1 /*
2 * Copyright (c) 2012, 2013 Intel Corporation. All rights reserved.
3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved.
4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/pci.h>
36 #include <linux/poll.h>
37 #include <linux/cdev.h>
38 #include <linux/swap.h>
39 #include <linux/vmalloc.h>
40 #include <linux/highmem.h>
41 #include <linux/io.h>
42 #include <linux/aio.h>
43 #include <linux/jiffies.h>
44 #include <asm/pgtable.h>
45 #include <linux/delay.h>
46 #include <linux/export.h>
47
48 #include <rdma/ib.h>
49
50 #include "qib.h"
51 #include "qib_common.h"
52 #include "qib_user_sdma.h"
53
54 #undef pr_fmt
55 #define pr_fmt(fmt) QIB_DRV_NAME ": " fmt
56
57 static int qib_open(struct inode *, struct file *);
58 static int qib_close(struct inode *, struct file *);
59 static ssize_t qib_write(struct file *, const char __user *, size_t, loff_t *);
60 static ssize_t qib_aio_write(struct kiocb *, const struct iovec *,
61 unsigned long, loff_t);
62 static unsigned int qib_poll(struct file *, struct poll_table_struct *);
63 static int qib_mmapf(struct file *, struct vm_area_struct *);
64
65 static const struct file_operations qib_file_ops = {
66 .owner = THIS_MODULE,
67 .write = qib_write,
68 .aio_write = qib_aio_write,
69 .open = qib_open,
70 .release = qib_close,
71 .poll = qib_poll,
72 .mmap = qib_mmapf,
73 .llseek = noop_llseek,
74 };
75
76 /*
77 * Convert kernel virtual addresses to physical addresses so they don't
78 * potentially conflict with the chip addresses used as mmap offsets.
79 * It doesn't really matter what mmap offset we use as long as we can
80 * interpret it correctly.
81 */
cvt_kvaddr(void * p)82 static u64 cvt_kvaddr(void *p)
83 {
84 struct page *page;
85 u64 paddr = 0;
86
87 page = vmalloc_to_page(p);
88 if (page)
89 paddr = page_to_pfn(page) << PAGE_SHIFT;
90
91 return paddr;
92 }
93
qib_get_base_info(struct file * fp,void __user * ubase,size_t ubase_size)94 static int qib_get_base_info(struct file *fp, void __user *ubase,
95 size_t ubase_size)
96 {
97 struct qib_ctxtdata *rcd = ctxt_fp(fp);
98 int ret = 0;
99 struct qib_base_info *kinfo = NULL;
100 struct qib_devdata *dd = rcd->dd;
101 struct qib_pportdata *ppd = rcd->ppd;
102 unsigned subctxt_cnt;
103 int shared, master;
104 size_t sz;
105
106 subctxt_cnt = rcd->subctxt_cnt;
107 if (!subctxt_cnt) {
108 shared = 0;
109 master = 0;
110 subctxt_cnt = 1;
111 } else {
112 shared = 1;
113 master = !subctxt_fp(fp);
114 }
115
116 sz = sizeof(*kinfo);
117 /* If context sharing is not requested, allow the old size structure */
118 if (!shared)
119 sz -= 7 * sizeof(u64);
120 if (ubase_size < sz) {
121 ret = -EINVAL;
122 goto bail;
123 }
124
125 kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL);
126 if (kinfo == NULL) {
127 ret = -ENOMEM;
128 goto bail;
129 }
130
131 ret = dd->f_get_base_info(rcd, kinfo);
132 if (ret < 0)
133 goto bail;
134
135 kinfo->spi_rcvhdr_cnt = dd->rcvhdrcnt;
136 kinfo->spi_rcvhdrent_size = dd->rcvhdrentsize;
137 kinfo->spi_tidegrcnt = rcd->rcvegrcnt;
138 kinfo->spi_rcv_egrbufsize = dd->rcvegrbufsize;
139 /*
140 * have to mmap whole thing
141 */
142 kinfo->spi_rcv_egrbuftotlen =
143 rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size;
144 kinfo->spi_rcv_egrperchunk = rcd->rcvegrbufs_perchunk;
145 kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen /
146 rcd->rcvegrbuf_chunks;
147 kinfo->spi_tidcnt = dd->rcvtidcnt / subctxt_cnt;
148 if (master)
149 kinfo->spi_tidcnt += dd->rcvtidcnt % subctxt_cnt;
150 /*
151 * for this use, may be cfgctxts summed over all chips that
152 * are are configured and present
153 */
154 kinfo->spi_nctxts = dd->cfgctxts;
155 /* unit (chip/board) our context is on */
156 kinfo->spi_unit = dd->unit;
157 kinfo->spi_port = ppd->port;
158 /* for now, only a single page */
159 kinfo->spi_tid_maxsize = PAGE_SIZE;
160
161 /*
162 * Doing this per context, and based on the skip value, etc. This has
163 * to be the actual buffer size, since the protocol code treats it
164 * as an array.
165 *
166 * These have to be set to user addresses in the user code via mmap.
167 * These values are used on return to user code for the mmap target
168 * addresses only. For 32 bit, same 44 bit address problem, so use
169 * the physical address, not virtual. Before 2.6.11, using the
170 * page_address() macro worked, but in 2.6.11, even that returns the
171 * full 64 bit address (upper bits all 1's). So far, using the
172 * physical addresses (or chip offsets, for chip mapping) works, but
173 * no doubt some future kernel release will change that, and we'll be
174 * on to yet another method of dealing with this.
175 * Normally only one of rcvhdr_tailaddr or rhf_offset is useful
176 * since the chips with non-zero rhf_offset don't normally
177 * enable tail register updates to host memory, but for testing,
178 * both can be enabled and used.
179 */
180 kinfo->spi_rcvhdr_base = (u64) rcd->rcvhdrq_phys;
181 kinfo->spi_rcvhdr_tailaddr = (u64) rcd->rcvhdrqtailaddr_phys;
182 kinfo->spi_rhf_offset = dd->rhf_offset;
183 kinfo->spi_rcv_egrbufs = (u64) rcd->rcvegr_phys;
184 kinfo->spi_pioavailaddr = (u64) dd->pioavailregs_phys;
185 /* setup per-unit (not port) status area for user programs */
186 kinfo->spi_status = (u64) kinfo->spi_pioavailaddr +
187 (char *) ppd->statusp -
188 (char *) dd->pioavailregs_dma;
189 kinfo->spi_uregbase = (u64) dd->uregbase + dd->ureg_align * rcd->ctxt;
190 if (!shared) {
191 kinfo->spi_piocnt = rcd->piocnt;
192 kinfo->spi_piobufbase = (u64) rcd->piobufs;
193 kinfo->spi_sendbuf_status = cvt_kvaddr(rcd->user_event_mask);
194 } else if (master) {
195 kinfo->spi_piocnt = (rcd->piocnt / subctxt_cnt) +
196 (rcd->piocnt % subctxt_cnt);
197 /* Master's PIO buffers are after all the slave's */
198 kinfo->spi_piobufbase = (u64) rcd->piobufs +
199 dd->palign *
200 (rcd->piocnt - kinfo->spi_piocnt);
201 } else {
202 unsigned slave = subctxt_fp(fp) - 1;
203
204 kinfo->spi_piocnt = rcd->piocnt / subctxt_cnt;
205 kinfo->spi_piobufbase = (u64) rcd->piobufs +
206 dd->palign * kinfo->spi_piocnt * slave;
207 }
208
209 if (shared) {
210 kinfo->spi_sendbuf_status =
211 cvt_kvaddr(&rcd->user_event_mask[subctxt_fp(fp)]);
212 /* only spi_subctxt_* fields should be set in this block! */
213 kinfo->spi_subctxt_uregbase = cvt_kvaddr(rcd->subctxt_uregbase);
214
215 kinfo->spi_subctxt_rcvegrbuf =
216 cvt_kvaddr(rcd->subctxt_rcvegrbuf);
217 kinfo->spi_subctxt_rcvhdr_base =
218 cvt_kvaddr(rcd->subctxt_rcvhdr_base);
219 }
220
221 /*
222 * All user buffers are 2KB buffers. If we ever support
223 * giving 4KB buffers to user processes, this will need some
224 * work. Can't use piobufbase directly, because it has
225 * both 2K and 4K buffer base values.
226 */
227 kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->pio2k_bufbase) /
228 dd->palign;
229 kinfo->spi_pioalign = dd->palign;
230 kinfo->spi_qpair = QIB_KD_QP;
231 /*
232 * user mode PIO buffers are always 2KB, even when 4KB can
233 * be received, and sent via the kernel; this is ibmaxlen
234 * for 2K MTU.
235 */
236 kinfo->spi_piosize = dd->piosize2k - 2 * sizeof(u32);
237 kinfo->spi_mtu = ppd->ibmaxlen; /* maxlen, not ibmtu */
238 kinfo->spi_ctxt = rcd->ctxt;
239 kinfo->spi_subctxt = subctxt_fp(fp);
240 kinfo->spi_sw_version = QIB_KERN_SWVERSION;
241 kinfo->spi_sw_version |= 1U << 31; /* QLogic-built, not kernel.org */
242 kinfo->spi_hw_version = dd->revision;
243
244 if (master)
245 kinfo->spi_runtime_flags |= QIB_RUNTIME_MASTER;
246
247 sz = (ubase_size < sizeof(*kinfo)) ? ubase_size : sizeof(*kinfo);
248 if (copy_to_user(ubase, kinfo, sz))
249 ret = -EFAULT;
250 bail:
251 kfree(kinfo);
252 return ret;
253 }
254
255 /**
256 * qib_tid_update - update a context TID
257 * @rcd: the context
258 * @fp: the qib device file
259 * @ti: the TID information
260 *
261 * The new implementation as of Oct 2004 is that the driver assigns
262 * the tid and returns it to the caller. To reduce search time, we
263 * keep a cursor for each context, walking the shadow tid array to find
264 * one that's not in use.
265 *
266 * For now, if we can't allocate the full list, we fail, although
267 * in the long run, we'll allocate as many as we can, and the
268 * caller will deal with that by trying the remaining pages later.
269 * That means that when we fail, we have to mark the tids as not in
270 * use again, in our shadow copy.
271 *
272 * It's up to the caller to free the tids when they are done.
273 * We'll unlock the pages as they free them.
274 *
275 * Also, right now we are locking one page at a time, but since
276 * the intended use of this routine is for a single group of
277 * virtually contiguous pages, that should change to improve
278 * performance.
