		if (PageWriteback(page))
1254 			return ret;
1255 
1256 		if (PageDirty(page)) {
1257 			struct address_space *mapping;
1258 
1259 			/* ISOLATE_CLEAN means only clean pages */
1260 			if (mode & ISOLATE_CLEAN)
1261 				return ret;
1262 
1263 			/*
1264 			 * Only pages without mappings or that have a
1265 			 * ->migratepage callback are possible to migrate
1266 			 * without blocking
1267 			 */
1268 			mapping = page_mapping(page);
1269 			if (mapping && !mapping->a_ops->migratepage)
1270 				return ret;
1271 		}
1272 	}
1273 
1274 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1275 		return ret;
1276 
1277 	if (likely(get_page_unless_zero(page))) {
1278 		/*
1279 		 * Be careful not to clear PageLRU until after we're
1280 		 * sure the page is not being freed elsewhere -- the
1281 		 * page release code relies on it.
1282 		 */
1283 		ClearPageLRU(page);
1284 		ret = 0;
1285 	}
1286 
1287 	return ret;
1288 }
1289 
1290 /*
1291  * zone->lru_lock is heavily contended.  Some of the functions that
1292  * shrink the lists perform better by taking out a batch of pages
1293  * and working on them outside the LRU lock.
1294  *
1295  * For pagecache intensive workloads, this function is the hottest
1296  * spot in the kernel (apart from copy_*_user functions).
1297  *
1298  * Appropriate locks must be held before calling this function.
1299  *
1300  * @nr_to_scan:	The number of pages to look through on the list.
1301  * @lruvec:	The LRU vector to pull pages from.
1302  * @dst:	The temp list to put pages on to.
1303  * @nr_scanned:	The number of pages that were scanned.
1304  * @sc:		The scan_control struct for this reclaim session
1305  * @mode:	One of the LRU isolation modes
1306  * @lru:	LRU list id for isolating
1307  *
1308  * returns how many pages were moved onto *@dst.
1309  */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,isolate_mode_t mode,enum lru_list lru)1310 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1311 		struct lruvec *lruvec, struct list_head *dst,
1312 		unsigned long *nr_scanned, struct scan_control *sc,
1313 		isolate_mode_t mode, enum lru_list lru)
1314 {
1315 	struct list_head *src = &lruvec->lists[lru];
1316 	unsigned long nr_taken = 0;
1317 	unsigned long scan;
1318 
1319 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1320 		struct page *page;
1321 		int nr_pages;
1322 
1323 		page = lru_to_page(src);
1324 		prefetchw_prev_lru_page(page, src, flags);
1325 
1326 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1327 
1328 		switch (__isolate_lru_page(page, mode)) {
1329 		case 0:
1330 			nr_pages = hpage_nr_pages(page);
1331 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1332 			list_move(&page->lru, dst);
1333 			nr_taken += nr_pages;
1334 			break;
1335 
1336 		case -EBUSY:
1337 			/* else it is being freed elsewhere */
1338 			list_move(&page->lru, src);
1339 			continue;
1340 
1341 		default:
1342 			BUG();
1343 		}
1344 	}
1345 
1346 	*nr_scanned = scan;
1347 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1348 				    nr_taken, mode, is_file_lru(lru));
1349 	return nr_taken;
1350 }
1351 
1352 /**
1353  * isolate_lru_page - tries to isolate a page from its LRU list
1354  * @page: page to isolate from its LRU list
1355  *
1356  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1357  * vmstat statistic corresponding to whatever LRU list the page was on.
1358  *
1359  * Returns 0 if the page was removed from an LRU list.
1360  * Returns -EBUSY if the page was not on an LRU list.
1361  *
1362  * The returned page will have PageLRU() cleared.  If it was found on
1363  * the active list, it will have PageActive set.  If it was found on
1364  * the unevictable list, it will have the PageUnevictable bit set. That flag
1365  * may need to be cleared by the caller before letting the page go.
1366  *
1367  * The vmstat statistic corresponding to the list on which the page was
1368  * found will be decremented.
1369  *
1370  * Restrictions:
1371  * (1) Must be called with an elevated refcount on the page. This is a
1372  *     fundamentnal difference from isolate_lru_pages (which is called
1373  *     without a stable reference).
1374  * (2) the lru_lock must not be held.
1375  * (3) interrupts must be enabled.
1376  */
isolate_lru_page(struct page * page)1377 int isolate_lru_page(struct page *page)
1378 {
1379 	int ret = -EBUSY;
1380 
1381 	VM_BUG_ON_PAGE(!page_count(page), page);
1382 
1383 	if (PageLRU(page)) {
1384 		struct zone *zone = page_zone(page);
1385 		struct lruvec *lruvec;
1386 
1387 		spin_lock_irq(&zone->lru_lock);
1388 		lruvec = mem_cgroup_page_lruvec(page, zone);
1389 		if (PageLRU(page)) {
1390 			int lru = page_lru(page);
1391 			get_page(page);
1392 			ClearPageLRU(page);
1393 			del_page_from_lru_list(page, lruvec, lru);
1394 			ret = 0;
1395 		}
1396 		spin_unlock_irq(&zone->lru_lock);
1397 	}
1398 	return ret;
1399 }
1400 
1401 /*
1402  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1403  * then get resheduled. When there are massive number of tasks doing page
1404  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1405  * the LRU list will go small and be scanned faster than necessary, leading to
1406  * unnecessary swapping, thrashing and OOM.
1407  */
too_many_isolated(struct zone * zone,int file,struct scan_control * sc)1408 static int too_many_isolated(struct zone *zone, int file,
1409 		struct scan_control *sc)
1410 {
1411 	unsigned long inactive, isolated;
1412 
1413 	if (current_is_kswapd())
1414 		return 0;
1415 
1416 	if (!global_reclaim(sc))
1417 		return 0;
1418 
1419 	if (file) {
1420 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1421 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1422 	} else {
1423 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1424 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1425 	}
1426 
1427 	/*
1428 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1429 	 * won't get blocked by normal direct-reclaimers, forming a circular
1430 	 * deadlock.
1431 	 */
1432 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1433 		inactive >>= 3;
1434 
1435 	return isolated > inactive;
1436 }
1437 
1438 static noinline_for_stack void
putback_inactive_pages(struct lruvec * lruvec,struct list_head * page_list)1439 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1440 {
1441 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1442 	struct zone *zone = lruvec_zone(lruvec);
1443 	LIST_HEAD(pages_to_free);
1444 
1445 	/*
1446 	 * Put back any unfreeable pages.
1447 	 */
1448 	while (!list_empty(page_list)) {
1449 		struct page *page = lru_to_page(page_list);
1450 		int lru;
1451 
1452 		VM_BUG_ON_PAGE(PageLRU(page), page);
1453 		list_del(&page->lru);
1454 		if (unlikely(!page_evictable(page))) {
1455 			spin_unlock_irq(&zone->lru_lock);
1456 			putback_lru_page(page);
1457 			spin_lock_irq(&zone->lru_lock);
1458 			continue;
1459 		}
1460 
1461 		lruvec = mem_cgroup_page_lruvec(page, zone);
1462 
1463 		SetPageLRU(page);
1464 		lru = page_lru(page);
1465 		add_page_to_lru_list(page, lruvec, lru);
1466 
1467 		if (is_active_lru(lru)) {
1468 			int file = is_file_lru(lru);
1469 			int numpages = hpage_nr_pages(page);
1470 			reclaim_stat->recent_rotated[file] += numpages;
1471 		}
1472 		if (put_page_testzero(page)) {
1473 			__ClearPageLRU(page);
1474 			__ClearPageActive(page);
1475 			del_page_from_lru_list(page, lruvec, lru);
1476 
1477 			if (unlikely(PageCompound(page))) {
1478 				spin_unlock_irq(&zone->lru_lock);
1479 				mem_cgroup_uncharge(page);
1480 				(*get_compound_page_dtor(page))(page);
1481 				spin_lock_irq(&zone->lru_lock);
1482 			} else
1483 				list_add(&page->lru, &pages_to_free);
1484 		}
1485 	}
1486 
1487 	/*
1488 	 * To save our caller's stack, now use input list for pages to free.
1489 	 */
1490 	list_splice(&pages_to_free, page_list);
1491 }
1492 
1493 /*
1494  * If a kernel thread (such as nfsd for loop-back mounts) services
1495  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1496  * In that case we should only throttle if the backing device it is
1497  * writing to is congested.  In other cases it is safe to throttle.
1498  */
current_may_throttle(void)1499 static int current_may_throttle(void)
1500 {
1501 	return !(current->flags & PF_LESS_THROTTLE) ||
1502 		current->backing_dev_info == NULL ||
1503 		bdi_write_congested(current->backing_dev_info);
1504 }
1505 
1506 /*
1507  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1508  * of reclaimed pages
1509  */
1510 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1511 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1512 		     struct scan_control *sc, enum lru_list lru)
1513 {
1514 	LIST_HEAD(page_list);
1515 	unsigned long nr_scanned;
1516 	unsigned long nr_reclaimed = 0;
1517 	unsigned long nr_taken;
1518 	unsigned long nr_dirty = 0;
1519 	unsigned long nr_congested = 0;
1520 	unsigned long nr_unqueued_dirty = 0;
1521 	unsigned long nr_writeback = 0;
1522 	unsigned long nr_immediate = 0;
1523 	isolate_mode_t isolate_mode = 0;
1524 	int file = is_file_lru(lru);
1525 	struct zone *zone = lruvec_zone(lruvec);
1526 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1527 
1528 	while (unlikely(too_many_isolated(zone, file, sc))) {
1529 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1530 
1531 		/* We are about to die and free our memory. Return now. */
1532 		if (fatal_signal_pending(current))
1533 			return SWAP_CLUSTER_MAX;
1534 	}
1535 
1536 	lru_add_drain();
1537 
1538 	if (!sc->may_unmap)
1539 		isolate_mode |= ISOLATE_UNMAPPED;
1540 	if (!sc->may_writepage)
1541 		isolate_mode |= ISOLATE_CLEAN;
1542 
1543 	spin_lock_irq(&zone->lru_lock);
1544 
1545 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1546 				     &nr_scanned, sc, isolate_mode, lru);
1547 
1548 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1549 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1550 
1551 	if (global_reclaim(sc)) {
1552 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1553 		if (current_is_kswapd())
1554 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1555 		else
1556 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1557 	}
1558 	spin_unlock_irq(&zone->lru_lock);
1559 
1560 	if (nr_taken == 0)
1561 		return 0;
1562 
1563 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1564 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1565 				&nr_writeback, &nr_immediate,
1566 				false);
1567 
1568 	spin_lock_irq(&zone->lru_lock);
1569 
1570 	reclaim_stat->recent_scanned[file] += nr_taken;
1571 
1572 	if (global_reclaim(sc)) {
1573 		if (current_is_kswapd())
1574 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1575 					       nr_reclaimed);
1576 		else
1577 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1578 					       nr_reclaimed);
1579 	}
1580 
1581 	putback_inactive_pages(lruvec, &page_list);
1582 
1583 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1584 
1585 	spin_unlock_irq(&zone->lru_lock);
1586 
1587 	mem_cgroup_uncharge_list(&page_list);
1588 	free_hot_cold_page_list(&page_list, true);
1589 
1590 	/*
1591 	 * If reclaim is isolating dirty pages under writeback, it implies
1592 	 * that the long-lived page allocation rate is exceeding the page
1593 	 * laundering rate. Either the global limits are not being effective
1594 	 * at throttling processes due to the page distribution throughout
1595 	 * zones or there is heavy usage of a slow backing device. The
1596 	 * only option is to throttle from reclaim context which is not ideal
1597 	 * as there is no guarantee the dirtying process is throttled in the
1598 	 * same way balance_dirty_pages() manages.
