1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/suspend.h>
59
60 #include "tree.h"
61 #include "rcu.h"
62
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68
69 /* Data structures. */
70
71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73
74 /*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
82 #ifdef CONFIG_TRACING
83 # define DEFINE_RCU_TPS(sname) \
84 static char sname##_varname[] = #sname; \
85 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86 # define RCU_STATE_NAME(sname) sname##_varname
87 #else
88 # define DEFINE_RCU_TPS(sname)
89 # define RCU_STATE_NAME(sname) __stringify(sname)
90 #endif
91
92 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93 DEFINE_RCU_TPS(sname) \
94 struct rcu_state sname##_state = { \
95 .level = { &sname##_state.node[0] }, \
96 .call = cr, \
97 .fqs_state = RCU_GP_IDLE, \
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
102 .orphan_donetail = &sname##_state.orphan_donelist, \
103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
105 .name = RCU_STATE_NAME(sname), \
106 .abbr = sabbr, \
107 }; \
108 DEFINE_PER_CPU(struct rcu_data, sname##_data)
109
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112
113 static struct rcu_state *rcu_state_p;
114 LIST_HEAD(rcu_struct_flavors);
115
116 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
117 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
118 module_param(rcu_fanout_leaf, int, 0444);
119 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
120 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
121 NUM_RCU_LVL_0,
122 NUM_RCU_LVL_1,
123 NUM_RCU_LVL_2,
124 NUM_RCU_LVL_3,
125 NUM_RCU_LVL_4,
126 };
127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128
129 /*
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned. So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
133 * optimize synchronize_sched() to a simple barrier(). When this variable
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods. This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
137 */
138 int rcu_scheduler_active __read_mostly;
139 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
141 /*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153 static int rcu_scheduler_fully_active __read_mostly;
154
155 #ifdef CONFIG_RCU_BOOST
156
157 /*
158 * Control variables for per-CPU and per-rcu_node kthreads. These
159 * handle all flavors of RCU.
160 */
161 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
162 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
163 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
164 DEFINE_PER_CPU(char, rcu_cpu_has_work);
165
166 #endif /* #ifdef CONFIG_RCU_BOOST */
167
168 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
169 static void invoke_rcu_core(void);
170 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
171
172 /*
173 * Track the rcutorture test sequence number and the update version
174 * number within a given test. The rcutorture_testseq is incremented
175 * on every rcutorture module load and unload, so has an odd value
176 * when a test is running. The rcutorture_vernum is set to zero
177 * when rcutorture starts and is incremented on each rcutorture update.
178 * These variables enable correlating rcutorture output with the
179 * RCU tracing information.
180 */
181 unsigned long rcutorture_testseq;
182 unsigned long rcutorture_vernum;
183
184 /*
185 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
186 * permit this function to be invoked without holding the root rcu_node
187 * structure's ->lock, but of course results can be subject to change.
188 */
rcu_gp_in_progress(struct rcu_state * rsp)189 static int rcu_gp_in_progress(struct rcu_state *rsp)
190 {
191 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
192 }
193
194 /*
195 * Note a quiescent state. Because we do not need to know
196 * how many quiescent states passed, just if there was at least
197 * one since the start of the grace period, this just sets a flag.
198 * The caller must have disabled preemption.
199 */
rcu_sched_qs(void)200 void rcu_sched_qs(void)
201 {
202 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
203 trace_rcu_grace_period(TPS("rcu_sched"),
204 __this_cpu_read(rcu_sched_data.gpnum),
205 TPS("cpuqs"));
206 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
207 }
208 }
209
rcu_bh_qs(void)210 void rcu_bh_qs(void)
211 {
212 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
213 trace_rcu_grace_period(TPS("rcu_bh"),
214 __this_cpu_read(rcu_bh_data.gpnum),
215 TPS("cpuqs"));
216 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
217 }
218 }
219
220 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
221
222 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
223 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
224 .dynticks = ATOMIC_INIT(1),
225 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
226 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
227 .dynticks_idle = ATOMIC_INIT(1),
228 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
229 };
230
231 /*
232 * Let the RCU core know that this CPU has gone through the scheduler,
233 * which is a quiescent state. This is called when the need for a
234 * quiescent state is urgent, so we burn an atomic operation and full
235 * memory barriers to let the RCU core know about it, regardless of what
236 * this CPU might (or might not) do in the near future.
237 *
238 * We inform the RCU core by emulating a zero-duration dyntick-idle
239 * period, which we in turn do by incrementing the ->dynticks counter
240 * by two.
241 */
rcu_momentary_dyntick_idle(void)242 static void rcu_momentary_dyntick_idle(void)
243 {
244 unsigned long flags;
245 struct rcu_data *rdp;
246 struct rcu_dynticks *rdtp;
247 int resched_mask;
248 struct rcu_state *rsp;
249
250 local_irq_save(flags);
251
252 /*
253 * Yes, we can lose flag-setting operations. This is OK, because
254 * the flag will be set again after some delay.
255 */
256 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
257 raw_cpu_write(rcu_sched_qs_mask, 0);
258
259 /* Find the flavor that needs a quiescent state. */
260 for_each_rcu_flavor(rsp) {
261 rdp = raw_cpu_ptr(rsp->rda);
262 if (!(resched_mask & rsp->flavor_mask))
263 continue;
264 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
265 if (ACCESS_ONCE(rdp->mynode->completed) !=
266 ACCESS_ONCE(rdp->cond_resched_completed))
267 continue;
268
269 /*
270 * Pretend to be momentarily idle for the quiescent state.
271 * This allows the grace-period kthread to record the
272 * quiescent state, with no need for this CPU to do anything
273 * further.
274 */
275 rdtp = this_cpu_ptr(&rcu_dynticks);
276 smp_mb__before_atomic(); /* Earlier stuff before QS. */
277 atomic_add(2, &rdtp->dynticks); /* QS. */
278 smp_mb__after_atomic(); /* Later stuff after QS. */
279 break;
280 }
281 local_irq_restore(flags);
282 }
283
284 /*
285 * Note a context switch. This is a quiescent state for RCU-sched,
286 * and requires special handling for preemptible RCU.
287 * The caller must have disabled preemption.
288 */
rcu_note_context_switch(int cpu)289 void rcu_note_context_switch(int cpu)
290 {
291 trace_rcu_utilization(TPS("Start context switch"));
292 rcu_sched_qs();
293 rcu_preempt_note_context_switch(cpu);
294 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
295 rcu_momentary_dyntick_idle();
296 trace_rcu_utilization(TPS("End context switch"));
297 }
298 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
299
300 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
301 static long qhimark = 10000; /* If this many pending, ignore blimit. */
302 static long qlowmark = 100; /* Once only this many pending, use blimit. */
303
304 module_param(blimit, long, 0444);
305 module_param(qhimark, long, 0444);
306 module_param(qlowmark, long, 0444);
307
308 static ulong jiffies_till_first_fqs = ULONG_MAX;
309 static ulong jiffies_till_next_fqs = ULONG_MAX;
310
311 module_param(jiffies_till_first_fqs, ulong, 0644);
312 module_param(jiffies_till_next_fqs, ulong, 0644);
313
314 /*
315 * How long the grace period must be before we start recruiting
316 * quiescent-state help from rcu_note_context_switch().
317 */
318 static ulong jiffies_till_sched_qs = HZ / 20;
319 module_param(jiffies_till_sched_qs, ulong, 0644);
320
321 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
322 struct rcu_data *rdp);
323 static void force_qs_rnp(struct rcu_state *rsp,
324 int (*f)(struct rcu_data *rsp, bool *isidle,
325 unsigned long *maxj),
326 bool *isidle, unsigned long *maxj);
327 static void force_quiescent_state(struct rcu_state *rsp);
328 static int rcu_pending(int cpu);
329
330 /*
331 * Return the number of RCU-sched batches processed thus far for debug & stats.
332 */
rcu_batches_completed_sched(void)333 long rcu_batches_completed_sched(void)
334 {
335 return rcu_sched_state.completed;
336 }
337 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
338
339 /*
340 * Return the number of RCU BH batches processed thus far for debug & stats.
341 */
rcu_batches_completed_bh(void)342 long rcu_batches_completed_bh(void)
343 {
344 return rcu_bh_state.completed;
345 }
346 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
347
348 /*
349 * Force a quiescent state.
350 */
rcu_force_quiescent_state(void)351 void rcu_force_quiescent_state(void)
352 {
353 force_quiescent_state(rcu_state_p);
354 }
355 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
356
357 /*
358 * Force a quiescent state for RCU BH.
359 */
rcu_bh_force_quiescent_state(void)360 void rcu_bh_force_quiescent_state(void)
361 {
362 force_quiescent_state(&rcu_bh_state);
363 }
364 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
365
366 /*
367 * Show the state of the grace-period kthreads.
368 */
show_rcu_gp_kthreads(void)369 void show_rcu_gp_kthreads(void)
370 {
371 struct rcu_state *rsp;
372
373 for_each_rcu_flavor(rsp) {
374 pr_info("%s: wait state: %d ->state: %#lx\n",
375 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
376 /* sched_show_task(rsp->gp_kthread); */
377 }
378 }
379 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
380
381 /*
382 * Record the number of times rcutorture tests have been initiated and
383 * terminated. This information allows the debugfs tracing stats to be
384 * correlated to the rcutorture messages, even when the rcutorture module
385 * is being repeatedly loaded and unloaded. In other words, we cannot
386 * store this state in rcutorture itself.
387 */
rcutorture_record_test_transition(void)388 void rcutorture_record_test_transition(void)
389 {
390 rcutorture_testseq++;
391 rcutorture_vernum = 0;
392 }
393 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
394
395 /*
396 * Send along grace-period-related data for rcutorture diagnostics.
397 */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gpnum,unsigned long * completed)398 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
399 unsigned long *gpnum, unsigned long *completed)
400 {
401 struct rcu_state *rsp = NULL;
402
403 switch (test_type) {
404 case RCU_FLAVOR:
405 rsp = rcu_state_p;
406 break;
407 case RCU_BH_FLAVOR:
408 rsp = &rcu_bh_state;
409 break;
410 case RCU_SCHED_FLAVOR:
411 rsp = &rcu_sched_state;
412 break;
413 default:
414 break;
415 }
416 if (rsp != NULL) {
417 *flags = ACCESS_ONCE(rsp->gp_flags);
418 *gpnum = ACCESS_ONCE(rsp->gpnum);
419 *completed = ACCESS_ONCE(rsp->completed);
420 return;
421 }
422 *flags = 0;
423 *gpnum = 0;
424 *completed = 0;
425 }
426 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
427
428 /*
429 * Record the number of writer passes through the current rcutorture test.
430 * This is also used to correlate debugfs tracing stats with the rcutorture
431 * messages.
432 */
rcutorture_record_progress(unsigned long vernum)433 void rcutorture_record_progress(unsigned long vernum)
434 {
435 rcutorture_vernum++;
436 }
437 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
438
439 /*
440 * Force a quiescent state for RCU-sched.
441 */
rcu_sched_force_quiescent_state(void)442 void rcu_sched_force_quiescent_state(void)
443 {
444 force_quiescent_state(&rcu_sched_state);
445 }
446 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
447
448 /*
449 * Does the CPU have callbacks ready to be invoked?
450 */
451 static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data * rdp)452 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
453 {
454 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
455 rdp->nxttail[RCU_DONE_TAIL] != NULL;
456 }
457
458 /*
459 * Return the root node of the specified rcu_state structure.
460 */
rcu_get_root(struct rcu_state * rsp)461 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
462 {
463 return &rsp->node[0];
464 }
465
466 /*
467 * Is there any need for future grace periods?
468 * Interrupts must be disabled. If the caller does not hold the root
469 * rnp_node structure's ->lock, the results are advisory only.
470 */
rcu_future_needs_gp(struct rcu_state * rsp)471 static int rcu_future_needs_gp(struct rcu_state *rsp)
472 {
473 struct rcu_node *rnp = rcu_get_root(rsp);
474 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
475 int *fp = &rnp->need_future_gp[idx];
476
477 return ACCESS_ONCE(*fp);
478 }
479
480 /*
481 * Does the current CPU require a not-yet-started grace period?
482 * The caller must have disabled interrupts to prevent races with
483 * normal callback registry.
484 */
485 static int
cpu_needs_another_gp(struct rcu_state * rsp,struct rcu_data * rdp)486 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
487 {
488 int i;
489
490 if (rcu_gp_in_progress(rsp))
491 return 0; /* No, a grace period is already in progress. */
492 if (rcu_future_needs_gp(rsp))
493 return 1; /* Yes, a no-CBs CPU needs one. */
494 if (!rdp->nxttail[RCU_NEXT_TAIL])
495 return 0; /* No, this is a no-CBs (or offline) CPU. */
496 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
497 return 1; /* Yes, this CPU has newly registered callbacks. */
498 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
499 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
500 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
501 rdp->nxtcompleted[i]))
502 return 1; /* Yes, CBs for future grace period. */
503 return 0; /* No grace period needed. */
504 }
505
506 /*
507 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
508 *
509 * If the new value of the ->dynticks_nesting counter now is zero,
510 * we really have entered idle, and must do the appropriate accounting.
511 * The caller must have disabled interrupts.
512 */
rcu_eqs_enter_common(struct rcu_dynticks * rdtp,long long oldval,bool user)513 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
514 bool user)
515 {
516 struct rcu_state *rsp;
517 struct rcu_data *rdp;
518
519 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
520 if (!user && !is_idle_task(current)) {
521 struct task_struct *idle __maybe_unused =
522 idle_task(smp_processor_id());
523
524 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
525 ftrace_dump(DUMP_ORIG);
526 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
527 current->pid, current->comm,
528 idle->pid, idle->comm); /* must be idle task! */
529 }
530 for_each_rcu_flavor(rsp) {
531 rdp = this_cpu_ptr(rsp->rda);
532 do_nocb_deferred_wakeup(rdp);
533 }
534 rcu_prepare_for_idle(smp_processor_id());
535 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
536 smp_mb__before_atomic(); /* See above. */
537 atomic_inc(&rdtp->dynticks);
538 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
539 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
540 rcu_dynticks_task_enter();
541
542 /*
543 * It is illegal to enter an extended quiescent state while
544 * in an RCU read-side critical section.
545 */
546 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
547 "Illegal idle entry in RCU read-side critical section.");
548 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
549 "Illegal idle entry in RCU-bh read-side critical section.");
550 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
551 "Illegal idle entry in RCU-sched read-side critical section.");
552 }
553
554 /*
555 * Enter an RCU extended quiescent state, which can be either the
556 * idle loop or adaptive-tickless usermode execution.
557 */
rcu_eqs_enter(bool user)558 static void rcu_eqs_enter(bool user)
559 {
560 long long oldval;
561 struct rcu_dynticks *rdtp;
562
563 rdtp = this_cpu_ptr(&rcu_dynticks);
564 oldval = rdtp->dynticks_nesting;
565 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
566 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
567 rdtp->dynticks_nesting = 0;
568 rcu_eqs_enter_common(rdtp, oldval, user);
569 } else {
570 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
571 }
572 }
573
574 /**
575 * rcu_idle_enter - inform RCU that current CPU is entering idle
576 *
577 * Enter idle mode, in other words, -leave- the mode in which RCU
578 * read-side critical sections can occur. (Though RCU read-side
579 * critical sections can occur in irq handlers in idle, a possibility
580 * handled by irq_enter() and irq_exit().)
581 *
582 * We crowbar the ->dynticks_nesting field to zero to allow for
583 * the possibility of usermode upcalls having messed up our count
584 * of interrupt nesting level during the prior busy period.