279 */
qib_tid_update(struct qib_ctxtdata * rcd,struct file * fp,const struct qib_tid_info * ti)280 static int qib_tid_update(struct qib_ctxtdata *rcd, struct file *fp,
281 const struct qib_tid_info *ti)
282 {
283 int ret = 0, ntids;
284 u32 tid, ctxttid, cnt, i, tidcnt, tidoff;
285 u16 *tidlist;
286 struct qib_devdata *dd = rcd->dd;
287 u64 physaddr;
288 unsigned long vaddr;
289 u64 __iomem *tidbase;
290 unsigned long tidmap[8];
291 struct page **pagep = NULL;
292 unsigned subctxt = subctxt_fp(fp);
293
294 if (!dd->pageshadow) {
295 ret = -ENOMEM;
296 goto done;
297 }
298
299 cnt = ti->tidcnt;
300 if (!cnt) {
301 ret = -EFAULT;
302 goto done;
303 }
304 ctxttid = rcd->ctxt * dd->rcvtidcnt;
305 if (!rcd->subctxt_cnt) {
306 tidcnt = dd->rcvtidcnt;
307 tid = rcd->tidcursor;
308 tidoff = 0;
309 } else if (!subctxt) {
310 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) +
311 (dd->rcvtidcnt % rcd->subctxt_cnt);
312 tidoff = dd->rcvtidcnt - tidcnt;
313 ctxttid += tidoff;
314 tid = tidcursor_fp(fp);
315 } else {
316 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt;
317 tidoff = tidcnt * (subctxt - 1);
318 ctxttid += tidoff;
319 tid = tidcursor_fp(fp);
320 }
321 if (cnt > tidcnt) {
322 /* make sure it all fits in tid_pg_list */
323 qib_devinfo(dd->pcidev,
324 "Process tried to allocate %u TIDs, only trying max (%u)\n",
325 cnt, tidcnt);
326 cnt = tidcnt;
327 }
328 pagep = (struct page **) rcd->tid_pg_list;
329 tidlist = (u16 *) &pagep[dd->rcvtidcnt];
330 pagep += tidoff;
331 tidlist += tidoff;
332
333 memset(tidmap, 0, sizeof(tidmap));
334 /* before decrement; chip actual # */
335 ntids = tidcnt;
336 tidbase = (u64 __iomem *) (((char __iomem *) dd->kregbase) +
337 dd->rcvtidbase +
338 ctxttid * sizeof(*tidbase));
339
340 /* virtual address of first page in transfer */
341 vaddr = ti->tidvaddr;
342 if (!access_ok(VERIFY_WRITE, (void __user *) vaddr,
343 cnt * PAGE_SIZE)) {
344 ret = -EFAULT;
345 goto done;
346 }
347 ret = qib_get_user_pages(vaddr, cnt, pagep);
348 if (ret) {
349 /*
350 * if (ret == -EBUSY)
351 * We can't continue because the pagep array won't be
352 * initialized. This should never happen,
353 * unless perhaps the user has mpin'ed the pages
354 * themselves.
355 */
356 qib_devinfo(dd->pcidev,
357 "Failed to lock addr %p, %u pages: "
358 "errno %d\n", (void *) vaddr, cnt, -ret);
359 goto done;
360 }
361 for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) {
362 for (; ntids--; tid++) {
363 if (tid == tidcnt)
364 tid = 0;
365 if (!dd->pageshadow[ctxttid + tid])
366 break;
367 }
368 if (ntids < 0) {
369 /*
370 * Oops, wrapped all the way through their TIDs,
371 * and didn't have enough free; see comments at
372 * start of routine
373 */
374 i--; /* last tidlist[i] not filled in */
375 ret = -ENOMEM;
376 break;
377 }
378 tidlist[i] = tid + tidoff;
379 /* we "know" system pages and TID pages are same size */
380 dd->pageshadow[ctxttid + tid] = pagep[i];
381 dd->physshadow[ctxttid + tid] =
382 qib_map_page(dd->pcidev, pagep[i], 0, PAGE_SIZE,
383 PCI_DMA_FROMDEVICE);
384 /*
385 * don't need atomic or it's overhead
386 */
387 __set_bit(tid, tidmap);
388 physaddr = dd->physshadow[ctxttid + tid];
389 /* PERFORMANCE: below should almost certainly be cached */
390 dd->f_put_tid(dd, &tidbase[tid],
391 RCVHQ_RCV_TYPE_EXPECTED, physaddr);
392 /*
393 * don't check this tid in qib_ctxtshadow, since we
394 * just filled it in; start with the next one.
395 */
396 tid++;
397 }
398
399 if (ret) {
400 u32 limit;
401 cleanup:
402 /* jump here if copy out of updated info failed... */
403 /* same code that's in qib_free_tid() */
404 limit = sizeof(tidmap) * BITS_PER_BYTE;
405 if (limit > tidcnt)
406 /* just in case size changes in future */
407 limit = tidcnt;
408 tid = find_first_bit((const unsigned long *)tidmap, limit);
409 for (; tid < limit; tid++) {
410 if (!test_bit(tid, tidmap))
411 continue;
412 if (dd->pageshadow[ctxttid + tid]) {
413 dma_addr_t phys;
414
415 phys = dd->physshadow[ctxttid + tid];
416 dd->physshadow[ctxttid + tid] = dd->tidinvalid;
417 /* PERFORMANCE: below should almost certainly
418 * be cached
419 */
420 dd->f_put_tid(dd, &tidbase[tid],
421 RCVHQ_RCV_TYPE_EXPECTED,
422 dd->tidinvalid);
423 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
424 PCI_DMA_FROMDEVICE);
425 dd->pageshadow[ctxttid + tid] = NULL;
426 }
427 }
428 qib_release_user_pages(pagep, cnt);
429 } else {
430 /*
431 * Copy the updated array, with qib_tid's filled in, back
432 * to user. Since we did the copy in already, this "should
433 * never fail" If it does, we have to clean up...
434 */
435 if (copy_to_user((void __user *)
436 (unsigned long) ti->tidlist,
437 tidlist, cnt * sizeof(*tidlist))) {
438 ret = -EFAULT;
439 goto cleanup;
440 }
441 if (copy_to_user((void __user *) (unsigned long) ti->tidmap,
442 tidmap, sizeof tidmap)) {
443 ret = -EFAULT;
444 goto cleanup;
445 }
446 if (tid == tidcnt)
447 tid = 0;
448 if (!rcd->subctxt_cnt)
449 rcd->tidcursor = tid;
450 else
451 tidcursor_fp(fp) = tid;
452 }
453
454 done:
455 return ret;
456 }
457
458 /**
459 * qib_tid_free - free a context TID
460 * @rcd: the context
461 * @subctxt: the subcontext
462 * @ti: the TID info
463 *
464 * right now we are unlocking one page at a time, but since
465 * the intended use of this routine is for a single group of
466 * virtually contiguous pages, that should change to improve
467 * performance. We check that the TID is in range for this context
468 * but otherwise don't check validity; if user has an error and
469 * frees the wrong tid, it's only their own data that can thereby
470 * be corrupted. We do check that the TID was in use, for sanity
471 * We always use our idea of the saved address, not the address that
472 * they pass in to us.
473 */
qib_tid_free(struct qib_ctxtdata * rcd,unsigned subctxt,const struct qib_tid_info * ti)474 static int qib_tid_free(struct qib_ctxtdata *rcd, unsigned subctxt,
475 const struct qib_tid_info *ti)
476 {
477 int ret = 0;
478 u32 tid, ctxttid, cnt, limit, tidcnt;
479 struct qib_devdata *dd = rcd->dd;
480 u64 __iomem *tidbase;
481 unsigned long tidmap[8];
482
483 if (!dd->pageshadow) {
484 ret = -ENOMEM;
485 goto done;
486 }
487
488 if (copy_from_user(tidmap, (void __user *)(unsigned long)ti->tidmap,
489 sizeof tidmap)) {
490 ret = -EFAULT;
491 goto done;
492 }
493
494 ctxttid = rcd->ctxt * dd->rcvtidcnt;
495 if (!rcd->subctxt_cnt)
496 tidcnt = dd->rcvtidcnt;
497 else if (!subctxt) {
498 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) +
499 (dd->rcvtidcnt % rcd->subctxt_cnt);
500 ctxttid += dd->rcvtidcnt - tidcnt;
501 } else {
502 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt;
503 ctxttid += tidcnt * (subctxt - 1);
504 }
505 tidbase = (u64 __iomem *) ((char __iomem *)(dd->kregbase) +
506 dd->rcvtidbase +
507 ctxttid * sizeof(*tidbase));
508
509 limit = sizeof(tidmap) * BITS_PER_BYTE;
510 if (limit > tidcnt)
511 /* just in case size changes in future */
512 limit = tidcnt;
513 tid = find_first_bit(tidmap, limit);
514 for (cnt = 0; tid < limit; tid++) {
515 /*
516 * small optimization; if we detect a run of 3 or so without
517 * any set, use find_first_bit again. That's mainly to
518 * accelerate the case where we wrapped, so we have some at
519 * the beginning, and some at the end, and a big gap
520 * in the middle.
521 */
522 if (!test_bit(tid, tidmap))
523 continue;
524 cnt++;
525 if (dd->pageshadow[ctxttid + tid]) {
526 struct page *p;
527 dma_addr_t phys;
528
529 p = dd->pageshadow[ctxttid + tid];
530 dd->pageshadow[ctxttid + tid] = NULL;
531 phys = dd->physshadow[ctxttid + tid];
532 dd->physshadow[ctxttid + tid] = dd->tidinvalid;
533 /* PERFORMANCE: below should almost certainly be
534 * cached
535 */
536 dd->f_put_tid(dd, &tidbase[tid],
537 RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid);
538 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
539 PCI_DMA_FROMDEVICE);
540 qib_release_user_pages(&p, 1);
541 }
542 }
543 done:
544 return ret;
545 }
546
547 /**
548 * qib_set_part_key - set a partition key
549 * @rcd: the context
550 * @key: the key
551 *
552 * We can have up to 4 active at a time (other than the default, which is
553 * always allowed). This is somewhat tricky, since multiple contexts may set
554 * the same key, so we reference count them, and clean up at exit. All 4
555 * partition keys are packed into a single qlogic_ib register. It's an
556 * error for a process to set the same pkey multiple times. We provide no
557 * mechanism to de-allocate a pkey at this time, we may eventually need to
558 * do that. I've used the atomic operations, and no locking, and only make
559 * a single pass through what's available. This should be more than
560 * adequate for some time. I'll think about spinlocks or the like if and as
561 * it's necessary.
562 */
qib_set_part_key(struct qib_ctxtdata * rcd,u16 key)563 static int qib_set_part_key(struct qib_ctxtdata *rcd, u16 key)
564 {
565 struct qib_pportdata *ppd = rcd->ppd;
566 int i, any = 0, pidx = -1;
567 u16 lkey = key & 0x7FFF;
568 int ret;
569
570 if (lkey == (QIB_DEFAULT_P_KEY & 0x7FFF)) {
571 /* nothing to do; this key always valid */
572 ret = 0;
573 goto bail;
574 }
575
576 if (!lkey) {
577 ret = -EINVAL;
578 goto bail;
579 }
580
581 /*
582 * Set the full membership bit, because it has to be
583 * set in the register or the packet, and it seems
584 * cleaner to set in the register than to force all
585 * callers to set it.
586 */
587 key |= 0x8000;
588
589 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) {
590 if (!rcd->pkeys[i] && pidx == -1)
591 pidx = i;
592 if (rcd->pkeys[i] == key) {
593 ret = -EEXIST;
594 goto bail;
595 }
596 }
597 if (pidx == -1) {
598 ret = -EBUSY;
599 goto bail;
600 }
601 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
602 if (!ppd->pkeys[i]) {
603 any++;
604 continue;
605 }
606 if (ppd->pkeys[i] == key) {
607 atomic_t *pkrefs = &ppd->pkeyrefs[i];
608
609 if (atomic_inc_return(pkrefs) > 1) {
610 rcd->pkeys[pidx] = key;
611 ret = 0;
612 goto bail;
613 } else {
614 /*
615 * lost race, decrement count, catch below
616 */
617 atomic_dec(pkrefs);
618 any++;
619 }
620 }
621 if ((ppd->pkeys[i] & 0x7FFF) == lkey) {
622 /*
623 * It makes no sense to have both the limited and
624 * full membership PKEY set at the same time since
625 * the unlimited one will disable the limited one.