1599 	 *
1600 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1601 	 * of pages under pages flagged for immediate reclaim and stall if any
1602 	 * are encountered in the nr_immediate check below.
1603 	 */
1604 	if (nr_writeback && nr_writeback == nr_taken)
1605 		set_bit(ZONE_WRITEBACK, &zone->flags);
1606 
1607 	/*
1608 	 * memcg will stall in page writeback so only consider forcibly
1609 	 * stalling for global reclaim
1610 	 */
1611 	if (global_reclaim(sc)) {
1612 		/*
1613 		 * Tag a zone as congested if all the dirty pages scanned were
1614 		 * backed by a congested BDI and wait_iff_congested will stall.
1615 		 */
1616 		if (nr_dirty && nr_dirty == nr_congested)
1617 			set_bit(ZONE_CONGESTED, &zone->flags);
1618 
1619 		/*
1620 		 * If dirty pages are scanned that are not queued for IO, it
1621 		 * implies that flushers are not keeping up. In this case, flag
1622 		 * the zone ZONE_DIRTY and kswapd will start writing pages from
1623 		 * reclaim context.
1624 		 */
1625 		if (nr_unqueued_dirty == nr_taken)
1626 			set_bit(ZONE_DIRTY, &zone->flags);
1627 
1628 		/*
1629 		 * If kswapd scans pages marked marked for immediate
1630 		 * reclaim and under writeback (nr_immediate), it implies
1631 		 * that pages are cycling through the LRU faster than
1632 		 * they are written so also forcibly stall.
1633 		 */
1634 		if (nr_immediate && current_may_throttle())
1635 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1636 	}
1637 
1638 	/*
1639 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1640 	 * is congested. Allow kswapd to continue until it starts encountering
1641 	 * unqueued dirty pages or cycling through the LRU too quickly.
1642 	 */
1643 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1644 	    current_may_throttle())
1645 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1646 
1647 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1648 		zone_idx(zone),
1649 		nr_scanned, nr_reclaimed,
1650 		sc->priority,
1651 		trace_shrink_flags(file));
1652 	return nr_reclaimed;
1653 }
1654 
1655 /*
1656  * This moves pages from the active list to the inactive list.
1657  *
1658  * We move them the other way if the page is referenced by one or more
1659  * processes, from rmap.
1660  *
1661  * If the pages are mostly unmapped, the processing is fast and it is
1662  * appropriate to hold zone->lru_lock across the whole operation.  But if
1663  * the pages are mapped, the processing is slow (page_referenced()) so we
1664  * should drop zone->lru_lock around each page.  It's impossible to balance
1665  * this, so instead we remove the pages from the LRU while processing them.
1666  * It is safe to rely on PG_active against the non-LRU pages in here because
1667  * nobody will play with that bit on a non-LRU page.
1668  *
1669  * The downside is that we have to touch page->_count against each page.
1670  * But we had to alter page->flags anyway.
1671  */
1672 
move_active_pages_to_lru(struct lruvec * lruvec,struct list_head * list,struct list_head * pages_to_free,enum lru_list lru)1673 static void move_active_pages_to_lru(struct lruvec *lruvec,
1674 				     struct list_head *list,
1675 				     struct list_head *pages_to_free,
1676 				     enum lru_list lru)
1677 {
1678 	struct zone *zone = lruvec_zone(lruvec);
1679 	unsigned long pgmoved = 0;
1680 	struct page *page;
1681 	int nr_pages;
1682 
1683 	while (!list_empty(list)) {
1684 		page = lru_to_page(list);
1685 		lruvec = mem_cgroup_page_lruvec(page, zone);
1686 
1687 		VM_BUG_ON_PAGE(PageLRU(page), page);
1688 		SetPageLRU(page);
1689 
1690 		nr_pages = hpage_nr_pages(page);
1691 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1692 		list_move(&page->lru, &lruvec->lists[lru]);
1693 		pgmoved += nr_pages;
1694 
1695 		if (put_page_testzero(page)) {
1696 			__ClearPageLRU(page);
1697 			__ClearPageActive(page);
1698 			del_page_from_lru_list(page, lruvec, lru);
1699 
1700 			if (unlikely(PageCompound(page))) {
1701 				spin_unlock_irq(&zone->lru_lock);
1702 				mem_cgroup_uncharge(page);
1703 				(*get_compound_page_dtor(page))(page);
1704 				spin_lock_irq(&zone->lru_lock);
1705 			} else
1706 				list_add(&page->lru, pages_to_free);
1707 		}
1708 	}
1709 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1710 	if (!is_active_lru(lru))
1711 		__count_vm_events(PGDEACTIVATE, pgmoved);
1712 }
1713 
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1714 static void shrink_active_list(unsigned long nr_to_scan,
1715 			       struct lruvec *lruvec,
1716 			       struct scan_control *sc,
1717 			       enum lru_list lru)
1718 {
1719 	unsigned long nr_taken;
1720 	unsigned long nr_scanned;
1721 	unsigned long vm_flags;
1722 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1723 	LIST_HEAD(l_active);
1724 	LIST_HEAD(l_inactive);
1725 	struct page *page;
1726 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1727 	unsigned long nr_rotated = 0;
1728 	isolate_mode_t isolate_mode = 0;
1729 	int file = is_file_lru(lru);
1730 	struct zone *zone = lruvec_zone(lruvec);
1731 
1732 	lru_add_drain();
1733 
1734 	if (!sc->may_unmap)
1735 		isolate_mode |= ISOLATE_UNMAPPED;
1736 	if (!sc->may_writepage)
1737 		isolate_mode |= ISOLATE_CLEAN;
1738 
1739 	spin_lock_irq(&zone->lru_lock);
1740 
1741 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1742 				     &nr_scanned, sc, isolate_mode, lru);
1743 	if (global_reclaim(sc))
1744 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1745 
1746 	reclaim_stat->recent_scanned[file] += nr_taken;
1747 
1748 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1749 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1750 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1751 	spin_unlock_irq(&zone->lru_lock);
1752 
1753 	while (!list_empty(&l_hold)) {
1754 		cond_resched();
1755 		page = lru_to_page(&l_hold);
1756 		list_del(&page->lru);
1757 
1758 		if (unlikely(!page_evictable(page))) {
1759 			putback_lru_page(page);
1760 			continue;
1761 		}
1762 
1763 		if (unlikely(buffer_heads_over_limit)) {
1764 			if (page_has_private(page) && trylock_page(page)) {
1765 				if (page_has_private(page))
1766 					try_to_release_page(page, 0);
1767 				unlock_page(page);
1768 			}
1769 		}
1770 
1771 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1772 				    &vm_flags)) {
1773 			nr_rotated += hpage_nr_pages(page);
1774 			/*
1775 			 * Identify referenced, file-backed active pages and
1776 			 * give them one more trip around the active list. So
1777 			 * that executable code get better chances to stay in
1778 			 * memory under moderate memory pressure.  Anon pages
1779 			 * are not likely to be evicted by use-once streaming
1780 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1781 			 * so we ignore them here.
1782 			 */
1783 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1784 				list_add(&page->lru, &l_active);
1785 				continue;
1786 			}
1787 		}
1788 
1789 		ClearPageActive(page);	/* we are de-activating */
1790 		list_add(&page->lru, &l_inactive);
1791 	}
1792 
1793 	/*
1794 	 * Move pages back to the lru list.
1795 	 */
1796 	spin_lock_irq(&zone->lru_lock);
1797 	/*
1798 	 * Count referenced pages from currently used mappings as rotated,
1799 	 * even though only some of them are actually re-activated.  This
1800 	 * helps balance scan pressure between file and anonymous pages in
1801 	 * get_scan_count.
1802 	 */
1803 	reclaim_stat->recent_rotated[file] += nr_rotated;
1804 
1805 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1806 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1807 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1808 	spin_unlock_irq(&zone->lru_lock);
1809 
1810 	mem_cgroup_uncharge_list(&l_hold);
1811 	free_hot_cold_page_list(&l_hold, true);
1812 }
1813 
1814 #ifdef CONFIG_SWAP
inactive_anon_is_low_global(struct zone * zone)1815 static int inactive_anon_is_low_global(struct zone *zone)
1816 {
1817 	unsigned long active, inactive;
1818 
1819 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1820 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1821 
1822 	if (inactive * zone->inactive_ratio < active)
1823 		return 1;
1824 
1825 	return 0;
1826 }
1827 
1828 /**
1829  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1830  * @lruvec: LRU vector to check
1831  *
1832  * Returns true if the zone does not have enough inactive anon pages,
1833  * meaning some active anon pages need to be deactivated.
1834  */
inactive_anon_is_low(struct lruvec * lruvec)1835 static int inactive_anon_is_low(struct lruvec *lruvec)
1836 {
1837 	/*
1838 	 * If we don't have swap space, anonymous page deactivation
1839 	 * is pointless.
1840 	 */
1841 	if (!total_swap_pages)
1842 		return 0;
1843 
1844 	if (!mem_cgroup_disabled())
1845 		return mem_cgroup_inactive_anon_is_low(lruvec);
1846 
1847 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1848 }
1849 #else
inactive_anon_is_low(struct lruvec * lruvec)1850 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1851 {
1852 	return 0;
1853 }
1854 #endif
1855 
1856 /**
1857  * inactive_file_is_low - check if file pages need to be deactivated
1858  * @lruvec: LRU vector to check
1859  *
1860  * When the system is doing streaming IO, memory pressure here
1861  * ensures that active file pages get deactivated, until more
1862  * than half of the file pages are on the inactive list.
1863  *
1864  * Once we get to that situation, protect the system's working
1865  * set from being evicted by disabling active file page aging.
1866  *
1867  * This uses a different ratio than the anonymous pages, because
1868  * the page cache uses a use-once replacement algorithm.
