1 /*
2 * Copyright (C) 2006-2010 Freescale Semiconductor, Inc. All rights reserved.
3 *
4 * Authors: Shlomi Gridish <gridish@freescale.com>
5 * Li Yang <leoli@freescale.com>
6 * Based on cpm2_common.c from Dan Malek (dmalek@jlc.net)
7 *
8 * Description:
9 * General Purpose functions for the global management of the
10 * QUICC Engine (QE).
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
16 */
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/param.h>
21 #include <linux/string.h>
22 #include <linux/spinlock.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/delay.h>
28 #include <linux/ioport.h>
29 #include <linux/crc32.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/of_platform.h>
32 #include <asm/irq.h>
33 #include <asm/page.h>
34 #include <asm/pgtable.h>
35 #include <asm/immap_qe.h>
36 #include <asm/qe.h>
37 #include <asm/prom.h>
38 #include <asm/rheap.h>
39
40 static void qe_snums_init(void);
41 static int qe_sdma_init(void);
42
43 static DEFINE_SPINLOCK(qe_lock);
44 DEFINE_SPINLOCK(cmxgcr_lock);
45 EXPORT_SYMBOL(cmxgcr_lock);
46
47 /* QE snum state */
48 enum qe_snum_state {
49 QE_SNUM_STATE_USED,
50 QE_SNUM_STATE_FREE
51 };
52
53 /* QE snum */
54 struct qe_snum {
55 u8 num;
56 enum qe_snum_state state;
57 };
58
59 /* We allocate this here because it is used almost exclusively for
60 * the communication processor devices.
61 */
62 struct qe_immap __iomem *qe_immr;
63 EXPORT_SYMBOL(qe_immr);
64
65 static struct qe_snum snums[QE_NUM_OF_SNUM]; /* Dynamically allocated SNUMs */
66 static unsigned int qe_num_of_snum;
67
68 static phys_addr_t qebase = -1;
69
get_qe_base(void)70 phys_addr_t get_qe_base(void)
71 {
72 struct device_node *qe;
73 int size;
74 const u32 *prop;
75
76 if (qebase != -1)
77 return qebase;
78
79 qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
80 if (!qe) {
81 qe = of_find_node_by_type(NULL, "qe");
82 if (!qe)
83 return qebase;
84 }
85
86 prop = of_get_property(qe, "reg", &size);
87 if (prop && size >= sizeof(*prop))
88 qebase = of_translate_address(qe, prop);
89 of_node_put(qe);
90
91 return qebase;
92 }
93
94 EXPORT_SYMBOL(get_qe_base);
95
qe_reset(void)96 void qe_reset(void)
97 {
98 if (qe_immr == NULL)
99 qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE);
100
101 qe_snums_init();
102
103 qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID,
104 QE_CR_PROTOCOL_UNSPECIFIED, 0);
105
106 /* Reclaim the MURAM memory for our use. */
107 qe_muram_init();
108
109 if (qe_sdma_init())
110 panic("sdma init failed!");
111 }
112
qe_issue_cmd(u32 cmd,u32 device,u8 mcn_protocol,u32 cmd_input)113 int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input)
114 {
115 unsigned long flags;
116 u8 mcn_shift = 0, dev_shift = 0;
117 u32 ret;
118
119 spin_lock_irqsave(&qe_lock, flags);
120 if (cmd == QE_RESET) {
121 out_be32(&qe_immr->cp.cecr, (u32) (cmd | QE_CR_FLG));
122 } else {
123 if (cmd == QE_ASSIGN_PAGE) {
124 /* Here device is the SNUM, not sub-block */
125 dev_shift = QE_CR_SNUM_SHIFT;
126 } else if (cmd == QE_ASSIGN_RISC) {
127 /* Here device is the SNUM, and mcnProtocol is
128 * e_QeCmdRiscAssignment value */
129 dev_shift = QE_CR_SNUM_SHIFT;
130 mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT;
131 } else {
132 if (device == QE_CR_SUBBLOCK_USB)
133 mcn_shift = QE_CR_MCN_USB_SHIFT;
134 else
135 mcn_shift = QE_CR_MCN_NORMAL_SHIFT;
136 }
137
138 out_be32(&qe_immr->cp.cecdr, cmd_input);
139 out_be32(&qe_immr->cp.cecr,
140 (cmd | QE_CR_FLG | ((u32) device << dev_shift) | (u32)
141 mcn_protocol << mcn_shift));
142 }
143
144 /* wait for the QE_CR_FLG to clear */
145 ret = spin_event_timeout((in_be32(&qe_immr->cp.cecr) & QE_CR_FLG) == 0,
146 100, 0);
147 /* On timeout (e.g. failure), the expression will be false (ret == 0),
148 otherwise it will be true (ret == 1). */
149 spin_unlock_irqrestore(&qe_lock, flags);
150
151 return ret == 1;
152 }
153 EXPORT_SYMBOL(qe_issue_cmd);
154
155 /* Set a baud rate generator. This needs lots of work. There are
156 * 16 BRGs, which can be connected to the QE channels or output
157 * as clocks. The BRGs are in two different block of internal
158 * memory mapped space.