585 */
rcu_idle_enter(void)586 void rcu_idle_enter(void)
587 {
588 unsigned long flags;
589
590 local_irq_save(flags);
591 rcu_eqs_enter(false);
592 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
593 local_irq_restore(flags);
594 }
595 EXPORT_SYMBOL_GPL(rcu_idle_enter);
596
597 #ifdef CONFIG_RCU_USER_QS
598 /**
599 * rcu_user_enter - inform RCU that we are resuming userspace.
600 *
601 * Enter RCU idle mode right before resuming userspace. No use of RCU
602 * is permitted between this call and rcu_user_exit(). This way the
603 * CPU doesn't need to maintain the tick for RCU maintenance purposes
604 * when the CPU runs in userspace.
605 */
rcu_user_enter(void)606 void rcu_user_enter(void)
607 {
608 rcu_eqs_enter(1);
609 }
610 #endif /* CONFIG_RCU_USER_QS */
611
612 /**
613 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
614 *
615 * Exit from an interrupt handler, which might possibly result in entering
616 * idle mode, in other words, leaving the mode in which read-side critical
617 * sections can occur.
618 *
619 * This code assumes that the idle loop never does anything that might
620 * result in unbalanced calls to irq_enter() and irq_exit(). If your
621 * architecture violates this assumption, RCU will give you what you
622 * deserve, good and hard. But very infrequently and irreproducibly.
623 *
624 * Use things like work queues to work around this limitation.
625 *
626 * You have been warned.
627 */
rcu_irq_exit(void)628 void rcu_irq_exit(void)
629 {
630 unsigned long flags;
631 long long oldval;
632 struct rcu_dynticks *rdtp;
633
634 local_irq_save(flags);
635 rdtp = this_cpu_ptr(&rcu_dynticks);
636 oldval = rdtp->dynticks_nesting;
637 rdtp->dynticks_nesting--;
638 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
639 if (rdtp->dynticks_nesting)
640 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
641 else
642 rcu_eqs_enter_common(rdtp, oldval, true);
643 rcu_sysidle_enter(rdtp, 1);
644 local_irq_restore(flags);
645 }
646
647 /*
648 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
649 *
650 * If the new value of the ->dynticks_nesting counter was previously zero,
651 * we really have exited idle, and must do the appropriate accounting.
652 * The caller must have disabled interrupts.
653 */
rcu_eqs_exit_common(struct rcu_dynticks * rdtp,long long oldval,int user)654 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
655 int user)
656 {
657 rcu_dynticks_task_exit();
658 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
659 atomic_inc(&rdtp->dynticks);
660 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
661 smp_mb__after_atomic(); /* See above. */
662 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
663 rcu_cleanup_after_idle(smp_processor_id());
664 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
665 if (!user && !is_idle_task(current)) {
666 struct task_struct *idle __maybe_unused =
667 idle_task(smp_processor_id());
668
669 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
670 oldval, rdtp->dynticks_nesting);
671 ftrace_dump(DUMP_ORIG);
672 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
673 current->pid, current->comm,
674 idle->pid, idle->comm); /* must be idle task! */
675 }
676 }
677
678 /*
679 * Exit an RCU extended quiescent state, which can be either the
680 * idle loop or adaptive-tickless usermode execution.
681 */
rcu_eqs_exit(bool user)682 static void rcu_eqs_exit(bool user)
683 {
684 struct rcu_dynticks *rdtp;
685 long long oldval;
686
687 rdtp = this_cpu_ptr(&rcu_dynticks);
688 oldval = rdtp->dynticks_nesting;
689 WARN_ON_ONCE(oldval < 0);
690 if (oldval & DYNTICK_TASK_NEST_MASK) {
691 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
692 } else {
693 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
694 rcu_eqs_exit_common(rdtp, oldval, user);
695 }
696 }
697
698 /**
699 * rcu_idle_exit - inform RCU that current CPU is leaving idle
700 *
701 * Exit idle mode, in other words, -enter- the mode in which RCU
702 * read-side critical sections can occur.
703 *
704 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
705 * allow for the possibility of usermode upcalls messing up our count
706 * of interrupt nesting level during the busy period that is just
707 * now starting.
708 */
rcu_idle_exit(void)709 void rcu_idle_exit(void)
710 {
711 unsigned long flags;
712
713 local_irq_save(flags);
714 rcu_eqs_exit(false);
715 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
716 local_irq_restore(flags);
717 }
718 EXPORT_SYMBOL_GPL(rcu_idle_exit);
719
720 #ifdef CONFIG_RCU_USER_QS
721 /**
722 * rcu_user_exit - inform RCU that we are exiting userspace.
723 *
724 * Exit RCU idle mode while entering the kernel because it can
725 * run a RCU read side critical section anytime.
726 */
rcu_user_exit(void)727 void rcu_user_exit(void)
728 {
729 rcu_eqs_exit(1);
730 }
731 #endif /* CONFIG_RCU_USER_QS */
732
733 /**
734 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
735 *
736 * Enter an interrupt handler, which might possibly result in exiting
737 * idle mode, in other words, entering the mode in which read-side critical
738 * sections can occur.
739 *
740 * Note that the Linux kernel is fully capable of entering an interrupt
741 * handler that it never exits, for example when doing upcalls to
742 * user mode! This code assumes that the idle loop never does upcalls to
743 * user mode. If your architecture does do upcalls from the idle loop (or
744 * does anything else that results in unbalanced calls to the irq_enter()
745 * and irq_exit() functions), RCU will give you what you deserve, good
746 * and hard. But very infrequently and irreproducibly.
747 *
748 * Use things like work queues to work around this limitation.
749 *
750 * You have been warned.
751 */
rcu_irq_enter(void)752 void rcu_irq_enter(void)
753 {
754 unsigned long flags;
755 struct rcu_dynticks *rdtp;
756 long long oldval;
757
758 local_irq_save(flags);
759 rdtp = this_cpu_ptr(&rcu_dynticks);
760 oldval = rdtp->dynticks_nesting;
761 rdtp->dynticks_nesting++;
762 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
763 if (oldval)
764 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
765 else
766 rcu_eqs_exit_common(rdtp, oldval, true);
767 rcu_sysidle_exit(rdtp, 1);
768 local_irq_restore(flags);
769 }
770
771 /**
772 * rcu_nmi_enter - inform RCU of entry to NMI context
773 *
774 * If the CPU was idle with dynamic ticks active, and there is no
775 * irq handler running, this updates rdtp->dynticks_nmi to let the
776 * RCU grace-period handling know that the CPU is active.
777 */
rcu_nmi_enter(void)778 void rcu_nmi_enter(void)
779 {
780 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
781
782 if (rdtp->dynticks_nmi_nesting == 0 &&
783 (atomic_read(&rdtp->dynticks) & 0x1))
784 return;
785 rdtp->dynticks_nmi_nesting++;
786 smp_mb__before_atomic(); /* Force delay from prior write. */
787 atomic_inc(&rdtp->dynticks);
788 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
789 smp_mb__after_atomic(); /* See above. */
790 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
791 }
792
793 /**
794 * rcu_nmi_exit - inform RCU of exit from NMI context
795 *
796 * If the CPU was idle with dynamic ticks active, and there is no
797 * irq handler running, this updates rdtp->dynticks_nmi to let the
798 * RCU grace-period handling know that the CPU is no longer active.
799 */
rcu_nmi_exit(void)800 void rcu_nmi_exit(void)
801 {
802 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
803
804 if (rdtp->dynticks_nmi_nesting == 0 ||
805 --rdtp->dynticks_nmi_nesting != 0)
806 return;
807 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
808 smp_mb__before_atomic(); /* See above. */
809 atomic_inc(&rdtp->dynticks);
810 smp_mb__after_atomic(); /* Force delay to next write. */
811 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
812 }
813
814 /**
815 * __rcu_is_watching - are RCU read-side critical sections safe?
816 *
817 * Return true if RCU is watching the running CPU, which means that
818 * this CPU can safely enter RCU read-side critical sections. Unlike
819 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
820 * least disabled preemption.
821 */
__rcu_is_watching(void)822 bool notrace __rcu_is_watching(void)
823 {
824 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
825 }
826
827 /**
828 * rcu_is_watching - see if RCU thinks that the current CPU is idle
829 *
830 * If the current CPU is in its idle loop and is neither in an interrupt
831 * or NMI handler, return true.
832 */
rcu_is_watching(void)833 bool notrace rcu_is_watching(void)
834 {
835 bool ret;
836
837 preempt_disable();
838 ret = __rcu_is_watching();
839 preempt_enable();
840 return ret;
841 }
842 EXPORT_SYMBOL_GPL(rcu_is_watching);
843
844 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
845
846 /*
847 * Is the current CPU online? Disable preemption to avoid false positives
848 * that could otherwise happen due to the current CPU number being sampled,
849 * this task being preempted, its old CPU being taken offline, resuming
850 * on some other CPU, then determining that its old CPU is now offline.
851 * It is OK to use RCU on an offline processor during initial boot, hence
852 * the check for rcu_scheduler_fully_active. Note also that it is OK
853 * for a CPU coming online to use RCU for one jiffy prior to marking itself
854 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
855 * offline to continue to use RCU for one jiffy after marking itself
856 * offline in the cpu_online_mask. This leniency is necessary given the
857 * non-atomic nature of the online and offline processing, for example,
858 * the fact that a CPU enters the scheduler after completing the CPU_DYING
859 * notifiers.
860 *
861 * This is also why RCU internally marks CPUs online during the
862 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
863 *
864 * Disable checking if in an NMI handler because we cannot safely report
865 * errors from NMI handlers anyway.
866 */
rcu_lockdep_current_cpu_online(void)867 bool rcu_lockdep_current_cpu_online(void)
868 {
869 struct rcu_data *rdp;
870 struct rcu_node *rnp;
871 bool ret;
872
873 if (in_nmi())
874 return true;
875 preempt_disable();
876 rdp = this_cpu_ptr(&rcu_sched_data);
877 rnp = rdp->mynode;
878 ret = (rdp->grpmask & rnp->qsmaskinit) ||
879 !rcu_scheduler_fully_active;
880 preempt_enable();
881 return ret;
882 }
883 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
884
885 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
886
887 /**
888 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
889 *
890 * If the current CPU is idle or running at a first-level (not nested)
891 * interrupt from idle, return true. The caller must have at least
892 * disabled preemption.
893 */
rcu_is_cpu_rrupt_from_idle(void)894 static int rcu_is_cpu_rrupt_from_idle(void)
895 {
896 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
897 }
898
899 /*
900 * Snapshot the specified CPU's dynticks counter so that we can later
901 * credit them with an implicit quiescent state. Return 1 if this CPU
902 * is in dynticks idle mode, which is an extended quiescent state.
903 */
dyntick_save_progress_counter(struct rcu_data * rdp,bool * isidle,unsigned long * maxj)904 static int dyntick_save_progress_counter(struct rcu_data *rdp,
905 bool *isidle, unsigned long *maxj)
906 {
907 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
908 rcu_sysidle_check_cpu(rdp, isidle, maxj);
909 if ((rdp->dynticks_snap & 0x1) == 0) {
910 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
911 return 1;
912 } else {
913 return 0;
914 }
915 }
916
917 /*
918 * This function really isn't for public consumption, but RCU is special in
919 * that context switches can allow the state machine to make progress.
920 */
921 extern void resched_cpu(int cpu);
922
923 /*
924 * Return true if the specified CPU has passed through a quiescent
925 * state by virtue of being in or having passed through an dynticks
926 * idle state since the last call to dyntick_save_progress_counter()
927 * for this same CPU, or by virtue of having been offline.
928 */
rcu_implicit_dynticks_qs(struct rcu_data * rdp,bool * isidle,unsigned long * maxj)929 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
930 bool *isidle, unsigned long *maxj)
931 {
932 unsigned int curr;
933 int *rcrmp;
934 unsigned int snap;
935
936 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
937 snap = (unsigned int)rdp->dynticks_snap;
938
939 /*
940 * If the CPU passed through or entered a dynticks idle phase with
941 * no active irq/NMI handlers, then we can safely pretend that the CPU
942 * already acknowledged the request to pass through a quiescent
943 * state. Either way, that CPU cannot possibly be in an RCU
944 * read-side critical section that started before the beginning
945 * of the current RCU grace period.
946 */
947 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
948 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
949 rdp->dynticks_fqs++;
950 return 1;
951 }
952
953 /*
954 * Check for the CPU being offline, but only if the grace period
955 * is old enough. We don't need to worry about the CPU changing
956 * state: If we see it offline even once, it has been through a
957 * quiescent state.
958 *
959 * The reason for insisting that the grace period be at least
960 * one jiffy old is that CPUs that are not quite online and that
961 * have just gone offline can still execute RCU read-side critical
962 * sections.
963 */
964 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
965 return 0; /* Grace period is not old enough. */
966 barrier();
967 if (cpu_is_offline(rdp->cpu)) {
968 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
969 rdp->offline_fqs++;
970 return 1;
971 }
972
973 /*
974 * A CPU running for an extended time within the kernel can
975 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
976 * even context-switching back and forth between a pair of
977 * in-kernel CPU-bound tasks cannot advance grace periods.
978 * So if the grace period is old enough, make the CPU pay attention.
979 * Note that the unsynchronized assignments to the per-CPU
980 * rcu_sched_qs_mask variable are safe. Yes, setting of
981 * bits can be lost, but they will be set again on the next
982 * force-quiescent-state pass. So lost bit sets do not result
983 * in incorrect behavior, merely in a grace period lasting
984 * a few jiffies longer than it might otherwise. Because
985 * there are at most four threads involved, and because the
986 * updates are only once every few jiffies, the probability of
987 * lossage (and thus of slight grace-period extension) is
988 * quite low.
989 *
990 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
991 * is set too high, we override with half of the RCU CPU stall
992 * warning delay.
993 */
994 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
995 if (ULONG_CMP_GE(jiffies,
996 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
997 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
998 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
999 ACCESS_ONCE(rdp->cond_resched_completed) =
1000 ACCESS_ONCE(rdp->mynode->completed);
1001 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1002 ACCESS_ONCE(*rcrmp) =
1003 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
1004 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1005 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1006 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1007 /* Time to beat on that CPU again! */
1008 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1009 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1010 }
1011 }
1012
1013 return 0;
1014 }
1015
record_gp_stall_check_time(struct rcu_state * rsp)1016 static void record_gp_stall_check_time(struct rcu_state *rsp)
1017 {
1018 unsigned long j = jiffies;
1019 unsigned long j1;
1020
1021 rsp->gp_start = j;
1022 smp_wmb(); /* Record start time before stall time. */
1023 j1 = rcu_jiffies_till_stall_check();
1024 ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
1025 rsp->jiffies_resched = j + j1 / 2;
1026 }
1027
1028 /*
1029 * Dump stacks of all tasks running on stalled CPUs.
1030 */
rcu_dump_cpu_stacks(struct rcu_state * rsp)1031 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1032 {
1033 int cpu;
1034 unsigned long flags;
1035 struct rcu_node *rnp;
1036
1037 rcu_for_each_leaf_node(rsp, rnp) {
1038 raw_spin_lock_irqsave(&rnp->lock, flags);
1039 if (rnp->qsmask != 0) {
1040 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1041 if (rnp->qsmask & (1UL << cpu))
1042 dump_cpu_task(rnp->grplo + cpu);
1043 }
1044 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1045 }
1046 }
1047
print_other_cpu_stall(struct rcu_state * rsp)1048 static void print_other_cpu_stall(struct rcu_state *rsp)
1049 {
1050 int cpu;
1051 long delta;
1052 unsigned long flags;
1053 int ndetected = 0;
1054 struct rcu_node *rnp = rcu_get_root(rsp);
1055 long totqlen = 0;
1056
1057 /* Only let one CPU complain about others per time interval. */
1058
1059 raw_spin_lock_irqsave(&rnp->lock, flags);
1060 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
1061 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1062 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1063 return;
1064 }
1065 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1066 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1067
1068 /*
1069 * OK, time to rat on our buddy...