626 */
627 ret = -EEXIST;
628 goto bail;
629 }
630 }
631 if (!any) {
632 ret = -EBUSY;
633 goto bail;
634 }
635 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
636 if (!ppd->pkeys[i] &&
637 atomic_inc_return(&ppd->pkeyrefs[i]) == 1) {
638 rcd->pkeys[pidx] = key;
639 ppd->pkeys[i] = key;
640 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0);
641 ret = 0;
642 goto bail;
643 }
644 }
645 ret = -EBUSY;
646
647 bail:
648 return ret;
649 }
650
651 /**
652 * qib_manage_rcvq - manage a context's receive queue
653 * @rcd: the context
654 * @subctxt: the subcontext
655 * @start_stop: action to carry out
656 *
657 * start_stop == 0 disables receive on the context, for use in queue
658 * overflow conditions. start_stop==1 re-enables, to be used to
659 * re-init the software copy of the head register
660 */
qib_manage_rcvq(struct qib_ctxtdata * rcd,unsigned subctxt,int start_stop)661 static int qib_manage_rcvq(struct qib_ctxtdata *rcd, unsigned subctxt,
662 int start_stop)
663 {
664 struct qib_devdata *dd = rcd->dd;
665 unsigned int rcvctrl_op;
666
667 if (subctxt)
668 goto bail;
669 /* atomically clear receive enable ctxt. */
670 if (start_stop) {
671 /*
672 * On enable, force in-memory copy of the tail register to
673 * 0, so that protocol code doesn't have to worry about
674 * whether or not the chip has yet updated the in-memory
675 * copy or not on return from the system call. The chip
676 * always resets it's tail register back to 0 on a
677 * transition from disabled to enabled.
678 */
679 if (rcd->rcvhdrtail_kvaddr)
680 qib_clear_rcvhdrtail(rcd);
681 rcvctrl_op = QIB_RCVCTRL_CTXT_ENB;
682 } else
683 rcvctrl_op = QIB_RCVCTRL_CTXT_DIS;
684 dd->f_rcvctrl(rcd->ppd, rcvctrl_op, rcd->ctxt);
685 /* always; new head should be equal to new tail; see above */
686 bail:
687 return 0;
688 }
689
qib_clean_part_key(struct qib_ctxtdata * rcd,struct qib_devdata * dd)690 static void qib_clean_part_key(struct qib_ctxtdata *rcd,
691 struct qib_devdata *dd)
692 {
693 int i, j, pchanged = 0;
694 u64 oldpkey;
695 struct qib_pportdata *ppd = rcd->ppd;
696
697 /* for debugging only */
698 oldpkey = (u64) ppd->pkeys[0] |
699 ((u64) ppd->pkeys[1] << 16) |
700 ((u64) ppd->pkeys[2] << 32) |
701 ((u64) ppd->pkeys[3] << 48);
702
703 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) {
704 if (!rcd->pkeys[i])
705 continue;
706 for (j = 0; j < ARRAY_SIZE(ppd->pkeys); j++) {
707 /* check for match independent of the global bit */
708 if ((ppd->pkeys[j] & 0x7fff) !=
709 (rcd->pkeys[i] & 0x7fff))
710 continue;
711 if (atomic_dec_and_test(&ppd->pkeyrefs[j])) {
712 ppd->pkeys[j] = 0;
713 pchanged++;
714 }
715 break;
716 }
717 rcd->pkeys[i] = 0;
718 }
719 if (pchanged)
720 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0);
721 }
722
723 /* common code for the mappings on dma_alloc_coherent mem */
qib_mmap_mem(struct vm_area_struct * vma,struct qib_ctxtdata * rcd,unsigned len,void * kvaddr,u32 write_ok,char * what)724 static int qib_mmap_mem(struct vm_area_struct *vma, struct qib_ctxtdata *rcd,
725 unsigned len, void *kvaddr, u32 write_ok, char *what)
726 {
727 struct qib_devdata *dd = rcd->dd;
728 unsigned long pfn;
729 int ret;
730
731 if ((vma->vm_end - vma->vm_start) > len) {
732 qib_devinfo(dd->pcidev,
733 "FAIL on %s: len %lx > %x\n", what,
734 vma->vm_end - vma->vm_start, len);
735 ret = -EFAULT;
736 goto bail;
737 }
738
739 /*
740 * shared context user code requires rcvhdrq mapped r/w, others
741 * only allowed readonly mapping.
742 */
743 if (!write_ok) {
744 if (vma->vm_flags & VM_WRITE) {
745 qib_devinfo(dd->pcidev,
746 "%s must be mapped readonly\n", what);
747 ret = -EPERM;
748 goto bail;
749 }
750
751 /* don't allow them to later change with mprotect */
752 vma->vm_flags &= ~VM_MAYWRITE;
753 }
754
755 pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT;
756 ret = remap_pfn_range(vma, vma->vm_start, pfn,
757 len, vma->vm_page_prot);
758 if (ret)
759 qib_devinfo(dd->pcidev,
760 "%s ctxt%u mmap of %lx, %x bytes failed: %d\n",
761 what, rcd->ctxt, pfn, len, ret);
762 bail:
763 return ret;
764 }
765
mmap_ureg(struct vm_area_struct * vma,struct qib_devdata * dd,u64 ureg)766 static int mmap_ureg(struct vm_area_struct *vma, struct qib_devdata *dd,
767 u64 ureg)
768 {
769 unsigned long phys;
770 unsigned long sz;
771 int ret;
772
773 /*
774 * This is real hardware, so use io_remap. This is the mechanism
775 * for the user process to update the head registers for their ctxt
776 * in the chip.
777 */
778 sz = dd->flags & QIB_HAS_HDRSUPP ? 2 * PAGE_SIZE : PAGE_SIZE;
779 if ((vma->vm_end - vma->vm_start) > sz) {
780 qib_devinfo(dd->pcidev,
781 "FAIL mmap userreg: reqlen %lx > PAGE\n",
782 vma->vm_end - vma->vm_start);
783 ret = -EFAULT;
784 } else {
785 phys = dd->physaddr + ureg;
786 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
787
788 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND;
789 ret = io_remap_pfn_range(vma, vma->vm_start,
790 phys >> PAGE_SHIFT,
791 vma->vm_end - vma->vm_start,
792 vma->vm_page_prot);
793 }
794 return ret;
795 }
796
mmap_piobufs(struct vm_area_struct * vma,struct qib_devdata * dd,struct qib_ctxtdata * rcd,unsigned piobufs,unsigned piocnt)797 static int mmap_piobufs(struct vm_area_struct *vma,
798 struct qib_devdata *dd,
799 struct qib_ctxtdata *rcd,
800 unsigned piobufs, unsigned piocnt)
801 {
802 unsigned long phys;
803 int ret;
804
805 /*
806 * When we map the PIO buffers in the chip, we want to map them as
807 * writeonly, no read possible; unfortunately, x86 doesn't allow
808 * for this in hardware, but we still prevent users from asking
809 * for it.
810 */
811 if ((vma->vm_end - vma->vm_start) > (piocnt * dd->palign)) {
812 qib_devinfo(dd->pcidev,
813 "FAIL mmap piobufs: reqlen %lx > PAGE\n",
814 vma->vm_end - vma->vm_start);
815 ret = -EINVAL;
816 goto bail;
817 }
818
819 phys = dd->physaddr + piobufs;
820
821 #if defined(__powerpc__)
822 /* There isn't a generic way to specify writethrough mappings */
823 pgprot_val(vma->vm_page_prot) |= _PAGE_NO_CACHE;
824 pgprot_val(vma->vm_page_prot) |= _PAGE_WRITETHRU;
825 pgprot_val(vma->vm_page_prot) &= ~_PAGE_GUARDED;
826 #endif
827
828 /*
829 * don't allow them to later change to readable with mprotect (for when
830 * not initially mapped readable, as is normally the case)
831 */
832 vma->vm_flags &= ~VM_MAYREAD;
833 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND;
834
835 if (qib_wc_pat)
836 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
837
838 ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT,
839 vma->vm_end - vma->vm_start,
840 vma->vm_page_prot);
841 bail:
842 return ret;
843 }
844
mmap_rcvegrbufs(struct vm_area_struct * vma,struct qib_ctxtdata * rcd)845 static int mmap_rcvegrbufs(struct vm_area_struct *vma,
846 struct qib_ctxtdata *rcd)
847 {
848 struct qib_devdata *dd = rcd->dd;
849 unsigned long start, size;
850 size_t total_size, i;
851 unsigned long pfn;
852 int ret;
853
854 size = rcd->rcvegrbuf_size;
855 total_size = rcd->rcvegrbuf_chunks * size;
856 if ((vma->vm_end - vma->vm_start) > total_size) {
857 qib_devinfo(dd->pcidev,
858 "FAIL on egr bufs: reqlen %lx > actual %lx\n",
859 vma->vm_end - vma->vm_start,
860 (unsigned long) total_size);
861 ret = -EINVAL;
862 goto bail;
863 }
864
865 if (vma->vm_flags & VM_WRITE) {
866 qib_devinfo(dd->pcidev,
867 "Can't map eager buffers as writable (flags=%lx)\n",
868 vma->vm_flags);
869 ret = -EPERM;
870 goto bail;
871 }
872 /* don't allow them to later change to writeable with mprotect */
873 vma->vm_flags &= ~VM_MAYWRITE;
874
875 start = vma->vm_start;
876
877 for (i = 0; i < rcd->rcvegrbuf_chunks; i++, start += size) {
878 pfn = virt_to_phys(rcd->rcvegrbuf[i]) >> PAGE_SHIFT;
879 ret = remap_pfn_range(vma, start, pfn, size,
880 vma->vm_page_prot);
881 if (ret < 0)
882 goto bail;
883 }
884 ret = 0;
885
886 bail:
887 return ret;
888 }
889
890 /*
891 * qib_file_vma_fault - handle a VMA page fault.
892 */
qib_file_vma_fault(struct vm_area_struct * vma,struct vm_fault * vmf)893 static int qib_file_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
894 {
895 struct page *page;
896
897 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
898 if (!page)
899 return VM_FAULT_SIGBUS;
900
901 get_page(page);
902 vmf->page = page;
903
904 return 0;
905 }
906
907 static struct vm_operations_struct qib_file_vm_ops = {
908 .fault = qib_file_vma_fault,
909 };
910
mmap_kvaddr(struct vm_area_struct * vma,u64 pgaddr,struct qib_ctxtdata * rcd,unsigned subctxt)911 static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr,
912 struct qib_ctxtdata *rcd, unsigned subctxt)
913 {
914 struct qib_devdata *dd = rcd->dd;
915 unsigned subctxt_cnt;
916 unsigned long len;
917 void *addr;
918 size_t size;
919 int ret = 0;
920
921 subctxt_cnt = rcd->subctxt_cnt;
922 size = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size;
923
924 /*
925 * Each process has all the subctxt uregbase, rcvhdrq, and
926 * rcvegrbufs mmapped - as an array for all the processes,
927 * and also separately for this process.