159 * The BRG clock is the QE clock divided by 2.
160 * It was set up long ago during the initial boot phase and is
161 * is given to us.
162 * Baud rate clocks are zero-based in the driver code (as that maps
163 * to port numbers). Documentation uses 1-based numbering.
164 */
165 static unsigned int brg_clk = 0;
166
qe_get_brg_clk(void)167 unsigned int qe_get_brg_clk(void)
168 {
169 struct device_node *qe;
170 int size;
171 const u32 *prop;
172
173 if (brg_clk)
174 return brg_clk;
175
176 qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
177 if (!qe) {
178 qe = of_find_node_by_type(NULL, "qe");
179 if (!qe)
180 return brg_clk;
181 }
182
183 prop = of_get_property(qe, "brg-frequency", &size);
184 if (prop && size == sizeof(*prop))
185 brg_clk = *prop;
186
187 of_node_put(qe);
188
189 return brg_clk;
190 }
191 EXPORT_SYMBOL(qe_get_brg_clk);
192
193 /* Program the BRG to the given sampling rate and multiplier
194 *
195 * @brg: the BRG, QE_BRG1 - QE_BRG16
196 * @rate: the desired sampling rate
197 * @multiplier: corresponds to the value programmed in GUMR_L[RDCR] or
198 * GUMR_L[TDCR]. E.g., if this BRG is the RX clock, and GUMR_L[RDCR]=01,
199 * then 'multiplier' should be 8.
200 */
qe_setbrg(enum qe_clock brg,unsigned int rate,unsigned int multiplier)201 int qe_setbrg(enum qe_clock brg, unsigned int rate, unsigned int multiplier)
202 {
203 u32 divisor, tempval;
204 u32 div16 = 0;
205
206 if ((brg < QE_BRG1) || (brg > QE_BRG16))
207 return -EINVAL;
208
209 divisor = qe_get_brg_clk() / (rate * multiplier);
210
211 if (divisor > QE_BRGC_DIVISOR_MAX + 1) {
212 div16 = QE_BRGC_DIV16;
213 divisor /= 16;
214 }
215
216 /* Errata QE_General4, which affects some MPC832x and MPC836x SOCs, says
217 that the BRG divisor must be even if you're not using divide-by-16
218 mode. */
219 if (!div16 && (divisor & 1) && (divisor > 3))
220 divisor++;
221
222 tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) |
223 QE_BRGC_ENABLE | div16;
224
225 out_be32(&qe_immr->brg.brgc[brg - QE_BRG1], tempval);
226
227 return 0;
228 }
229 EXPORT_SYMBOL(qe_setbrg);
230
231 /* Convert a string to a QE clock source enum
232 *
233 * This function takes a string, typically from a property in the device
234 * tree, and returns the corresponding "enum qe_clock" value.