1869  */
inactive_file_is_low(struct lruvec * lruvec)1870 static int inactive_file_is_low(struct lruvec *lruvec)
1871 {
1872 	unsigned long inactive;
1873 	unsigned long active;
1874 
1875 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1876 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1877 
1878 	return active > inactive;
1879 }
1880 
inactive_list_is_low(struct lruvec * lruvec,enum lru_list lru)1881 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1882 {
1883 	if (is_file_lru(lru))
1884 		return inactive_file_is_low(lruvec);
1885 	else
1886 		return inactive_anon_is_low(lruvec);
1887 }
1888 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)1889 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1890 				 struct lruvec *lruvec, struct scan_control *sc)
1891 {
1892 	if (is_active_lru(lru)) {
1893 		if (inactive_list_is_low(lruvec, lru))
1894 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1895 		return 0;
1896 	}
1897 
1898 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1899 }
1900 
1901 enum scan_balance {
1902 	SCAN_EQUAL,
1903 	SCAN_FRACT,
1904 	SCAN_ANON,
1905 	SCAN_FILE,
1906 };
1907 
1908 /*
1909  * Determine how aggressively the anon and file LRU lists should be
1910  * scanned.  The relative value of each set of LRU lists is determined
1911  * by looking at the fraction of the pages scanned we did rotate back
1912  * onto the active list instead of evict.
1913  *
1914  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1915  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1916  */
get_scan_count(struct lruvec * lruvec,int swappiness,struct scan_control * sc,unsigned long * nr)1917 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1918 			   struct scan_control *sc, unsigned long *nr)
1919 {
1920 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1921 	u64 fraction[2];
1922 	u64 denominator = 0;	/* gcc */
1923 	struct zone *zone = lruvec_zone(lruvec);
1924 	unsigned long anon_prio, file_prio;
1925 	enum scan_balance scan_balance;
1926 	unsigned long anon, file;
1927 	bool force_scan = false;
1928 	unsigned long ap, fp;
1929 	enum lru_list lru;
1930 	bool some_scanned;
1931 	int pass;
1932 
1933 	/*
1934 	 * If the zone or memcg is small, nr[l] can be 0.  This
1935 	 * results in no scanning on this priority and a potential
1936 	 * priority drop.  Global direct reclaim can go to the next
1937 	 * zone and tends to have no problems. Global kswapd is for
1938 	 * zone balancing and it needs to scan a minimum amount. When
1939 	 * reclaiming for a memcg, a priority drop can cause high
1940 	 * latencies, so it's better to scan a minimum amount there as
1941 	 * well.
1942 	 */
1943 	if (current_is_kswapd() && !zone_reclaimable(zone))
1944 		force_scan = true;
1945 	if (!global_reclaim(sc))
1946 		force_scan = true;
1947 
1948 	/* If we have no swap space, do not bother scanning anon pages. */
1949 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1950 		scan_balance = SCAN_FILE;
1951 		goto out;
1952 	}
1953 
1954 	/*
1955 	 * Global reclaim will swap to prevent OOM even with no
1956 	 * swappiness, but memcg users want to use this knob to
1957 	 * disable swapping for individual groups completely when
1958 	 * using the memory controller's swap limit feature would be
1959 	 * too expensive.
1960 	 */
1961 	if (!global_reclaim(sc) && !swappiness) {
1962 		scan_balance = SCAN_FILE;
1963 		goto out;
1964 	}
1965 
1966 	/*
1967 	 * Do not apply any pressure balancing cleverness when the
1968 	 * system is close to OOM, scan both anon and file equally
1969 	 * (unless the swappiness setting disagrees with swapping).
1970 	 */
1971 	if (!sc->priority && swappiness) {
1972 		scan_balance = SCAN_EQUAL;
1973 		goto out;
1974 	}
1975 
1976 	/*
1977 	 * Prevent the reclaimer from falling into the cache trap: as
1978 	 * cache pages start out inactive, every cache fault will tip
1979 	 * the scan balance towards the file LRU.  And as the file LRU
1980 	 * shrinks, so does the window for rotation from references.
1981 	 * This means we have a runaway feedback loop where a tiny
1982 	 * thrashing file LRU becomes infinitely more attractive than
1983 	 * anon pages.  Try to detect this based on file LRU size.
1984 	 */
1985 	if (global_reclaim(sc)) {
1986 		unsigned long zonefile;
1987 		unsigned long zonefree;
1988 
1989 		zonefree = zone_page_state(zone, NR_FREE_PAGES);
1990 		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
1991 			   zone_page_state(zone, NR_INACTIVE_FILE);
1992 
1993 		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
1994 			scan_balance = SCAN_ANON;
1995 			goto out;
1996 		}
1997 	}
1998 
1999 	/*
2000 	 * There is enough inactive page cache, do not reclaim
2001 	 * anything from the anonymous working set right now.
2002 	 */
2003 	if (!inactive_file_is_low(lruvec)) {
2004 		scan_balance = SCAN_FILE;
2005 		goto out;
2006 	}
2007 
2008 	scan_balance = SCAN_FRACT;
2009 
2010 	/*
2011 	 * With swappiness at 100, anonymous and file have the same priority.
2012 	 * This scanning priority is essentially the inverse of IO cost.
2013 	 */
2014 	anon_prio = swappiness;
2015 	file_prio = 200 - anon_prio;
2016 
2017 	/*
2018 	 * OK, so we have swap space and a fair amount of page cache
2019 	 * pages.  We use the recently rotated / recently scanned
2020 	 * ratios to determine how valuable each cache is.
2021 	 *
2022 	 * Because workloads change over time (and to avoid overflow)
2023 	 * we keep these statistics as a floating average, which ends
2024 	 * up weighing recent references more than old ones.
2025 	 *
2026 	 * anon in [0], file in [1]
2027 	 */
2028 
2029 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2030 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
2031 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2032 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
2033 
2034 	spin_lock_irq(&zone->lru_lock);
2035 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2036 		reclaim_stat->recent_scanned[0] /= 2;
2037 		reclaim_stat->recent_rotated[0] /= 2;
2038 	}
2039 
2040 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2041 		reclaim_stat->recent_scanned[1] /= 2;
2042 		reclaim_stat->recent_rotated[1] /= 2;
2043 	}
2044 
2045 	/*
2046 	 * The amount of pressure on anon vs file pages is inversely
2047 	 * proportional to the fraction of recently scanned pages on
2048 	 * each list that were recently referenced and in active use.
2049 	 */
2050 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2051 	ap /= reclaim_stat->recent_rotated[0] + 1;
2052 
2053 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2054 	fp /= reclaim_stat->recent_rotated[1] + 1;
2055 	spin_unlock_irq(&zone->lru_lock);
2056 
2057 	fraction[0] = ap;
2058 	fraction[1] = fp;
2059 	denominator = ap + fp + 1;
2060 out:
2061 	some_scanned = false;
2062 	/* Only use force_scan on second pass. */
2063 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2064 		for_each_evictable_lru(lru) {
2065 			int file = is_file_lru(lru);
2066 			unsigned long size;
2067 			unsigned long scan;
2068 
2069 			size = get_lru_size(lruvec, lru);
2070 			scan = size >> sc->priority;
2071 
2072 			if (!scan && pass && force_scan)
2073 				scan = min(size, SWAP_CLUSTER_MAX);
2074 
2075 			switch (scan_balance) {
2076 			case SCAN_EQUAL:
2077 				/* Scan lists relative to size */
2078 				break;
2079 			case SCAN_FRACT:
2080 				/*
2081 				 * Scan types proportional to swappiness and
2082 				 * their relative recent reclaim efficiency.
2083 				 */
2084 				scan = div64_u64(scan * fraction[file],
2085 							denominator);
2086 				break;
2087 			case SCAN_FILE:
2088 			case SCAN_ANON:
2089 				/* Scan one type exclusively */
2090 				if ((scan_balance == SCAN_FILE) != file)
2091 					scan = 0;
2092 				break;
2093 			default:
2094 				/* Look ma, no brain */
2095 				BUG();
2096 			}
2097 			nr[lru] = scan;
2098 			/*
2099 			 * Skip the second pass and don't force_scan,
2100 			 * if we found something to scan.
2101 			 */
2102 			some_scanned |= !!scan;
2103 		}
2104 	}
2105 }
2106 
2107 /*
2108  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2109  */
shrink_lruvec(struct lruvec * lruvec,int swappiness,struct scan_control * sc)2110 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2111 			  struct scan_control *sc)
2112 {
2113 	unsigned long nr[NR_LRU_LISTS];
2114 	unsigned long targets[NR_LRU_LISTS];
2115 	unsigned long nr_to_scan;
2116 	enum lru_list lru;
2117 	unsigned long nr_reclaimed = 0;
2118 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2119 	struct blk_plug plug;
2120 	bool scan_adjusted;
2121 
2122 	get_scan_count(lruvec, swappiness, sc, nr);
2123 
2124 	/* Record the original scan target for proportional adjustments later */
2125 	memcpy(targets, nr, sizeof(nr));
2126 
2127 	/*
2128 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2129 	 * event that can occur when there is little memory pressure e.g.
2130 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2131 	 * when the requested number of pages are reclaimed when scanning at
2132 	 * DEF_PRIORITY on the assumption that the fact we are direct
2133 	 * reclaiming implies that kswapd is not keeping up and it is best to
2134 	 * do a batch of work at once. For memcg reclaim one check is made to
2135 	 * abort proportional reclaim if either the file or anon lru has already
2136 	 * dropped to zero at the first pass.
2137 	 */
2138 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2139 			 sc->priority == DEF_PRIORITY);
2140 
2141 	blk_start_plug(&plug);
2142 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2143 					nr[LRU_INACTIVE_FILE]) {
2144 		unsigned long nr_anon, nr_file, percentage;
2145 		unsigned long nr_scanned;
2146 
2147 		for_each_evictable_lru(lru) {
2148 			if (nr[lru]) {
2149 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2150 				nr[lru] -= nr_to_scan;
2151 
2152 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2153 							    lruvec, sc);
2154 			}
2155 		}
2156 
2157 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2158 			continue;
2159 
2160 		/*
2161 		 * For kswapd and memcg, reclaim at least the number of pages
2162 		 * requested. Ensure that the anon and file LRUs are scanned
2163 		 * proportionally what was requested by get_scan_count(). We
2164 		 * stop reclaiming one LRU and reduce the amount scanning
2165 		 * proportional to the original scan target.
2166 		 */
2167 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2168 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2169 
2170 		/*
2171 		 * It's just vindictive to attack the larger once the smaller
2172 		 * has gone to zero.  And given the way we stop scanning the
2173 		 * smaller below, this makes sure that we only make one nudge
2174 		 * towards proportionality once we've got nr_to_reclaim.