928 */
929 if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase)) {
930 addr = rcd->subctxt_uregbase;
931 size = PAGE_SIZE * subctxt_cnt;
932 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base)) {
933 addr = rcd->subctxt_rcvhdr_base;
934 size = rcd->rcvhdrq_size * subctxt_cnt;
935 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf)) {
936 addr = rcd->subctxt_rcvegrbuf;
937 size *= subctxt_cnt;
938 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase +
939 PAGE_SIZE * subctxt)) {
940 addr = rcd->subctxt_uregbase + PAGE_SIZE * subctxt;
941 size = PAGE_SIZE;
942 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base +
943 rcd->rcvhdrq_size * subctxt)) {
944 addr = rcd->subctxt_rcvhdr_base +
945 rcd->rcvhdrq_size * subctxt;
946 size = rcd->rcvhdrq_size;
947 } else if (pgaddr == cvt_kvaddr(&rcd->user_event_mask[subctxt])) {
948 addr = rcd->user_event_mask;
949 size = PAGE_SIZE;
950 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf +
951 size * subctxt)) {
952 addr = rcd->subctxt_rcvegrbuf + size * subctxt;
953 /* rcvegrbufs are read-only on the slave */
954 if (vma->vm_flags & VM_WRITE) {
955 qib_devinfo(dd->pcidev,
956 "Can't map eager buffers as "
957 "writable (flags=%lx)\n", vma->vm_flags);
958 ret = -EPERM;
959 goto bail;
960 }
961 /*
962 * Don't allow permission to later change to writeable
963 * with mprotect.
964 */
965 vma->vm_flags &= ~VM_MAYWRITE;
966 } else
967 goto bail;
968 len = vma->vm_end - vma->vm_start;
969 if (len > size) {
970 ret = -EINVAL;
971 goto bail;
972 }
973
974 vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT;
975 vma->vm_ops = &qib_file_vm_ops;
976 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
977 ret = 1;
978
979 bail:
980 return ret;
981 }
982
983 /**
984 * qib_mmapf - mmap various structures into user space
985 * @fp: the file pointer
986 * @vma: the VM area
987 *
988 * We use this to have a shared buffer between the kernel and the user code
989 * for the rcvhdr queue, egr buffers, and the per-context user regs and pio
990 * buffers in the chip. We have the open and close entries so we can bump
991 * the ref count and keep the driver from being unloaded while still mapped.
992 */
qib_mmapf(struct file * fp,struct vm_area_struct * vma)993 static int qib_mmapf(struct file *fp, struct vm_area_struct *vma)
994 {
995 struct qib_ctxtdata *rcd;
996 struct qib_devdata *dd;
997 u64 pgaddr, ureg;
998 unsigned piobufs, piocnt;
999 int ret, match = 1;
1000
1001 rcd = ctxt_fp(fp);
1002 if (!rcd || !(vma->vm_flags & VM_SHARED)) {
1003 ret = -EINVAL;
1004 goto bail;
1005 }
1006 dd = rcd->dd;
1007
1008 /*
1009 * This is the qib_do_user_init() code, mapping the shared buffers
1010 * and per-context user registers into the user process. The address
1011 * referred to by vm_pgoff is the file offset passed via mmap().
1012 * For shared contexts, this is the kernel vmalloc() address of the
1013 * pages to share with the master.
1014 * For non-shared or master ctxts, this is a physical address.
1015 * We only do one mmap for each space mapped.
1016 */
1017 pgaddr = vma->vm_pgoff << PAGE_SHIFT;
1018
1019 /*
1020 * Check for 0 in case one of the allocations failed, but user
1021 * called mmap anyway.
1022 */
1023 if (!pgaddr) {
1024 ret = -EINVAL;
1025 goto bail;
1026 }
1027
1028 /*
1029 * Physical addresses must fit in 40 bits for our hardware.
1030 * Check for kernel virtual addresses first, anything else must
1031 * match a HW or memory address.
1032 */
1033 ret = mmap_kvaddr(vma, pgaddr, rcd, subctxt_fp(fp));
1034 if (ret) {
1035 if (ret > 0)
1036 ret = 0;
1037 goto bail;
1038 }
1039
1040 ureg = dd->uregbase + dd->ureg_align * rcd->ctxt;
1041 if (!rcd->subctxt_cnt) {
1042 /* ctxt is not shared */
1043 piocnt = rcd->piocnt;
1044 piobufs = rcd->piobufs;
1045 } else if (!subctxt_fp(fp)) {
1046 /* caller is the master */
1047 piocnt = (rcd->piocnt / rcd->subctxt_cnt) +
1048 (rcd->piocnt % rcd->subctxt_cnt);
1049 piobufs = rcd->piobufs +
1050 dd->palign * (rcd->piocnt - piocnt);
1051 } else {
1052 unsigned slave = subctxt_fp(fp) - 1;
1053
1054 /* caller is a slave */
1055 piocnt = rcd->piocnt / rcd->subctxt_cnt;
1056 piobufs = rcd->piobufs + dd->palign * piocnt * slave;
1057 }
1058
1059 if (pgaddr == ureg)
1060 ret = mmap_ureg(vma, dd, ureg);
1061 else if (pgaddr == piobufs)
1062 ret = mmap_piobufs(vma, dd, rcd, piobufs, piocnt);
1063 else if (pgaddr == dd->pioavailregs_phys)
1064 /* in-memory copy of pioavail registers */
1065 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE,
1066 (void *) dd->pioavailregs_dma, 0,
1067 "pioavail registers");
1068 else if (pgaddr == rcd->rcvegr_phys)
1069 ret = mmap_rcvegrbufs(vma, rcd);
1070 else if (pgaddr == (u64) rcd->rcvhdrq_phys)
1071 /*
1072 * The rcvhdrq itself; multiple pages, contiguous
1073 * from an i/o perspective. Shared contexts need
1074 * to map r/w, so we allow writing.
1075 */
1076 ret = qib_mmap_mem(vma, rcd, rcd->rcvhdrq_size,
1077 rcd->rcvhdrq, 1, "rcvhdrq");
1078 else if (pgaddr == (u64) rcd->rcvhdrqtailaddr_phys)
1079 /* in-memory copy of rcvhdrq tail register */
1080 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE,
1081 rcd->rcvhdrtail_kvaddr, 0,
1082 "rcvhdrq tail");
1083 else
1084 match = 0;
1085 if (!match)
1086 ret = -EINVAL;
1087
1088 vma->vm_private_data = NULL;
1089
1090 if (ret < 0)
1091 qib_devinfo(dd->pcidev,
1092 "mmap Failure %d: off %llx len %lx\n",
1093 -ret, (unsigned long long)pgaddr,
1094 vma->vm_end - vma->vm_start);
1095 bail:
1096 return ret;
1097 }
1098
qib_poll_urgent(struct qib_ctxtdata * rcd,struct file * fp,struct poll_table_struct * pt)1099 static unsigned int qib_poll_urgent(struct qib_ctxtdata *rcd,
1100 struct file *fp,
1101 struct poll_table_struct *pt)
1102 {
1103 struct qib_devdata *dd = rcd->dd;
1104 unsigned pollflag;
1105
1106 poll_wait(fp, &rcd->wait, pt);
1107
1108 spin_lock_irq(&dd->uctxt_lock);
1109 if (rcd->urgent != rcd->urgent_poll) {
1110 pollflag = POLLIN | POLLRDNORM;
1111 rcd->urgent_poll = rcd->urgent;
1112 } else {
1113 pollflag = 0;
1114 set_bit(QIB_CTXT_WAITING_URG, &rcd->flag);
1115 }
1116 spin_unlock_irq(&dd->uctxt_lock);
1117
1118 return pollflag;
1119 }
1120
qib_poll_next(struct qib_ctxtdata * rcd,struct file * fp,struct poll_table_struct * pt)1121 static unsigned int qib_poll_next(struct qib_ctxtdata *rcd,
1122 struct file *fp,
1123 struct poll_table_struct *pt)
1124 {
1125 struct qib_devdata *dd = rcd->dd;
1126 unsigned pollflag;
1127
1128 poll_wait(fp, &rcd->wait, pt);
1129
1130 spin_lock_irq(&dd->uctxt_lock);
1131 if (dd->f_hdrqempty(rcd)) {
1132 set_bit(QIB_CTXT_WAITING_RCV, &rcd->flag);
1133 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_INTRAVAIL_ENB, rcd->ctxt);
1134 pollflag = 0;
1135 } else
1136 pollflag = POLLIN | POLLRDNORM;
1137 spin_unlock_irq(&dd->uctxt_lock);
1138
1139 return pollflag;
1140 }
1141
qib_poll(struct file * fp,struct poll_table_struct * pt)1142 static unsigned int qib_poll(struct file *fp, struct poll_table_struct *pt)
1143 {
1144 struct qib_ctxtdata *rcd;
1145 unsigned pollflag;
1146
1147 rcd = ctxt_fp(fp);
1148 if (!rcd)
1149 pollflag = POLLERR;
1150 else if (rcd->poll_type == QIB_POLL_TYPE_URGENT)
1151 pollflag = qib_poll_urgent(rcd, fp, pt);
1152 else if (rcd->poll_type == QIB_POLL_TYPE_ANYRCV)
1153 pollflag = qib_poll_next(rcd, fp, pt);
1154 else /* invalid */
1155 pollflag = POLLERR;
1156
1157 return pollflag;
1158 }
1159
assign_ctxt_affinity(struct file * fp,struct qib_devdata * dd)1160 static void assign_ctxt_affinity(struct file *fp, struct qib_devdata *dd)
1161 {
1162 struct qib_filedata *fd = fp->private_data;
1163 const unsigned int weight = cpumask_weight(¤t->cpus_allowed);
1164 const struct cpumask *local_mask = cpumask_of_pcibus(dd->pcidev->bus);
1165 int local_cpu;
1166
1167 /*
1168 * If process has NOT already set it's affinity, select and
1169 * reserve a processor for it on the local NUMA node.
1170 */
1171 if ((weight >= qib_cpulist_count) &&
1172 (cpumask_weight(local_mask) <= qib_cpulist_count)) {
1173 for_each_cpu(local_cpu, local_mask)
1174 if (!test_and_set_bit(local_cpu, qib_cpulist)) {
1175 fd->rec_cpu_num = local_cpu;
1176 return;
1177 }
1178 }
1179
1180 /*
1181 * If process has NOT already set it's affinity, select and
1182 * reserve a processor for it, as a rendevous for all
1183 * users of the driver. If they don't actually later
1184 * set affinity to this cpu, or set it to some other cpu,
1185 * it just means that sooner or later we don't recommend
1186 * a cpu, and let the scheduler do it's best.
1187 */
1188 if (weight >= qib_cpulist_count) {
1189 int cpu;
1190 cpu = find_first_zero_bit(qib_cpulist,
1191 qib_cpulist_count);
1192 if (cpu == qib_cpulist_count)
1193 qib_dev_err(dd,
1194 "no cpus avail for affinity PID %u\n",
1195 current->pid);
1196 else {
1197 __set_bit(cpu, qib_cpulist);
1198 fd->rec_cpu_num = cpu;
1199 }
1200 }
1201 }
1202
1203 /*
1204 * Check that userland and driver are compatible for subcontexts.