235 */
qe_clock_source(const char * source)236 enum qe_clock qe_clock_source(const char *source)
237 {
238 unsigned int i;
239
240 if (strcasecmp(source, "none") == 0)
241 return QE_CLK_NONE;
242
243 if (strncasecmp(source, "brg", 3) == 0) {
244 i = simple_strtoul(source + 3, NULL, 10);
245 if ((i >= 1) && (i <= 16))
246 return (QE_BRG1 - 1) + i;
247 else
248 return QE_CLK_DUMMY;
249 }
250
251 if (strncasecmp(source, "clk", 3) == 0) {
252 i = simple_strtoul(source + 3, NULL, 10);
253 if ((i >= 1) && (i <= 24))
254 return (QE_CLK1 - 1) + i;
255 else
256 return QE_CLK_DUMMY;
257 }
258
259 return QE_CLK_DUMMY;
260 }
261 EXPORT_SYMBOL(qe_clock_source);
262
263 /* Initialize SNUMs (thread serial numbers) according to
264 * QE Module Control chapter, SNUM table
265 */
qe_snums_init(void)266 static void qe_snums_init(void)
267 {
268 int i;
269 static const u8 snum_init_76[] = {
270 0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
271 0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
272 0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
273 0xD8, 0xD9, 0xE8, 0xE9, 0x44, 0x45, 0x4C, 0x4D,
274 0x54, 0x55, 0x5C, 0x5D, 0x64, 0x65, 0x6C, 0x6D,
275 0x74, 0x75, 0x7C, 0x7D, 0x84, 0x85, 0x8C, 0x8D,
276 0x94, 0x95, 0x9C, 0x9D, 0xA4, 0xA5, 0xAC, 0xAD,
277 0xB4, 0xB5, 0xBC, 0xBD, 0xC4, 0xC5, 0xCC, 0xCD,
278 0xD4, 0xD5, 0xDC, 0xDD, 0xE4, 0xE5, 0xEC, 0xED,
279 0xF4, 0xF5, 0xFC, 0xFD,
280 };
281 static const u8 snum_init_46[] = {
282 0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
283 0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
284 0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
285 0xD8, 0xD9, 0xE8, 0xE9, 0x08, 0x09, 0x18, 0x19,
286 0x28, 0x29, 0x38, 0x39, 0x48, 0x49, 0x58, 0x59,
287 0x68, 0x69, 0x78, 0x79, 0x80, 0x81,
288 };
289 static const u8 *snum_init;
290
291 qe_num_of_snum = qe_get_num_of_snums();
292
293 if (qe_num_of_snum == 76)
294 snum_init = snum_init_76;
295 else
296 snum_init = snum_init_46;
297
298 for (i = 0; i < qe_num_of_snum; i++) {
299 snums[i].num = snum_init[i];
300 snums[i].state = QE_SNUM_STATE_FREE;
301 }
302 }
303
qe_get_snum(void)304 int qe_get_snum(void)
305 {
306 unsigned long flags;
307 int snum = -EBUSY;
308 int i;
309
310 spin_lock_irqsave(&qe_lock, flags);
311 for (i = 0; i < qe_num_of_snum; i++) {
312 if (snums[i].state == QE_SNUM_STATE_FREE) {
313 snums[i].state = QE_SNUM_STATE_USED;
314 snum = snums[i].num;
315 break;
316 }
317 }
318 spin_unlock_irqrestore(&qe_lock, flags);
319
320 return snum;
321 }
322 EXPORT_SYMBOL(qe_get_snum);
323
qe_put_snum(u8 snum)324 void qe_put_snum(u8 snum)
325 {
326 int i;
327
328 for (i = 0; i < qe_num_of_snum; i++) {
329 if (snums[i].num == snum) {
330 snums[i].state = QE_SNUM_STATE_FREE;
331 break;
332 }
333 }
334 }
335 EXPORT_SYMBOL(qe_put_snum);
336
qe_sdma_init(void)337 static int qe_sdma_init(void)
338 {
339 struct sdma __iomem *sdma = &qe_immr->sdma;
340 static unsigned long sdma_buf_offset = (unsigned long)-ENOMEM;
341
342 if (!sdma)
343 return -ENODEV;
344
345 /* allocate 2 internal temporary buffers (512 bytes size each) for
346 * the SDMA */
347 if (IS_ERR_VALUE(sdma_buf_offset)) {
348 sdma_buf_offset = qe_muram_alloc(512 * 2, 4096);
349 if (IS_ERR_VALUE(sdma_buf_offset))
350 return -ENOMEM;
351 }
352
353 out_be32(&sdma->sdebcr, (u32) sdma_buf_offset & QE_SDEBCR_BA_MASK);
354 out_be32(&sdma->sdmr, (QE_SDMR_GLB_1_MSK |
355 (0x1 << QE_SDMR_CEN_SHIFT)));
356
357 return 0;
358 }
359
360 /* The maximum number of RISCs we support */
361 #define MAX_QE_RISC 4
362
363 /* Firmware information stored here for qe_get_firmware_info() */
364 static struct qe_firmware_info qe_firmware_info;
365
366 /*
367 * Set to 1 if QE firmware has been uploaded, and therefore
368 * qe_firmware_info contains valid data.
