• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/suspend.h>
59 
60 #include "tree.h"
61 #include "rcu.h"
62 
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68 
69 /* Data structures. */
70 
71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73 
74 /*
75  * In order to export the rcu_state name to the tracing tools, it
76  * needs to be added in the __tracepoint_string section.
77  * This requires defining a separate variable tp_<sname>_varname
78  * that points to the string being used, and this will allow
79  * the tracing userspace tools to be able to decipher the string
80  * address to the matching string.
81  */
82 #ifdef CONFIG_TRACING
83 # define DEFINE_RCU_TPS(sname) \
84 static char sname##_varname[] = #sname; \
85 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86 # define RCU_STATE_NAME(sname) sname##_varname
87 #else
88 # define DEFINE_RCU_TPS(sname)
89 # define RCU_STATE_NAME(sname) __stringify(sname)
90 #endif
91 
92 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93 DEFINE_RCU_TPS(sname) \
94 struct rcu_state sname##_state = { \
95 	.level = { &sname##_state.node[0] }, \
96 	.call = cr, \
97 	.fqs_state = RCU_GP_IDLE, \
98 	.gpnum = 0UL - 300UL, \
99 	.completed = 0UL - 300UL, \
100 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
102 	.orphan_donetail = &sname##_state.orphan_donelist, \
103 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104 	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
105 	.name = RCU_STATE_NAME(sname), \
106 	.abbr = sabbr, \
107 }; \
108 DEFINE_PER_CPU(struct rcu_data, sname##_data)
109 
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112 
113 static struct rcu_state *rcu_state_p;
114 LIST_HEAD(rcu_struct_flavors);
115 
116 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
117 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
118 module_param(rcu_fanout_leaf, int, 0444);
119 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
120 static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
121 	NUM_RCU_LVL_0,
122 	NUM_RCU_LVL_1,
123 	NUM_RCU_LVL_2,
124 	NUM_RCU_LVL_3,
125 	NUM_RCU_LVL_4,
126 };
127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128 
129 /*
130  * The rcu_scheduler_active variable transitions from zero to one just
131  * before the first task is spawned.  So when this variable is zero, RCU
132  * can assume that there is but one task, allowing RCU to (for example)
133  * optimize synchronize_sched() to a simple barrier().  When this variable
134  * is one, RCU must actually do all the hard work required to detect real
135  * grace periods.  This variable is also used to suppress boot-time false
136  * positives from lockdep-RCU error checking.
137  */
138 int rcu_scheduler_active __read_mostly;
139 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140 
141 /*
142  * The rcu_scheduler_fully_active variable transitions from zero to one
143  * during the early_initcall() processing, which is after the scheduler
144  * is capable of creating new tasks.  So RCU processing (for example,
145  * creating tasks for RCU priority boosting) must be delayed until after
146  * rcu_scheduler_fully_active transitions from zero to one.  We also
147  * currently delay invocation of any RCU callbacks until after this point.
148  *
149  * It might later prove better for people registering RCU callbacks during
150  * early boot to take responsibility for these callbacks, but one step at
151  * a time.
152  */
153 static int rcu_scheduler_fully_active __read_mostly;
154 
155 #ifdef CONFIG_RCU_BOOST
156 
157 /*
158  * Control variables for per-CPU and per-rcu_node kthreads.  These
159  * handle all flavors of RCU.
160  */
161 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
162 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
163 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
164 DEFINE_PER_CPU(char, rcu_cpu_has_work);
165 
166 #endif /* #ifdef CONFIG_RCU_BOOST */
167 
168 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
169 static void invoke_rcu_core(void);
170 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
171 
172 /*
173  * Track the rcutorture test sequence number and the update version
174  * number within a given test.  The rcutorture_testseq is incremented
175  * on every rcutorture module load and unload, so has an odd value
176  * when a test is running.  The rcutorture_vernum is set to zero
177  * when rcutorture starts and is incremented on each rcutorture update.
178  * These variables enable correlating rcutorture output with the
179  * RCU tracing information.
180  */
181 unsigned long rcutorture_testseq;
182 unsigned long rcutorture_vernum;
183 
184 /*
185  * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
186  * permit this function to be invoked without holding the root rcu_node
187  * structure's ->lock, but of course results can be subject to change.
188  */
rcu_gp_in_progress(struct rcu_state * rsp)189 static int rcu_gp_in_progress(struct rcu_state *rsp)
190 {
191 	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
192 }
193 
194 /*
195  * Note a quiescent state.  Because we do not need to know
196  * how many quiescent states passed, just if there was at least
197  * one since the start of the grace period, this just sets a flag.
198  * The caller must have disabled preemption.