2175 		 */
2176 		if (!nr_file || !nr_anon)
2177 			break;
2178 
2179 		if (nr_file > nr_anon) {
2180 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2181 						targets[LRU_ACTIVE_ANON] + 1;
2182 			lru = LRU_BASE;
2183 			percentage = nr_anon * 100 / scan_target;
2184 		} else {
2185 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2186 						targets[LRU_ACTIVE_FILE] + 1;
2187 			lru = LRU_FILE;
2188 			percentage = nr_file * 100 / scan_target;
2189 		}
2190 
2191 		/* Stop scanning the smaller of the LRU */
2192 		nr[lru] = 0;
2193 		nr[lru + LRU_ACTIVE] = 0;
2194 
2195 		/*
2196 		 * Recalculate the other LRU scan count based on its original
2197 		 * scan target and the percentage scanning already complete
2198 		 */
2199 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2200 		nr_scanned = targets[lru] - nr[lru];
2201 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2202 		nr[lru] -= min(nr[lru], nr_scanned);
2203 
2204 		lru += LRU_ACTIVE;
2205 		nr_scanned = targets[lru] - nr[lru];
2206 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2207 		nr[lru] -= min(nr[lru], nr_scanned);
2208 
2209 		scan_adjusted = true;
2210 	}
2211 	blk_finish_plug(&plug);
2212 	sc->nr_reclaimed += nr_reclaimed;
2213 
2214 	/*
2215 	 * Even if we did not try to evict anon pages at all, we want to
2216 	 * rebalance the anon lru active/inactive ratio.
2217 	 */
2218 	if (inactive_anon_is_low(lruvec))
2219 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2220 				   sc, LRU_ACTIVE_ANON);
2221 
2222 	throttle_vm_writeout(sc->gfp_mask);
2223 }
2224 
2225 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2226 static bool in_reclaim_compaction(struct scan_control *sc)
2227 {
2228 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2229 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2230 			 sc->priority < DEF_PRIORITY - 2))
2231 		return true;
2232 
2233 	return false;
2234 }
2235 
2236 /*
2237  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2238  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2239  * true if more pages should be reclaimed such that when the page allocator
2240  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2241  * It will give up earlier than that if there is difficulty reclaiming pages.
2242  */
should_continue_reclaim(struct zone * zone,unsigned long nr_reclaimed,unsigned long nr_scanned,struct scan_control * sc)2243 static inline bool should_continue_reclaim(struct zone *zone,
2244 					unsigned long nr_reclaimed,
2245 					unsigned long nr_scanned,
2246 					struct scan_control *sc)
2247 {
2248 	unsigned long pages_for_compaction;
2249 	unsigned long inactive_lru_pages;
2250 
2251 	/* If not in reclaim/compaction mode, stop */
2252 	if (!in_reclaim_compaction(sc))
2253 		return false;
2254 
2255 	/* Consider stopping depending on scan and reclaim activity */
2256 	if (sc->gfp_mask & __GFP_REPEAT) {
2257 		/*
2258 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2259 		 * full LRU list has been scanned and we are still failing
2260 		 * to reclaim pages. This full LRU scan is potentially
2261 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2262 		 */
2263 		if (!nr_reclaimed && !nr_scanned)
2264 			return false;
2265 	} else {
2266 		/*
2267 		 * For non-__GFP_REPEAT allocations which can presumably
2268 		 * fail without consequence, stop if we failed to reclaim
2269 		 * any pages from the last SWAP_CLUSTER_MAX number of
2270 		 * pages that were scanned. This will return to the
2271 		 * caller faster at the risk reclaim/compaction and
2272 		 * the resulting allocation attempt fails
2273 		 */
2274 		if (!nr_reclaimed)
2275 			return false;
2276 	}
2277 
2278 	/*
2279 	 * If we have not reclaimed enough pages for compaction and the
2280 	 * inactive lists are large enough, continue reclaiming
2281 	 */
2282 	pages_for_compaction = (2UL << sc->order);
2283 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2284 	if (get_nr_swap_pages() > 0)
2285 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2286 	if (sc->nr_reclaimed < pages_for_compaction &&
2287 			inactive_lru_pages > pages_for_compaction)
2288 		return true;
2289 
2290 	/* If compaction would go ahead or the allocation would succeed, stop */
2291 	switch (compaction_suitable(zone, sc->order)) {
2292 	case COMPACT_PARTIAL:
2293 	case COMPACT_CONTINUE:
2294 		return false;
2295 	default:
2296 		return true;
2297 	}
2298 }
2299 
shrink_zone(struct zone * zone,struct scan_control * sc)2300 static bool shrink_zone(struct zone *zone, struct scan_control *sc)
2301 {
2302 	unsigned long nr_reclaimed, nr_scanned;
2303 	bool reclaimable = false;
2304 
2305 	do {
2306 		struct mem_cgroup *root = sc->target_mem_cgroup;
2307 		struct mem_cgroup_reclaim_cookie reclaim = {
2308 			.zone = zone,
2309 			.priority = sc->priority,
2310 		};
2311 		struct mem_cgroup *memcg;
2312 
2313 		nr_reclaimed = sc->nr_reclaimed;
2314 		nr_scanned = sc->nr_scanned;
2315 
2316 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2317 		do {
2318 			struct lruvec *lruvec;
2319 			int swappiness;
2320 
2321 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2322 			swappiness = mem_cgroup_swappiness(memcg);
2323 
2324 			shrink_lruvec(lruvec, swappiness, sc);
2325 
2326 			/*
2327 			 * Direct reclaim and kswapd have to scan all memory
2328 			 * cgroups to fulfill the overall scan target for the
2329 			 * zone.
2330 			 *
2331 			 * Limit reclaim, on the other hand, only cares about
2332 			 * nr_to_reclaim pages to be reclaimed and it will
2333 			 * retry with decreasing priority if one round over the
2334 			 * whole hierarchy is not sufficient.
2335 			 */
2336 			if (!global_reclaim(sc) &&
2337 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2338 				mem_cgroup_iter_break(root, memcg);
2339 				break;
2340 			}
2341 			memcg = mem_cgroup_iter(root, memcg, &reclaim);
2342 		} while (memcg);
2343 
2344 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2345 			   sc->nr_scanned - nr_scanned,
2346 			   sc->nr_reclaimed - nr_reclaimed);
2347 
2348 		if (sc->nr_reclaimed - nr_reclaimed)
2349 			reclaimable = true;
2350 
2351 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2352 					 sc->nr_scanned - nr_scanned, sc));
2353 
2354 	return reclaimable;
2355 }
2356 
2357 /*
2358  * Returns true if compaction should go ahead for a high-order request, or
2359  * the high-order allocation would succeed without compaction.
2360  */
compaction_ready(struct zone * zone,int order)2361 static inline bool compaction_ready(struct zone *zone, int order)
2362 {
2363 	unsigned long balance_gap, watermark;
2364 	bool watermark_ok;
2365 
2366 	/*
2367 	 * Compaction takes time to run and there are potentially other
2368 	 * callers using the pages just freed. Continue reclaiming until
2369 	 * there is a buffer of free pages available to give compaction
2370 	 * a reasonable chance of completing and allocating the page
2371 	 */
2372 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2373 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2374 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2375 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2376 
2377 	/*
2378 	 * If compaction is deferred, reclaim up to a point where
2379 	 * compaction will have a chance of success when re-enabled
2380 	 */
2381 	if (compaction_deferred(zone, order))
2382 		return watermark_ok;
2383 
2384 	/*
2385 	 * If compaction is not ready to start and allocation is not likely
2386 	 * to succeed without it, then keep reclaiming.
2387 	 */
2388 	if (compaction_suitable(zone, order) == COMPACT_SKIPPED)
2389 		return false;
2390 
2391 	return watermark_ok;
2392 }
2393 
2394 /*
2395  * This is the direct reclaim path, for page-allocating processes.  We only
2396  * try to reclaim pages from zones which will satisfy the caller's allocation
2397  * request.
2398  *
2399  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2400  * Because:
2401  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2402  *    allocation or
2403  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2404  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2405  *    zone defense algorithm.
2406  *
2407  * If a zone is deemed to be full of pinned pages then just give it a light
2408  * scan then give up on it.
2409  *
2410  * Returns true if a zone was reclaimable.
2411  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2412 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2413 {
2414 	struct zoneref *z;
2415 	struct zone *zone;
2416 	unsigned long nr_soft_reclaimed;
2417 	unsigned long nr_soft_scanned;
2418 	unsigned long lru_pages = 0;
2419 	struct reclaim_state *reclaim_state = current->reclaim_state;
2420 	gfp_t orig_mask;
2421 	struct shrink_control shrink = {
2422 		.gfp_mask = sc->gfp_mask,
2423 	};
2424 	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2425 	bool reclaimable = false;
2426 
2427 	/*
2428 	 * If the number of buffer_heads in the machine exceeds the maximum
2429 	 * allowed level, force direct reclaim to scan the highmem zone as
2430 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2431 	 */
2432 	orig_mask = sc->gfp_mask;
2433 	if (buffer_heads_over_limit)
2434 		sc->gfp_mask |= __GFP_HIGHMEM;
2435 
2436 	nodes_clear(shrink.nodes_to_scan);
2437 
2438 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2439 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2440 		if (!populated_zone(zone))
2441 			continue;
2442 		/*
2443 		 * Take care memory controller reclaiming has small influence
2444 		 * to global LRU.
2445 		 */
2446 		if (global_reclaim(sc)) {
2447 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2448 				continue;
2449 
2450 			lru_pages += zone_reclaimable_pages(zone);
2451 			node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2452 
2453 			if (sc->priority != DEF_PRIORITY &&
2454 			    !zone_reclaimable(zone))
2455 				continue;	/* Let kswapd poll it */
2456 
2457 			/*
2458 			 * If we already have plenty of memory free for
2459 			 * compaction in this zone, don't free any more.
2460 			 * Even though compaction is invoked for any
2461 			 * non-zero order, only frequent costly order
2462 			 * reclamation is disruptive enough to become a
2463 			 * noticeable problem, like transparent huge
2464 			 * page allocations.
2465 			 */
2466 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2467 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2468 			    zonelist_zone_idx(z) <= requested_highidx &&
2469 			    compaction_ready(zone, sc->order)) {
2470 				sc->compaction_ready = true;
2471 				continue;
2472 			}
2473 
2474 			/*
2475 			 * This steals pages from memory cgroups over softlimit
2476 			 * and returns the number of reclaimed pages and
2477 			 * scanned pages. This works for global memory pressure
2478 			 * and balancing, not for a memcg's limit.
2479 			 */
2480 			nr_soft_scanned = 0;
2481 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2482 						sc->order, sc->gfp_mask,
2483 						&nr_soft_scanned);
2484 			sc->nr_reclaimed += nr_soft_reclaimed;
2485 			sc->nr_scanned += nr_soft_scanned;
2486 			if (nr_soft_reclaimed)
2487 				reclaimable = true;
2488 			/* need some check for avoid more shrink_zone() */
2489 		}
2490 
2491 		if (shrink_zone(zone, sc))
2492 			reclaimable = true;
2493 
2494 		if (global_reclaim(sc) &&
2495 		    !reclaimable && zone_reclaimable(zone))
2496 			reclaimable = true;
2497 	}
2498 
2499 	/*
2500 	 * Don't shrink slabs when reclaiming memory from over limit cgroups
2501 	 * but do shrink slab at least once when aborting reclaim for
2502 	 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2503 	 * pages.
2504 	 */
2505 	if (global_reclaim(sc)) {
2506 		shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2507 		if (reclaim_state) {
2508 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2509 			reclaim_state->reclaimed_slab = 0;
2510 		}
2511 	}
2512 
2513 	/*
2514 	 * Restore to original mask to avoid the impact on the caller if we
2515 	 * promoted it to __GFP_HIGHMEM.