369 */
370 static int qe_firmware_uploaded;
371
372 /*
373 * Upload a QE microcode
374 *
375 * This function is a worker function for qe_upload_firmware(). It does
376 * the actual uploading of the microcode.
377 */
qe_upload_microcode(const void * base,const struct qe_microcode * ucode)378 static void qe_upload_microcode(const void *base,
379 const struct qe_microcode *ucode)
380 {
381 const __be32 *code = base + be32_to_cpu(ucode->code_offset);
382 unsigned int i;
383
384 if (ucode->major || ucode->minor || ucode->revision)
385 printk(KERN_INFO "qe-firmware: "
386 "uploading microcode '%s' version %u.%u.%u\n",
387 ucode->id, ucode->major, ucode->minor, ucode->revision);
388 else
389 printk(KERN_INFO "qe-firmware: "
390 "uploading microcode '%s'\n", ucode->id);
391
392 /* Use auto-increment */
393 out_be32(&qe_immr->iram.iadd, be32_to_cpu(ucode->iram_offset) |
394 QE_IRAM_IADD_AIE | QE_IRAM_IADD_BADDR);
395
396 for (i = 0; i < be32_to_cpu(ucode->count); i++)
397 out_be32(&qe_immr->iram.idata, be32_to_cpu(code[i]));
398
399 /* Set I-RAM Ready Register */
400 out_be32(&qe_immr->iram.iready, be32_to_cpu(QE_IRAM_READY));
401 }
402
403 /*
404 * Upload a microcode to the I-RAM at a specific address.
405 *
406 * See Documentation/powerpc/qe_firmware.txt for information on QE microcode
407 * uploading.
408 *
409 * Currently, only version 1 is supported, so the 'version' field must be
410 * set to 1.
411 *
412 * The SOC model and revision are not validated, they are only displayed for
413 * informational purposes.
414 *
415 * 'calc_size' is the calculated size, in bytes, of the firmware structure and
416 * all of the microcode structures, minus the CRC.
417 *
418 * 'length' is the size that the structure says it is, including the CRC.
419 */
qe_upload_firmware(const struct qe_firmware * firmware)420 int qe_upload_firmware(const struct qe_firmware *firmware)
421 {
422 unsigned int i;
423 unsigned int j;
424 u32 crc;
425 size_t calc_size = sizeof(struct qe_firmware);
426 size_t length;
427 const struct qe_header *hdr;
428
429 if (!firmware) {
430 printk(KERN_ERR "qe-firmware: invalid pointer\n");
431 return -EINVAL;
432 }
433
434 hdr = &firmware->header;
435 length = be32_to_cpu(hdr->length);
436
437 /* Check the magic */
438 if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
439 (hdr->magic[2] != 'F')) {
440 printk(KERN_ERR "qe-firmware: not a microcode\n");
441 return -EPERM;
442 }
443
444 /* Check the version */
445 if (hdr->version != 1) {
446 printk(KERN_ERR "qe-firmware: unsupported version\n");
447 return -EPERM;
448 }
449
450 /* Validate some of the fields */
451 if ((firmware->count < 1) || (firmware->count > MAX_QE_RISC)) {
452 printk(KERN_ERR "qe-firmware: invalid data\n");
453 return -EINVAL;
454 }
455
456 /* Validate the length and check if there's a CRC */
457 calc_size += (firmware->count - 1) * sizeof(struct qe_microcode);
458
459 for (i = 0; i < firmware->count; i++)
460 /*
461 * For situations where the second RISC uses the same microcode
462 * as the first, the 'code_offset' and 'count' fields will be
463 * zero, so it's okay to add those.