1205 */
qib_compatible_subctxts(int user_swmajor,int user_swminor)1206 static int qib_compatible_subctxts(int user_swmajor, int user_swminor)
1207 {
1208 /* this code is written long-hand for clarity */
1209 if (QIB_USER_SWMAJOR != user_swmajor) {
1210 /* no promise of compatibility if major mismatch */
1211 return 0;
1212 }
1213 if (QIB_USER_SWMAJOR == 1) {
1214 switch (QIB_USER_SWMINOR) {
1215 case 0:
1216 case 1:
1217 case 2:
1218 /* no subctxt implementation so cannot be compatible */
1219 return 0;
1220 case 3:
1221 /* 3 is only compatible with itself */
1222 return user_swminor == 3;
1223 default:
1224 /* >= 4 are compatible (or are expected to be) */
1225 return user_swminor <= QIB_USER_SWMINOR;
1226 }
1227 }
1228 /* make no promises yet for future major versions */
1229 return 0;
1230 }
1231
init_subctxts(struct qib_devdata * dd,struct qib_ctxtdata * rcd,const struct qib_user_info * uinfo)1232 static int init_subctxts(struct qib_devdata *dd,
1233 struct qib_ctxtdata *rcd,
1234 const struct qib_user_info *uinfo)
1235 {
1236 int ret = 0;
1237 unsigned num_subctxts;
1238 size_t size;
1239
1240 /*
1241 * If the user is requesting zero subctxts,
1242 * skip the subctxt allocation.
1243 */
1244 if (uinfo->spu_subctxt_cnt <= 0)
1245 goto bail;
1246 num_subctxts = uinfo->spu_subctxt_cnt;
1247
1248 /* Check for subctxt compatibility */
1249 if (!qib_compatible_subctxts(uinfo->spu_userversion >> 16,
1250 uinfo->spu_userversion & 0xffff)) {
1251 qib_devinfo(dd->pcidev,
1252 "Mismatched user version (%d.%d) and driver "
1253 "version (%d.%d) while context sharing. Ensure "
1254 "that driver and library are from the same "
1255 "release.\n",
1256 (int) (uinfo->spu_userversion >> 16),
1257 (int) (uinfo->spu_userversion & 0xffff),
1258 QIB_USER_SWMAJOR, QIB_USER_SWMINOR);
1259 goto bail;
1260 }
1261 if (num_subctxts > QLOGIC_IB_MAX_SUBCTXT) {
1262 ret = -EINVAL;
1263 goto bail;
1264 }
1265
1266 rcd->subctxt_uregbase = vmalloc_user(PAGE_SIZE * num_subctxts);
1267 if (!rcd->subctxt_uregbase) {
1268 ret = -ENOMEM;
1269 goto bail;
1270 }
1271 /* Note: rcd->rcvhdrq_size isn't initialized yet. */
1272 size = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize *
1273 sizeof(u32), PAGE_SIZE) * num_subctxts;
1274 rcd->subctxt_rcvhdr_base = vmalloc_user(size);
1275 if (!rcd->subctxt_rcvhdr_base) {
1276 ret = -ENOMEM;
1277 goto bail_ureg;
1278 }
1279
1280 rcd->subctxt_rcvegrbuf = vmalloc_user(rcd->rcvegrbuf_chunks *
1281 rcd->rcvegrbuf_size *
1282 num_subctxts);
1283 if (!rcd->subctxt_rcvegrbuf) {
1284 ret = -ENOMEM;
1285 goto bail_rhdr;
1286 }
1287
1288 rcd->subctxt_cnt = uinfo->spu_subctxt_cnt;
1289 rcd->subctxt_id = uinfo->spu_subctxt_id;
1290 rcd->active_slaves = 1;
1291 rcd->redirect_seq_cnt = 1;
1292 set_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag);
1293 goto bail;
1294
1295 bail_rhdr:
1296 vfree(rcd->subctxt_rcvhdr_base);
1297 bail_ureg:
1298 vfree(rcd->subctxt_uregbase);
1299 rcd->subctxt_uregbase = NULL;
1300 bail:
1301 return ret;
1302 }
1303
setup_ctxt(struct qib_pportdata * ppd,int ctxt,struct file * fp,const struct qib_user_info * uinfo)1304 static int setup_ctxt(struct qib_pportdata *ppd, int ctxt,
1305 struct file *fp, const struct qib_user_info *uinfo)
1306 {
1307 struct qib_filedata *fd = fp->private_data;
1308 struct qib_devdata *dd = ppd->dd;
1309 struct qib_ctxtdata *rcd;
1310 void *ptmp = NULL;
1311 int ret;
1312 int numa_id;
1313
1314 assign_ctxt_affinity(fp, dd);
1315
1316 numa_id = qib_numa_aware ? ((fd->rec_cpu_num != -1) ?
1317 cpu_to_node(fd->rec_cpu_num) :
1318 numa_node_id()) : dd->assigned_node_id;
1319
1320 rcd = qib_create_ctxtdata(ppd, ctxt, numa_id);
1321
1322 /*
1323 * Allocate memory for use in qib_tid_update() at open to
1324 * reduce cost of expected send setup per message segment
1325 */
1326 if (rcd)
1327 ptmp = kmalloc(dd->rcvtidcnt * sizeof(u16) +
1328 dd->rcvtidcnt * sizeof(struct page **),
1329 GFP_KERNEL);
1330
1331 if (!rcd || !ptmp) {
1332 qib_dev_err(dd,
1333 "Unable to allocate ctxtdata memory, failing open\n");
1334 ret = -ENOMEM;
1335 goto bailerr;
1336 }
1337 rcd->userversion = uinfo->spu_userversion;
1338 ret = init_subctxts(dd, rcd, uinfo);
1339 if (ret)
1340 goto bailerr;
1341 rcd->tid_pg_list = ptmp;
1342 rcd->pid = current->pid;
1343 init_waitqueue_head(&dd->rcd[ctxt]->wait);
1344 strlcpy(rcd->comm, current->comm, sizeof(rcd->comm));
1345 ctxt_fp(fp) = rcd;
1346 qib_stats.sps_ctxts++;
1347 dd->freectxts--;
1348 ret = 0;
1349 goto bail;
1350
1351 bailerr:
1352 if (fd->rec_cpu_num != -1)
1353 __clear_bit(fd->rec_cpu_num, qib_cpulist);
1354
1355 dd->rcd[ctxt] = NULL;
1356 kfree(rcd);
1357 kfree(ptmp);
1358 bail:
1359 return ret;
1360 }
1361
usable(struct qib_pportdata * ppd)1362 static inline int usable(struct qib_pportdata *ppd)
1363 {
1364 struct qib_devdata *dd = ppd->dd;
1365
1366 return dd && (dd->flags & QIB_PRESENT) && dd->kregbase && ppd->lid &&
1367 (ppd->lflags & QIBL_LINKACTIVE);
1368 }
1369
1370 /*
1371 * Select a context on the given device, either using a requested port
1372 * or the port based on the context number.
1373 */
choose_port_ctxt(struct file * fp,struct qib_devdata * dd,u32 port,const struct qib_user_info * uinfo)1374 static int choose_port_ctxt(struct file *fp, struct qib_devdata *dd, u32 port,
1375 const struct qib_user_info *uinfo)
1376 {
1377 struct qib_pportdata *ppd = NULL;
1378 int ret, ctxt;
1379
1380 if (port) {
1381 if (!usable(dd->pport + port - 1)) {
1382 ret = -ENETDOWN;
1383 goto done;
1384 } else
1385 ppd = dd->pport + port - 1;
1386 }
1387 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts && dd->rcd[ctxt];
1388 ctxt++)
1389 ;
1390 if (ctxt == dd->cfgctxts) {
1391 ret = -EBUSY;
1392 goto done;
1393 }
1394 if (!ppd) {
1395 u32 pidx = ctxt % dd->num_pports;
1396 if (usable(dd->pport + pidx))
1397 ppd = dd->pport + pidx;
1398 else {
1399 for (pidx = 0; pidx < dd->num_pports && !ppd;
1400 pidx++)
1401 if (usable(dd->pport + pidx))
1402 ppd = dd->pport + pidx;
1403 }
1404 }
1405 ret = ppd ? setup_ctxt(ppd, ctxt, fp, uinfo) : -ENETDOWN;
1406 done:
1407 return ret;
1408 }
1409
find_free_ctxt(int unit,struct file * fp,const struct qib_user_info * uinfo)1410 static int find_free_ctxt(int unit, struct file *fp,
1411 const struct qib_user_info *uinfo)
1412 {
1413 struct qib_devdata *dd = qib_lookup(unit);
1414 int ret;
1415
1416 if (!dd || (uinfo->spu_port && uinfo->spu_port > dd->num_pports))
1417 ret = -ENODEV;
1418 else
1419 ret = choose_port_ctxt(fp, dd, uinfo->spu_port, uinfo);
1420
1421 return ret;
1422 }
1423
get_a_ctxt(struct file * fp,const struct qib_user_info * uinfo,unsigned alg)1424 static int get_a_ctxt(struct file *fp, const struct qib_user_info *uinfo,
1425 unsigned alg)
1426 {
1427 struct qib_devdata *udd = NULL;
1428 int ret = 0, devmax, npresent, nup, ndev, dusable = 0, i;
1429 u32 port = uinfo->spu_port, ctxt;
1430
1431 devmax = qib_count_units(&npresent, &nup);
1432 if (!npresent) {
1433 ret = -ENXIO;
1434 goto done;
1435 }
1436 if (nup == 0) {
1437 ret = -ENETDOWN;
1438 goto done;
1439 }
1440
1441 if (alg == QIB_PORT_ALG_ACROSS) {
1442 unsigned inuse = ~0U;
1443 /* find device (with ACTIVE ports) with fewest ctxts in use */
1444 for (ndev = 0; ndev < devmax; ndev++) {
1445 struct qib_devdata *dd = qib_lookup(ndev);
1446 unsigned cused = 0, cfree = 0, pusable = 0;
1447 if (!dd)
1448 continue;
1449 if (port && port <= dd->num_pports &&
1450 usable(dd->pport + port - 1))
1451 pusable = 1;
1452 else
1453 for (i = 0; i < dd->num_pports; i++)
1454 if (usable(dd->pport + i))
1455 pusable++;
1456 if (!pusable)
1457 continue;
1458 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts;
1459 ctxt++)
1460 if (dd->rcd[ctxt])
1461 cused++;
1462 else
1463 cfree++;
1464 if (cfree && cused < inuse) {
1465 udd = dd;
1466 inuse = cused;
1467 }
1468 }
1469 if (udd) {
1470 ret = choose_port_ctxt(fp, udd, port, uinfo);
1471 goto done;
1472 }
1473 } else {
1474 for (ndev = 0; ndev < devmax; ndev++) {
1475 struct qib_devdata *dd = qib_lookup(ndev);
1476 if (dd) {
1477 ret = choose_port_ctxt(fp, dd, port, uinfo);
1478 if (!ret)
1479 goto done;
1480 if (ret == -EBUSY)
1481 dusable++;
1482 }
1483 }
1484 }
1485 ret = dusable ? -EBUSY : -ENETDOWN;
1486
1487 done:
1488 return ret;
1489 }
1490
find_shared_ctxt(struct file * fp,const struct qib_user_info * uinfo)1491 static int find_shared_ctxt(struct file *fp,
1492 const struct qib_user_info *uinfo)
1493 {
1494 int devmax, ndev, i;
1495 int ret = 0;
1496
1497 devmax = qib_count_units(NULL, NULL);
1498
1499 for (ndev = 0; ndev < devmax; ndev++) {
1500 struct qib_devdata *dd = qib_lookup(ndev);
1501
1502 /* device portion of usable() */
1503 if (!(dd && (dd->flags & QIB_PRESENT) && dd->kregbase))
1504 continue;
1505 for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) {
1506 struct qib_ctxtdata *rcd = dd->rcd[i];
1507
1508 /* Skip ctxts which are not yet open */
1509 if (!rcd || !rcd->cnt)
1510 continue;
1511 /* Skip ctxt if it doesn't match the requested one */
1512 if (rcd->subctxt_id != uinfo->spu_subctxt_id)
1513 continue;
1514 /* Verify the sharing process matches the master */
1515 if (rcd->subctxt_cnt != uinfo->spu_subctxt_cnt ||
1516 rcd->userversion != uinfo->spu_userversion ||
1517 rcd->cnt >= rcd->subctxt_cnt) {
1518 ret = -EINVAL;
1519 goto done;
1520 }
1521 ctxt_fp(fp) = rcd;
1522 subctxt_fp(fp) = rcd->cnt++;
1523 rcd->subpid[subctxt_fp(fp)] = current->pid;
1524 tidcursor_fp(fp) = 0;
1525 rcd->active_slaves |= 1 << subctxt_fp(fp);
1526 ret = 1;
1527 goto done;
1528 }
1529 }
1530
1531 done:
1532 return ret;
1533 }
1534
qib_open(struct inode * in,struct file * fp)1535 static int qib_open(struct inode *in, struct file *fp)
1536 {
1537 /* The real work is performed later in qib_assign_ctxt() */
1538 fp->private_data = kzalloc(sizeof(struct qib_filedata), GFP_KERNEL);
1539 if (fp->private_data) /* no cpu affinity by default */
1540 ((struct qib_filedata *)fp->private_data)->rec_cpu_num = -1;
1541 return fp->private_data ? 0 : -ENOMEM;
1542 }
1543
find_hca(unsigned int cpu,int * unit)1544 static int find_hca(unsigned int cpu, int *unit)
1545 {
1546 int ret = 0, devmax, npresent, nup, ndev;
1547
1548 *unit = -1;
1549
1550 devmax = qib_count_units(&npresent, &nup);
1551 if (!npresent) {
1552 ret = -ENXIO;
1553 goto done;
1554 }
1555 if (!nup) {
1556 ret = -ENETDOWN;
1557 goto done;
1558 }
1559 for (ndev = 0; ndev < devmax; ndev++) {
1560 struct qib_devdata *dd = qib_lookup(ndev);
1561 if (dd) {
1562 if (pcibus_to_node(dd->pcidev->bus) < 0) {
1563 ret = -EINVAL;
1564 goto done;
1565 }
1566 if (cpu_to_node(cpu) ==
1567 pcibus_to_node(dd->pcidev->bus)) {
1568 *unit = ndev;
1569 goto done;
1570 }
1571 }
1572 }
1573 done:
1574 return ret;
1575 }
1576
do_qib_user_sdma_queue_create(struct file * fp)1577 static int do_qib_user_sdma_queue_create(struct file *fp)
1578 {
1579 struct qib_filedata *fd = fp->private_data;
1580 struct qib_ctxtdata *rcd = fd->rcd;
1581 struct qib_devdata *dd = rcd->dd;
1582
1583 if (dd->flags & QIB_HAS_SEND_DMA) {
1584
1585 fd->pq = qib_user_sdma_queue_create(&dd->pcidev->dev,
1586 dd->unit,
1587 rcd->ctxt,
1588 fd->subctxt);
1589 if (!fd->pq)
1590 return -ENOMEM;
1591 }
1592
1593 return 0;
1594 }
1595
1596 /*
1597 * Get ctxt early, so can set affinity prior to memory allocation.