1070 * See Documentation/RCU/stallwarn.txt for info on how to debug
1071 * RCU CPU stall warnings.
1072 */
1073 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1074 rsp->name);
1075 print_cpu_stall_info_begin();
1076 rcu_for_each_leaf_node(rsp, rnp) {
1077 raw_spin_lock_irqsave(&rnp->lock, flags);
1078 ndetected += rcu_print_task_stall(rnp);
1079 if (rnp->qsmask != 0) {
1080 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1081 if (rnp->qsmask & (1UL << cpu)) {
1082 print_cpu_stall_info(rsp,
1083 rnp->grplo + cpu);
1084 ndetected++;
1085 }
1086 }
1087 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1088 }
1089
1090 /*
1091 * Now rat on any tasks that got kicked up to the root rcu_node
1092 * due to CPU offlining.
1093 */
1094 rnp = rcu_get_root(rsp);
1095 raw_spin_lock_irqsave(&rnp->lock, flags);
1096 ndetected += rcu_print_task_stall(rnp);
1097 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1098
1099 print_cpu_stall_info_end();
1100 for_each_possible_cpu(cpu)
1101 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1102 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1103 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1104 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1105 if (ndetected == 0)
1106 pr_err("INFO: Stall ended before state dump start\n");
1107 else
1108 rcu_dump_cpu_stacks(rsp);
1109
1110 /* Complain about tasks blocking the grace period. */
1111
1112 rcu_print_detail_task_stall(rsp);
1113
1114 force_quiescent_state(rsp); /* Kick them all. */
1115 }
1116
print_cpu_stall(struct rcu_state * rsp)1117 static void print_cpu_stall(struct rcu_state *rsp)
1118 {
1119 int cpu;
1120 unsigned long flags;
1121 struct rcu_node *rnp = rcu_get_root(rsp);
1122 long totqlen = 0;
1123
1124 /*
1125 * OK, time to rat on ourselves...
1126 * See Documentation/RCU/stallwarn.txt for info on how to debug
1127 * RCU CPU stall warnings.
1128 */
1129 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1130 print_cpu_stall_info_begin();
1131 print_cpu_stall_info(rsp, smp_processor_id());
1132 print_cpu_stall_info_end();
1133 for_each_possible_cpu(cpu)
1134 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1135 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1136 jiffies - rsp->gp_start,
1137 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1138 rcu_dump_cpu_stacks(rsp);
1139
1140 raw_spin_lock_irqsave(&rnp->lock, flags);
1141 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1142 ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1143 3 * rcu_jiffies_till_stall_check() + 3;
1144 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1145
1146 /*
1147 * Attempt to revive the RCU machinery by forcing a context switch.
1148 *
1149 * A context switch would normally allow the RCU state machine to make
1150 * progress and it could be we're stuck in kernel space without context
1151 * switches for an entirely unreasonable amount of time.
1152 */
1153 resched_cpu(smp_processor_id());
1154 }
1155
check_cpu_stall(struct rcu_state * rsp,struct rcu_data * rdp)1156 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1157 {
1158 unsigned long completed;
1159 unsigned long gpnum;
1160 unsigned long gps;
1161 unsigned long j;
1162 unsigned long js;
1163 struct rcu_node *rnp;
1164
1165 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1166 return;
1167 j = jiffies;
1168
1169 /*
1170 * Lots of memory barriers to reject false positives.
1171 *
1172 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1173 * then rsp->gp_start, and finally rsp->completed. These values
1174 * are updated in the opposite order with memory barriers (or
1175 * equivalent) during grace-period initialization and cleanup.
1176 * Now, a false positive can occur if we get an new value of
1177 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1178 * the memory barriers, the only way that this can happen is if one
1179 * grace period ends and another starts between these two fetches.
1180 * Detect this by comparing rsp->completed with the previous fetch
1181 * from rsp->gpnum.
1182 *
1183 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1184 * and rsp->gp_start suffice to forestall false positives.
1185 */
1186 gpnum = ACCESS_ONCE(rsp->gpnum);
1187 smp_rmb(); /* Pick up ->gpnum first... */
1188 js = ACCESS_ONCE(rsp->jiffies_stall);
1189 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1190 gps = ACCESS_ONCE(rsp->gp_start);
1191 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1192 completed = ACCESS_ONCE(rsp->completed);
1193 if (ULONG_CMP_GE(completed, gpnum) ||
1194 ULONG_CMP_LT(j, js) ||
1195 ULONG_CMP_GE(gps, js))
1196 return; /* No stall or GP completed since entering function. */
1197 rnp = rdp->mynode;
1198 if (rcu_gp_in_progress(rsp) &&
1199 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1200
1201 /* We haven't checked in, so go dump stack. */
1202 print_cpu_stall(rsp);
1203
1204 } else if (rcu_gp_in_progress(rsp) &&
1205 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1206
1207 /* They had a few time units to dump stack, so complain. */
1208 print_other_cpu_stall(rsp);
1209 }
1210 }
1211
1212 /**
1213 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1214 *
1215 * Set the stall-warning timeout way off into the future, thus preventing
1216 * any RCU CPU stall-warning messages from appearing in the current set of
1217 * RCU grace periods.
1218 *
1219 * The caller must disable hard irqs.
1220 */
rcu_cpu_stall_reset(void)1221 void rcu_cpu_stall_reset(void)
1222 {
1223 struct rcu_state *rsp;
1224
1225 for_each_rcu_flavor(rsp)
1226 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1227 }
1228
1229 /*
1230 * Initialize the specified rcu_data structure's callback list to empty.
1231 */
init_callback_list(struct rcu_data * rdp)1232 static void init_callback_list(struct rcu_data *rdp)
1233 {
1234 int i;
1235
1236 if (init_nocb_callback_list(rdp))
1237 return;
1238 rdp->nxtlist = NULL;
1239 for (i = 0; i < RCU_NEXT_SIZE; i++)
1240 rdp->nxttail[i] = &rdp->nxtlist;
1241 }
1242
1243 /*
1244 * Determine the value that ->completed will have at the end of the
1245 * next subsequent grace period. This is used to tag callbacks so that
1246 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1247 * been dyntick-idle for an extended period with callbacks under the
1248 * influence of RCU_FAST_NO_HZ.
1249 *
1250 * The caller must hold rnp->lock with interrupts disabled.
1251 */
rcu_cbs_completed(struct rcu_state * rsp,struct rcu_node * rnp)1252 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1253 struct rcu_node *rnp)
1254 {
1255 /*
1256 * If RCU is idle, we just wait for the next grace period.
1257 * But we can only be sure that RCU is idle if we are looking
1258 * at the root rcu_node structure -- otherwise, a new grace
1259 * period might have started, but just not yet gotten around
1260 * to initializing the current non-root rcu_node structure.
1261 */
1262 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1263 return rnp->completed + 1;
1264
1265 /*
1266 * Otherwise, wait for a possible partial grace period and
1267 * then the subsequent full grace period.
1268 */
1269 return rnp->completed + 2;
1270 }
1271
1272 /*
1273 * Trace-event helper function for rcu_start_future_gp() and
1274 * rcu_nocb_wait_gp().
1275 */
trace_rcu_future_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long c,const char * s)1276 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1277 unsigned long c, const char *s)
1278 {
1279 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1280 rnp->completed, c, rnp->level,
1281 rnp->grplo, rnp->grphi, s);
1282 }
1283
1284 /*
1285 * Start some future grace period, as needed to handle newly arrived
1286 * callbacks. The required future grace periods are recorded in each
1287 * rcu_node structure's ->need_future_gp field. Returns true if there
1288 * is reason to awaken the grace-period kthread.
1289 *
1290 * The caller must hold the specified rcu_node structure's ->lock.
1291 */
1292 static bool __maybe_unused
rcu_start_future_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long * c_out)1293 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1294 unsigned long *c_out)
1295 {
1296 unsigned long c;
1297 int i;
1298 bool ret = false;
1299 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1300
1301 /*
1302 * Pick up grace-period number for new callbacks. If this
1303 * grace period is already marked as needed, return to the caller.
1304 */
1305 c = rcu_cbs_completed(rdp->rsp, rnp);
1306 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1307 if (rnp->need_future_gp[c & 0x1]) {
1308 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1309 goto out;
1310 }
1311
1312 /*
1313 * If either this rcu_node structure or the root rcu_node structure
1314 * believe that a grace period is in progress, then we must wait
1315 * for the one following, which is in "c". Because our request
1316 * will be noticed at the end of the current grace period, we don't
1317 * need to explicitly start one. We only do the lockless check
1318 * of rnp_root's fields if the current rcu_node structure thinks
1319 * there is no grace period in flight, and because we hold rnp->lock,
1320 * the only possible change is when rnp_root's two fields are
1321 * equal, in which case rnp_root->gpnum might be concurrently
1322 * incremented. But that is OK, as it will just result in our
1323 * doing some extra useless work.
1324 */
1325 if (rnp->gpnum != rnp->completed ||
1326 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
1327 rnp->need_future_gp[c & 0x1]++;
1328 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1329 goto out;
1330 }
1331
1332 /*
1333 * There might be no grace period in progress. If we don't already
1334 * hold it, acquire the root rcu_node structure's lock in order to
1335 * start one (if needed).
1336 */
1337 if (rnp != rnp_root) {
1338 raw_spin_lock(&rnp_root->lock);
1339 smp_mb__after_unlock_lock();
1340 }
1341
1342 /*
1343 * Get a new grace-period number. If there really is no grace
1344 * period in progress, it will be smaller than the one we obtained
1345 * earlier. Adjust callbacks as needed. Note that even no-CBs
1346 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1347 */
1348 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1349 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1350 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1351 rdp->nxtcompleted[i] = c;
1352
1353 /*
1354 * If the needed for the required grace period is already
1355 * recorded, trace and leave.
1356 */
1357 if (rnp_root->need_future_gp[c & 0x1]) {
1358 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1359 goto unlock_out;
1360 }
1361
1362 /* Record the need for the future grace period. */
1363 rnp_root->need_future_gp[c & 0x1]++;
1364
1365 /* If a grace period is not already in progress, start one. */
1366 if (rnp_root->gpnum != rnp_root->completed) {
1367 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1368 } else {
1369 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1370 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1371 }
1372 unlock_out:
1373 if (rnp != rnp_root)
1374 raw_spin_unlock(&rnp_root->lock);
1375 out:
1376 if (c_out != NULL)
1377 *c_out = c;
1378 return ret;
1379 }
1380
1381 /*
1382 * Clean up any old requests for the just-ended grace period. Also return
1383 * whether any additional grace periods have been requested. Also invoke
1384 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1385 * waiting for this grace period to complete.
1386 */
rcu_future_gp_cleanup(struct rcu_state * rsp,struct rcu_node * rnp)1387 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1388 {
1389 int c = rnp->completed;
1390 int needmore;
1391 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1392
1393 rcu_nocb_gp_cleanup(rsp, rnp);
1394 rnp->need_future_gp[c & 0x1] = 0;
1395 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1396 trace_rcu_future_gp(rnp, rdp, c,
1397 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1398 return needmore;
1399 }
1400
1401 /*
1402 * Awaken the grace-period kthread for the specified flavor of RCU.
1403 * Don't do a self-awaken, and don't bother awakening when there is
1404 * nothing for the grace-period kthread to do (as in several CPUs
1405 * raced to awaken, and we lost), and finally don't try to awaken
1406 * a kthread that has not yet been created.
1407 */
rcu_gp_kthread_wake(struct rcu_state * rsp)1408 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1409 {
1410 if (current == rsp->gp_kthread ||
1411 !ACCESS_ONCE(rsp->gp_flags) ||
1412 !rsp->gp_kthread)
1413 return;
1414 wake_up(&rsp->gp_wq);
1415 }
1416
1417 /*
1418 * If there is room, assign a ->completed number to any callbacks on
1419 * this CPU that have not already been assigned. Also accelerate any
1420 * callbacks that were previously assigned a ->completed number that has
1421 * since proven to be too conservative, which can happen if callbacks get
1422 * assigned a ->completed number while RCU is idle, but with reference to
1423 * a non-root rcu_node structure. This function is idempotent, so it does
1424 * not hurt to call it repeatedly. Returns an flag saying that we should
1425 * awaken the RCU grace-period kthread.
1426 *
1427 * The caller must hold rnp->lock with interrupts disabled.
1428 */
rcu_accelerate_cbs(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1429 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1430 struct rcu_data *rdp)
1431 {
1432 unsigned long c;
1433 int i;
1434 bool ret;
1435
1436 /* If the CPU has no callbacks, nothing to do. */
1437 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1438 return false;
1439
1440 /*
1441 * Starting from the sublist containing the callbacks most
1442 * recently assigned a ->completed number and working down, find the
1443 * first sublist that is not assignable to an upcoming grace period.
1444 * Such a sublist has something in it (first two tests) and has
1445 * a ->completed number assigned that will complete sooner than
1446 * the ->completed number for newly arrived callbacks (last test).
1447 *
1448 * The key point is that any later sublist can be assigned the
1449 * same ->completed number as the newly arrived callbacks, which
1450 * means that the callbacks in any of these later sublist can be
1451 * grouped into a single sublist, whether or not they have already
1452 * been assigned a ->completed number.
1453 */
1454 c = rcu_cbs_completed(rsp, rnp);
1455 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1456 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1457 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1458 break;
1459
1460 /*
1461 * If there are no sublist for unassigned callbacks, leave.
1462 * At the same time, advance "i" one sublist, so that "i" will
1463 * index into the sublist where all the remaining callbacks should
1464 * be grouped into.
1465 */
1466 if (++i >= RCU_NEXT_TAIL)
1467 return false;
1468
1469 /*
1470 * Assign all subsequent callbacks' ->completed number to the next
1471 * full grace period and group them all in the sublist initially
1472 * indexed by "i".
1473 */
1474 for (; i <= RCU_NEXT_TAIL; i++) {
1475 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1476 rdp->nxtcompleted[i] = c;
1477 }
1478 /* Record any needed additional grace periods. */
1479 ret = rcu_start_future_gp(rnp, rdp, NULL);
1480
1481 /* Trace depending on how much we were able to accelerate. */
1482 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1483 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1484 else
1485 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1486 return ret;
1487 }
1488
1489 /*
1490 * Move any callbacks whose grace period has completed to the
1491 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1492 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1493 * sublist. This function is idempotent, so it does not hurt to
1494 * invoke it repeatedly. As long as it is not invoked -too- often...
1495 * Returns true if the RCU grace-period kthread needs to be awakened.
1496 *
1497 * The caller must hold rnp->lock with interrupts disabled.
1498 */
rcu_advance_cbs(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1499 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1500 struct rcu_data *rdp)
1501 {
1502 int i, j;
1503
1504 /* If the CPU has no callbacks, nothing to do. */
1505 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1506 return false;
1507
1508 /*
1509 * Find all callbacks whose ->completed numbers indicate that they
1510 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1511 */
1512 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1513 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1514 break;
1515 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1516 }
1517 /* Clean up any sublist tail pointers that were misordered above. */
1518 for (j = RCU_WAIT_TAIL; j < i; j++)
1519 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1520
1521 /* Copy down callbacks to fill in empty sublists. */
1522 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1523 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1524 break;
1525 rdp->nxttail[j] = rdp->nxttail[i];
1526 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1527 }
1528
1529 /* Classify any remaining callbacks. */
1530 return rcu_accelerate_cbs(rsp, rnp, rdp);
1531 }
1532
1533 /*
1534 * Update CPU-local rcu_data state to record the beginnings and ends of
1535 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1536 * structure corresponding to the current CPU, and must have irqs disabled.