464 */
465 calc_size += sizeof(__be32) *
466 be32_to_cpu(firmware->microcode[i].count);
467
468 /* Validate the length */
469 if (length != calc_size + sizeof(__be32)) {
470 printk(KERN_ERR "qe-firmware: invalid length\n");
471 return -EPERM;
472 }
473
474 /* Validate the CRC */
475 crc = be32_to_cpu(*(__be32 *)((void *)firmware + calc_size));
476 if (crc != crc32(0, firmware, calc_size)) {
477 printk(KERN_ERR "qe-firmware: firmware CRC is invalid\n");
478 return -EIO;
479 }
480
481 /*
482 * If the microcode calls for it, split the I-RAM.
483 */
484 if (!firmware->split)
485 setbits16(&qe_immr->cp.cercr, QE_CP_CERCR_CIR);
486
487 if (firmware->soc.model)
488 printk(KERN_INFO
489 "qe-firmware: firmware '%s' for %u V%u.%u\n",
490 firmware->id, be16_to_cpu(firmware->soc.model),
491 firmware->soc.major, firmware->soc.minor);
492 else
493 printk(KERN_INFO "qe-firmware: firmware '%s'\n",
494 firmware->id);
495
496 /*
497 * The QE only supports one microcode per RISC, so clear out all the
498 * saved microcode information and put in the new.
499 */
500 memset(&qe_firmware_info, 0, sizeof(qe_firmware_info));
501 strcpy(qe_firmware_info.id, firmware->id);
502 qe_firmware_info.extended_modes = firmware->extended_modes;
503 memcpy(qe_firmware_info.vtraps, firmware->vtraps,
504 sizeof(firmware->vtraps));
505
506 /* Loop through each microcode. */
507 for (i = 0; i < firmware->count; i++) {
508 const struct qe_microcode *ucode = &firmware->microcode[i];
509
510 /* Upload a microcode if it's present */
511 if (ucode->code_offset)
512 qe_upload_microcode(firmware, ucode);
513
514 /* Program the traps for this processor */
515 for (j = 0; j < 16; j++) {
516 u32 trap = be32_to_cpu(ucode->traps[j]);
517
518 if (trap)
519 out_be32(&qe_immr->rsp[i].tibcr[j], trap);
520 }
521
522 /* Enable traps */
523 out_be32(&qe_immr->rsp[i].eccr, be32_to_cpu(ucode->eccr));
524 }
525
526 qe_firmware_uploaded = 1;
527
528 return 0;
529 }
530 EXPORT_SYMBOL(qe_upload_firmware);
531
532 /*
533 * Get info on the currently-loaded firmware
534 *
535 * This function also checks the device tree to see if the boot loader has
536 * uploaded a firmware already.
537 */
qe_get_firmware_info(void)538 struct qe_firmware_info *qe_get_firmware_info(void)
539 {
540 static int initialized;
541 struct property *prop;
542 struct device_node *qe;
543 struct device_node *fw = NULL;
544 const char *sprop;
545 unsigned int i;
546
547 /*
548 * If we haven't checked yet, and a driver hasn't uploaded a firmware
549 * yet, then check the device tree for information.
550 */
551 if (qe_firmware_uploaded)
552 return &qe_firmware_info;
553
554 if (initialized)
555 return NULL;
556
557 initialized = 1;
558
559 /*
560 * Newer device trees have an "fsl,qe" compatible property for the QE
561 * node, but we still need to support older device trees.