1598 */
qib_assign_ctxt(struct file * fp,const struct qib_user_info * uinfo)1599 static int qib_assign_ctxt(struct file *fp, const struct qib_user_info *uinfo)
1600 {
1601 int ret;
1602 int i_minor;
1603 unsigned swmajor, swminor, alg = QIB_PORT_ALG_ACROSS;
1604
1605 /* Check to be sure we haven't already initialized this file */
1606 if (ctxt_fp(fp)) {
1607 ret = -EINVAL;
1608 goto done;
1609 }
1610
1611 /* for now, if major version is different, bail */
1612 swmajor = uinfo->spu_userversion >> 16;
1613 if (swmajor != QIB_USER_SWMAJOR) {
1614 ret = -ENODEV;
1615 goto done;
1616 }
1617
1618 swminor = uinfo->spu_userversion & 0xffff;
1619
1620 if (swminor >= 11 && uinfo->spu_port_alg < QIB_PORT_ALG_COUNT)
1621 alg = uinfo->spu_port_alg;
1622
1623 mutex_lock(&qib_mutex);
1624
1625 if (qib_compatible_subctxts(swmajor, swminor) &&
1626 uinfo->spu_subctxt_cnt) {
1627 ret = find_shared_ctxt(fp, uinfo);
1628 if (ret > 0) {
1629 ret = do_qib_user_sdma_queue_create(fp);
1630 if (!ret)
1631 assign_ctxt_affinity(fp, (ctxt_fp(fp))->dd);
1632 goto done_ok;
1633 }
1634 }
1635
1636 i_minor = iminor(file_inode(fp)) - QIB_USER_MINOR_BASE;
1637 if (i_minor)
1638 ret = find_free_ctxt(i_minor - 1, fp, uinfo);
1639 else {
1640 int unit;
1641 const unsigned int cpu = cpumask_first(¤t->cpus_allowed);
1642 const unsigned int weight =
1643 cpumask_weight(¤t->cpus_allowed);
1644
1645 if (weight == 1 && !test_bit(cpu, qib_cpulist))
1646 if (!find_hca(cpu, &unit) && unit >= 0)
1647 if (!find_free_ctxt(unit, fp, uinfo)) {
1648 ret = 0;
1649 goto done_chk_sdma;
1650 }
1651 ret = get_a_ctxt(fp, uinfo, alg);
1652 }
1653
1654 done_chk_sdma:
1655 if (!ret)
1656 ret = do_qib_user_sdma_queue_create(fp);
1657 done_ok:
1658 mutex_unlock(&qib_mutex);
1659
1660 done:
1661 return ret;
1662 }
1663
1664
qib_do_user_init(struct file * fp,const struct qib_user_info * uinfo)1665 static int qib_do_user_init(struct file *fp,
1666 const struct qib_user_info *uinfo)
1667 {
1668 int ret;
1669 struct qib_ctxtdata *rcd = ctxt_fp(fp);
1670 struct qib_devdata *dd;
1671 unsigned uctxt;
1672
1673 /* Subctxts don't need to initialize anything since master did it. */
1674 if (subctxt_fp(fp)) {
1675 ret = wait_event_interruptible(rcd->wait,
1676 !test_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag));
1677 goto bail;
1678 }
1679
1680 dd = rcd->dd;
1681
1682 /* some ctxts may get extra buffers, calculate that here */
1683 uctxt = rcd->ctxt - dd->first_user_ctxt;
1684 if (uctxt < dd->ctxts_extrabuf) {
1685 rcd->piocnt = dd->pbufsctxt + 1;
1686 rcd->pio_base = rcd->piocnt * uctxt;
1687 } else {
1688 rcd->piocnt = dd->pbufsctxt;
1689 rcd->pio_base = rcd->piocnt * uctxt +
1690 dd->ctxts_extrabuf;
1691 }
1692
1693 /*
1694 * All user buffers are 2KB buffers. If we ever support
1695 * giving 4KB buffers to user processes, this will need some
1696 * work. Can't use piobufbase directly, because it has
1697 * both 2K and 4K buffer base values. So check and handle.
1698 */
1699 if ((rcd->pio_base + rcd->piocnt) > dd->piobcnt2k) {
1700 if (rcd->pio_base >= dd->piobcnt2k) {
1701 qib_dev_err(dd,
1702 "%u:ctxt%u: no 2KB buffers available\n",
1703 dd->unit, rcd->ctxt);
1704 ret = -ENOBUFS;
1705 goto bail;
1706 }
1707 rcd->piocnt = dd->piobcnt2k - rcd->pio_base;
1708 qib_dev_err(dd, "Ctxt%u: would use 4KB bufs, using %u\n",
1709 rcd->ctxt, rcd->piocnt);
1710 }
1711
1712 rcd->piobufs = dd->pio2k_bufbase + rcd->pio_base * dd->palign;
1713 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt,
1714 TXCHK_CHG_TYPE_USER, rcd);
1715 /*
1716 * try to ensure that processes start up with consistent avail update
1717 * for their own range, at least. If system very quiet, it might
1718 * have the in-memory copy out of date at startup for this range of
1719 * buffers, when a context gets re-used. Do after the chg_pioavail
1720 * and before the rest of setup, so it's "almost certain" the dma
1721 * will have occurred (can't 100% guarantee, but should be many
1722 * decimals of 9s, with this ordering), given how much else happens
1723 * after this.
1724 */
1725 dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP);
1726
1727 /*
1728 * Now allocate the rcvhdr Q and eager TIDs; skip the TID
1729 * array for time being. If rcd->ctxt > chip-supported,
1730 * we need to do extra stuff here to handle by handling overflow
1731 * through ctxt 0, someday
1732 */
1733 ret = qib_create_rcvhdrq(dd, rcd);
1734 if (!ret)
1735 ret = qib_setup_eagerbufs(rcd);
1736 if (ret)
1737 goto bail_pio;
1738
1739 rcd->tidcursor = 0; /* start at beginning after open */
1740
1741 /* initialize poll variables... */
1742 rcd->urgent = 0;
1743 rcd->urgent_poll = 0;
1744
1745 /*
1746 * Now enable the ctxt for receive.
1747 * For chips that are set to DMA the tail register to memory
1748 * when they change (and when the update bit transitions from
1749 * 0 to 1. So for those chips, we turn it off and then back on.
1750 * This will (very briefly) affect any other open ctxts, but the
1751 * duration is very short, and therefore isn't an issue. We
1752 * explicitly set the in-memory tail copy to 0 beforehand, so we
1753 * don't have to wait to be sure the DMA update has happened
1754 * (chip resets head/tail to 0 on transition to enable).
1755 */
1756 if (rcd->rcvhdrtail_kvaddr)
1757 qib_clear_rcvhdrtail(rcd);
1758
1759 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_TIDFLOW_ENB,
1760 rcd->ctxt);
1761
1762 /* Notify any waiting slaves */
1763 if (rcd->subctxt_cnt) {
1764 clear_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag);
1765 wake_up(&rcd->wait);
1766 }
1767 return 0;
1768
1769 bail_pio:
1770 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt,
1771 TXCHK_CHG_TYPE_KERN, rcd);
1772 bail:
1773 return ret;
1774 }
1775
1776 /**
1777 * unlock_exptid - unlock any expected TID entries context still had in use
1778 * @rcd: ctxt
1779 *
1780 * We don't actually update the chip here, because we do a bulk update
1781 * below, using f_clear_tids.