199  */
rcu_sched_qs(void)200 void rcu_sched_qs(void)
201 {
202 	if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
203 		trace_rcu_grace_period(TPS("rcu_sched"),
204 				       __this_cpu_read(rcu_sched_data.gpnum),
205 				       TPS("cpuqs"));
206 		__this_cpu_write(rcu_sched_data.passed_quiesce, 1);
207 	}
208 }
209 
rcu_bh_qs(void)210 void rcu_bh_qs(void)
211 {
212 	if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
213 		trace_rcu_grace_period(TPS("rcu_bh"),
214 				       __this_cpu_read(rcu_bh_data.gpnum),
215 				       TPS("cpuqs"));
216 		__this_cpu_write(rcu_bh_data.passed_quiesce, 1);
217 	}
218 }
219 
220 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
221 
222 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
223 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
224 	.dynticks = ATOMIC_INIT(1),
225 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
226 	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
227 	.dynticks_idle = ATOMIC_INIT(1),
228 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
229 };
230 
231 /*
232  * Let the RCU core know that this CPU has gone through the scheduler,
233  * which is a quiescent state.  This is called when the need for a
234  * quiescent state is urgent, so we burn an atomic operation and full
235  * memory barriers to let the RCU core know about it, regardless of what
236  * this CPU might (or might not) do in the near future.
237  *
238  * We inform the RCU core by emulating a zero-duration dyntick-idle
239  * period, which we in turn do by incrementing the ->dynticks counter
240  * by two.
241  */
rcu_momentary_dyntick_idle(void)242 static void rcu_momentary_dyntick_idle(void)
243 {
244 	unsigned long flags;
245 	struct rcu_data *rdp;
246 	struct rcu_dynticks *rdtp;
247 	int resched_mask;
248 	struct rcu_state *rsp;
249 
250 	local_irq_save(flags);
251 
252 	/*
253 	 * Yes, we can lose flag-setting operations.  This is OK, because
254 	 * the flag will be set again after some delay.
255 	 */
256 	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
257 	raw_cpu_write(rcu_sched_qs_mask, 0);
258 
259 	/* Find the flavor that needs a quiescent state. */
260 	for_each_rcu_flavor(rsp) {
261 		rdp = raw_cpu_ptr(rsp->rda);
262 		if (!(resched_mask & rsp->flavor_mask))
263 			continue;
264 		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
265 		if (ACCESS_ONCE(rdp->mynode->completed) !=
266 		    ACCESS_ONCE(rdp->cond_resched_completed))
267 			continue;
268 
269 		/*
270 		 * Pretend to be momentarily idle for the quiescent state.
271 		 * This allows the grace-period kthread to record the
272 		 * quiescent state, with no need for this CPU to do anything
273 		 * further.
274 		 */
275 		rdtp = this_cpu_ptr(&rcu_dynticks);
276 		smp_mb__before_atomic(); /* Earlier stuff before QS. */
277 		atomic_add(2, &rdtp->dynticks);  /* QS. */
278 		smp_mb__after_atomic(); /* Later stuff after QS. */
279 		break;
280 	}
281 	local_irq_restore(flags);
282 }
283 
284 /*
285  * Note a context switch.  This is a quiescent state for RCU-sched,
286  * and requires special handling for preemptible RCU.
287  * The caller must have disabled preemption.
288  */
rcu_note_context_switch(int cpu)289 void rcu_note_context_switch(int cpu)
290 {
291 	trace_rcu_utilization(TPS("Start context switch"));
292 	rcu_sched_qs();
293 	rcu_preempt_note_context_switch(cpu);
294 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
295 		rcu_momentary_dyntick_idle();
296 	trace_rcu_utilization(TPS("End context switch"));
297 }
298 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
299 
300 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
301 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
302 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
303 
304 module_param(blimit, long, 0444);
305 module_param(qhimark, long, 0444);
306 module_param(qlowmark, long, 0444);
307 
308 static ulong jiffies_till_first_fqs = ULONG_MAX;
309 static ulong jiffies_till_next_fqs = ULONG_MAX;
310 
311 module_param(jiffies_till_first_fqs, ulong, 0644);
312 module_param(jiffies_till_next_fqs, ulong, 0644);
313 
314 /*
315  * How long the grace period must be before we start recruiting
316  * quiescent-state help from rcu_note_context_switch().
317  */
318 static ulong jiffies_till_sched_qs = HZ / 20;
319 module_param(jiffies_till_sched_qs, ulong, 0644);
320 
321 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
322 				  struct rcu_data *rdp);
323 static void force_qs_rnp(struct rcu_state *rsp,
324 			 int (*f)(struct rcu_data *rsp, bool *isidle,
325 				  unsigned long *maxj),
326 			 bool *isidle, unsigned long *maxj);
327 static void force_quiescent_state(struct rcu_state *rsp);
328 static int rcu_pending(int cpu);
329 
330 /*
331  * Return the number of RCU-sched batches processed thus far for debug & stats.
332  */
rcu_batches_completed_sched(void)333 long rcu_batches_completed_sched(void)
334 {
335 	return rcu_sched_state.completed;
336 }
337 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
338 
339 /*
340  * Return the number of RCU BH batches processed thus far for debug & stats.
341  */
rcu_batches_completed_bh(void)342 long rcu_batches_completed_bh(void)
343 {
344 	return rcu_bh_state.completed;
345 }
346 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
347 
348 /*
349  * Force a quiescent state.
350  */
rcu_force_quiescent_state(void)351 void rcu_force_quiescent_state(void)
352 {
353 	force_quiescent_state(rcu_state_p);
354 }
355 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
356 
357 /*
358  * Force a quiescent state for RCU BH.