2516 	 */
2517 	sc->gfp_mask = orig_mask;
2518 
2519 	return reclaimable;
2520 }
2521 
2522 /*
2523  * This is the main entry point to direct page reclaim.
2524  *
2525  * If a full scan of the inactive list fails to free enough memory then we
2526  * are "out of memory" and something needs to be killed.
2527  *
2528  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2529  * high - the zone may be full of dirty or under-writeback pages, which this
2530  * caller can't do much about.  We kick the writeback threads and take explicit
2531  * naps in the hope that some of these pages can be written.  But if the
2532  * allocating task holds filesystem locks which prevent writeout this might not
2533  * work, and the allocation attempt will fail.
2534  *
2535  * returns:	0, if no pages reclaimed
2536  * 		else, the number of pages reclaimed
2537  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)2538 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2539 					  struct scan_control *sc)
2540 {
2541 	unsigned long total_scanned = 0;
2542 	unsigned long writeback_threshold;
2543 	bool zones_reclaimable;
2544 
2545 	delayacct_freepages_start();
2546 
2547 	if (global_reclaim(sc))
2548 		count_vm_event(ALLOCSTALL);
2549 
2550 	do {
2551 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2552 				sc->priority);
2553 		sc->nr_scanned = 0;
2554 		zones_reclaimable = shrink_zones(zonelist, sc);
2555 
2556 		total_scanned += sc->nr_scanned;
2557 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2558 			break;
2559 
2560 		if (sc->compaction_ready)
2561 			break;
2562 
2563 		/*
2564 		 * If we're getting trouble reclaiming, start doing
2565 		 * writepage even in laptop mode.
2566 		 */
2567 		if (sc->priority < DEF_PRIORITY - 2)
2568 			sc->may_writepage = 1;
2569 
2570 		/*
2571 		 * Try to write back as many pages as we just scanned.  This
2572 		 * tends to cause slow streaming writers to write data to the
2573 		 * disk smoothly, at the dirtying rate, which is nice.   But
2574 		 * that's undesirable in laptop mode, where we *want* lumpy
2575 		 * writeout.  So in laptop mode, write out the whole world.
2576 		 */
2577 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2578 		if (total_scanned > writeback_threshold) {
2579 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2580 						WB_REASON_TRY_TO_FREE_PAGES);
2581 			sc->may_writepage = 1;
2582 		}
2583 	} while (--sc->priority >= 0);
2584 
2585 	delayacct_freepages_end();
2586 
2587 	if (sc->nr_reclaimed)
2588 		return sc->nr_reclaimed;
2589 
2590 	/* Aborted reclaim to try compaction? don't OOM, then */
2591 	if (sc->compaction_ready)
2592 		return 1;
2593 
2594 	/* Any of the zones still reclaimable?  Don't OOM. */
2595 	if (zones_reclaimable)
2596 		return 1;
2597 
2598 	return 0;
2599 }
2600 
pfmemalloc_watermark_ok(pg_data_t * pgdat)2601 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2602 {
2603 	struct zone *zone;
2604 	unsigned long pfmemalloc_reserve = 0;
2605 	unsigned long free_pages = 0;
2606 	int i;
2607 	bool wmark_ok;
2608 
2609 	for (i = 0; i <= ZONE_NORMAL; i++) {
2610 		zone = &pgdat->node_zones[i];
2611 		if (!populated_zone(zone))
2612 			continue;
2613 
2614 		pfmemalloc_reserve += min_wmark_pages(zone);
2615 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2616 	}
2617 
2618 	/* If there are no reserves (unexpected config) then do not throttle */
2619 	if (!pfmemalloc_reserve)
2620 		return true;
2621 
2622 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2623 
2624 	/* kswapd must be awake if processes are being throttled */
2625 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2626 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2627 						(enum zone_type)ZONE_NORMAL);
2628 		wake_up_interruptible(&pgdat->kswapd_wait);
2629 	}
2630 
2631 	return wmark_ok;
2632 }
2633 
2634 /*
2635  * Throttle direct reclaimers if backing storage is backed by the network
2636  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2637  * depleted. kswapd will continue to make progress and wake the processes
2638  * when the low watermark is reached.
2639  *
2640  * Returns true if a fatal signal was delivered during throttling. If this
2641  * happens, the page allocator should not consider triggering the OOM killer.
2642  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)2643 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2644 					nodemask_t *nodemask)
2645 {
2646 	struct zoneref *z;
2647 	struct zone *zone;
2648 	pg_data_t *pgdat = NULL;
2649 
2650 	/*
2651 	 * Kernel threads should not be throttled as they may be indirectly
2652 	 * responsible for cleaning pages necessary for reclaim to make forward
2653 	 * progress. kjournald for example may enter direct reclaim while
2654 	 * committing a transaction where throttling it could forcing other
2655 	 * processes to block on log_wait_commit().
2656 	 */
2657 	if (current->flags & PF_KTHREAD)
2658 		goto out;
2659 
2660 	/*
2661 	 * If a fatal signal is pending, this process should not throttle.
2662 	 * It should return quickly so it can exit and free its memory
2663 	 */
2664 	if (fatal_signal_pending(current))
2665 		goto out;
2666 
2667 	/*
2668 	 * Check if the pfmemalloc reserves are ok by finding the first node
2669 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2670 	 * GFP_KERNEL will be required for allocating network buffers when
2671 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2672 	 *
2673 	 * Throttling is based on the first usable node and throttled processes
2674 	 * wait on a queue until kswapd makes progress and wakes them. There
2675 	 * is an affinity then between processes waking up and where reclaim
2676 	 * progress has been made assuming the process wakes on the same node.
2677 	 * More importantly, processes running on remote nodes will not compete
2678 	 * for remote pfmemalloc reserves and processes on different nodes
2679 	 * should make reasonable progress.
2680 	 */
2681 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2682 					gfp_mask, nodemask) {
2683 		if (zone_idx(zone) > ZONE_NORMAL)
2684 			continue;
2685 
2686 		/* Throttle based on the first usable node */
2687 		pgdat = zone->zone_pgdat;
2688 		if (pfmemalloc_watermark_ok(pgdat))
2689 			goto out;
2690 		break;
2691 	}
2692 
2693 	/* If no zone was usable by the allocation flags then do not throttle */
2694 	if (!pgdat)
2695 		goto out;
2696 
2697 	/* Account for the throttling */
2698 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2699 
2700 	/*
2701 	 * If the caller cannot enter the filesystem, it's possible that it
2702 	 * is due to the caller holding an FS lock or performing a journal
2703 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2704 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2705 	 * blocked waiting on the same lock. Instead, throttle for up to a
2706 	 * second before continuing.
2707 	 */
2708 	if (!(gfp_mask & __GFP_FS)) {
2709 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2710 			pfmemalloc_watermark_ok(pgdat), HZ);
2711 
2712 		goto check_pending;
2713 	}
2714 
2715 	/* Throttle until kswapd wakes the process */
2716 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2717 		pfmemalloc_watermark_ok(pgdat));
2718 
2719 check_pending:
2720 	if (fatal_signal_pending(current))
2721 		return true;
2722 
2723 out:
2724 	return false;
2725 }
2726 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)2727 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2728 				gfp_t gfp_mask, nodemask_t *nodemask)
2729 {
2730 	unsigned long nr_reclaimed;
2731 	struct scan_control sc = {
2732 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2733 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2734 		.order = order,
2735 		.nodemask = nodemask,
2736 		.priority = DEF_PRIORITY,
2737 		.may_writepage = !laptop_mode,
2738 		.may_unmap = 1,
2739 		.may_swap = 1,
2740 	};
2741 
2742 	/*
2743 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2744 	 * 1 is returned so that the page allocator does not OOM kill at this
2745 	 * point.
2746 	 */
2747 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2748 		return 1;
2749 
2750 	trace_mm_vmscan_direct_reclaim_begin(order,
2751 				sc.may_writepage,
2752 				gfp_mask);
2753 
2754 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2755 
2756 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2757 
2758 	return nr_reclaimed;
2759 }
2760 
2761 #ifdef CONFIG_MEMCG
2762 
mem_cgroup_shrink_node_zone(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,struct zone * zone,unsigned long * nr_scanned)2763 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2764 						gfp_t gfp_mask, bool noswap,
2765 						struct zone *zone,
2766 						unsigned long *nr_scanned)
2767 {
2768 	struct scan_control sc = {
2769 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2770 		.target_mem_cgroup = memcg,
2771 		.may_writepage = !laptop_mode,
2772 		.may_unmap = 1,
2773 		.may_swap = !noswap,
2774 	};
2775 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2776 	int swappiness = mem_cgroup_swappiness(memcg);
2777 
2778 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2779 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2780 
2781 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2782 						      sc.may_writepage,
2783 						      sc.gfp_mask);
2784 
2785 	/*
2786 	 * NOTE: Although we can get the priority field, using it
2787 	 * here is not a good idea, since it limits the pages we can scan.
2788 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2789 	 * will pick up pages from other mem cgroup's as well. We hack
2790 	 * the priority and make it zero.
2791 	 */
2792 	shrink_lruvec(lruvec, swappiness, &sc);
2793 
2794 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2795 
2796 	*nr_scanned = sc.nr_scanned;
2797 	return sc.nr_reclaimed;
2798 }
2799 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)2800 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2801 					   unsigned long nr_pages,
2802 					   gfp_t gfp_mask,
2803 					   bool may_swap)
2804 {
2805 	struct zonelist *zonelist;
2806 	unsigned long nr_reclaimed;
2807 	int nid;
2808 	struct scan_control sc = {
2809 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2810 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2811 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2812 		.target_mem_cgroup = memcg,
2813 		.priority = DEF_PRIORITY,
2814 		.may_writepage = !laptop_mode,
2815 		.may_unmap = 1,
2816 		.may_swap = may_swap,
2817 	};
2818 
2819 	/*
2820 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2821 	 * take care of from where we get pages. So the node where we start the
2822 	 * scan does not need to be the current node.
2823 	 */
2824 	nid = mem_cgroup_select_victim_node(memcg);
2825 
2826 	zonelist = NODE_DATA(nid)->node_zonelists;
2827 
2828 	trace_mm_vmscan_memcg_reclaim_begin(0,
2829 					    sc.may_writepage,
2830 					    sc.gfp_mask);
2831 
2832 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2833 
2834 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2835 
2836 	return nr_reclaimed;
2837 }
2838 #endif
2839 
age_active_anon(struct zone * zone,struct scan_control * sc)2840 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2841 {
2842 	struct mem_cgroup *memcg;
2843 
2844 	if (!total_swap_pages)
2845 		return;
2846 
2847 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2848 	do {
2849 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2850 
2851 		if (inactive_anon_is_low(lruvec))
2852 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2853 					   sc, LRU_ACTIVE_ANON);
2854 
2855 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2856 	} while (memcg);
2857 }
2858 
zone_balanced(struct zone * zone,int order,unsigned long balance_gap,int classzone_idx)2859 static bool zone_balanced(struct zone *zone, int order,
2860 			  unsigned long balance_gap, int classzone_idx)
2861 {
2862 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2863 				    balance_gap, classzone_idx, 0))
2864 		return false;
2865 
2866 	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2867 	    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2868 		return false;
2869 
2870 	return true;
2871 }
2872 
2873 /*
2874  * pgdat_balanced() is used when checking if a node is balanced.