1537 * Returns true if the grace-period kthread needs to be awakened.
1538 */
__note_gp_changes(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1539 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1540 struct rcu_data *rdp)
1541 {
1542 bool ret;
1543
1544 /* Handle the ends of any preceding grace periods first. */
1545 if (rdp->completed == rnp->completed) {
1546
1547 /* No grace period end, so just accelerate recent callbacks. */
1548 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1549
1550 } else {
1551
1552 /* Advance callbacks. */
1553 ret = rcu_advance_cbs(rsp, rnp, rdp);
1554
1555 /* Remember that we saw this grace-period completion. */
1556 rdp->completed = rnp->completed;
1557 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1558 }
1559
1560 if (rdp->gpnum != rnp->gpnum) {
1561 /*
1562 * If the current grace period is waiting for this CPU,
1563 * set up to detect a quiescent state, otherwise don't
1564 * go looking for one.
1565 */
1566 rdp->gpnum = rnp->gpnum;
1567 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1568 rdp->passed_quiesce = 0;
1569 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1570 zero_cpu_stall_ticks(rdp);
1571 }
1572 return ret;
1573 }
1574
note_gp_changes(struct rcu_state * rsp,struct rcu_data * rdp)1575 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1576 {
1577 unsigned long flags;
1578 bool needwake;
1579 struct rcu_node *rnp;
1580
1581 local_irq_save(flags);
1582 rnp = rdp->mynode;
1583 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1584 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1585 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1586 local_irq_restore(flags);
1587 return;
1588 }
1589 smp_mb__after_unlock_lock();
1590 needwake = __note_gp_changes(rsp, rnp, rdp);
1591 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1592 if (needwake)
1593 rcu_gp_kthread_wake(rsp);
1594 }
1595
1596 /*
1597 * Initialize a new grace period. Return 0 if no grace period required.
1598 */
rcu_gp_init(struct rcu_state * rsp)1599 static int rcu_gp_init(struct rcu_state *rsp)
1600 {
1601 struct rcu_data *rdp;
1602 struct rcu_node *rnp = rcu_get_root(rsp);
1603
1604 rcu_bind_gp_kthread();
1605 raw_spin_lock_irq(&rnp->lock);
1606 smp_mb__after_unlock_lock();
1607 if (!ACCESS_ONCE(rsp->gp_flags)) {
1608 /* Spurious wakeup, tell caller to go back to sleep. */
1609 raw_spin_unlock_irq(&rnp->lock);
1610 return 0;
1611 }
1612 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1613
1614 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1615 /*
1616 * Grace period already in progress, don't start another.
1617 * Not supposed to be able to happen.
1618 */
1619 raw_spin_unlock_irq(&rnp->lock);
1620 return 0;
1621 }
1622
1623 /* Advance to a new grace period and initialize state. */
1624 record_gp_stall_check_time(rsp);
1625 /* Record GP times before starting GP, hence smp_store_release(). */
1626 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1627 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1628 raw_spin_unlock_irq(&rnp->lock);
1629
1630 /* Exclude any concurrent CPU-hotplug operations. */
1631 mutex_lock(&rsp->onoff_mutex);
1632 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1633
1634 /*
1635 * Set the quiescent-state-needed bits in all the rcu_node
1636 * structures for all currently online CPUs in breadth-first order,
1637 * starting from the root rcu_node structure, relying on the layout
1638 * of the tree within the rsp->node[] array. Note that other CPUs
1639 * will access only the leaves of the hierarchy, thus seeing that no
1640 * grace period is in progress, at least until the corresponding
1641 * leaf node has been initialized. In addition, we have excluded
1642 * CPU-hotplug operations.
1643 *
1644 * The grace period cannot complete until the initialization
1645 * process finishes, because this kthread handles both.
1646 */
1647 rcu_for_each_node_breadth_first(rsp, rnp) {
1648 raw_spin_lock_irq(&rnp->lock);
1649 smp_mb__after_unlock_lock();
1650 rdp = this_cpu_ptr(rsp->rda);
1651 rcu_preempt_check_blocked_tasks(rnp);
1652 rnp->qsmask = rnp->qsmaskinit;
1653 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1654 WARN_ON_ONCE(rnp->completed != rsp->completed);
1655 ACCESS_ONCE(rnp->completed) = rsp->completed;
1656 if (rnp == rdp->mynode)
1657 (void)__note_gp_changes(rsp, rnp, rdp);
1658 rcu_preempt_boost_start_gp(rnp);
1659 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1660 rnp->level, rnp->grplo,
1661 rnp->grphi, rnp->qsmask);
1662 raw_spin_unlock_irq(&rnp->lock);
1663 cond_resched_rcu_qs();
1664 }
1665
1666 mutex_unlock(&rsp->onoff_mutex);
1667 return 1;
1668 }
1669
1670 /*
1671 * Do one round of quiescent-state forcing.
1672 */
rcu_gp_fqs(struct rcu_state * rsp,int fqs_state_in)1673 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1674 {
1675 int fqs_state = fqs_state_in;
1676 bool isidle = false;
1677 unsigned long maxj;
1678 struct rcu_node *rnp = rcu_get_root(rsp);
1679
1680 rsp->n_force_qs++;
1681 if (fqs_state == RCU_SAVE_DYNTICK) {
1682 /* Collect dyntick-idle snapshots. */
1683 if (is_sysidle_rcu_state(rsp)) {
1684 isidle = true;
1685 maxj = jiffies - ULONG_MAX / 4;
1686 }
1687 force_qs_rnp(rsp, dyntick_save_progress_counter,
1688 &isidle, &maxj);
1689 rcu_sysidle_report_gp(rsp, isidle, maxj);
1690 fqs_state = RCU_FORCE_QS;
1691 } else {
1692 /* Handle dyntick-idle and offline CPUs. */
1693 isidle = false;
1694 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1695 }
1696 /* Clear flag to prevent immediate re-entry. */
1697 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1698 raw_spin_lock_irq(&rnp->lock);
1699 smp_mb__after_unlock_lock();
1700 ACCESS_ONCE(rsp->gp_flags) =
1701 ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
1702 raw_spin_unlock_irq(&rnp->lock);
1703 }
1704 return fqs_state;
1705 }
1706
1707 /*
1708 * Clean up after the old grace period.
1709 */
rcu_gp_cleanup(struct rcu_state * rsp)1710 static void rcu_gp_cleanup(struct rcu_state *rsp)
1711 {
1712 unsigned long gp_duration;
1713 bool needgp = false;
1714 int nocb = 0;
1715 struct rcu_data *rdp;
1716 struct rcu_node *rnp = rcu_get_root(rsp);
1717
1718 raw_spin_lock_irq(&rnp->lock);
1719 smp_mb__after_unlock_lock();
1720 gp_duration = jiffies - rsp->gp_start;
1721 if (gp_duration > rsp->gp_max)
1722 rsp->gp_max = gp_duration;
1723
1724 /*
1725 * We know the grace period is complete, but to everyone else
1726 * it appears to still be ongoing. But it is also the case
1727 * that to everyone else it looks like there is nothing that
1728 * they can do to advance the grace period. It is therefore
1729 * safe for us to drop the lock in order to mark the grace
1730 * period as completed in all of the rcu_node structures.
1731 */
1732 raw_spin_unlock_irq(&rnp->lock);
1733
1734 /*
1735 * Propagate new ->completed value to rcu_node structures so
1736 * that other CPUs don't have to wait until the start of the next
1737 * grace period to process their callbacks. This also avoids
1738 * some nasty RCU grace-period initialization races by forcing
1739 * the end of the current grace period to be completely recorded in
1740 * all of the rcu_node structures before the beginning of the next
1741 * grace period is recorded in any of the rcu_node structures.
1742 */
1743 rcu_for_each_node_breadth_first(rsp, rnp) {
1744 raw_spin_lock_irq(&rnp->lock);
1745 smp_mb__after_unlock_lock();
1746 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1747 rdp = this_cpu_ptr(rsp->rda);
1748 if (rnp == rdp->mynode)
1749 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1750 /* smp_mb() provided by prior unlock-lock pair. */
1751 nocb += rcu_future_gp_cleanup(rsp, rnp);
1752 raw_spin_unlock_irq(&rnp->lock);
1753 cond_resched_rcu_qs();
1754 }
1755 rnp = rcu_get_root(rsp);
1756 raw_spin_lock_irq(&rnp->lock);
1757 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1758 rcu_nocb_gp_set(rnp, nocb);
1759
1760 /* Declare grace period done. */
1761 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1762 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1763 rsp->fqs_state = RCU_GP_IDLE;
1764 rdp = this_cpu_ptr(rsp->rda);
1765 /* Advance CBs to reduce false positives below. */
1766 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1767 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1768 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1769 trace_rcu_grace_period(rsp->name,
1770 ACCESS_ONCE(rsp->gpnum),
1771 TPS("newreq"));
1772 }
1773 raw_spin_unlock_irq(&rnp->lock);
1774 }
1775
1776 /*
1777 * Body of kthread that handles grace periods.
1778 */
rcu_gp_kthread(void * arg)1779 static int __noreturn rcu_gp_kthread(void *arg)
1780 {
1781 int fqs_state;
1782 int gf;
1783 unsigned long j;
1784 int ret;
1785 struct rcu_state *rsp = arg;
1786 struct rcu_node *rnp = rcu_get_root(rsp);
1787
1788 for (;;) {
1789
1790 /* Handle grace-period start. */
1791 for (;;) {
1792 trace_rcu_grace_period(rsp->name,
1793 ACCESS_ONCE(rsp->gpnum),
1794 TPS("reqwait"));
1795 rsp->gp_state = RCU_GP_WAIT_GPS;
1796 wait_event_interruptible(rsp->gp_wq,
1797 ACCESS_ONCE(rsp->gp_flags) &
1798 RCU_GP_FLAG_INIT);
1799 /* Locking provides needed memory barrier. */
1800 if (rcu_gp_init(rsp))
1801 break;
1802 cond_resched_rcu_qs();
1803 WARN_ON(signal_pending(current));
1804 trace_rcu_grace_period(rsp->name,
1805 ACCESS_ONCE(rsp->gpnum),
1806 TPS("reqwaitsig"));
1807 }
1808
1809 /* Handle quiescent-state forcing. */
1810 fqs_state = RCU_SAVE_DYNTICK;
1811 j = jiffies_till_first_fqs;
1812 if (j > HZ) {
1813 j = HZ;
1814 jiffies_till_first_fqs = HZ;
1815 }
1816 ret = 0;
1817 for (;;) {
1818 if (!ret)
1819 rsp->jiffies_force_qs = jiffies + j;
1820 trace_rcu_grace_period(rsp->name,
1821 ACCESS_ONCE(rsp->gpnum),
1822 TPS("fqswait"));
1823 rsp->gp_state = RCU_GP_WAIT_FQS;
1824 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1825 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1826 RCU_GP_FLAG_FQS) ||
1827 (!ACCESS_ONCE(rnp->qsmask) &&
1828 !rcu_preempt_blocked_readers_cgp(rnp)),
1829 j);
1830 /* Locking provides needed memory barriers. */
1831 /* If grace period done, leave loop. */
1832 if (!ACCESS_ONCE(rnp->qsmask) &&
1833 !rcu_preempt_blocked_readers_cgp(rnp))
1834 break;
1835 /* If time for quiescent-state forcing, do it. */
1836 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1837 (gf & RCU_GP_FLAG_FQS)) {
1838 trace_rcu_grace_period(rsp->name,
1839 ACCESS_ONCE(rsp->gpnum),
1840 TPS("fqsstart"));
1841 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1842 trace_rcu_grace_period(rsp->name,
1843 ACCESS_ONCE(rsp->gpnum),
1844 TPS("fqsend"));
1845 cond_resched_rcu_qs();
1846 } else {
1847 /* Deal with stray signal. */
1848 cond_resched_rcu_qs();
1849 WARN_ON(signal_pending(current));
1850 trace_rcu_grace_period(rsp->name,
1851 ACCESS_ONCE(rsp->gpnum),
1852 TPS("fqswaitsig"));
1853 }
1854 j = jiffies_till_next_fqs;
1855 if (j > HZ) {
1856 j = HZ;
1857 jiffies_till_next_fqs = HZ;
1858 } else if (j < 1) {
1859 j = 1;
1860 jiffies_till_next_fqs = 1;
1861 }
1862 }
1863
1864 /* Handle grace-period end. */
1865 rcu_gp_cleanup(rsp);
1866 }
1867 }
1868
1869 /*
1870 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1871 * in preparation for detecting the next grace period. The caller must hold
1872 * the root node's ->lock and hard irqs must be disabled.
1873 *
1874 * Note that it is legal for a dying CPU (which is marked as offline) to
1875 * invoke this function. This can happen when the dying CPU reports its
1876 * quiescent state.
1877 *
1878 * Returns true if the grace-period kthread must be awakened.
1879 */
1880 static bool
rcu_start_gp_advanced(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1881 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1882 struct rcu_data *rdp)
1883 {
1884 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1885 /*
1886 * Either we have not yet spawned the grace-period
1887 * task, this CPU does not need another grace period,
1888 * or a grace period is already in progress.
1889 * Either way, don't start a new grace period.
1890 */
1891 return false;
1892 }
1893 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1894 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1895 TPS("newreq"));
1896
1897 /*
1898 * We can't do wakeups while holding the rnp->lock, as that
1899 * could cause possible deadlocks with the rq->lock. Defer
1900 * the wakeup to our caller.
1901 */
1902 return true;
1903 }
1904
1905 /*
1906 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1907 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1908 * is invoked indirectly from rcu_advance_cbs(), which would result in
1909 * endless recursion -- or would do so if it wasn't for the self-deadlock
1910 * that is encountered beforehand.
1911 *
1912 * Returns true if the grace-period kthread needs to be awakened.
1913 */
rcu_start_gp(struct rcu_state * rsp)1914 static bool rcu_start_gp(struct rcu_state *rsp)
1915 {
1916 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1917 struct rcu_node *rnp = rcu_get_root(rsp);
1918 bool ret = false;
1919
1920 /*
1921 * If there is no grace period in progress right now, any
1922 * callbacks we have up to this point will be satisfied by the
1923 * next grace period. Also, advancing the callbacks reduces the
1924 * probability of false positives from cpu_needs_another_gp()
1925 * resulting in pointless grace periods. So, advance callbacks
1926 * then start the grace period!
1927 */
1928 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
1929 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
1930 return ret;
1931 }
1932
1933 /*
1934 * Report a full set of quiescent states to the specified rcu_state
1935 * data structure. This involves cleaning up after the prior grace
1936 * period and letting rcu_start_gp() start up the next grace period
1937 * if one is needed. Note that the caller must hold rnp->lock, which
1938 * is released before return.
1939 */
rcu_report_qs_rsp(struct rcu_state * rsp,unsigned long flags)1940 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1941 __releases(rcu_get_root(rsp)->lock)
1942 {
1943 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1944 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1945 rcu_gp_kthread_wake(rsp);
1946 }
1947
1948 /*
1949 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1950 * Allows quiescent states for a group of CPUs to be reported at one go
1951 * to the specified rcu_node structure, though all the CPUs in the group
1952 * must be represented by the same rcu_node structure (which need not be
1953 * a leaf rcu_node structure, though it often will be). That structure's
1954 * lock must be held upon entry, and it is released before return.