359  */
rcu_bh_force_quiescent_state(void)360 void rcu_bh_force_quiescent_state(void)
361 {
362 	force_quiescent_state(&rcu_bh_state);
363 }
364 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
365 
366 /*
367  * Show the state of the grace-period kthreads.
368  */
show_rcu_gp_kthreads(void)369 void show_rcu_gp_kthreads(void)
370 {
371 	struct rcu_state *rsp;
372 
373 	for_each_rcu_flavor(rsp) {
374 		pr_info("%s: wait state: %d ->state: %#lx\n",
375 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
376 		/* sched_show_task(rsp->gp_kthread); */
377 	}
378 }
379 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
380 
381 /*
382  * Record the number of times rcutorture tests have been initiated and
383  * terminated.  This information allows the debugfs tracing stats to be
384  * correlated to the rcutorture messages, even when the rcutorture module
385  * is being repeatedly loaded and unloaded.  In other words, we cannot
386  * store this state in rcutorture itself.
387  */
rcutorture_record_test_transition(void)388 void rcutorture_record_test_transition(void)
389 {
390 	rcutorture_testseq++;
391 	rcutorture_vernum = 0;
392 }
393 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
394 
395 /*
396  * Send along grace-period-related data for rcutorture diagnostics.
397  */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gpnum,unsigned long * completed)398 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
399 			    unsigned long *gpnum, unsigned long *completed)
400 {
401 	struct rcu_state *rsp = NULL;
402 
403 	switch (test_type) {
404 	case RCU_FLAVOR:
405 		rsp = rcu_state_p;
406 		break;
407 	case RCU_BH_FLAVOR:
408 		rsp = &rcu_bh_state;
409 		break;
410 	case RCU_SCHED_FLAVOR:
411 		rsp = &rcu_sched_state;
412 		break;
413 	default:
414 		break;
415 	}
416 	if (rsp != NULL) {
417 		*flags = ACCESS_ONCE(rsp->gp_flags);
418 		*gpnum = ACCESS_ONCE(rsp->gpnum);
419 		*completed = ACCESS_ONCE(rsp->completed);
420 		return;
421 	}
422 	*flags = 0;
423 	*gpnum = 0;
424 	*completed = 0;
425 }
426 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
427 
428 /*
429  * Record the number of writer passes through the current rcutorture test.
430  * This is also used to correlate debugfs tracing stats with the rcutorture
431  * messages.
432  */
rcutorture_record_progress(unsigned long vernum)433 void rcutorture_record_progress(unsigned long vernum)
434 {
435 	rcutorture_vernum++;
436 }
437 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
438 
439 /*
440  * Force a quiescent state for RCU-sched.
441  */
rcu_sched_force_quiescent_state(void)442 void rcu_sched_force_quiescent_state(void)
443 {
444 	force_quiescent_state(&rcu_sched_state);
445 }
446 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
447 
448 /*
449  * Does the CPU have callbacks ready to be invoked?
450  */
451 static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data * rdp)452 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
453 {
454 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
455 	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
456 }
457 
458 /*
459  * Return the root node of the specified rcu_state structure.
460  */
rcu_get_root(struct rcu_state * rsp)461 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
462 {
463 	return &rsp->node[0];
464 }
465 
466 /*
467  * Is there any need for future grace periods?
468  * Interrupts must be disabled.  If the caller does not hold the root
469  * rnp_node structure's ->lock, the results are advisory only.
470  */
rcu_future_needs_gp(struct rcu_state * rsp)471 static int rcu_future_needs_gp(struct rcu_state *rsp)
472 {
473 	struct rcu_node *rnp = rcu_get_root(rsp);
474 	int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
475 	int *fp = &rnp->need_future_gp[idx];
476 
477 	return ACCESS_ONCE(*fp);
478 }
479 
480 /*
481  * Does the current CPU require a not-yet-started grace period?
482  * The caller must have disabled interrupts to prevent races with
483  * normal callback registry.
484  */
485 static int
cpu_needs_another_gp(struct rcu_state * rsp,struct rcu_data * rdp)486 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
487 {
488 	int i;
489 
490 	if (rcu_gp_in_progress(rsp))
491 		return 0;  /* No, a grace period is already in progress. */
492 	if (rcu_future_needs_gp(rsp))
493 		return 1;  /* Yes, a no-CBs CPU needs one. */
494 	if (!rdp->nxttail[RCU_NEXT_TAIL])
495 		return 0;  /* No, this is a no-CBs (or offline) CPU. */
496 	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
497 		return 1;  /* Yes, this CPU has newly registered callbacks. */
498 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
499 		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
500 		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
501 				 rdp->nxtcompleted[i]))
502 			return 1;  /* Yes, CBs for future grace period. */
503 	return 0; /* No grace period needed. */
504 }
505 
506 /*
507  * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
508  *
509  * If the new value of the ->dynticks_nesting counter now is zero,
510  * we really have entered idle, and must do the appropriate accounting.
511  * The caller must have disabled interrupts.