2875  *
2876  * For order-0, all zones must be balanced!
2877  *
2878  * For high-order allocations only zones that meet watermarks and are in a
2879  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2880  * total of balanced pages must be at least 25% of the zones allowed by
2881  * classzone_idx for the node to be considered balanced. Forcing all zones to
2882  * be balanced for high orders can cause excessive reclaim when there are
2883  * imbalanced zones.
2884  * The choice of 25% is due to
2885  *   o a 16M DMA zone that is balanced will not balance a zone on any
2886  *     reasonable sized machine
2887  *   o On all other machines, the top zone must be at least a reasonable
2888  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2889  *     would need to be at least 256M for it to be balance a whole node.
2890  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2891  *     to balance a node on its own. These seemed like reasonable ratios.
2892  */
pgdat_balanced(pg_data_t * pgdat,int order,int classzone_idx)2893 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2894 {
2895 	unsigned long managed_pages = 0;
2896 	unsigned long balanced_pages = 0;
2897 	int i;
2898 
2899 	/* Check the watermark levels */
2900 	for (i = 0; i <= classzone_idx; i++) {
2901 		struct zone *zone = pgdat->node_zones + i;
2902 
2903 		if (!populated_zone(zone))
2904 			continue;
2905 
2906 		managed_pages += zone->managed_pages;
2907 
2908 		/*
2909 		 * A special case here:
2910 		 *
2911 		 * balance_pgdat() skips over all_unreclaimable after
2912 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2913 		 * they must be considered balanced here as well!
2914 		 */
2915 		if (!zone_reclaimable(zone)) {
2916 			balanced_pages += zone->managed_pages;
2917 			continue;
2918 		}
2919 
2920 		if (zone_balanced(zone, order, 0, i))
2921 			balanced_pages += zone->managed_pages;
2922 		else if (!order)
2923 			return false;
2924 	}
2925 
2926 	if (order)
2927 		return balanced_pages >= (managed_pages >> 2);
2928 	else
2929 		return true;
2930 }
2931 
2932 /*
2933  * Prepare kswapd for sleeping. This verifies that there are no processes
2934  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2935  *
2936  * Returns true if kswapd is ready to sleep
2937  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,long remaining,int classzone_idx)2938 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2939 					int classzone_idx)
2940 {
2941 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2942 	if (remaining)
2943 		return false;
2944 
2945 	/*
2946 	 * The throttled processes are normally woken up in balance_pgdat() as
2947 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2948 	 * race between when kswapd checks the watermarks and a process gets
2949 	 * throttled. There is also a potential race if processes get
2950 	 * throttled, kswapd wakes, a large process exits thereby balancing the
2951 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
2952 	 * the wake up checks. If kswapd is going to sleep, no process should
2953 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2954 	 * the wake up is premature, processes will wake kswapd and get
2955 	 * throttled again. The difference from wake ups in balance_pgdat() is
2956 	 * that here we are under prepare_to_wait().
2957 	 */
2958 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
2959 		wake_up_all(&pgdat->pfmemalloc_wait);
2960 
2961 	return pgdat_balanced(pgdat, order, classzone_idx);
2962 }
2963 
2964 /*
2965  * kswapd shrinks the zone by the number of pages required to reach
2966  * the high watermark.
2967  *
2968  * Returns true if kswapd scanned at least the requested number of pages to
2969  * reclaim or if the lack of progress was due to pages under writeback.
2970  * This is used to determine if the scanning priority needs to be raised.
2971  */
kswapd_shrink_zone(struct zone * zone,int classzone_idx,struct scan_control * sc,unsigned long lru_pages,unsigned long * nr_attempted)2972 static bool kswapd_shrink_zone(struct zone *zone,
2973 			       int classzone_idx,
2974 			       struct scan_control *sc,
2975 			       unsigned long lru_pages,
2976 			       unsigned long *nr_attempted)
2977 {
2978 	int testorder = sc->order;
2979 	unsigned long balance_gap;
2980 	struct reclaim_state *reclaim_state = current->reclaim_state;
2981 	struct shrink_control shrink = {
2982 		.gfp_mask = sc->gfp_mask,
2983 	};
2984 	bool lowmem_pressure;
2985 
2986 	/* Reclaim above the high watermark. */
2987 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2988 
2989 	/*
2990 	 * Kswapd reclaims only single pages with compaction enabled. Trying
2991 	 * too hard to reclaim until contiguous free pages have become
2992 	 * available can hurt performance by evicting too much useful data
2993 	 * from memory. Do not reclaim more than needed for compaction.
2994 	 */
2995 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2996 			compaction_suitable(zone, sc->order) !=
2997 				COMPACT_SKIPPED)
2998 		testorder = 0;
2999 
3000 	/*
3001 	 * We put equal pressure on every zone, unless one zone has way too
3002 	 * many pages free already. The "too many pages" is defined as the
3003 	 * high wmark plus a "gap" where the gap is either the low
3004 	 * watermark or 1% of the zone, whichever is smaller.
3005 	 */
3006 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3007 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3008 
3009 	/*
3010 	 * If there is no low memory pressure or the zone is balanced then no
3011 	 * reclaim is necessary
3012 	 */
3013 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3014 	if (!lowmem_pressure && zone_balanced(zone, testorder,
3015 						balance_gap, classzone_idx))
3016 		return true;
3017 
3018 	shrink_zone(zone, sc);
3019 	nodes_clear(shrink.nodes_to_scan);
3020 	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3021 
3022 	reclaim_state->reclaimed_slab = 0;
3023 	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
3024 	sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3025 
3026 	/* Account for the number of pages attempted to reclaim */
3027 	*nr_attempted += sc->nr_to_reclaim;
3028 
3029 	clear_bit(ZONE_WRITEBACK, &zone->flags);
3030 
3031 	/*
3032 	 * If a zone reaches its high watermark, consider it to be no longer
3033 	 * congested. It's possible there are dirty pages backed by congested
3034 	 * BDIs but as pressure is relieved, speculatively avoid congestion
3035 	 * waits.
3036 	 */
3037 	if (zone_reclaimable(zone) &&
3038 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
3039 		clear_bit(ZONE_CONGESTED, &zone->flags);
3040 		clear_bit(ZONE_DIRTY, &zone->flags);
3041 	}
3042 
3043 	return sc->nr_scanned >= sc->nr_to_reclaim;
3044 }
3045 
3046 /*
3047  * For kswapd, balance_pgdat() will work across all this node's zones until
3048  * they are all at high_wmark_pages(zone).
3049  *
3050  * Returns the final order kswapd was reclaiming at
3051  *
3052  * There is special handling here for zones which are full of pinned pages.
3053  * This can happen if the pages are all mlocked, or if they are all used by
3054  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
3055  * What we do is to detect the case where all pages in the zone have been
3056  * scanned twice and there has been zero successful reclaim.  Mark the zone as
3057  * dead and from now on, only perform a short scan.  Basically we're polling
3058  * the zone for when the problem goes away.
3059  *
3060  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3061  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3062  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3063  * lower zones regardless of the number of free pages in the lower zones. This
3064  * interoperates with the page allocator fallback scheme to ensure that aging
3065  * of pages is balanced across the zones.
3066  */
balance_pgdat(pg_data_t * pgdat,int order,int * classzone_idx)3067 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3068 							int *classzone_idx)
3069 {
3070 	int i;
3071 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3072 	unsigned long nr_soft_reclaimed;
3073 	unsigned long nr_soft_scanned;
3074 	struct scan_control sc = {
3075 		.gfp_mask = GFP_KERNEL,
3076 		.order = order,
3077 		.priority = DEF_PRIORITY,
3078 		.may_writepage = !laptop_mode,
3079 		.may_unmap = 1,
3080 		.may_swap = 1,
3081 	};
3082 	count_vm_event(PAGEOUTRUN);
3083 
3084 	do {
3085 		unsigned long lru_pages = 0;
3086 		unsigned long nr_attempted = 0;
3087 		bool raise_priority = true;
3088 		bool pgdat_needs_compaction = (order > 0);
3089 
3090 		sc.nr_reclaimed = 0;
3091 
3092 		/*
3093 		 * Scan in the highmem->dma direction for the highest
3094 		 * zone which needs scanning
3095 		 */
3096 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3097 			struct zone *zone = pgdat->node_zones + i;
3098 
3099 			if (!populated_zone(zone))
3100 				continue;
3101 
3102 			if (sc.priority != DEF_PRIORITY &&
3103 			    !zone_reclaimable(zone))
3104 				continue;
3105 
3106 			/*
3107 			 * Do some background aging of the anon list, to give
3108 			 * pages a chance to be referenced before reclaiming.
3109 			 */
3110 			age_active_anon(zone, &sc);
3111 
3112 			/*
3113 			 * If the number of buffer_heads in the machine
3114 			 * exceeds the maximum allowed level and this node
3115 			 * has a highmem zone, force kswapd to reclaim from
3116 			 * it to relieve lowmem pressure.
3117 			 */
3118 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3119 				end_zone = i;
3120 				break;
3121 			}
3122 
3123 			if (!zone_balanced(zone, order, 0, 0)) {
3124 				end_zone = i;
3125 				break;
3126 			} else {
3127 				/*
3128 				 * If balanced, clear the dirty and congested
3129 				 * flags
3130 				 */
3131 				clear_bit(ZONE_CONGESTED, &zone->flags);
3132 				clear_bit(ZONE_DIRTY, &zone->flags);
3133 			}
3134 		}
3135 
3136 		if (i < 0)
3137 			goto out;
3138 
3139 		for (i = 0; i <= end_zone; i++) {
3140 			struct zone *zone = pgdat->node_zones + i;
3141 
3142 			if (!populated_zone(zone))
3143 				continue;
3144 
3145 			lru_pages += zone_reclaimable_pages(zone);
3146 
3147 			/*
3148 			 * If any zone is currently balanced then kswapd will
3149 			 * not call compaction as it is expected that the
3150 			 * necessary pages are already available.
3151 			 */
3152 			if (pgdat_needs_compaction &&
3153 					zone_watermark_ok(zone, order,
3154 						low_wmark_pages(zone),
3155 						*classzone_idx, 0))
3156 				pgdat_needs_compaction = false;
3157 		}
3158 
3159 		/*
3160 		 * If we're getting trouble reclaiming, start doing writepage
3161 		 * even in laptop mode.
3162 		 */
3163 		if (sc.priority < DEF_PRIORITY - 2)
3164 			sc.may_writepage = 1;
3165 
3166 		/*
3167 		 * Now scan the zone in the dma->highmem direction, stopping
3168 		 * at the last zone which needs scanning.