562 */
563 qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
564 if (!qe) {
565 qe = of_find_node_by_type(NULL, "qe");
566 if (!qe)
567 return NULL;
568 }
569
570 /* Find the 'firmware' child node */
571 for_each_child_of_node(qe, fw) {
572 if (strcmp(fw->name, "firmware") == 0)
573 break;
574 }
575
576 of_node_put(qe);
577
578 /* Did we find the 'firmware' node? */
579 if (!fw)
580 return NULL;
581
582 qe_firmware_uploaded = 1;
583
584 /* Copy the data into qe_firmware_info*/
585 sprop = of_get_property(fw, "id", NULL);
586 if (sprop)
587 strncpy(qe_firmware_info.id, sprop,
588 sizeof(qe_firmware_info.id) - 1);
589
590 prop = of_find_property(fw, "extended-modes", NULL);
591 if (prop && (prop->length == sizeof(u64))) {
592 const u64 *iprop = prop->value;
593
594 qe_firmware_info.extended_modes = *iprop;
595 }
596
597 prop = of_find_property(fw, "virtual-traps", NULL);
598 if (prop && (prop->length == 32)) {
599 const u32 *iprop = prop->value;
600
601 for (i = 0; i < ARRAY_SIZE(qe_firmware_info.vtraps); i++)
602 qe_firmware_info.vtraps[i] = iprop[i];
603 }
604
605 of_node_put(fw);
606
607 return &qe_firmware_info;
608 }
609 EXPORT_SYMBOL(qe_get_firmware_info);
610
qe_get_num_of_risc(void)611 unsigned int qe_get_num_of_risc(void)
612 {
613 struct device_node *qe;
614 int size;
615 unsigned int num_of_risc = 0;
616 const u32 *prop;
617
618 qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
619 if (!qe) {
620 /* Older devices trees did not have an "fsl,qe"
621 * compatible property, so we need to look for
622 * the QE node by name.
623 */
624 qe = of_find_node_by_type(NULL, "qe");
625 if (!qe)
626 return num_of_risc;
627 }
628
629 prop = of_get_property(qe, "fsl,qe-num-riscs", &size);
630 if (prop && size == sizeof(*prop))
631 num_of_risc = *prop;
632
633 of_node_put(qe);
634
635 return num_of_risc;
636 }
637 EXPORT_SYMBOL(qe_get_num_of_risc);
638
qe_get_num_of_snums(void)639 unsigned int qe_get_num_of_snums(void)
640 {
641 struct device_node *qe;
642 int size;
643 unsigned int num_of_snums;
644 const u32 *prop;
645
646 num_of_snums = 28; /* The default number of snum for threads is 28 */
647 qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
648 if (!qe) {
649 /* Older devices trees did not have an "fsl,qe"
650 * compatible property, so we need to look for
651 * the QE node by name.
652 */
653 qe = of_find_node_by_type(NULL, "qe");
654 if (!qe)
655 return num_of_snums;
656 }
657
658 prop = of_get_property(qe, "fsl,qe-num-snums", &size);
659 if (prop && size == sizeof(*prop)) {
660 num_of_snums = *prop;
661 if ((num_of_snums < 28) || (num_of_snums > QE_NUM_OF_SNUM)) {
662 /* No QE ever has fewer than 28 SNUMs */
663 pr_err("QE: number of snum is invalid\n");
664 of_node_put(qe);
665 return -EINVAL;
666 }
667 }
668
669 of_node_put(qe);
670
671 return num_of_snums;
672 }
673 EXPORT_SYMBOL(qe_get_num_of_snums);
674
675 #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC_85xx)
qe_resume(struct platform_device * ofdev)676 static int qe_resume(struct platform_device *ofdev)
677 {
678 if (!qe_alive_during_sleep())
679 qe_reset();
680 return 0;
681 }
682
qe_probe(struct platform_device * ofdev)683 static int qe_probe(struct platform_device *ofdev)
684 {
685 return 0;
686 }
687
688 static const struct of_device_id qe_ids[] = {
689 { .compatible = "fsl,qe", },
690 { },
691 };
692
693 static struct platform_driver qe_driver = {
694 .driver = {
695 .name = "fsl-qe",
696 .owner = THIS_MODULE,
697 .of_match_table = qe_ids,
698 },
699 .probe = qe_probe,
700 .resume = qe_resume,
701 };
702
qe_drv_init(void)703 static int __init qe_drv_init(void)
704 {
705 return platform_driver_register(&qe_driver);
706 }
707 device_initcall(qe_drv_init);
708 #endif /* defined(CONFIG_SUSPEND) && defined(CONFIG_PPC_85xx) */
709