512  */
rcu_eqs_enter_common(struct rcu_dynticks * rdtp,long long oldval,bool user)513 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
514 				bool user)
515 {
516 	struct rcu_state *rsp;
517 	struct rcu_data *rdp;
518 
519 	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
520 	if (!user && !is_idle_task(current)) {
521 		struct task_struct *idle __maybe_unused =
522 			idle_task(smp_processor_id());
523 
524 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
525 		ftrace_dump(DUMP_ORIG);
526 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
527 			  current->pid, current->comm,
528 			  idle->pid, idle->comm); /* must be idle task! */
529 	}
530 	for_each_rcu_flavor(rsp) {
531 		rdp = this_cpu_ptr(rsp->rda);
532 		do_nocb_deferred_wakeup(rdp);
533 	}
534 	rcu_prepare_for_idle(smp_processor_id());
535 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
536 	smp_mb__before_atomic();  /* See above. */
537 	atomic_inc(&rdtp->dynticks);
538 	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
539 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
540 	rcu_dynticks_task_enter();
541 
542 	/*
543 	 * It is illegal to enter an extended quiescent state while
544 	 * in an RCU read-side critical section.
545 	 */
546 	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
547 			   "Illegal idle entry in RCU read-side critical section.");
548 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
549 			   "Illegal idle entry in RCU-bh read-side critical section.");
550 	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
551 			   "Illegal idle entry in RCU-sched read-side critical section.");
552 }
553 
554 /*
555  * Enter an RCU extended quiescent state, which can be either the
556  * idle loop or adaptive-tickless usermode execution.
557  */
rcu_eqs_enter(bool user)558 static void rcu_eqs_enter(bool user)
559 {
560 	long long oldval;
561 	struct rcu_dynticks *rdtp;
562 
563 	rdtp = this_cpu_ptr(&rcu_dynticks);
564 	oldval = rdtp->dynticks_nesting;
565 	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
566 	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
567 		rdtp->dynticks_nesting = 0;
568 		rcu_eqs_enter_common(rdtp, oldval, user);
569 	} else {
570 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
571 	}
572 }
573 
574 /**
575  * rcu_idle_enter - inform RCU that current CPU is entering idle
576  *
577  * Enter idle mode, in other words, -leave- the mode in which RCU
578  * read-side critical sections can occur.  (Though RCU read-side
579  * critical sections can occur in irq handlers in idle, a possibility
580  * handled by irq_enter() and irq_exit().)
581  *
582  * We crowbar the ->dynticks_nesting field to zero to allow for
583  * the possibility of usermode upcalls having messed up our count
584  * of interrupt nesting level during the prior busy period.
585  */
rcu_idle_enter(void)586 void rcu_idle_enter(void)
587 {
588 	unsigned long flags;
589 
590 	local_irq_save(flags);
591 	rcu_eqs_enter(false);
592 	rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
593 	local_irq_restore(flags);
594 }
595 EXPORT_SYMBOL_GPL(rcu_idle_enter);
596 
597 #ifdef CONFIG_RCU_USER_QS
598 /**
599  * rcu_user_enter - inform RCU that we are resuming userspace.
600  *
601  * Enter RCU idle mode right before resuming userspace.  No use of RCU
602  * is permitted between this call and rcu_user_exit(). This way the
603  * CPU doesn't need to maintain the tick for RCU maintenance purposes
604  * when the CPU runs in userspace.
605  */
rcu_user_enter(void)606 void rcu_user_enter(void)
607 {
608 	rcu_eqs_enter(1);
609 }
610 #endif /* CONFIG_RCU_USER_QS */
611 
612 /**
613  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
614  *
615  * Exit from an interrupt handler, which might possibly result in entering
616  * idle mode, in other words, leaving the mode in which read-side critical
617  * sections can occur.
618  *
619  * This code assumes that the idle loop never does anything that might
620  * result in unbalanced calls to irq_enter() and irq_exit().  If your
621  * architecture violates this assumption, RCU will give you what you
622  * deserve, good and hard.  But very infrequently and irreproducibly.
623  *
624  * Use things like work queues to work around this limitation.
625  *
626  * You have been warned.
627  */
rcu_irq_exit(void)628 void rcu_irq_exit(void)
629 {
630 	unsigned long flags;
631 	long long oldval;
632 	struct rcu_dynticks *rdtp;
633 
634 	local_irq_save(flags);
635 	rdtp = this_cpu_ptr(&rcu_dynticks);
636 	oldval = rdtp->dynticks_nesting;
637 	rdtp->dynticks_nesting--;
638 	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
639 	if (rdtp->dynticks_nesting)
640 		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
641 	else
642 		rcu_eqs_enter_common(rdtp, oldval, true);
643 	rcu_sysidle_enter(rdtp, 1);
644 	local_irq_restore(flags);
645 }
646 
647 /*
648  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
649  *
650  * If the new value of the ->dynticks_nesting counter was previously zero,
651  * we really have exited idle, and must do the appropriate accounting.
652  * The caller must have disabled interrupts.