1955 */
1956 static void
rcu_report_qs_rnp(unsigned long mask,struct rcu_state * rsp,struct rcu_node * rnp,unsigned long flags)1957 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1958 struct rcu_node *rnp, unsigned long flags)
1959 __releases(rnp->lock)
1960 {
1961 struct rcu_node *rnp_c;
1962
1963 /* Walk up the rcu_node hierarchy. */
1964 for (;;) {
1965 if (!(rnp->qsmask & mask)) {
1966
1967 /* Our bit has already been cleared, so done. */
1968 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1969 return;
1970 }
1971 rnp->qsmask &= ~mask;
1972 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1973 mask, rnp->qsmask, rnp->level,
1974 rnp->grplo, rnp->grphi,
1975 !!rnp->gp_tasks);
1976 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1977
1978 /* Other bits still set at this level, so done. */
1979 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1980 return;
1981 }
1982 mask = rnp->grpmask;
1983 if (rnp->parent == NULL) {
1984
1985 /* No more levels. Exit loop holding root lock. */
1986
1987 break;
1988 }
1989 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1990 rnp_c = rnp;
1991 rnp = rnp->parent;
1992 raw_spin_lock_irqsave(&rnp->lock, flags);
1993 smp_mb__after_unlock_lock();
1994 WARN_ON_ONCE(rnp_c->qsmask);
1995 }
1996
1997 /*
1998 * Get here if we are the last CPU to pass through a quiescent
1999 * state for this grace period. Invoke rcu_report_qs_rsp()
2000 * to clean up and start the next grace period if one is needed.
2001 */
2002 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2003 }
2004
2005 /*
2006 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2007 * structure. This must be either called from the specified CPU, or
2008 * called when the specified CPU is known to be offline (and when it is
2009 * also known that no other CPU is concurrently trying to help the offline
2010 * CPU). The lastcomp argument is used to make sure we are still in the
2011 * grace period of interest. We don't want to end the current grace period
2012 * based on quiescent states detected in an earlier grace period!
2013 */
2014 static void
rcu_report_qs_rdp(int cpu,struct rcu_state * rsp,struct rcu_data * rdp)2015 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2016 {
2017 unsigned long flags;
2018 unsigned long mask;
2019 bool needwake;
2020 struct rcu_node *rnp;
2021
2022 rnp = rdp->mynode;
2023 raw_spin_lock_irqsave(&rnp->lock, flags);
2024 smp_mb__after_unlock_lock();
2025 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
2026 rnp->completed == rnp->gpnum) {
2027
2028 /*
2029 * The grace period in which this quiescent state was
2030 * recorded has ended, so don't report it upwards.
2031 * We will instead need a new quiescent state that lies
2032 * within the current grace period.
2033 */
2034 rdp->passed_quiesce = 0; /* need qs for new gp. */
2035 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2036 return;
2037 }
2038 mask = rdp->grpmask;
2039 if ((rnp->qsmask & mask) == 0) {
2040 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2041 } else {
2042 rdp->qs_pending = 0;
2043
2044 /*
2045 * This GP can't end until cpu checks in, so all of our
2046 * callbacks can be processed during the next GP.
2047 */
2048 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2049
2050 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
2051 if (needwake)
2052 rcu_gp_kthread_wake(rsp);
2053 }
2054 }
2055
2056 /*
2057 * Check to see if there is a new grace period of which this CPU
2058 * is not yet aware, and if so, set up local rcu_data state for it.
2059 * Otherwise, see if this CPU has just passed through its first
2060 * quiescent state for this grace period, and record that fact if so.
2061 */
2062 static void
rcu_check_quiescent_state(struct rcu_state * rsp,struct rcu_data * rdp)2063 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2064 {
2065 /* Check for grace-period ends and beginnings. */
2066 note_gp_changes(rsp, rdp);
2067
2068 /*
2069 * Does this CPU still need to do its part for current grace period?
2070 * If no, return and let the other CPUs do their part as well.
2071 */
2072 if (!rdp->qs_pending)
2073 return;
2074
2075 /*
2076 * Was there a quiescent state since the beginning of the grace
2077 * period? If no, then exit and wait for the next call.
2078 */
2079 if (!rdp->passed_quiesce)
2080 return;
2081
2082 /*
2083 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2084 * judge of that).
2085 */
2086 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2087 }
2088
2089 #ifdef CONFIG_HOTPLUG_CPU
2090
2091 /*
2092 * Send the specified CPU's RCU callbacks to the orphanage. The
2093 * specified CPU must be offline, and the caller must hold the
2094 * ->orphan_lock.
2095 */
2096 static void
rcu_send_cbs_to_orphanage(int cpu,struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)2097 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2098 struct rcu_node *rnp, struct rcu_data *rdp)
2099 {
2100 /* No-CBs CPUs do not have orphanable callbacks. */
2101 if (rcu_is_nocb_cpu(rdp->cpu))
2102 return;
2103
2104 /*
2105 * Orphan the callbacks. First adjust the counts. This is safe
2106 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2107 * cannot be running now. Thus no memory barrier is required.
2108 */
2109 if (rdp->nxtlist != NULL) {
2110 rsp->qlen_lazy += rdp->qlen_lazy;
2111 rsp->qlen += rdp->qlen;
2112 rdp->n_cbs_orphaned += rdp->qlen;
2113 rdp->qlen_lazy = 0;
2114 ACCESS_ONCE(rdp->qlen) = 0;
2115 }
2116
2117 /*
2118 * Next, move those callbacks still needing a grace period to
2119 * the orphanage, where some other CPU will pick them up.
2120 * Some of the callbacks might have gone partway through a grace
2121 * period, but that is too bad. They get to start over because we
2122 * cannot assume that grace periods are synchronized across CPUs.
2123 * We don't bother updating the ->nxttail[] array yet, instead
2124 * we just reset the whole thing later on.
2125 */
2126 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2127 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2128 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2129 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2130 }
2131
2132 /*
2133 * Then move the ready-to-invoke callbacks to the orphanage,
2134 * where some other CPU will pick them up. These will not be
2135 * required to pass though another grace period: They are done.
2136 */
2137 if (rdp->nxtlist != NULL) {
2138 *rsp->orphan_donetail = rdp->nxtlist;
2139 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2140 }
2141
2142 /* Finally, initialize the rcu_data structure's list to empty. */
2143 init_callback_list(rdp);
2144 }
2145
2146 /*
2147 * Adopt the RCU callbacks from the specified rcu_state structure's
2148 * orphanage. The caller must hold the ->orphan_lock.
2149 */
rcu_adopt_orphan_cbs(struct rcu_state * rsp,unsigned long flags)2150 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2151 {
2152 int i;
2153 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2154
2155 /* No-CBs CPUs are handled specially. */
2156 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2157 return;
2158
2159 /* Do the accounting first. */
2160 rdp->qlen_lazy += rsp->qlen_lazy;
2161 rdp->qlen += rsp->qlen;
2162 rdp->n_cbs_adopted += rsp->qlen;
2163 if (rsp->qlen_lazy != rsp->qlen)
2164 rcu_idle_count_callbacks_posted();
2165 rsp->qlen_lazy = 0;
2166 rsp->qlen = 0;
2167
2168 /*
2169 * We do not need a memory barrier here because the only way we
2170 * can get here if there is an rcu_barrier() in flight is if
2171 * we are the task doing the rcu_barrier().
2172 */
2173
2174 /* First adopt the ready-to-invoke callbacks. */
2175 if (rsp->orphan_donelist != NULL) {
2176 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2177 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2178 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2179 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2180 rdp->nxttail[i] = rsp->orphan_donetail;
2181 rsp->orphan_donelist = NULL;
2182 rsp->orphan_donetail = &rsp->orphan_donelist;
2183 }
2184
2185 /* And then adopt the callbacks that still need a grace period. */
2186 if (rsp->orphan_nxtlist != NULL) {
2187 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2188 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2189 rsp->orphan_nxtlist = NULL;
2190 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2191 }
2192 }
2193
2194 /*
2195 * Trace the fact that this CPU is going offline.
2196 */
rcu_cleanup_dying_cpu(struct rcu_state * rsp)2197 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2198 {
2199 RCU_TRACE(unsigned long mask);
2200 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2201 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2202
2203 RCU_TRACE(mask = rdp->grpmask);
2204 trace_rcu_grace_period(rsp->name,
2205 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2206 TPS("cpuofl"));
2207 }
2208
2209 /*
2210 * The CPU has been completely removed, and some other CPU is reporting
2211 * this fact from process context. Do the remainder of the cleanup,
2212 * including orphaning the outgoing CPU's RCU callbacks, and also
2213 * adopting them. There can only be one CPU hotplug operation at a time,
2214 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2215 */
rcu_cleanup_dead_cpu(int cpu,struct rcu_state * rsp)2216 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2217 {
2218 unsigned long flags;
2219 unsigned long mask;
2220 int need_report = 0;
2221 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2222 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2223
2224 /* Adjust any no-longer-needed kthreads. */
2225 rcu_boost_kthread_setaffinity(rnp, -1);
2226
2227 /* Exclude any attempts to start a new grace period. */
2228 mutex_lock(&rsp->onoff_mutex);
2229 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2230
2231 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2232 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2233 rcu_adopt_orphan_cbs(rsp, flags);
2234
2235 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2236 mask = rdp->grpmask; /* rnp->grplo is constant. */
2237 do {
2238 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2239 smp_mb__after_unlock_lock();
2240 rnp->qsmaskinit &= ~mask;
2241 if (rnp->qsmaskinit != 0) {
2242 if (rnp != rdp->mynode)
2243 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2244 break;
2245 }
2246 if (rnp == rdp->mynode)
2247 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2248 else
2249 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2250 mask = rnp->grpmask;
2251 rnp = rnp->parent;
2252 } while (rnp != NULL);
2253
2254 /*
2255 * We still hold the leaf rcu_node structure lock here, and
2256 * irqs are still disabled. The reason for this subterfuge is
2257 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2258 * held leads to deadlock.
2259 */
2260 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2261 rnp = rdp->mynode;
2262 if (need_report & RCU_OFL_TASKS_NORM_GP)
2263 rcu_report_unblock_qs_rnp(rnp, flags);
2264 else
2265 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2266 if (need_report & RCU_OFL_TASKS_EXP_GP)
2267 rcu_report_exp_rnp(rsp, rnp, true);
2268 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2269 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2270 cpu, rdp->qlen, rdp->nxtlist);
2271 init_callback_list(rdp);
2272 /* Disallow further callbacks on this CPU. */
2273 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2274 mutex_unlock(&rsp->onoff_mutex);
2275 }
2276
2277 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2278
rcu_cleanup_dying_cpu(struct rcu_state * rsp)2279 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2280 {
2281 }
2282
rcu_cleanup_dead_cpu(int cpu,struct rcu_state * rsp)2283 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2284 {
2285 }
2286
2287 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2288
2289 /*
2290 * Invoke any RCU callbacks that have made it to the end of their grace
2291 * period. Thottle as specified by rdp->blimit.
2292 */
rcu_do_batch(struct rcu_state * rsp,struct rcu_data * rdp)2293 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2294 {
2295 unsigned long flags;
2296 struct rcu_head *next, *list, **tail;
2297 long bl, count, count_lazy;
2298 int i;
2299
2300 /* If no callbacks are ready, just return. */
2301 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2302 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2303 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2304 need_resched(), is_idle_task(current),
2305 rcu_is_callbacks_kthread());
2306 return;
2307 }
2308
2309 /*
2310 * Extract the list of ready callbacks, disabling to prevent
2311 * races with call_rcu() from interrupt handlers.
2312 */
2313 local_irq_save(flags);
2314 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2315 bl = rdp->blimit;
2316 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2317 list = rdp->nxtlist;
2318 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2319 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2320 tail = rdp->nxttail[RCU_DONE_TAIL];
2321 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2322 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2323 rdp->nxttail[i] = &rdp->nxtlist;
2324 local_irq_restore(flags);
2325
2326 /* Invoke callbacks. */
2327 count = count_lazy = 0;
2328 while (list) {
2329 next = list->next;
2330 prefetch(next);
2331 debug_rcu_head_unqueue(list);
2332 if (__rcu_reclaim(rsp->name, list))
2333 count_lazy++;
2334 list = next;
2335 /* Stop only if limit reached and CPU has something to do. */
2336 if (++count >= bl &&
2337 (need_resched() ||
2338 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2339 break;
2340 }
2341
2342 local_irq_save(flags);
2343 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2344 is_idle_task(current),
2345 rcu_is_callbacks_kthread());
2346
2347 /* Update count, and requeue any remaining callbacks. */
2348 if (list != NULL) {
2349 *tail = rdp->nxtlist;
2350 rdp->nxtlist = list;
2351 for (i = 0; i < RCU_NEXT_SIZE; i++)
2352 if (&rdp->nxtlist == rdp->nxttail[i])
2353 rdp->nxttail[i] = tail;
2354 else
2355 break;
2356 }
2357 smp_mb(); /* List handling before counting for rcu_barrier(). */
2358 rdp->qlen_lazy -= count_lazy;
2359 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
2360 rdp->n_cbs_invoked += count;
2361
2362 /* Reinstate batch limit if we have worked down the excess. */
2363 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2364 rdp->blimit = blimit;
2365
2366 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2367 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2368 rdp->qlen_last_fqs_check = 0;
2369 rdp->n_force_qs_snap = rsp->n_force_qs;
2370 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2371 rdp->qlen_last_fqs_check = rdp->qlen;
2372 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2373
2374 local_irq_restore(flags);
2375
2376 /* Re-invoke RCU core processing if there are callbacks remaining. */
2377 if (cpu_has_callbacks_ready_to_invoke(rdp))
2378 invoke_rcu_core();
2379 }
2380
2381 /*
2382 * Check to see if this CPU is in a non-context-switch quiescent state
2383 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2384 * Also schedule RCU core processing.
2385 *
2386 * This function must be called from hardirq context. It is normally
2387 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2388 * false, there is no point in invoking rcu_check_callbacks().
2389 */
rcu_check_callbacks(int cpu,int user)2390 void rcu_check_callbacks(int cpu, int user)
2391 {
2392 trace_rcu_utilization(TPS("Start scheduler-tick"));
2393 increment_cpu_stall_ticks();
2394 if (user || rcu_is_cpu_rrupt_from_idle()) {
2395
2396 /*
2397 * Get here if this CPU took its interrupt from user
2398 * mode or from the idle loop, and if this is not a
2399 * nested interrupt. In this case, the CPU is in
2400 * a quiescent state, so note it.
2401 *
2402 * No memory barrier is required here because both
2403 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2404 * variables that other CPUs neither access nor modify,
2405 * at least not while the corresponding CPU is online.
2406 */
2407
2408 rcu_sched_qs();
2409 rcu_bh_qs();
2410
2411 } else if (!in_softirq()) {
2412
2413 /*
2414 * Get here if this CPU did not take its interrupt from
2415 * softirq, in other words, if it is not interrupting
2416 * a rcu_bh read-side critical section. This is an _bh
2417 * critical section, so note it.
2418 */
2419
2420 rcu_bh_qs();
2421 }
2422 rcu_preempt_check_callbacks(cpu);
2423 if (rcu_pending(cpu))
2424 invoke_rcu_core();
2425 if (user)
2426 rcu_note_voluntary_context_switch(current);
2427 trace_rcu_utilization(TPS("End scheduler-tick"));
2428 }
2429
2430 /*
2431 * Scan the leaf rcu_node structures, processing dyntick state for any that
2432 * have not yet encountered a quiescent state, using the function specified.