1782 */
unlock_expected_tids(struct qib_ctxtdata * rcd)1783 static void unlock_expected_tids(struct qib_ctxtdata *rcd)
1784 {
1785 struct qib_devdata *dd = rcd->dd;
1786 int ctxt_tidbase = rcd->ctxt * dd->rcvtidcnt;
1787 int i, cnt = 0, maxtid = ctxt_tidbase + dd->rcvtidcnt;
1788
1789 for (i = ctxt_tidbase; i < maxtid; i++) {
1790 struct page *p = dd->pageshadow[i];
1791 dma_addr_t phys;
1792
1793 if (!p)
1794 continue;
1795
1796 phys = dd->physshadow[i];
1797 dd->physshadow[i] = dd->tidinvalid;
1798 dd->pageshadow[i] = NULL;
1799 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
1800 PCI_DMA_FROMDEVICE);
1801 qib_release_user_pages(&p, 1);
1802 cnt++;
1803 }
1804 }
1805
qib_close(struct inode * in,struct file * fp)1806 static int qib_close(struct inode *in, struct file *fp)
1807 {
1808 int ret = 0;
1809 struct qib_filedata *fd;
1810 struct qib_ctxtdata *rcd;
1811 struct qib_devdata *dd;
1812 unsigned long flags;
1813 unsigned ctxt;
1814 pid_t pid;
1815
1816 mutex_lock(&qib_mutex);
1817
1818 fd = fp->private_data;
1819 fp->private_data = NULL;
1820 rcd = fd->rcd;
1821 if (!rcd) {
1822 mutex_unlock(&qib_mutex);
1823 goto bail;
1824 }
1825
1826 dd = rcd->dd;
1827
1828 /* ensure all pio buffer writes in progress are flushed */
1829 qib_flush_wc();
1830
1831 /* drain user sdma queue */
1832 if (fd->pq) {
1833 qib_user_sdma_queue_drain(rcd->ppd, fd->pq);
1834 qib_user_sdma_queue_destroy(fd->pq);
1835 }
1836
1837 if (fd->rec_cpu_num != -1)
1838 __clear_bit(fd->rec_cpu_num, qib_cpulist);
1839
1840 if (--rcd->cnt) {
1841 /*
1842 * XXX If the master closes the context before the slave(s),
1843 * revoke the mmap for the eager receive queue so
1844 * the slave(s) don't wait for receive data forever.
1845 */
1846 rcd->active_slaves &= ~(1 << fd->subctxt);
1847 rcd->subpid[fd->subctxt] = 0;
1848 mutex_unlock(&qib_mutex);
1849 goto bail;
1850 }
1851
1852 /* early; no interrupt users after this */
1853 spin_lock_irqsave(&dd->uctxt_lock, flags);
1854 ctxt = rcd->ctxt;
1855 dd->rcd[ctxt] = NULL;
1856 pid = rcd->pid;
1857 rcd->pid = 0;
1858 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1859
1860 if (rcd->rcvwait_to || rcd->piowait_to ||
1861 rcd->rcvnowait || rcd->pionowait) {
1862 rcd->rcvwait_to = 0;
1863 rcd->piowait_to = 0;
1864 rcd->rcvnowait = 0;
1865 rcd->pionowait = 0;
1866 }
1867 if (rcd->flag)
1868 rcd->flag = 0;
1869
1870 if (dd->kregbase) {
1871 /* atomically clear receive enable ctxt and intr avail. */
1872 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_DIS |
1873 QIB_RCVCTRL_INTRAVAIL_DIS, ctxt);
1874
1875 /* clean up the pkeys for this ctxt user */
1876 qib_clean_part_key(rcd, dd);
1877 qib_disarm_piobufs(dd, rcd->pio_base, rcd->piocnt);
1878 qib_chg_pioavailkernel(dd, rcd->pio_base,
1879 rcd->piocnt, TXCHK_CHG_TYPE_KERN, NULL);
1880
1881 dd->f_clear_tids(dd, rcd);
1882
1883 if (dd->pageshadow)
1884 unlock_expected_tids(rcd);
1885 qib_stats.sps_ctxts--;
1886 dd->freectxts++;
1887 }
1888
1889 mutex_unlock(&qib_mutex);
1890 qib_free_ctxtdata(dd, rcd); /* after releasing the mutex */
1891
1892 bail:
1893 kfree(fd);
1894 return ret;
1895 }
1896
qib_ctxt_info(struct file * fp,struct qib_ctxt_info __user * uinfo)1897 static int qib_ctxt_info(struct file *fp, struct qib_ctxt_info __user *uinfo)
1898 {
1899 struct qib_ctxt_info info;
1900 int ret;
1901 size_t sz;
1902 struct qib_ctxtdata *rcd = ctxt_fp(fp);
1903 struct qib_filedata *fd;
1904
1905 fd = fp->private_data;
1906
1907 info.num_active = qib_count_active_units();
1908 info.unit = rcd->dd->unit;
1909 info.port = rcd->ppd->port;
1910 info.ctxt = rcd->ctxt;
1911 info.subctxt = subctxt_fp(fp);
1912 /* Number of user ctxts available for this device. */
1913 info.num_ctxts = rcd->dd->cfgctxts - rcd->dd->first_user_ctxt;
1914 info.num_subctxts = rcd->subctxt_cnt;
1915 info.rec_cpu = fd->rec_cpu_num;
1916 sz = sizeof(info);
1917
1918 if (copy_to_user(uinfo, &info, sz)) {
1919 ret = -EFAULT;
1920 goto bail;
1921 }
1922 ret = 0;
1923
1924 bail:
1925 return ret;
1926 }
1927
qib_sdma_get_inflight(struct qib_user_sdma_queue * pq,u32 __user * inflightp)1928 static int qib_sdma_get_inflight(struct qib_user_sdma_queue *pq,
1929 u32 __user *inflightp)
1930 {
1931 const u32 val = qib_user_sdma_inflight_counter(pq);
1932
1933 if (put_user(val, inflightp))
1934 return -EFAULT;
1935
1936 return 0;
1937 }
1938
qib_sdma_get_complete(struct qib_pportdata * ppd,struct qib_user_sdma_queue * pq,u32 __user * completep)1939 static int qib_sdma_get_complete(struct qib_pportdata *ppd,
1940 struct qib_user_sdma_queue *pq,
1941 u32 __user *completep)
1942 {
1943 u32 val;
1944 int err;
1945
1946 if (!pq)
1947 return -EINVAL;
1948
1949 err = qib_user_sdma_make_progress(ppd, pq);
1950 if (err < 0)
1951 return err;
1952
1953 val = qib_user_sdma_complete_counter(pq);
1954 if (put_user(val, completep))
1955 return -EFAULT;
1956
1957 return 0;
1958 }
1959
disarm_req_delay(struct qib_ctxtdata * rcd)1960 static int disarm_req_delay(struct qib_ctxtdata *rcd)
1961 {
1962 int ret = 0;
1963
1964 if (!usable(rcd->ppd)) {
1965 int i;
1966 /*
1967 * if link is down, or otherwise not usable, delay
1968 * the caller up to 30 seconds, so we don't thrash
1969 * in trying to get the chip back to ACTIVE, and
1970 * set flag so they make the call again.
1971 */
1972 if (rcd->user_event_mask) {
1973 /*
1974 * subctxt_cnt is 0 if not shared, so do base
1975 * separately, first, then remaining subctxt, if any
1976 */
1977 set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
1978 &rcd->user_event_mask[0]);
1979 for (i = 1; i < rcd->subctxt_cnt; i++)
1980 set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
1981 &rcd->user_event_mask[i]);
1982 }
1983 for (i = 0; !usable(rcd->ppd) && i < 300; i++)
1984 msleep(100);
1985 ret = -ENETDOWN;
1986 }
1987 return ret;
1988 }
1989
1990 /*
1991 * Find all user contexts in use, and set the specified bit in their
1992 * event mask.
1993 * See also find_ctxt() for a similar use, that is specific to send buffers.
1994 */
qib_set_uevent_bits(struct qib_pportdata * ppd,const int evtbit)1995 int qib_set_uevent_bits(struct qib_pportdata *ppd, const int evtbit)
1996 {
1997 struct qib_ctxtdata *rcd;
1998 unsigned ctxt;
1999 int ret = 0;
2000 unsigned long flags;
2001
2002 spin_lock_irqsave(&ppd->dd->uctxt_lock, flags);
2003 for (ctxt = ppd->dd->first_user_ctxt; ctxt < ppd->dd->cfgctxts;
2004 ctxt++) {
2005 rcd = ppd->dd->rcd[ctxt];
2006 if (!rcd)
2007 continue;
2008 if (rcd->user_event_mask) {
2009 int i;
2010 /*
2011 * subctxt_cnt is 0 if not shared, so do base
2012 * separately, first, then remaining subctxt, if any
2013 */
2014 set_bit(evtbit, &rcd->user_event_mask[0]);
2015 for (i = 1; i < rcd->subctxt_cnt; i++)
2016 set_bit(evtbit, &rcd->user_event_mask[i]);
2017 }
2018 ret = 1;
2019 break;
2020 }
2021 spin_unlock_irqrestore(&ppd->dd->uctxt_lock, flags);
2022
2023 return ret;
2024 }
2025
2026 /*
2027 * clear the event notifier events for this context.
2028 * For the DISARM_BUFS case, we also take action (this obsoletes
2029 * the older QIB_CMD_DISARM_BUFS, but we keep it for backwards
2030 * compatibility.
2031 * Other bits don't currently require actions, just atomically clear.
2032 * User process then performs actions appropriate to bit having been
2033 * set, if desired, and checks again in future.