653  */
rcu_eqs_exit_common(struct rcu_dynticks * rdtp,long long oldval,int user)654 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
655 			       int user)
656 {
657 	rcu_dynticks_task_exit();
658 	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
659 	atomic_inc(&rdtp->dynticks);
660 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
661 	smp_mb__after_atomic();  /* See above. */
662 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
663 	rcu_cleanup_after_idle(smp_processor_id());
664 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
665 	if (!user && !is_idle_task(current)) {
666 		struct task_struct *idle __maybe_unused =
667 			idle_task(smp_processor_id());
668 
669 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
670 				  oldval, rdtp->dynticks_nesting);
671 		ftrace_dump(DUMP_ORIG);
672 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
673 			  current->pid, current->comm,
674 			  idle->pid, idle->comm); /* must be idle task! */
675 	}
676 }
677 
678 /*
679  * Exit an RCU extended quiescent state, which can be either the
680  * idle loop or adaptive-tickless usermode execution.
681  */
rcu_eqs_exit(bool user)682 static void rcu_eqs_exit(bool user)
683 {
684 	struct rcu_dynticks *rdtp;
685 	long long oldval;
686 
687 	rdtp = this_cpu_ptr(&rcu_dynticks);
688 	oldval = rdtp->dynticks_nesting;
689 	WARN_ON_ONCE(oldval < 0);
690 	if (oldval & DYNTICK_TASK_NEST_MASK) {
691 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
692 	} else {
693 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
694 		rcu_eqs_exit_common(rdtp, oldval, user);
695 	}
696 }
697 
698 /**
699  * rcu_idle_exit - inform RCU that current CPU is leaving idle
700  *
701  * Exit idle mode, in other words, -enter- the mode in which RCU
702  * read-side critical sections can occur.
703  *
704  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
705  * allow for the possibility of usermode upcalls messing up our count
706  * of interrupt nesting level during the busy period that is just
707  * now starting.
708  */
rcu_idle_exit(void)709 void rcu_idle_exit(void)
710 {
711 	unsigned long flags;
712 
713 	local_irq_save(flags);
714 	rcu_eqs_exit(false);
715 	rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
716 	local_irq_restore(flags);
717 }
718 EXPORT_SYMBOL_GPL(rcu_idle_exit);
719 
720 #ifdef CONFIG_RCU_USER_QS
721 /**
722  * rcu_user_exit - inform RCU that we are exiting userspace.
723  *
724  * Exit RCU idle mode while entering the kernel because it can
725  * run a RCU read side critical section anytime.
726  */
rcu_user_exit(void)727 void rcu_user_exit(void)
728 {
729 	rcu_eqs_exit(1);
730 }
731 #endif /* CONFIG_RCU_USER_QS */
732 
733 /**
734  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
735  *
736  * Enter an interrupt handler, which might possibly result in exiting
737  * idle mode, in other words, entering the mode in which read-side critical
738  * sections can occur.
739  *
740  * Note that the Linux kernel is fully capable of entering an interrupt
741  * handler that it never exits, for example when doing upcalls to
742  * user mode!  This code assumes that the idle loop never does upcalls to
743  * user mode.  If your architecture does do upcalls from the idle loop (or
744  * does anything else that results in unbalanced calls to the irq_enter()
745  * and irq_exit() functions), RCU will give you what you deserve, good
746  * and hard.  But very infrequently and irreproducibly.
747  *
748  * Use things like work queues to work around this limitation.
749  *
750  * You have been warned.
751  */
rcu_irq_enter(void)752 void rcu_irq_enter(void)
753 {
754 	unsigned long flags;
755 	struct rcu_dynticks *rdtp;
756 	long long oldval;
757 
758 	local_irq_save(flags);
759 	rdtp = this_cpu_ptr(&rcu_dynticks);
760 	oldval = rdtp->dynticks_nesting;
761 	rdtp->dynticks_nesting++;
762 	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
763 	if (oldval)
764 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
765 	else
766 		rcu_eqs_exit_common(rdtp, oldval, true);
767 	rcu_sysidle_exit(rdtp, 1);
768 	local_irq_restore(flags);
769 }
770 
771 /**
772  * rcu_nmi_enter - inform RCU of entry to NMI context
773  *
774  * If the CPU was idle with dynamic ticks active, and there is no
775  * irq handler running, this updates rdtp->dynticks_nmi to let the
776  * RCU grace-period handling know that the CPU is active.
777  */
rcu_nmi_enter(void)778 void rcu_nmi_enter(void)
779 {
780 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
781 
782 	if (rdtp->dynticks_nmi_nesting == 0 &&
783 	    (atomic_read(&rdtp->dynticks) & 0x1))
784 		return;
785 	rdtp->dynticks_nmi_nesting++;
786 	smp_mb__before_atomic();  /* Force delay from prior write. */
787 	atomic_inc(&rdtp->dynticks);
788 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
789 	smp_mb__after_atomic();  /* See above. */
790 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
791 }
792 
793 /**
794  * rcu_nmi_exit - inform RCU of exit from NMI context
795  *
796  * If the CPU was idle with dynamic ticks active, and there is no
797  * irq handler running, this updates rdtp->dynticks_nmi to let the
798  * RCU grace-period handling know that the CPU is no longer active.