2433 * Also initiate boosting for any threads blocked on the root rcu_node.
2434 *
2435 * The caller must have suppressed start of new grace periods.
2436 */
force_qs_rnp(struct rcu_state * rsp,int (* f)(struct rcu_data * rsp,bool * isidle,unsigned long * maxj),bool * isidle,unsigned long * maxj)2437 static void force_qs_rnp(struct rcu_state *rsp,
2438 int (*f)(struct rcu_data *rsp, bool *isidle,
2439 unsigned long *maxj),
2440 bool *isidle, unsigned long *maxj)
2441 {
2442 unsigned long bit;
2443 int cpu;
2444 unsigned long flags;
2445 unsigned long mask;
2446 struct rcu_node *rnp;
2447
2448 rcu_for_each_leaf_node(rsp, rnp) {
2449 cond_resched_rcu_qs();
2450 mask = 0;
2451 raw_spin_lock_irqsave(&rnp->lock, flags);
2452 smp_mb__after_unlock_lock();
2453 if (!rcu_gp_in_progress(rsp)) {
2454 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2455 return;
2456 }
2457 if (rnp->qsmask == 0) {
2458 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2459 continue;
2460 }
2461 cpu = rnp->grplo;
2462 bit = 1;
2463 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2464 if ((rnp->qsmask & bit) != 0) {
2465 if ((rnp->qsmaskinit & bit) != 0)
2466 *isidle = false;
2467 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2468 mask |= bit;
2469 }
2470 }
2471 if (mask != 0) {
2472
2473 /* rcu_report_qs_rnp() releases rnp->lock. */
2474 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2475 continue;
2476 }
2477 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2478 }
2479 rnp = rcu_get_root(rsp);
2480 if (rnp->qsmask == 0) {
2481 raw_spin_lock_irqsave(&rnp->lock, flags);
2482 smp_mb__after_unlock_lock();
2483 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2484 }
2485 }
2486
2487 /*
2488 * Force quiescent states on reluctant CPUs, and also detect which
2489 * CPUs are in dyntick-idle mode.
2490 */
force_quiescent_state(struct rcu_state * rsp)2491 static void force_quiescent_state(struct rcu_state *rsp)
2492 {
2493 unsigned long flags;
2494 bool ret;
2495 struct rcu_node *rnp;
2496 struct rcu_node *rnp_old = NULL;
2497
2498 /* Funnel through hierarchy to reduce memory contention. */
2499 rnp = __this_cpu_read(rsp->rda->mynode);
2500 for (; rnp != NULL; rnp = rnp->parent) {
2501 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2502 !raw_spin_trylock(&rnp->fqslock);
2503 if (rnp_old != NULL)
2504 raw_spin_unlock(&rnp_old->fqslock);
2505 if (ret) {
2506 rsp->n_force_qs_lh++;
2507 return;
2508 }
2509 rnp_old = rnp;
2510 }
2511 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2512
2513 /* Reached the root of the rcu_node tree, acquire lock. */
2514 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2515 smp_mb__after_unlock_lock();
2516 raw_spin_unlock(&rnp_old->fqslock);
2517 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2518 rsp->n_force_qs_lh++;
2519 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2520 return; /* Someone beat us to it. */
2521 }
2522 ACCESS_ONCE(rsp->gp_flags) =
2523 ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
2524 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2525 rcu_gp_kthread_wake(rsp);
2526 }
2527
2528 /*
2529 * This does the RCU core processing work for the specified rcu_state
2530 * and rcu_data structures. This may be called only from the CPU to
2531 * whom the rdp belongs.
2532 */
2533 static void
__rcu_process_callbacks(struct rcu_state * rsp)2534 __rcu_process_callbacks(struct rcu_state *rsp)
2535 {
2536 unsigned long flags;
2537 bool needwake;
2538 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2539
2540 WARN_ON_ONCE(rdp->beenonline == 0);
2541
2542 /* Update RCU state based on any recent quiescent states. */
2543 rcu_check_quiescent_state(rsp, rdp);
2544
2545 /* Does this CPU require a not-yet-started grace period? */
2546 local_irq_save(flags);
2547 if (cpu_needs_another_gp(rsp, rdp)) {
2548 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2549 needwake = rcu_start_gp(rsp);
2550 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2551 if (needwake)
2552 rcu_gp_kthread_wake(rsp);
2553 } else {
2554 local_irq_restore(flags);
2555 }
2556
2557 /* If there are callbacks ready, invoke them. */
2558 if (cpu_has_callbacks_ready_to_invoke(rdp))
2559 invoke_rcu_callbacks(rsp, rdp);
2560
2561 /* Do any needed deferred wakeups of rcuo kthreads. */
2562 do_nocb_deferred_wakeup(rdp);
2563 }
2564
2565 /*
2566 * Do RCU core processing for the current CPU.
2567 */
rcu_process_callbacks(struct softirq_action * unused)2568 static void rcu_process_callbacks(struct softirq_action *unused)
2569 {
2570 struct rcu_state *rsp;
2571
2572 if (cpu_is_offline(smp_processor_id()))
2573 return;
2574 trace_rcu_utilization(TPS("Start RCU core"));
2575 for_each_rcu_flavor(rsp)
2576 __rcu_process_callbacks(rsp);
2577 trace_rcu_utilization(TPS("End RCU core"));
2578 }
2579
2580 /*
2581 * Schedule RCU callback invocation. If the specified type of RCU
2582 * does not support RCU priority boosting, just do a direct call,
2583 * otherwise wake up the per-CPU kernel kthread. Note that because we
2584 * are running on the current CPU with interrupts disabled, the
2585 * rcu_cpu_kthread_task cannot disappear out from under us.
2586 */
invoke_rcu_callbacks(struct rcu_state * rsp,struct rcu_data * rdp)2587 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2588 {
2589 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2590 return;
2591 if (likely(!rsp->boost)) {
2592 rcu_do_batch(rsp, rdp);
2593 return;
2594 }
2595 invoke_rcu_callbacks_kthread();
2596 }
2597
invoke_rcu_core(void)2598 static void invoke_rcu_core(void)
2599 {
2600 if (cpu_online(smp_processor_id()))
2601 raise_softirq(RCU_SOFTIRQ);
2602 }
2603
2604 /*
2605 * Handle any core-RCU processing required by a call_rcu() invocation.
2606 */
__call_rcu_core(struct rcu_state * rsp,struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2607 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2608 struct rcu_head *head, unsigned long flags)
2609 {
2610 bool needwake;
2611
2612 /*
2613 * If called from an extended quiescent state, invoke the RCU
2614 * core in order to force a re-evaluation of RCU's idleness.
2615 */
2616 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2617 invoke_rcu_core();
2618
2619 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2620 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2621 return;
2622
2623 /*
2624 * Force the grace period if too many callbacks or too long waiting.
2625 * Enforce hysteresis, and don't invoke force_quiescent_state()
2626 * if some other CPU has recently done so. Also, don't bother
2627 * invoking force_quiescent_state() if the newly enqueued callback
2628 * is the only one waiting for a grace period to complete.
2629 */
2630 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2631
2632 /* Are we ignoring a completed grace period? */
2633 note_gp_changes(rsp, rdp);
2634
2635 /* Start a new grace period if one not already started. */
2636 if (!rcu_gp_in_progress(rsp)) {
2637 struct rcu_node *rnp_root = rcu_get_root(rsp);
2638
2639 raw_spin_lock(&rnp_root->lock);
2640 smp_mb__after_unlock_lock();
2641 needwake = rcu_start_gp(rsp);
2642 raw_spin_unlock(&rnp_root->lock);
2643 if (needwake)
2644 rcu_gp_kthread_wake(rsp);
2645 } else {
2646 /* Give the grace period a kick. */
2647 rdp->blimit = LONG_MAX;
2648 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2649 *rdp->nxttail[RCU_DONE_TAIL] != head)
2650 force_quiescent_state(rsp);
2651 rdp->n_force_qs_snap = rsp->n_force_qs;
2652 rdp->qlen_last_fqs_check = rdp->qlen;
2653 }
2654 }
2655 }
2656
2657 /*
2658 * RCU callback function to leak a callback.
2659 */
rcu_leak_callback(struct rcu_head * rhp)2660 static void rcu_leak_callback(struct rcu_head *rhp)
2661 {
2662 }
2663
2664 /*
2665 * Helper function for call_rcu() and friends. The cpu argument will
2666 * normally be -1, indicating "currently running CPU". It may specify
2667 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2668 * is expected to specify a CPU.
2669 */
2670 static void
__call_rcu(struct rcu_head * head,void (* func)(struct rcu_head * rcu),struct rcu_state * rsp,int cpu,bool lazy)2671 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2672 struct rcu_state *rsp, int cpu, bool lazy)
2673 {
2674 unsigned long flags;
2675 struct rcu_data *rdp;
2676
2677 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2678 if (debug_rcu_head_queue(head)) {
2679 /* Probable double call_rcu(), so leak the callback. */
2680 ACCESS_ONCE(head->func) = rcu_leak_callback;
2681 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2682 return;
2683 }
2684 head->func = func;
2685 head->next = NULL;
2686
2687 /*
2688 * Opportunistically note grace-period endings and beginnings.
2689 * Note that we might see a beginning right after we see an
2690 * end, but never vice versa, since this CPU has to pass through
2691 * a quiescent state betweentimes.
2692 */
2693 local_irq_save(flags);
2694 rdp = this_cpu_ptr(rsp->rda);
2695
2696 /* Add the callback to our list. */
2697 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2698 int offline;
2699
2700 if (cpu != -1)
2701 rdp = per_cpu_ptr(rsp->rda, cpu);
2702 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2703 WARN_ON_ONCE(offline);
2704 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2705 local_irq_restore(flags);
2706 return;
2707 }
2708 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
2709 if (lazy)
2710 rdp->qlen_lazy++;
2711 else
2712 rcu_idle_count_callbacks_posted();
2713 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2714 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2715 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2716
2717 if (__is_kfree_rcu_offset((unsigned long)func))
2718 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2719 rdp->qlen_lazy, rdp->qlen);
2720 else
2721 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2722
2723 /* Go handle any RCU core processing required. */
2724 __call_rcu_core(rsp, rdp, head, flags);
2725 local_irq_restore(flags);
2726 }
2727
2728 /*
2729 * Queue an RCU-sched callback for invocation after a grace period.
2730 */
call_rcu_sched(struct rcu_head * head,void (* func)(struct rcu_head * rcu))2731 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2732 {
2733 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2734 }
2735 EXPORT_SYMBOL_GPL(call_rcu_sched);
2736
2737 /*
2738 * Queue an RCU callback for invocation after a quicker grace period.
2739 */
call_rcu_bh(struct rcu_head * head,void (* func)(struct rcu_head * rcu))2740 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2741 {
2742 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2743 }
2744 EXPORT_SYMBOL_GPL(call_rcu_bh);
2745
2746 /*
2747 * Queue an RCU callback for lazy invocation after a grace period.
2748 * This will likely be later named something like "call_rcu_lazy()",
2749 * but this change will require some way of tagging the lazy RCU
2750 * callbacks in the list of pending callbacks. Until then, this
2751 * function may only be called from __kfree_rcu().
2752 */
kfree_call_rcu(struct rcu_head * head,void (* func)(struct rcu_head * rcu))2753 void kfree_call_rcu(struct rcu_head *head,
2754 void (*func)(struct rcu_head *rcu))
2755 {
2756 __call_rcu(head, func, rcu_state_p, -1, 1);
2757 }
2758 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2759
2760 /*
2761 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2762 * any blocking grace-period wait automatically implies a grace period
2763 * if there is only one CPU online at any point time during execution
2764 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2765 * occasionally incorrectly indicate that there are multiple CPUs online
2766 * when there was in fact only one the whole time, as this just adds
2767 * some overhead: RCU still operates correctly.
2768 */
rcu_blocking_is_gp(void)2769 static inline int rcu_blocking_is_gp(void)
2770 {
2771 int ret;
2772
2773 might_sleep(); /* Check for RCU read-side critical section. */
2774 preempt_disable();
2775 ret = num_online_cpus() <= 1;
2776 preempt_enable();
2777 return ret;
2778 }
2779
2780 /**
2781 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2782 *
2783 * Control will return to the caller some time after a full rcu-sched
2784 * grace period has elapsed, in other words after all currently executing
2785 * rcu-sched read-side critical sections have completed. These read-side
2786 * critical sections are delimited by rcu_read_lock_sched() and
2787 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2788 * local_irq_disable(), and so on may be used in place of
2789 * rcu_read_lock_sched().
2790 *
2791 * This means that all preempt_disable code sequences, including NMI and
2792 * non-threaded hardware-interrupt handlers, in progress on entry will
2793 * have completed before this primitive returns. However, this does not
2794 * guarantee that softirq handlers will have completed, since in some
2795 * kernels, these handlers can run in process context, and can block.
2796 *
2797 * Note that this guarantee implies further memory-ordering guarantees.
2798 * On systems with more than one CPU, when synchronize_sched() returns,
2799 * each CPU is guaranteed to have executed a full memory barrier since the
2800 * end of its last RCU-sched read-side critical section whose beginning
2801 * preceded the call to synchronize_sched(). In addition, each CPU having
2802 * an RCU read-side critical section that extends beyond the return from
2803 * synchronize_sched() is guaranteed to have executed a full memory barrier
2804 * after the beginning of synchronize_sched() and before the beginning of
2805 * that RCU read-side critical section. Note that these guarantees include
2806 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2807 * that are executing in the kernel.
2808 *
2809 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2810 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2811 * to have executed a full memory barrier during the execution of
2812 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2813 * again only if the system has more than one CPU).
2814 *
2815 * This primitive provides the guarantees made by the (now removed)
2816 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2817 * guarantees that rcu_read_lock() sections will have completed.
2818 * In "classic RCU", these two guarantees happen to be one and
2819 * the same, but can differ in realtime RCU implementations.
2820 */
synchronize_sched(void)2821 void synchronize_sched(void)
2822 {
2823 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2824 !lock_is_held(&rcu_lock_map) &&
2825 !lock_is_held(&rcu_sched_lock_map),
2826 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2827 if (rcu_blocking_is_gp())
2828 return;
2829 if (rcu_expedited)
2830 synchronize_sched_expedited();
2831 else
2832 wait_rcu_gp(call_rcu_sched);
2833 }
2834 EXPORT_SYMBOL_GPL(synchronize_sched);
2835
2836 /**
2837 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2838 *
2839 * Control will return to the caller some time after a full rcu_bh grace
2840 * period has elapsed, in other words after all currently executing rcu_bh
2841 * read-side critical sections have completed. RCU read-side critical
2842 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2843 * and may be nested.
2844 *
2845 * See the description of synchronize_sched() for more detailed information
2846 * on memory ordering guarantees.
2847 */
synchronize_rcu_bh(void)2848 void synchronize_rcu_bh(void)
2849 {
2850 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2851 !lock_is_held(&rcu_lock_map) &&
2852 !lock_is_held(&rcu_sched_lock_map),
2853 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2854 if (rcu_blocking_is_gp())
2855 return;
2856 if (rcu_expedited)
2857 synchronize_rcu_bh_expedited();
2858 else
2859 wait_rcu_gp(call_rcu_bh);
2860 }
2861 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2862
2863 /**
2864 * get_state_synchronize_rcu - Snapshot current RCU state
2865 *
2866 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2867 * to determine whether or not a full grace period has elapsed in the
2868 * meantime.
2869 */
get_state_synchronize_rcu(void)2870 unsigned long get_state_synchronize_rcu(void)
2871 {
2872 /*
2873 * Any prior manipulation of RCU-protected data must happen
2874 * before the load from ->gpnum.