3169 		 *
3170 		 * We do this because the page allocator works in the opposite
3171 		 * direction.  This prevents the page allocator from allocating
3172 		 * pages behind kswapd's direction of progress, which would
3173 		 * cause too much scanning of the lower zones.
3174 		 */
3175 		for (i = 0; i <= end_zone; i++) {
3176 			struct zone *zone = pgdat->node_zones + i;
3177 
3178 			if (!populated_zone(zone))
3179 				continue;
3180 
3181 			if (sc.priority != DEF_PRIORITY &&
3182 			    !zone_reclaimable(zone))
3183 				continue;
3184 
3185 			sc.nr_scanned = 0;
3186 
3187 			nr_soft_scanned = 0;
3188 			/*
3189 			 * Call soft limit reclaim before calling shrink_zone.
3190 			 */
3191 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3192 							order, sc.gfp_mask,
3193 							&nr_soft_scanned);
3194 			sc.nr_reclaimed += nr_soft_reclaimed;
3195 
3196 			/*
3197 			 * There should be no need to raise the scanning
3198 			 * priority if enough pages are already being scanned
3199 			 * that that high watermark would be met at 100%
3200 			 * efficiency.
3201 			 */
3202 			if (kswapd_shrink_zone(zone, end_zone, &sc,
3203 					lru_pages, &nr_attempted))
3204 				raise_priority = false;
3205 		}
3206 
3207 		/*
3208 		 * If the low watermark is met there is no need for processes
3209 		 * to be throttled on pfmemalloc_wait as they should not be
3210 		 * able to safely make forward progress. Wake them
3211 		 */
3212 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3213 				pfmemalloc_watermark_ok(pgdat))
3214 			wake_up(&pgdat->pfmemalloc_wait);
3215 
3216 		/*
3217 		 * Fragmentation may mean that the system cannot be rebalanced
3218 		 * for high-order allocations in all zones. If twice the
3219 		 * allocation size has been reclaimed and the zones are still
3220 		 * not balanced then recheck the watermarks at order-0 to
3221 		 * prevent kswapd reclaiming excessively. Assume that a
3222 		 * process requested a high-order can direct reclaim/compact.
3223 		 */
3224 		if (order && sc.nr_reclaimed >= 2UL << order)
3225 			order = sc.order = 0;
3226 
3227 		/* Check if kswapd should be suspending */
3228 		if (try_to_freeze() || kthread_should_stop())
3229 			break;
3230 
3231 		/*
3232 		 * Compact if necessary and kswapd is reclaiming at least the
3233 		 * high watermark number of pages as requsted
3234 		 */
3235 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3236 			compact_pgdat(pgdat, order);
3237 
3238 		/*
3239 		 * Raise priority if scanning rate is too low or there was no
3240 		 * progress in reclaiming pages
3241 		 */
3242 		if (raise_priority || !sc.nr_reclaimed)
3243 			sc.priority--;
3244 	} while (sc.priority >= 1 &&
3245 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3246 
3247 out:
3248 	/*
3249 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3250 	 * makes a decision on the order we were last reclaiming at. However,
3251 	 * if another caller entered the allocator slow path while kswapd
3252 	 * was awake, order will remain at the higher level
3253 	 */
3254 	*classzone_idx = end_zone;
3255 	return order;
3256 }
3257 
kswapd_try_to_sleep(pg_data_t * pgdat,int order,int classzone_idx)3258 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3259 {
3260 	long remaining = 0;
3261 	DEFINE_WAIT(wait);
3262 
3263 	if (freezing(current) || kthread_should_stop())
3264 		return;
3265 
3266 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3267 
3268 	/* Try to sleep for a short interval */
3269 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3270 		remaining = schedule_timeout(HZ/10);
3271 		finish_wait(&pgdat->kswapd_wait, &wait);
3272 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3273 	}
3274 
3275 	/*
3276 	 * After a short sleep, check if it was a premature sleep. If not, then
3277 	 * go fully to sleep until explicitly woken up.
3278 	 */
3279 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3280 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3281 
3282 		/*
3283 		 * vmstat counters are not perfectly accurate and the estimated
3284 		 * value for counters such as NR_FREE_PAGES can deviate from the
3285 		 * true value by nr_online_cpus * threshold. To avoid the zone
3286 		 * watermarks being breached while under pressure, we reduce the
3287 		 * per-cpu vmstat threshold while kswapd is awake and restore
3288 		 * them before going back to sleep.
3289 		 */
3290 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3291 
3292 		/*
3293 		 * Compaction records what page blocks it recently failed to
3294 		 * isolate pages from and skips them in the future scanning.
3295 		 * When kswapd is going to sleep, it is reasonable to assume
3296 		 * that pages and compaction may succeed so reset the cache.
3297 		 */
3298 		reset_isolation_suitable(pgdat);
3299 
3300 		if (!kthread_should_stop())
3301 			schedule();
3302 
3303 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3304 	} else {
3305 		if (remaining)
3306 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3307 		else
3308 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3309 	}
3310 	finish_wait(&pgdat->kswapd_wait, &wait);
3311 }
3312 
3313 /*
3314  * The background pageout daemon, started as a kernel thread
3315  * from the init process.
3316  *
3317  * This basically trickles out pages so that we have _some_
3318  * free memory available even if there is no other activity
3319  * that frees anything up. This is needed for things like routing
3320  * etc, where we otherwise might have all activity going on in
3321  * asynchronous contexts that cannot page things out.
3322  *
3323  * If there are applications that are active memory-allocators
3324  * (most normal use), this basically shouldn't matter.
3325  */
kswapd(void * p)3326 static int kswapd(void *p)
3327 {
3328 	unsigned long order, new_order;
3329 	unsigned balanced_order;
3330 	int classzone_idx, new_classzone_idx;
3331 	int balanced_classzone_idx;
3332 	pg_data_t *pgdat = (pg_data_t*)p;
3333 	struct task_struct *tsk = current;
3334 
3335 	struct reclaim_state reclaim_state = {
3336 		.reclaimed_slab = 0,
3337 	};
3338 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3339 
3340 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3341 
3342 	if (!cpumask_empty(cpumask))
3343 		set_cpus_allowed_ptr(tsk, cpumask);
3344 	current->reclaim_state = &reclaim_state;
3345 
3346 	/*
3347 	 * Tell the memory management that we're a "memory allocator",
3348 	 * and that if we need more memory we should get access to it
3349 	 * regardless (see "__alloc_pages()"). "kswapd" should
3350 	 * never get caught in the normal page freeing logic.
3351 	 *
3352 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3353 	 * you need a small amount of memory in order to be able to
3354 	 * page out something else, and this flag essentially protects
3355 	 * us from recursively trying to free more memory as we're
3356 	 * trying to free the first piece of memory in the first place).
3357 	 */
3358 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3359 	set_freezable();
3360 
3361 	order = new_order = 0;
3362 	balanced_order = 0;
3363 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3364 	balanced_classzone_idx = classzone_idx;
3365 	for ( ; ; ) {
3366 		bool ret;
3367 
3368 		/*
3369 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3370 		 * new request of a similar or harder type will succeed soon
3371 		 * so consider going to sleep on the basis we reclaimed at
3372 		 */
3373 		if (balanced_classzone_idx >= new_classzone_idx &&
3374 					balanced_order == new_order) {
3375 			new_order = pgdat->kswapd_max_order;
3376 			new_classzone_idx = pgdat->classzone_idx;
3377 			pgdat->kswapd_max_order =  0;
3378 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3379 		}
3380 
3381 		if (order < new_order || classzone_idx > new_classzone_idx) {
3382 			/*
3383 			 * Don't sleep if someone wants a larger 'order'
3384 			 * allocation or has tigher zone constraints
3385 			 */
3386 			order = new_order;
3387 			classzone_idx = new_classzone_idx;
3388 		} else {
3389 			kswapd_try_to_sleep(pgdat, balanced_order,
3390 						balanced_classzone_idx);
3391 			order = pgdat->kswapd_max_order;
3392 			classzone_idx = pgdat->classzone_idx;
3393 			new_order = order;
3394 			new_classzone_idx = classzone_idx;
3395 			pgdat->kswapd_max_order = 0;
3396 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3397 		}
3398 
3399 		ret = try_to_freeze();
3400 		if (kthread_should_stop())
3401 			break;
3402 
3403 		/*
3404 		 * We can speed up thawing tasks if we don't call balance_pgdat
3405 		 * after returning from the refrigerator
3406 		 */
3407 		if (!ret) {
3408 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3409 			balanced_classzone_idx = classzone_idx;
3410 			balanced_order = balance_pgdat(pgdat, order,
3411 						&balanced_classzone_idx);
3412 		}
3413 	}
3414 
3415 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3416 	current->reclaim_state = NULL;
3417 	lockdep_clear_current_reclaim_state();
3418 
3419 	return 0;
3420 }
3421 
3422 /*
3423  * A zone is low on free memory, so wake its kswapd task to service it.
3424  */
wakeup_kswapd(struct zone * zone,int order,enum zone_type classzone_idx)3425 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3426 {
3427 	pg_data_t *pgdat;
3428 
3429 	if (!populated_zone(zone))
3430 		return;
3431 
3432 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3433 		return;
3434 	pgdat = zone->zone_pgdat;
3435 	if (pgdat->kswapd_max_order < order) {
3436 		pgdat->kswapd_max_order = order;
3437 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3438 	}
3439 	if (!waitqueue_active(&pgdat->kswapd_wait))
3440 		return;
3441 	if (zone_balanced(zone, order, 0, 0))
3442 		return;
3443 
3444 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3445 	wake_up_interruptible(&pgdat->kswapd_wait);
3446 }
3447 
3448 #ifdef CONFIG_HIBERNATION
3449 /*
3450  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3451  * freed pages.
3452  *
3453  * Rather than trying to age LRUs the aim is to preserve the overall
3454  * LRU order by reclaiming preferentially
3455  * inactive > active > active referenced > active mapped
3456  */
shrink_all_memory(unsigned long nr_to_reclaim)3457 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3458 {
3459 	struct reclaim_state reclaim_state;
3460 	struct scan_control sc = {
3461 		.nr_to_reclaim = nr_to_reclaim,
3462 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3463 		.priority = DEF_PRIORITY,
3464 		.may_writepage = 1,
3465 		.may_unmap = 1,
3466 		.may_swap = 1,
3467 		.hibernation_mode = 1,
3468 	};
3469 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3470 	struct task_struct *p = current;
3471 	unsigned long nr_reclaimed;
3472 
3473 	p->flags |= PF_MEMALLOC;
3474 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3475 	reclaim_state.reclaimed_slab = 0;
3476 	p->reclaim_state = &reclaim_state;
3477 
3478 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3479 
3480 	p->reclaim_state = NULL;
3481 	lockdep_clear_current_reclaim_state();
3482 	p->flags &= ~PF_MEMALLOC;
3483 
3484 	return nr_reclaimed;
3485 }
3486 #endif /* CONFIG_HIBERNATION */
3487 
3488 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3489    not required for correctness.  So if the last cpu in a node goes
3490    away, we get changed to run anywhere: as the first one comes back,
3491    restore their cpu bindings. */
cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)3492 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3493 			void *hcpu)
3494 {
3495 	int nid;
3496 
3497 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3498 		for_each_node_state(nid, N_MEMORY) {
3499 			pg_data_t *pgdat = NODE_DATA(nid);
3500 			const struct cpumask *mask;
3501 
3502 			mask = cpumask_of_node(pgdat->node_id);
3503 
3504 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3505 				/* One of our CPUs online: restore mask */
3506 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3507 		}
3508 	}
3509 	return NOTIFY_OK;
3510 }
3511 
3512 /*
3513  * This kswapd start function will be called by init and node-hot-add.