799  */
rcu_nmi_exit(void)800 void rcu_nmi_exit(void)
801 {
802 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
803 
804 	if (rdtp->dynticks_nmi_nesting == 0 ||
805 	    --rdtp->dynticks_nmi_nesting != 0)
806 		return;
807 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
808 	smp_mb__before_atomic();  /* See above. */
809 	atomic_inc(&rdtp->dynticks);
810 	smp_mb__after_atomic();  /* Force delay to next write. */
811 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
812 }
813 
814 /**
815  * __rcu_is_watching - are RCU read-side critical sections safe?
816  *
817  * Return true if RCU is watching the running CPU, which means that
818  * this CPU can safely enter RCU read-side critical sections.  Unlike
819  * rcu_is_watching(), the caller of __rcu_is_watching() must have at
820  * least disabled preemption.
821  */
__rcu_is_watching(void)822 bool notrace __rcu_is_watching(void)
823 {
824 	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
825 }
826 
827 /**
828  * rcu_is_watching - see if RCU thinks that the current CPU is idle
829  *
830  * If the current CPU is in its idle loop and is neither in an interrupt
831  * or NMI handler, return true.
832  */
rcu_is_watching(void)833 bool notrace rcu_is_watching(void)
834 {
835 	bool ret;
836 
837 	preempt_disable();
838 	ret = __rcu_is_watching();
839 	preempt_enable();
840 	return ret;
841 }
842 EXPORT_SYMBOL_GPL(rcu_is_watching);
843 
844 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
845 
846 /*
847  * Is the current CPU online?  Disable preemption to avoid false positives
848  * that could otherwise happen due to the current CPU number being sampled,
849  * this task being preempted, its old CPU being taken offline, resuming
850  * on some other CPU, then determining that its old CPU is now offline.
851  * It is OK to use RCU on an offline processor during initial boot, hence
852  * the check for rcu_scheduler_fully_active.  Note also that it is OK
853  * for a CPU coming online to use RCU for one jiffy prior to marking itself
854  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
855  * offline to continue to use RCU for one jiffy after marking itself
856  * offline in the cpu_online_mask.  This leniency is necessary given the
857  * non-atomic nature of the online and offline processing, for example,
858  * the fact that a CPU enters the scheduler after completing the CPU_DYING
859  * notifiers.
860  *
861  * This is also why RCU internally marks CPUs online during the
862  * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
863  *
864  * Disable checking if in an NMI handler because we cannot safely report
865  * errors from NMI handlers anyway.
866  */
rcu_lockdep_current_cpu_online(void)867 bool rcu_lockdep_current_cpu_online(void)
868 {
869 	struct rcu_data *rdp;
870 	struct rcu_node *rnp;
871 	bool ret;
872 
873 	if (in_nmi())
874 		return true;
875 	preempt_disable();
876 	rdp = this_cpu_ptr(&rcu_sched_data);
877 	rnp = rdp->mynode;
878 	ret = (rdp->grpmask & rnp->qsmaskinit) ||
879 	      !rcu_scheduler_fully_active;
880 	preempt_enable();
881 	return ret;
882 }
883 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
884 
885 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
886 
887 /**
888  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
889  *
890  * If the current CPU is idle or running at a first-level (not nested)
891  * interrupt from idle, return true.  The caller must have at least
892  * disabled preemption.
893  */
rcu_is_cpu_rrupt_from_idle(void)894 static int rcu_is_cpu_rrupt_from_idle(void)
895 {
896 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
897 }
898 
899 /*
900  * Snapshot the specified CPU's dynticks counter so that we can later
901  * credit them with an implicit quiescent state.  Return 1 if this CPU
902  * is in dynticks idle mode, which is an extended quiescent state.
903  */
dyntick_save_progress_counter(struct rcu_data * rdp,bool * isidle,unsigned long * maxj)904 static int dyntick_save_progress_counter(struct rcu_data *rdp,
905 					 bool *isidle, unsigned long *maxj)
906 {
907 	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
908 	rcu_sysidle_check_cpu(rdp, isidle, maxj);
909 	if ((rdp->dynticks_snap & 0x1) == 0) {
910 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
911 		return 1;
912 	} else {
913 		return 0;
914 	}
915 }
916 
917 /*
918  * This function really isn't for public consumption, but RCU is special in
919  * that context switches can allow the state machine to make progress.
920  */
921 extern void resched_cpu(int cpu);
922 
923 /*
924  * Return true if the specified CPU has passed through a quiescent
925  * state by virtue of being in or having passed through an dynticks
926  * idle state since the last call to dyntick_save_progress_counter()
927  * for this same CPU, or by virtue of having been offline.
928  */
rcu_implicit_dynticks_qs(struct rcu_data * rdp,bool * isidle,unsigned long * maxj)929 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
930 				    bool *isidle, unsigned long *maxj)
931 {
932 	unsigned int curr;
933 	int *rcrmp;
934 	unsigned int snap;
935 
936 	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
937 	snap = (unsigned int)rdp->dynticks_snap;
938 
939 	/*
940 	 * If the CPU passed through or entered a dynticks idle phase with
941 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
942 	 * already acknowledged the request to pass through a quiescent
943 	 * state.  Either way, that CPU cannot possibly be in an RCU
944 	 * read-side critical section that started before the beginning
945 	 * of the current RCU grace period.