2875 */
2876 smp_mb(); /* ^^^ */
2877
2878 /*
2879 * Make sure this load happens before the purportedly
2880 * time-consuming work between get_state_synchronize_rcu()
2881 * and cond_synchronize_rcu().
2882 */
2883 return smp_load_acquire(&rcu_state_p->gpnum);
2884 }
2885 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2886
2887 /**
2888 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2889 *
2890 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2891 *
2892 * If a full RCU grace period has elapsed since the earlier call to
2893 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2894 * synchronize_rcu() to wait for a full grace period.
2895 *
2896 * Yes, this function does not take counter wrap into account. But
2897 * counter wrap is harmless. If the counter wraps, we have waited for
2898 * more than 2 billion grace periods (and way more on a 64-bit system!),
2899 * so waiting for one additional grace period should be just fine.
2900 */
cond_synchronize_rcu(unsigned long oldstate)2901 void cond_synchronize_rcu(unsigned long oldstate)
2902 {
2903 unsigned long newstate;
2904
2905 /*
2906 * Ensure that this load happens before any RCU-destructive
2907 * actions the caller might carry out after we return.
2908 */
2909 newstate = smp_load_acquire(&rcu_state_p->completed);
2910 if (ULONG_CMP_GE(oldstate, newstate))
2911 synchronize_rcu();
2912 }
2913 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2914
synchronize_sched_expedited_cpu_stop(void * data)2915 static int synchronize_sched_expedited_cpu_stop(void *data)
2916 {
2917 /*
2918 * There must be a full memory barrier on each affected CPU
2919 * between the time that try_stop_cpus() is called and the
2920 * time that it returns.
2921 *
2922 * In the current initial implementation of cpu_stop, the
2923 * above condition is already met when the control reaches
2924 * this point and the following smp_mb() is not strictly
2925 * necessary. Do smp_mb() anyway for documentation and
2926 * robustness against future implementation changes.
2927 */
2928 smp_mb(); /* See above comment block. */
2929 return 0;
2930 }
2931
2932 /**
2933 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2934 *
2935 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2936 * approach to force the grace period to end quickly. This consumes
2937 * significant time on all CPUs and is unfriendly to real-time workloads,
2938 * so is thus not recommended for any sort of common-case code. In fact,
2939 * if you are using synchronize_sched_expedited() in a loop, please
2940 * restructure your code to batch your updates, and then use a single
2941 * synchronize_sched() instead.
2942 *
2943 * This implementation can be thought of as an application of ticket
2944 * locking to RCU, with sync_sched_expedited_started and
2945 * sync_sched_expedited_done taking on the roles of the halves
2946 * of the ticket-lock word. Each task atomically increments
2947 * sync_sched_expedited_started upon entry, snapshotting the old value,
2948 * then attempts to stop all the CPUs. If this succeeds, then each
2949 * CPU will have executed a context switch, resulting in an RCU-sched
2950 * grace period. We are then done, so we use atomic_cmpxchg() to
2951 * update sync_sched_expedited_done to match our snapshot -- but
2952 * only if someone else has not already advanced past our snapshot.
2953 *
2954 * On the other hand, if try_stop_cpus() fails, we check the value
2955 * of sync_sched_expedited_done. If it has advanced past our
2956 * initial snapshot, then someone else must have forced a grace period
2957 * some time after we took our snapshot. In this case, our work is
2958 * done for us, and we can simply return. Otherwise, we try again,
2959 * but keep our initial snapshot for purposes of checking for someone
2960 * doing our work for us.
2961 *
2962 * If we fail too many times in a row, we fall back to synchronize_sched().
2963 */
synchronize_sched_expedited(void)2964 void synchronize_sched_expedited(void)
2965 {
2966 long firstsnap, s, snap;
2967 int trycount = 0;
2968 struct rcu_state *rsp = &rcu_sched_state;
2969
2970 /*
2971 * If we are in danger of counter wrap, just do synchronize_sched().
2972 * By allowing sync_sched_expedited_started to advance no more than
2973 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2974 * that more than 3.5 billion CPUs would be required to force a
2975 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2976 * course be required on a 64-bit system.
2977 */
2978 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2979 (ulong)atomic_long_read(&rsp->expedited_done) +
2980 ULONG_MAX / 8)) {
2981 synchronize_sched();
2982 atomic_long_inc(&rsp->expedited_wrap);
2983 return;
2984 }
2985
2986 /*
2987 * Take a ticket. Note that atomic_inc_return() implies a
2988 * full memory barrier.
2989 */
2990 snap = atomic_long_inc_return(&rsp->expedited_start);
2991 firstsnap = snap;
2992 if (!try_get_online_cpus()) {
2993 /* CPU hotplug operation in flight, fall back to normal GP. */
2994 wait_rcu_gp(call_rcu_sched);
2995 atomic_long_inc(&rsp->expedited_normal);
2996 return;
2997 }
2998 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2999
3000 /*
3001 * Each pass through the following loop attempts to force a
3002 * context switch on each CPU.
3003 */
3004 while (try_stop_cpus(cpu_online_mask,
3005 synchronize_sched_expedited_cpu_stop,
3006 NULL) == -EAGAIN) {
3007 put_online_cpus();
3008 atomic_long_inc(&rsp->expedited_tryfail);
3009
3010 /* Check to see if someone else did our work for us. */
3011 s = atomic_long_read(&rsp->expedited_done);
3012 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3013 /* ensure test happens before caller kfree */
3014 smp_mb__before_atomic(); /* ^^^ */
3015 atomic_long_inc(&rsp->expedited_workdone1);
3016 return;
3017 }
3018
3019 /* No joy, try again later. Or just synchronize_sched(). */
3020 if (trycount++ < 10) {
3021 udelay(trycount * num_online_cpus());
3022 } else {
3023 wait_rcu_gp(call_rcu_sched);
3024 atomic_long_inc(&rsp->expedited_normal);
3025 return;
3026 }
3027
3028 /* Recheck to see if someone else did our work for us. */
3029 s = atomic_long_read(&rsp->expedited_done);
3030 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3031 /* ensure test happens before caller kfree */
3032 smp_mb__before_atomic(); /* ^^^ */
3033 atomic_long_inc(&rsp->expedited_workdone2);
3034 return;
3035 }
3036
3037 /*
3038 * Refetching sync_sched_expedited_started allows later
3039 * callers to piggyback on our grace period. We retry
3040 * after they started, so our grace period works for them,
3041 * and they started after our first try, so their grace
3042 * period works for us.
3043 */
3044 if (!try_get_online_cpus()) {
3045 /* CPU hotplug operation in flight, use normal GP. */
3046 wait_rcu_gp(call_rcu_sched);
3047 atomic_long_inc(&rsp->expedited_normal);
3048 return;
3049 }
3050 snap = atomic_long_read(&rsp->expedited_start);
3051 smp_mb(); /* ensure read is before try_stop_cpus(). */
3052 }
3053 atomic_long_inc(&rsp->expedited_stoppedcpus);
3054
3055 /*
3056 * Everyone up to our most recent fetch is covered by our grace
3057 * period. Update the counter, but only if our work is still
3058 * relevant -- which it won't be if someone who started later
3059 * than we did already did their update.
3060 */
3061 do {
3062 atomic_long_inc(&rsp->expedited_done_tries);
3063 s = atomic_long_read(&rsp->expedited_done);
3064 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3065 /* ensure test happens before caller kfree */
3066 smp_mb__before_atomic(); /* ^^^ */
3067 atomic_long_inc(&rsp->expedited_done_lost);
3068 break;
3069 }
3070 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3071 atomic_long_inc(&rsp->expedited_done_exit);
3072
3073 put_online_cpus();
3074 }
3075 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3076
3077 /*
3078 * Check to see if there is any immediate RCU-related work to be done
3079 * by the current CPU, for the specified type of RCU, returning 1 if so.
3080 * The checks are in order of increasing expense: checks that can be
3081 * carried out against CPU-local state are performed first. However,
3082 * we must check for CPU stalls first, else we might not get a chance.
3083 */
__rcu_pending(struct rcu_state * rsp,struct rcu_data * rdp)3084 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3085 {
3086 struct rcu_node *rnp = rdp->mynode;
3087
3088 rdp->n_rcu_pending++;
3089
3090 /* Check for CPU stalls, if enabled. */
3091 check_cpu_stall(rsp, rdp);
3092
3093 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3094 if (rcu_nohz_full_cpu(rsp))
3095 return 0;
3096
3097 /* Is the RCU core waiting for a quiescent state from this CPU? */
3098 if (rcu_scheduler_fully_active &&
3099 rdp->qs_pending && !rdp->passed_quiesce) {
3100 rdp->n_rp_qs_pending++;
3101 } else if (rdp->qs_pending && rdp->passed_quiesce) {
3102 rdp->n_rp_report_qs++;
3103 return 1;
3104 }
3105
3106 /* Does this CPU have callbacks ready to invoke? */
3107 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3108 rdp->n_rp_cb_ready++;
3109 return 1;
3110 }
3111
3112 /* Has RCU gone idle with this CPU needing another grace period? */
3113 if (cpu_needs_another_gp(rsp, rdp)) {
3114 rdp->n_rp_cpu_needs_gp++;
3115 return 1;
3116 }
3117
3118 /* Has another RCU grace period completed? */
3119 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3120 rdp->n_rp_gp_completed++;
3121 return 1;
3122 }
3123
3124 /* Has a new RCU grace period started? */
3125 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
3126 rdp->n_rp_gp_started++;
3127 return 1;
3128 }
3129
3130 /* Does this CPU need a deferred NOCB wakeup? */
3131 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3132 rdp->n_rp_nocb_defer_wakeup++;
3133 return 1;
3134 }
3135
3136 /* nothing to do */
3137 rdp->n_rp_need_nothing++;
3138 return 0;
3139 }
3140
3141 /*
3142 * Check to see if there is any immediate RCU-related work to be done
3143 * by the current CPU, returning 1 if so. This function is part of the
3144 * RCU implementation; it is -not- an exported member of the RCU API.
3145 */
rcu_pending(int cpu)3146 static int rcu_pending(int cpu)
3147 {
3148 struct rcu_state *rsp;
3149
3150 for_each_rcu_flavor(rsp)
3151 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
3152 return 1;
3153 return 0;
3154 }
3155
3156 /*
3157 * Return true if the specified CPU has any callback. If all_lazy is
3158 * non-NULL, store an indication of whether all callbacks are lazy.
3159 * (If there are no callbacks, all of them are deemed to be lazy.)
3160 */
rcu_cpu_has_callbacks(int cpu,bool * all_lazy)3161 static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
3162 {
3163 bool al = true;
3164 bool hc = false;
3165 struct rcu_data *rdp;
3166 struct rcu_state *rsp;
3167
3168 for_each_rcu_flavor(rsp) {
3169 rdp = per_cpu_ptr(rsp->rda, cpu);
3170 if (!rdp->nxtlist)
3171 continue;
3172 hc = true;
3173 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3174 al = false;
3175 break;
3176 }
3177 }
3178 if (all_lazy)
3179 *all_lazy = al;
3180 return hc;
3181 }
3182
3183 /*
3184 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3185 * the compiler is expected to optimize this away.
3186 */
_rcu_barrier_trace(struct rcu_state * rsp,const char * s,int cpu,unsigned long done)3187 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3188 int cpu, unsigned long done)
3189 {
3190 trace_rcu_barrier(rsp->name, s, cpu,
3191 atomic_read(&rsp->barrier_cpu_count), done);
3192 }
3193
3194 /*
3195 * RCU callback function for _rcu_barrier(). If we are last, wake
3196 * up the task executing _rcu_barrier().
3197 */
rcu_barrier_callback(struct rcu_head * rhp)3198 static void rcu_barrier_callback(struct rcu_head *rhp)
3199 {
3200 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3201 struct rcu_state *rsp = rdp->rsp;
3202
3203 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3204 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3205 complete(&rsp->barrier_completion);
3206 } else {
3207 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3208 }
3209 }
3210
3211 /*
3212 * Called with preemption disabled, and from cross-cpu IRQ context.
3213 */
rcu_barrier_func(void * type)3214 static void rcu_barrier_func(void *type)
3215 {
3216 struct rcu_state *rsp = type;
3217 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3218
3219 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3220 atomic_inc(&rsp->barrier_cpu_count);
3221 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3222 }
3223
3224 /*
3225 * Orchestrate the specified type of RCU barrier, waiting for all
3226 * RCU callbacks of the specified type to complete.
3227 */
_rcu_barrier(struct rcu_state * rsp)3228 static void _rcu_barrier(struct rcu_state *rsp)
3229 {
3230 int cpu;
3231 struct rcu_data *rdp;
3232 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3233 unsigned long snap_done;
3234
3235 _rcu_barrier_trace(rsp, "Begin", -1, snap);
3236
3237 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3238 mutex_lock(&rsp->barrier_mutex);
3239
3240 /*
3241 * Ensure that all prior references, including to ->n_barrier_done,
3242 * are ordered before the _rcu_barrier() machinery.
3243 */
3244 smp_mb(); /* See above block comment. */
3245
3246 /*
3247 * Recheck ->n_barrier_done to see if others did our work for us.
3248 * This means checking ->n_barrier_done for an even-to-odd-to-even
3249 * transition. The "if" expression below therefore rounds the old
3250 * value up to the next even number and adds two before comparing.
3251 */
3252 snap_done = rsp->n_barrier_done;
3253 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
3254
3255 /*
3256 * If the value in snap is odd, we needed to wait for the current
3257 * rcu_barrier() to complete, then wait for the next one, in other
3258 * words, we need the value of snap_done to be three larger than
3259 * the value of snap. On the other hand, if the value in snap is
3260 * even, we only had to wait for the next rcu_barrier() to complete,
3261 * in other words, we need the value of snap_done to be only two
3262 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3263 * this for us (thank you, Linus!).
3264 */
3265 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3266 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3267 smp_mb(); /* caller's subsequent code after above check. */
3268 mutex_unlock(&rsp->barrier_mutex);
3269 return;
3270 }
3271
3272 /*
3273 * Increment ->n_barrier_done to avoid duplicate work. Use
3274 * ACCESS_ONCE() to prevent the compiler from speculating
3275 * the increment to precede the early-exit check.
3276 */
3277 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3278 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3279 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3280 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3281
3282 /*
3283 * Initialize the count to one rather than to zero in order to
3284 * avoid a too-soon return to zero in case of a short grace period
3285 * (or preemption of this task). Exclude CPU-hotplug operations
3286 * to ensure that no offline CPU has callbacks queued.
3287 */
3288 init_completion(&rsp->barrier_completion);
3289 atomic_set(&rsp->barrier_cpu_count, 1);
3290 get_online_cpus();
3291
3292 /*
3293 * Force each CPU with callbacks to register a new callback.
3294 * When that callback is invoked, we will know that all of the
3295 * corresponding CPU's preceding callbacks have been invoked.
3296 */
3297 for_each_possible_cpu(cpu) {
3298 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3299 continue;
3300 rdp = per_cpu_ptr(rsp->rda, cpu);
3301 if (rcu_is_nocb_cpu(cpu)) {
3302 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3303 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3304 rsp->n_barrier_done);
3305 } else {
3306 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3307 rsp->n_barrier_done);
3308 atomic_inc(&rsp->barrier_cpu_count);
3309 __call_rcu(&rdp->barrier_head,
3310 rcu_barrier_callback, rsp, cpu, 0);
3311 }
3312 } else if (ACCESS_ONCE(rdp->qlen)) {
3313 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3314 rsp->n_barrier_done);
3315 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3316 } else {
3317 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3318 rsp->n_barrier_done);
3319 }
3320 }
3321 put_online_cpus();
3322
3323 /*
3324 * Now that we have an rcu_barrier_callback() callback on each
3325 * CPU, and thus each counted, remove the initial count.