3514  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3515  */
kswapd_run(int nid)3516 int kswapd_run(int nid)
3517 {
3518 	pg_data_t *pgdat = NODE_DATA(nid);
3519 	int ret = 0;
3520 
3521 	if (pgdat->kswapd)
3522 		return 0;
3523 
3524 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3525 	if (IS_ERR(pgdat->kswapd)) {
3526 		/* failure at boot is fatal */
3527 		BUG_ON(system_state == SYSTEM_BOOTING);
3528 		pr_err("Failed to start kswapd on node %d\n", nid);
3529 		ret = PTR_ERR(pgdat->kswapd);
3530 		pgdat->kswapd = NULL;
3531 	}
3532 	return ret;
3533 }
3534 
3535 /*
3536  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3537  * hold mem_hotplug_begin/end().
3538  */
kswapd_stop(int nid)3539 void kswapd_stop(int nid)
3540 {
3541 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3542 
3543 	if (kswapd) {
3544 		kthread_stop(kswapd);
3545 		NODE_DATA(nid)->kswapd = NULL;
3546 	}
3547 }
3548 
kswapd_init(void)3549 static int __init kswapd_init(void)
3550 {
3551 	int nid;
3552 
3553 	swap_setup();
3554 	for_each_node_state(nid, N_MEMORY)
3555  		kswapd_run(nid);
3556 	hotcpu_notifier(cpu_callback, 0);
3557 	return 0;
3558 }
3559 
3560 module_init(kswapd_init)
3561 
3562 #ifdef CONFIG_NUMA
3563 /*
3564  * Zone reclaim mode
3565  *
3566  * If non-zero call zone_reclaim when the number of free pages falls below
3567  * the watermarks.
3568  */
3569 int zone_reclaim_mode __read_mostly;
3570 
3571 #define RECLAIM_OFF 0
3572 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3573 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3574 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3575 
3576 /*
3577  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3578  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3579  * a zone.
3580  */
3581 #define ZONE_RECLAIM_PRIORITY 4
3582 
3583 /*
3584  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3585  * occur.
3586  */
3587 int sysctl_min_unmapped_ratio = 1;
3588 
3589 /*
3590  * If the number of slab pages in a zone grows beyond this percentage then
3591  * slab reclaim needs to occur.
3592  */
3593 int sysctl_min_slab_ratio = 5;
3594 
zone_unmapped_file_pages(struct zone * zone)3595 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3596 {
3597 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3598 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3599 		zone_page_state(zone, NR_ACTIVE_FILE);
3600 
3601 	/*
3602 	 * It's possible for there to be more file mapped pages than
3603 	 * accounted for by the pages on the file LRU lists because
3604 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3605 	 */
3606 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3607 }
3608 
3609 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
zone_pagecache_reclaimable(struct zone * zone)3610 static long zone_pagecache_reclaimable(struct zone *zone)
3611 {
3612 	long nr_pagecache_reclaimable;
3613 	long delta = 0;
3614 
3615 	/*
3616 	 * If RECLAIM_SWAP is set, then all file pages are considered
3617 	 * potentially reclaimable. Otherwise, we have to worry about
3618 	 * pages like swapcache and zone_unmapped_file_pages() provides
3619 	 * a better estimate
3620 	 */
3621 	if (zone_reclaim_mode & RECLAIM_SWAP)
3622 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3623 	else
3624 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3625 
3626 	/* If we can't clean pages, remove dirty pages from consideration */
3627 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3628 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3629 
3630 	/* Watch for any possible underflows due to delta */
3631 	if (unlikely(delta > nr_pagecache_reclaimable))
3632 		delta = nr_pagecache_reclaimable;
3633 
3634 	return nr_pagecache_reclaimable - delta;
3635 }
3636 
3637 /*
3638  * Try to free up some pages from this zone through reclaim.
3639  */
__zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)3640 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3641 {
3642 	/* Minimum pages needed in order to stay on node */
3643 	const unsigned long nr_pages = 1 << order;
3644 	struct task_struct *p = current;
3645 	struct reclaim_state reclaim_state;
3646 	struct scan_control sc = {
3647 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3648 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3649 		.order = order,
3650 		.priority = ZONE_RECLAIM_PRIORITY,
3651 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3652 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3653 		.may_swap = 1,
3654 	};
3655 	struct shrink_control shrink = {
3656 		.gfp_mask = sc.gfp_mask,
3657 	};
3658 	unsigned long nr_slab_pages0, nr_slab_pages1;
3659 
3660 	cond_resched();
3661 	/*
3662 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3663 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3664 	 * and RECLAIM_SWAP.
3665 	 */
3666 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3667 	lockdep_set_current_reclaim_state(gfp_mask);
3668 	reclaim_state.reclaimed_slab = 0;
3669 	p->reclaim_state = &reclaim_state;
3670 
3671 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3672 		/*
3673 		 * Free memory by calling shrink zone with increasing
3674 		 * priorities until we have enough memory freed.
3675 		 */
3676 		do {
3677 			shrink_zone(zone, &sc);
3678 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3679 	}
3680 
3681 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3682 	if (nr_slab_pages0 > zone->min_slab_pages) {
3683 		/*
3684 		 * shrink_slab() does not currently allow us to determine how
3685 		 * many pages were freed in this zone. So we take the current
3686 		 * number of slab pages and shake the slab until it is reduced
3687 		 * by the same nr_pages that we used for reclaiming unmapped
3688 		 * pages.
3689 		 */
3690 		nodes_clear(shrink.nodes_to_scan);
3691 		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3692 		for (;;) {
3693 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3694 
3695 			/* No reclaimable slab or very low memory pressure */
3696 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3697 				break;
3698 
3699 			/* Freed enough memory */
3700 			nr_slab_pages1 = zone_page_state(zone,
3701 							NR_SLAB_RECLAIMABLE);
3702 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3703 				break;
3704 		}
3705 
3706 		/*
3707 		 * Update nr_reclaimed by the number of slab pages we
3708 		 * reclaimed from this zone.
3709 		 */
3710 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3711 		if (nr_slab_pages1 < nr_slab_pages0)
3712 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3713 	}
3714 
3715 	p->reclaim_state = NULL;
3716 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3717 	lockdep_clear_current_reclaim_state();
3718 	return sc.nr_reclaimed >= nr_pages;
3719 }
3720 
zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)3721 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3722 {
3723 	int node_id;
3724 	int ret;
3725 
3726 	/*
3727 	 * Zone reclaim reclaims unmapped file backed pages and
3728 	 * slab pages if we are over the defined limits.
3729 	 *
3730 	 * A small portion of unmapped file backed pages is needed for
3731 	 * file I/O otherwise pages read by file I/O will be immediately
3732 	 * thrown out if the zone is overallocated. So we do not reclaim
3733 	 * if less than a specified percentage of the zone is used by
3734 	 * unmapped file backed pages.
3735 	 */
3736 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3737 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3738 		return ZONE_RECLAIM_FULL;
3739 
3740 	if (!zone_reclaimable(zone))
3741 		return ZONE_RECLAIM_FULL;
3742 
3743 	/*
3744 	 * Do not scan if the allocation should not be delayed.
3745 	 */
3746 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3747 		return ZONE_RECLAIM_NOSCAN;
3748 
3749 	/*
3750 	 * Only run zone reclaim on the local zone or on zones that do not
3751 	 * have associated processors. This will favor the local processor
3752 	 * over remote processors and spread off node memory allocations
3753 	 * as wide as possible.
3754 	 */
3755 	node_id = zone_to_nid(zone);
3756 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3757 		return ZONE_RECLAIM_NOSCAN;
3758 
3759 	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3760 		return ZONE_RECLAIM_NOSCAN;
3761 
3762 	ret = __zone_reclaim(zone, gfp_mask, order);
3763 	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3764 
3765 	if (!ret)
3766 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3767 
3768 	return ret;
3769 }
3770 #endif
3771 
3772 /*
3773  * page_evictable - test whether a page is evictable
3774  * @page: the page to test
3775  *
3776  * Test whether page is evictable--i.e., should be placed on active/inactive
3777  * lists vs unevictable list.
3778  *
3779  * Reasons page might not be evictable:
3780  * (1) page's mapping marked unevictable
3781  * (2) page is part of an mlocked VMA
3782  *
3783  */
page_evictable(struct page * page)3784 int page_evictable(struct page *page)
3785 {
3786 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3787 }
3788 
3789 #ifdef CONFIG_SHMEM
3790 /**
3791  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3792  * @pages:	array of pages to check
3793  * @nr_pages:	number of pages to check
3794  *
3795  * Checks pages for evictability and moves them to the appropriate lru list.
3796  *
3797  * This function is only used for SysV IPC SHM_UNLOCK.
3798  */
check_move_unevictable_pages(struct page ** pages,int nr_pages)3799 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3800 {
3801 	struct lruvec *lruvec;
3802 	struct zone *zone = NULL;
3803 	int pgscanned = 0;
3804 	int pgrescued = 0;
3805 	int i;
3806 
3807 	for (i = 0; i < nr_pages; i++) {
3808 		struct page *page = pages[i];
3809 		struct zone *pagezone;
3810 
3811 		pgscanned++;
3812 		pagezone = page_zone(page);
3813 		if (pagezone != zone) {
3814 			if (zone)
3815 				spin_unlock_irq(&zone->lru_lock);
3816 			zone = pagezone;
3817 			spin_lock_irq(&zone->lru_lock);
3818 		}
3819 		lruvec = mem_cgroup_page_lruvec(page, zone);
3820 
3821 		if (!PageLRU(page) || !PageUnevictable(page))
3822 			continue;
3823 
3824 		if (page_evictable(page)) {
3825 			enum lru_list lru = page_lru_base_type(page);
3826 
3827 			VM_BUG_ON_PAGE(PageActive(page), page);
3828 			ClearPageUnevictable(page);
3829 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3830 			add_page_to_lru_list(page, lruvec, lru);
3831 			pgrescued++;
3832 		}
3833 	}
3834 
3835 	if (zone) {
3836 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3837 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3838 		spin_unlock_irq(&zone->lru_lock);
3839 	}
3840 }
3841 #endif /* CONFIG_SHMEM */
3842