946 	 */
947 	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
948 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
949 		rdp->dynticks_fqs++;
950 		return 1;
951 	}
952 
953 	/*
954 	 * Check for the CPU being offline, but only if the grace period
955 	 * is old enough.  We don't need to worry about the CPU changing
956 	 * state: If we see it offline even once, it has been through a
957 	 * quiescent state.
958 	 *
959 	 * The reason for insisting that the grace period be at least
960 	 * one jiffy old is that CPUs that are not quite online and that
961 	 * have just gone offline can still execute RCU read-side critical
962 	 * sections.
963 	 */
964 	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
965 		return 0;  /* Grace period is not old enough. */
966 	barrier();
967 	if (cpu_is_offline(rdp->cpu)) {
968 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
969 		rdp->offline_fqs++;
970 		return 1;
971 	}
972 
973 	/*
974 	 * A CPU running for an extended time within the kernel can
975 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
976 	 * even context-switching back and forth between a pair of
977 	 * in-kernel CPU-bound tasks cannot advance grace periods.
978 	 * So if the grace period is old enough, make the CPU pay attention.
979 	 * Note that the unsynchronized assignments to the per-CPU
980 	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
981 	 * bits can be lost, but they will be set again on the next
982 	 * force-quiescent-state pass.  So lost bit sets do not result
983 	 * in incorrect behavior, merely in a grace period lasting
984 	 * a few jiffies longer than it might otherwise.  Because
985 	 * there are at most four threads involved, and because the
986 	 * updates are only once every few jiffies, the probability of
987 	 * lossage (and thus of slight grace-period extension) is
988 	 * quite low.
989 	 *
990 	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
991 	 * is set too high, we override with half of the RCU CPU stall
992 	 * warning delay.
993 	 */
994 	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
995 	if (ULONG_CMP_GE(jiffies,
996 			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
997 	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
998 		if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
999 			ACCESS_ONCE(rdp->cond_resched_completed) =
1000 				ACCESS_ONCE(rdp->mynode->completed);
1001 			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1002 			ACCESS_ONCE(*rcrmp) =
1003 				ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
1004 			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1005 			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1006 		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1007 			/* Time to beat on that CPU again! */
1008 			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1009 			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1010 		}
1011 	}
1012 
1013 	return 0;
1014 }
1015 
record_gp_stall_check_time(struct rcu_state * rsp)1016 static void record_gp_stall_check_time(struct rcu_state *rsp)
1017 {
1018 	unsigned long j = jiffies;
1019 	unsigned long j1;
1020 
1021 	rsp->gp_start = j;
1022 	smp_wmb(); /* Record start time before stall time. */
1023 	j1 = rcu_jiffies_till_stall_check();
1024 	ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
1025 	rsp->jiffies_resched = j + j1 / 2;
1026 }
1027 
1028 /*
1029  * Dump stacks of all tasks running on stalled CPUs.
1030  */
rcu_dump_cpu_stacks(struct rcu_state * rsp)1031 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1032 {
1033 	int cpu;
1034 	unsigned long flags;
1035 	struct rcu_node *rnp;
1036 
1037 	rcu_for_each_leaf_node(rsp, rnp) {
1038 		raw_spin_lock_irqsave(&rnp->lock, flags);
1039 		if (rnp->qsmask != 0) {
1040 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1041 				if (rnp->qsmask & (1UL << cpu))
1042 					dump_cpu_task(rnp->grplo + cpu);
1043 		}
1044 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1045 	}
1046 }
1047 
print_other_cpu_stall(struct rcu_state * rsp)1048 static void print_other_cpu_stall(struct rcu_state *rsp)
1049 {
1050 	int cpu;
1051 	long delta;
1052 	unsigned long flags;
1053 	int ndetected = 0;
1054 	struct rcu_node *rnp = rcu_get_root(rsp);
1055 	long totqlen = 0;
1056 
1057 	/* Only let one CPU complain about others per time interval. */
1058 
1059 	raw_spin_lock_irqsave(&rnp->lock, flags);
1060 	delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
1061 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1062 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1063 		return;
1064 	}
1065 	ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1066 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1067 
1068 	/*
1069 	 * OK, time to rat on our buddy...
1070 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1071 	 * RCU CPU stall warnings.
1072 	 */
1073 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1074 	       rsp->name);
1075 	print_cpu_stall_info_begin();
1076 	rcu_for_each_leaf_node(rsp, rnp) {
1077 		raw_spin_lock_irqsave(&rnp->lock, flags);
1078 		ndetected += rcu_print_task_stall(rnp);
1079 		if (rnp->qsmask != 0) {
1080 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1081 				if (rnp->qsmask & (1UL << cpu)) {
1082 					print_cpu_stall_info(rsp,
1083 							     rnp->grplo + cpu);
1084 					ndetected++;
1085 				}
1086 		}
1087 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1088 	}
1089 
1090 	/*
1091 	 * Now rat on any tasks that got kicked up to the root rcu_node
1092 	 * due to CPU offlining.