3326 */
3327 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3328 complete(&rsp->barrier_completion);
3329
3330 /* Increment ->n_barrier_done to prevent duplicate work. */
3331 smp_mb(); /* Keep increment after above mechanism. */
3332 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3333 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3334 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3335 smp_mb(); /* Keep increment before caller's subsequent code. */
3336
3337 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3338 wait_for_completion(&rsp->barrier_completion);
3339
3340 /* Other rcu_barrier() invocations can now safely proceed. */
3341 mutex_unlock(&rsp->barrier_mutex);
3342 }
3343
3344 /**
3345 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3346 */
rcu_barrier_bh(void)3347 void rcu_barrier_bh(void)
3348 {
3349 _rcu_barrier(&rcu_bh_state);
3350 }
3351 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3352
3353 /**
3354 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3355 */
rcu_barrier_sched(void)3356 void rcu_barrier_sched(void)
3357 {
3358 _rcu_barrier(&rcu_sched_state);
3359 }
3360 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3361
3362 /*
3363 * Do boot-time initialization of a CPU's per-CPU RCU data.
3364 */
3365 static void __init
rcu_boot_init_percpu_data(int cpu,struct rcu_state * rsp)3366 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3367 {
3368 unsigned long flags;
3369 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3370 struct rcu_node *rnp = rcu_get_root(rsp);
3371
3372 /* Set up local state, ensuring consistent view of global state. */
3373 raw_spin_lock_irqsave(&rnp->lock, flags);
3374 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3375 init_callback_list(rdp);
3376 rdp->qlen_lazy = 0;
3377 ACCESS_ONCE(rdp->qlen) = 0;
3378 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3379 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3380 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3381 rdp->cpu = cpu;
3382 rdp->rsp = rsp;
3383 rcu_boot_init_nocb_percpu_data(rdp);
3384 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3385 }
3386
3387 /*
3388 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3389 * offline event can be happening at a given time. Note also that we
3390 * can accept some slop in the rsp->completed access due to the fact
3391 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3392 */
3393 static void
rcu_init_percpu_data(int cpu,struct rcu_state * rsp)3394 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3395 {
3396 unsigned long flags;
3397 unsigned long mask;
3398 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3399 struct rcu_node *rnp = rcu_get_root(rsp);
3400
3401 /* Exclude new grace periods. */
3402 mutex_lock(&rsp->onoff_mutex);
3403
3404 /* Set up local state, ensuring consistent view of global state. */
3405 raw_spin_lock_irqsave(&rnp->lock, flags);
3406 rdp->beenonline = 1; /* We have now been online. */
3407 rdp->qlen_last_fqs_check = 0;
3408 rdp->n_force_qs_snap = rsp->n_force_qs;
3409 rdp->blimit = blimit;
3410 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3411 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3412 rcu_sysidle_init_percpu_data(rdp->dynticks);
3413 atomic_set(&rdp->dynticks->dynticks,
3414 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3415 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3416
3417 /* Add CPU to rcu_node bitmasks. */
3418 rnp = rdp->mynode;
3419 mask = rdp->grpmask;
3420 do {
3421 /* Exclude any attempts to start a new GP on small systems. */
3422 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3423 rnp->qsmaskinit |= mask;
3424 mask = rnp->grpmask;
3425 if (rnp == rdp->mynode) {
3426 /*
3427 * If there is a grace period in progress, we will
3428 * set up to wait for it next time we run the
3429 * RCU core code.
3430 */
3431 rdp->gpnum = rnp->completed;
3432 rdp->completed = rnp->completed;
3433 rdp->passed_quiesce = 0;
3434 rdp->qs_pending = 0;
3435 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3436 }
3437 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3438 rnp = rnp->parent;
3439 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
3440 local_irq_restore(flags);
3441
3442 mutex_unlock(&rsp->onoff_mutex);
3443 }
3444
rcu_prepare_cpu(int cpu)3445 static void rcu_prepare_cpu(int cpu)
3446 {
3447 struct rcu_state *rsp;
3448
3449 for_each_rcu_flavor(rsp)
3450 rcu_init_percpu_data(cpu, rsp);
3451 }
3452
3453 /*
3454 * Handle CPU online/offline notification events.
3455 */
rcu_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)3456 static int rcu_cpu_notify(struct notifier_block *self,
3457 unsigned long action, void *hcpu)
3458 {
3459 long cpu = (long)hcpu;
3460 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3461 struct rcu_node *rnp = rdp->mynode;
3462 struct rcu_state *rsp;
3463
3464 trace_rcu_utilization(TPS("Start CPU hotplug"));
3465 switch (action) {
3466 case CPU_UP_PREPARE:
3467 case CPU_UP_PREPARE_FROZEN:
3468 rcu_prepare_cpu(cpu);
3469 rcu_prepare_kthreads(cpu);
3470 rcu_spawn_all_nocb_kthreads(cpu);
3471 break;
3472 case CPU_ONLINE:
3473 case CPU_DOWN_FAILED:
3474 rcu_boost_kthread_setaffinity(rnp, -1);
3475 break;
3476 case CPU_DOWN_PREPARE:
3477 rcu_boost_kthread_setaffinity(rnp, cpu);
3478 break;
3479 case CPU_DYING:
3480 case CPU_DYING_FROZEN:
3481 for_each_rcu_flavor(rsp)
3482 rcu_cleanup_dying_cpu(rsp);
3483 break;
3484 case CPU_DEAD:
3485 case CPU_DEAD_FROZEN:
3486 case CPU_UP_CANCELED:
3487 case CPU_UP_CANCELED_FROZEN:
3488 for_each_rcu_flavor(rsp)
3489 rcu_cleanup_dead_cpu(cpu, rsp);
3490 break;
3491 default:
3492 break;
3493 }
3494 trace_rcu_utilization(TPS("End CPU hotplug"));
3495 return NOTIFY_OK;
3496 }
3497
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)3498 static int rcu_pm_notify(struct notifier_block *self,
3499 unsigned long action, void *hcpu)
3500 {
3501 switch (action) {
3502 case PM_HIBERNATION_PREPARE:
3503 case PM_SUSPEND_PREPARE:
3504 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3505 rcu_expedited = 1;
3506 break;
3507 case PM_POST_HIBERNATION:
3508 case PM_POST_SUSPEND:
3509 rcu_expedited = 0;
3510 break;
3511 default:
3512 break;
3513 }
3514 return NOTIFY_OK;
3515 }
3516
3517 /*
3518 * Spawn the kthreads that handle each RCU flavor's grace periods.
3519 */
rcu_spawn_gp_kthread(void)3520 static int __init rcu_spawn_gp_kthread(void)
3521 {
3522 unsigned long flags;
3523 struct rcu_node *rnp;
3524 struct rcu_state *rsp;
3525 struct task_struct *t;
3526
3527 rcu_scheduler_fully_active = 1;
3528 for_each_rcu_flavor(rsp) {
3529 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3530 BUG_ON(IS_ERR(t));
3531 rnp = rcu_get_root(rsp);
3532 raw_spin_lock_irqsave(&rnp->lock, flags);
3533 rsp->gp_kthread = t;
3534 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3535 }
3536 rcu_spawn_nocb_kthreads();
3537 rcu_spawn_boost_kthreads();
3538 return 0;
3539 }
3540 early_initcall(rcu_spawn_gp_kthread);
3541
3542 /*
3543 * This function is invoked towards the end of the scheduler's initialization
3544 * process. Before this is called, the idle task might contain
3545 * RCU read-side critical sections (during which time, this idle
3546 * task is booting the system). After this function is called, the
3547 * idle tasks are prohibited from containing RCU read-side critical
3548 * sections. This function also enables RCU lockdep checking.
3549 */
rcu_scheduler_starting(void)3550 void rcu_scheduler_starting(void)
3551 {
3552 WARN_ON(num_online_cpus() != 1);
3553 WARN_ON(nr_context_switches() > 0);
3554 rcu_scheduler_active = 1;
3555 }
3556
3557 /*
3558 * Compute the per-level fanout, either using the exact fanout specified
3559 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3560 */
3561 #ifdef CONFIG_RCU_FANOUT_EXACT
rcu_init_levelspread(struct rcu_state * rsp)3562 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3563 {
3564 int i;
3565
3566 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3567 for (i = rcu_num_lvls - 2; i >= 0; i--)
3568 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3569 }
3570 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
rcu_init_levelspread(struct rcu_state * rsp)3571 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3572 {
3573 int ccur;
3574 int cprv;
3575 int i;
3576
3577 cprv = nr_cpu_ids;
3578 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3579 ccur = rsp->levelcnt[i];
3580 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3581 cprv = ccur;
3582 }
3583 }
3584 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3585
3586 /*
3587 * Helper function for rcu_init() that initializes one rcu_state structure.
3588 */
rcu_init_one(struct rcu_state * rsp,struct rcu_data __percpu * rda)3589 static void __init rcu_init_one(struct rcu_state *rsp,
3590 struct rcu_data __percpu *rda)
3591 {
3592 static const char * const buf[] = {
3593 "rcu_node_0",
3594 "rcu_node_1",
3595 "rcu_node_2",
3596 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3597 static const char * const fqs[] = {
3598 "rcu_node_fqs_0",
3599 "rcu_node_fqs_1",
3600 "rcu_node_fqs_2",
3601 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3602 static u8 fl_mask = 0x1;
3603 int cpustride = 1;
3604 int i;
3605 int j;
3606 struct rcu_node *rnp;
3607
3608 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3609
3610 /* Silence gcc 4.8 warning about array index out of range. */
3611 if (rcu_num_lvls > RCU_NUM_LVLS)
3612 panic("rcu_init_one: rcu_num_lvls overflow");
3613
3614 /* Initialize the level-tracking arrays. */
3615
3616 for (i = 0; i < rcu_num_lvls; i++)
3617 rsp->levelcnt[i] = num_rcu_lvl[i];
3618 for (i = 1; i < rcu_num_lvls; i++)
3619 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3620 rcu_init_levelspread(rsp);
3621 rsp->flavor_mask = fl_mask;
3622 fl_mask <<= 1;
3623
3624 /* Initialize the elements themselves, starting from the leaves. */
3625
3626 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3627 cpustride *= rsp->levelspread[i];
3628 rnp = rsp->level[i];
3629 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3630 raw_spin_lock_init(&rnp->lock);
3631 lockdep_set_class_and_name(&rnp->lock,
3632 &rcu_node_class[i], buf[i]);
3633 raw_spin_lock_init(&rnp->fqslock);
3634 lockdep_set_class_and_name(&rnp->fqslock,
3635 &rcu_fqs_class[i], fqs[i]);
3636 rnp->gpnum = rsp->gpnum;
3637 rnp->completed = rsp->completed;
3638 rnp->qsmask = 0;
3639 rnp->qsmaskinit = 0;
3640 rnp->grplo = j * cpustride;
3641 rnp->grphi = (j + 1) * cpustride - 1;
3642 if (rnp->grphi >= nr_cpu_ids)
3643 rnp->grphi = nr_cpu_ids - 1;
3644 if (i == 0) {
3645 rnp->grpnum = 0;
3646 rnp->grpmask = 0;
3647 rnp->parent = NULL;
3648 } else {
3649 rnp->grpnum = j % rsp->levelspread[i - 1];
3650 rnp->grpmask = 1UL << rnp->grpnum;
3651 rnp->parent = rsp->level[i - 1] +
3652 j / rsp->levelspread[i - 1];
3653 }
3654 rnp->level = i;
3655 INIT_LIST_HEAD(&rnp->blkd_tasks);
3656 rcu_init_one_nocb(rnp);
3657 }
3658 }
3659
3660 rsp->rda = rda;
3661 init_waitqueue_head(&rsp->gp_wq);
3662 rnp = rsp->level[rcu_num_lvls - 1];
3663 for_each_possible_cpu(i) {
3664 while (i > rnp->grphi)
3665 rnp++;
3666 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3667 rcu_boot_init_percpu_data(i, rsp);
3668 }
3669 list_add(&rsp->flavors, &rcu_struct_flavors);
3670 }
3671
3672 /*
3673 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3674 * replace the definitions in tree.h because those are needed to size
3675 * the ->node array in the rcu_state structure.
3676 */
rcu_init_geometry(void)3677 static void __init rcu_init_geometry(void)
3678 {
3679 ulong d;
3680 int i;
3681 int j;
3682 int n = nr_cpu_ids;
3683 int rcu_capacity[MAX_RCU_LVLS + 1];
3684
3685 /*
3686 * Initialize any unspecified boot parameters.
3687 * The default values of jiffies_till_first_fqs and
3688 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3689 * value, which is a function of HZ, then adding one for each
3690 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3691 */
3692 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3693 if (jiffies_till_first_fqs == ULONG_MAX)
3694 jiffies_till_first_fqs = d;
3695 if (jiffies_till_next_fqs == ULONG_MAX)
3696 jiffies_till_next_fqs = d;
3697
3698 /* If the compile-time values are accurate, just leave. */
3699 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3700 nr_cpu_ids == NR_CPUS)
3701 return;
3702 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3703 rcu_fanout_leaf, nr_cpu_ids);
3704
3705 /*
3706 * Compute number of nodes that can be handled an rcu_node tree
3707 * with the given number of levels. Setting rcu_capacity[0] makes
3708 * some of the arithmetic easier.
3709 */
3710 rcu_capacity[0] = 1;
3711 rcu_capacity[1] = rcu_fanout_leaf;
3712 for (i = 2; i <= MAX_RCU_LVLS; i++)
3713 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3714
3715 /*
3716 * The boot-time rcu_fanout_leaf parameter is only permitted
3717 * to increase the leaf-level fanout, not decrease it. Of course,
3718 * the leaf-level fanout cannot exceed the number of bits in
3719 * the rcu_node masks. Finally, the tree must be able to accommodate
3720 * the configured number of CPUs. Complain and fall back to the
3721 * compile-time values if these limits are exceeded.
3722 */
3723 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3724 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3725 n > rcu_capacity[MAX_RCU_LVLS]) {
3726 WARN_ON(1);
3727 return;
3728 }
3729
3730 /* Calculate the number of rcu_nodes at each level of the tree. */
3731 for (i = 1; i <= MAX_RCU_LVLS; i++)
3732 if (n <= rcu_capacity[i]) {
3733 for (j = 0; j <= i; j++)
3734 num_rcu_lvl[j] =
3735 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3736 rcu_num_lvls = i;
3737 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3738 num_rcu_lvl[j] = 0;
3739 break;
3740 }
3741
3742 /* Calculate the total number of rcu_node structures. */
3743 rcu_num_nodes = 0;
3744 for (i = 0; i <= MAX_RCU_LVLS; i++)
3745 rcu_num_nodes += num_rcu_lvl[i];
3746 rcu_num_nodes -= n;
3747 }
3748
rcu_init(void)3749 void __init rcu_init(void)
3750 {
3751 int cpu;
3752
3753 rcu_bootup_announce();
3754 rcu_init_geometry();
3755 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3756 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3757 __rcu_init_preempt();
3758 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3759
3760 /*
3761 * We don't need protection against CPU-hotplug here because
3762 * this is called early in boot, before either interrupts
3763 * or the scheduler are operational.
3764 */
3765 cpu_notifier(rcu_cpu_notify, 0);
3766 pm_notifier(rcu_pm_notify, 0);
3767 for_each_online_cpu(cpu)
3768 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3769 }
3770
3771 #include "tree_plugin.h"
3772