2034 */
qib_user_event_ack(struct qib_ctxtdata * rcd,int subctxt,unsigned long events)2035 static int qib_user_event_ack(struct qib_ctxtdata *rcd, int subctxt,
2036 unsigned long events)
2037 {
2038 int ret = 0, i;
2039
2040 for (i = 0; i <= _QIB_MAX_EVENT_BIT; i++) {
2041 if (!test_bit(i, &events))
2042 continue;
2043 if (i == _QIB_EVENT_DISARM_BUFS_BIT) {
2044 (void)qib_disarm_piobufs_ifneeded(rcd);
2045 ret = disarm_req_delay(rcd);
2046 } else
2047 clear_bit(i, &rcd->user_event_mask[subctxt]);
2048 }
2049 return ret;
2050 }
2051
qib_write(struct file * fp,const char __user * data,size_t count,loff_t * off)2052 static ssize_t qib_write(struct file *fp, const char __user *data,
2053 size_t count, loff_t *off)
2054 {
2055 const struct qib_cmd __user *ucmd;
2056 struct qib_ctxtdata *rcd;
2057 const void __user *src;
2058 size_t consumed, copy = 0;
2059 struct qib_cmd cmd;
2060 ssize_t ret = 0;
2061 void *dest;
2062
2063 if (WARN_ON_ONCE(!ib_safe_file_access(fp)))
2064 return -EACCES;
2065
2066 if (count < sizeof(cmd.type)) {
2067 ret = -EINVAL;
2068 goto bail;
2069 }
2070
2071 ucmd = (const struct qib_cmd __user *) data;
2072
2073 if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) {
2074 ret = -EFAULT;
2075 goto bail;
2076 }
2077
2078 consumed = sizeof(cmd.type);
2079
2080 switch (cmd.type) {
2081 case QIB_CMD_ASSIGN_CTXT:
2082 case QIB_CMD_USER_INIT:
2083 copy = sizeof(cmd.cmd.user_info);
2084 dest = &cmd.cmd.user_info;
2085 src = &ucmd->cmd.user_info;
2086 break;
2087
2088 case QIB_CMD_RECV_CTRL:
2089 copy = sizeof(cmd.cmd.recv_ctrl);
2090 dest = &cmd.cmd.recv_ctrl;
2091 src = &ucmd->cmd.recv_ctrl;
2092 break;
2093
2094 case QIB_CMD_CTXT_INFO:
2095 copy = sizeof(cmd.cmd.ctxt_info);
2096 dest = &cmd.cmd.ctxt_info;
2097 src = &ucmd->cmd.ctxt_info;
2098 break;
2099
2100 case QIB_CMD_TID_UPDATE:
2101 case QIB_CMD_TID_FREE:
2102 copy = sizeof(cmd.cmd.tid_info);
2103 dest = &cmd.cmd.tid_info;
2104 src = &ucmd->cmd.tid_info;
2105 break;
2106
2107 case QIB_CMD_SET_PART_KEY:
2108 copy = sizeof(cmd.cmd.part_key);
2109 dest = &cmd.cmd.part_key;
2110 src = &ucmd->cmd.part_key;
2111 break;
2112
2113 case QIB_CMD_DISARM_BUFS:
2114 case QIB_CMD_PIOAVAILUPD: /* force an update of PIOAvail reg */
2115 copy = 0;
2116 src = NULL;
2117 dest = NULL;
2118 break;
2119
2120 case QIB_CMD_POLL_TYPE:
2121 copy = sizeof(cmd.cmd.poll_type);
2122 dest = &cmd.cmd.poll_type;
2123 src = &ucmd->cmd.poll_type;
2124 break;
2125
2126 case QIB_CMD_ARMLAUNCH_CTRL:
2127 copy = sizeof(cmd.cmd.armlaunch_ctrl);
2128 dest = &cmd.cmd.armlaunch_ctrl;
2129 src = &ucmd->cmd.armlaunch_ctrl;
2130 break;
2131
2132 case QIB_CMD_SDMA_INFLIGHT:
2133 copy = sizeof(cmd.cmd.sdma_inflight);
2134 dest = &cmd.cmd.sdma_inflight;
2135 src = &ucmd->cmd.sdma_inflight;
2136 break;
2137
2138 case QIB_CMD_SDMA_COMPLETE:
2139 copy = sizeof(cmd.cmd.sdma_complete);
2140 dest = &cmd.cmd.sdma_complete;
2141 src = &ucmd->cmd.sdma_complete;
2142 break;
2143
2144 case QIB_CMD_ACK_EVENT:
2145 copy = sizeof(cmd.cmd.event_mask);
2146 dest = &cmd.cmd.event_mask;
2147 src = &ucmd->cmd.event_mask;
2148 break;
2149
2150 default:
2151 ret = -EINVAL;
2152 goto bail;
2153 }
2154
2155 if (copy) {
2156 if ((count - consumed) < copy) {
2157 ret = -EINVAL;
2158 goto bail;
2159 }
2160 if (copy_from_user(dest, src, copy)) {
2161 ret = -EFAULT;
2162 goto bail;
2163 }
2164 consumed += copy;
2165 }
2166
2167 rcd = ctxt_fp(fp);
2168 if (!rcd && cmd.type != QIB_CMD_ASSIGN_CTXT) {
2169 ret = -EINVAL;
2170 goto bail;
2171 }
2172
2173 switch (cmd.type) {
2174 case QIB_CMD_ASSIGN_CTXT:
2175 ret = qib_assign_ctxt(fp, &cmd.cmd.user_info);
2176 if (ret)
2177 goto bail;
2178 break;
2179
2180 case QIB_CMD_USER_INIT:
2181 ret = qib_do_user_init(fp, &cmd.cmd.user_info);
2182 if (ret)
2183 goto bail;
2184 ret = qib_get_base_info(fp, (void __user *) (unsigned long)
2185 cmd.cmd.user_info.spu_base_info,
2186 cmd.cmd.user_info.spu_base_info_size);
2187 break;
2188
2189 case QIB_CMD_RECV_CTRL:
2190 ret = qib_manage_rcvq(rcd, subctxt_fp(fp), cmd.cmd.recv_ctrl);
2191 break;
2192
2193 case QIB_CMD_CTXT_INFO:
2194 ret = qib_ctxt_info(fp, (struct qib_ctxt_info __user *)
2195 (unsigned long) cmd.cmd.ctxt_info);
2196 break;
2197
2198 case QIB_CMD_TID_UPDATE:
2199 ret = qib_tid_update(rcd, fp, &cmd.cmd.tid_info);
2200 break;
2201
2202 case QIB_CMD_TID_FREE:
2203 ret = qib_tid_free(rcd, subctxt_fp(fp), &cmd.cmd.tid_info);
2204 break;
2205
2206 case QIB_CMD_SET_PART_KEY:
2207 ret = qib_set_part_key(rcd, cmd.cmd.part_key);
2208 break;
2209
2210 case QIB_CMD_DISARM_BUFS:
2211 (void)qib_disarm_piobufs_ifneeded(rcd);
2212 ret = disarm_req_delay(rcd);
2213 break;
2214
2215 case QIB_CMD_PIOAVAILUPD:
2216 qib_force_pio_avail_update(rcd->dd);
2217 break;
2218
2219 case QIB_CMD_POLL_TYPE:
2220 rcd->poll_type = cmd.cmd.poll_type;
2221 break;
2222
2223 case QIB_CMD_ARMLAUNCH_CTRL:
2224 rcd->dd->f_set_armlaunch(rcd->dd, cmd.cmd.armlaunch_ctrl);
2225 break;
2226
2227 case QIB_CMD_SDMA_INFLIGHT:
2228 ret = qib_sdma_get_inflight(user_sdma_queue_fp(fp),
2229 (u32 __user *) (unsigned long)
2230 cmd.cmd.sdma_inflight);
2231 break;
2232
2233 case QIB_CMD_SDMA_COMPLETE:
2234 ret = qib_sdma_get_complete(rcd->ppd,
2235 user_sdma_queue_fp(fp),
2236 (u32 __user *) (unsigned long)
2237 cmd.cmd.sdma_complete);
2238 break;
2239
2240 case QIB_CMD_ACK_EVENT:
2241 ret = qib_user_event_ack(rcd, subctxt_fp(fp),
2242 cmd.cmd.event_mask);
2243 break;
2244 }
2245
2246 if (ret >= 0)
2247 ret = consumed;
2248
2249 bail:
2250 return ret;
2251 }
2252
qib_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long dim,loff_t off)2253 static ssize_t qib_aio_write(struct kiocb *iocb, const struct iovec *iov,
2254 unsigned long dim, loff_t off)
2255 {
2256 struct qib_filedata *fp = iocb->ki_filp->private_data;
2257 struct qib_ctxtdata *rcd = ctxt_fp(iocb->ki_filp);
2258 struct qib_user_sdma_queue *pq = fp->pq;
2259
2260 if (!dim || !pq)
2261 return -EINVAL;
2262
2263 return qib_user_sdma_writev(rcd, pq, iov, dim);
2264 }
2265
2266 static struct class *qib_class;
2267 static dev_t qib_dev;
2268
qib_cdev_init(int minor,const char * name,const struct file_operations * fops,struct cdev ** cdevp,struct device ** devp)2269 int qib_cdev_init(int minor, const char *name,
2270 const struct file_operations *fops,
2271 struct cdev **cdevp, struct device **devp)
2272 {
2273 const dev_t dev = MKDEV(MAJOR(qib_dev), minor);
2274 struct cdev *cdev;
2275 struct device *device = NULL;
2276 int ret;
2277
2278 cdev = cdev_alloc();
2279 if (!cdev) {
2280 pr_err("Could not allocate cdev for minor %d, %s\n",
2281 minor, name);
2282 ret = -ENOMEM;
2283 goto done;
2284 }
2285
2286 cdev->owner = THIS_MODULE;
2287 cdev->ops = fops;
2288 kobject_set_name(&cdev->kobj, name);
2289
2290 ret = cdev_add(cdev, dev, 1);
2291 if (ret < 0) {
2292 pr_err("Could not add cdev for minor %d, %s (err %d)\n",
2293 minor, name, -ret);
2294 goto err_cdev;
2295 }
2296
2297 device = device_create(qib_class, NULL, dev, NULL, "%s", name);
2298 if (!IS_ERR(device))
2299 goto done;
2300 ret = PTR_ERR(device);
2301 device = NULL;
2302 pr_err("Could not create device for minor %d, %s (err %d)\n",
2303 minor, name, -ret);
2304 err_cdev:
2305 cdev_del(cdev);
2306 cdev = NULL;
2307 done:
2308 *cdevp = cdev;
2309 *devp = device;
2310 return ret;
2311 }
2312
qib_cdev_cleanup(struct cdev ** cdevp,struct device ** devp)2313 void qib_cdev_cleanup(struct cdev **cdevp, struct device **devp)
2314 {
2315 struct device *device = *devp;
2316
2317 if (device) {
2318 device_unregister(device);
2319 *devp = NULL;
2320 }
2321
2322 if (*cdevp) {
2323 cdev_del(*cdevp);
2324 *cdevp = NULL;
2325 }
2326 }
2327
2328 static struct cdev *wildcard_cdev;
2329 static struct device *wildcard_device;
2330
qib_dev_init(void)2331 int __init qib_dev_init(void)
2332 {
2333 int ret;
2334
2335 ret = alloc_chrdev_region(&qib_dev, 0, QIB_NMINORS, QIB_DRV_NAME);
2336 if (ret < 0) {
2337 pr_err("Could not allocate chrdev region (err %d)\n", -ret);
2338 goto done;
2339 }
2340
2341 qib_class = class_create(THIS_MODULE, "ipath");
2342 if (IS_ERR(qib_class)) {
2343 ret = PTR_ERR(qib_class);
2344 pr_err("Could not create device class (err %d)\n", -ret);
2345 unregister_chrdev_region(qib_dev, QIB_NMINORS);
2346 }
2347
2348 done:
2349 return ret;
2350 }
2351
qib_dev_cleanup(void)2352 void qib_dev_cleanup(void)
2353 {
2354 if (qib_class) {
2355 class_destroy(qib_class);
2356 qib_class = NULL;
2357 }
2358
2359 unregister_chrdev_region(qib_dev, QIB_NMINORS);
2360 }
2361
2362 static atomic_t user_count = ATOMIC_INIT(0);
2363
qib_user_remove(struct qib_devdata * dd)2364 static void qib_user_remove(struct qib_devdata *dd)
2365 {
2366 if (atomic_dec_return(&user_count) == 0)
2367 qib_cdev_cleanup(&wildcard_cdev, &wildcard_device);
2368
2369 qib_cdev_cleanup(&dd->user_cdev, &dd->user_device);
2370 }
2371
qib_user_add(struct qib_devdata * dd)2372 static int qib_user_add(struct qib_devdata *dd)
2373 {
2374 char name[10];
2375 int ret;
2376
2377 if (atomic_inc_return(&user_count) == 1) {
2378 ret = qib_cdev_init(0, "ipath", &qib_file_ops,
2379 &wildcard_cdev, &wildcard_device);
2380 if (ret)
2381 goto done;
2382 }
2383
2384 snprintf(name, sizeof(name), "ipath%d", dd->unit);
2385 ret = qib_cdev_init(dd->unit + 1, name, &qib_file_ops,
2386 &dd->user_cdev, &dd->user_device);
2387 if (ret)
2388 qib_user_remove(dd);
2389 done:
2390 return ret;
2391 }
2392
2393 /*
2394 * Create per-unit files in /dev
2395 */
qib_device_create(struct qib_devdata * dd)2396 int qib_device_create(struct qib_devdata *dd)
2397 {
2398 int r, ret;
2399
2400 r = qib_user_add(dd);
2401 ret = qib_diag_add(dd);
2402 if (r && !ret)
2403 ret = r;
2404 return ret;
2405 }
2406
2407 /*
2408 * Remove per-unit files in /dev
2409 * void, core kernel returns no errors for this stuff
2410 */
qib_device_remove(struct qib_devdata * dd)2411 void qib_device_remove(struct qib_devdata *dd)
2412 {
2413 qib_user_remove(dd);
2414 qib_diag_remove(dd);
2415 }
2416