1093 	 */
1094 	rnp = rcu_get_root(rsp);
1095 	raw_spin_lock_irqsave(&rnp->lock, flags);
1096 	ndetected += rcu_print_task_stall(rnp);
1097 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1098 
1099 	print_cpu_stall_info_end();
1100 	for_each_possible_cpu(cpu)
1101 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1102 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1103 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1104 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1105 	if (ndetected == 0)
1106 		pr_err("INFO: Stall ended before state dump start\n");
1107 	else
1108 		rcu_dump_cpu_stacks(rsp);
1109 
1110 	/* Complain about tasks blocking the grace period. */
1111 
1112 	rcu_print_detail_task_stall(rsp);
1113 
1114 	force_quiescent_state(rsp);  /* Kick them all. */
1115 }
1116 
print_cpu_stall(struct rcu_state * rsp)1117 static void print_cpu_stall(struct rcu_state *rsp)
1118 {
1119 	int cpu;
1120 	unsigned long flags;
1121 	struct rcu_node *rnp = rcu_get_root(rsp);
1122 	long totqlen = 0;
1123 
1124 	/*
1125 	 * OK, time to rat on ourselves...
1126 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1127 	 * RCU CPU stall warnings.
1128 	 */
1129 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1130 	print_cpu_stall_info_begin();
1131 	print_cpu_stall_info(rsp, smp_processor_id());
1132 	print_cpu_stall_info_end();
1133 	for_each_possible_cpu(cpu)
1134 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1135 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1136 		jiffies - rsp->gp_start,
1137 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1138 	rcu_dump_cpu_stacks(rsp);
1139 
1140 	raw_spin_lock_irqsave(&rnp->lock, flags);
1141 	if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1142 		ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1143 				     3 * rcu_jiffies_till_stall_check() + 3;
1144 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1145 
1146 	/*
1147 	 * Attempt to revive the RCU machinery by forcing a context switch.
1148 	 *
1149 	 * A context switch would normally allow the RCU state machine to make
1150 	 * progress and it could be we're stuck in kernel space without context
1151 	 * switches for an entirely unreasonable amount of time.
1152 	 */
1153 	resched_cpu(smp_processor_id());
1154 }
1155 
check_cpu_stall(struct rcu_state * rsp,struct rcu_data * rdp)1156 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1157 {
1158 	unsigned long completed;
1159 	unsigned long gpnum;
1160 	unsigned long gps;
1161 	unsigned long j;
1162 	unsigned long js;
1163 	struct rcu_node *rnp;
1164 
1165 	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1166 		return;
1167 	j = jiffies;
1168 
1169 	/*
1170 	 * Lots of memory barriers to reject false positives.
1171 	 *
1172 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1173 	 * then rsp->gp_start, and finally rsp->completed.  These values
1174 	 * are updated in the opposite order with memory barriers (or
1175 	 * equivalent) during grace-period initialization and cleanup.
1176 	 * Now, a false positive can occur if we get an new value of
1177 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1178 	 * the memory barriers, the only way that this can happen is if one
1179 	 * grace period ends and another starts between these two fetches.
1180 	 * Detect this by comparing rsp->completed with the previous fetch
1181 	 * from rsp->gpnum.
1182 	 *
1183 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1184 	 * and rsp->gp_start suffice to forestall false positives.
1185 	 */
1186 	gpnum = ACCESS_ONCE(rsp->gpnum);
1187 	smp_rmb(); /* Pick up ->gpnum first... */
1188 	js = ACCESS_ONCE(rsp->jiffies_stall);
1189 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1190 	gps = ACCESS_ONCE(rsp->gp_start);
1191 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1192 	completed = ACCESS_ONCE(rsp->completed);
1193 	if (ULONG_CMP_GE(completed, gpnum) ||
1194 	    ULONG_CMP_LT(j, js) ||
1195 	    ULONG_CMP_GE(gps, js))
1196 		return; /* No stall or GP completed since entering function. */
1197 	rnp = rdp->mynode;
1198 	if (rcu_gp_in_progress(rsp) &&
1199 	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1200 
1201 		/* We haven't checked in, so go dump stack. */
1202 		print_cpu_stall(rsp);
1203 
1204 	} else if (rcu_gp_in_progress(rsp) &&
1205 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1206 
1207 		/* They had a few time units to dump stack, so complain. */
1208 		print_other_cpu_stall(rsp);
1209 	}
1210 }
1211 
1212 /**
1213  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1214  *
1215  * Set the stall-warning timeout way off into the future, thus preventing
1216  * any RCU CPU stall-warning messages from appearing in the current set of
1217  * RCU grace periods.
1218  *
1219  * The caller must disable hard irqs.
1220  */
rcu_cpu_stall_reset(void)1221 void rcu_cpu_stall_reset(void)
1222 {
1223 	struct rcu_state *rsp;
1224 
1225 	for_each_rcu_flavor(rsp)
1226 		ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1227 }
1228 
1229 /*
1230  * Initialize the specified rcu_data structure's callback list to empty.
1231  */
init_callback_list(struct rcu_data * rdp)1232 static void init_callback_list(struct rcu_data *rdp)
1233 {
1234 	int i;
1235 
1236 	if (init_nocb_callback_list(rdp))
1237 		return;
1238 	rdp->nxtlist = NULL;
1239 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1240 		rdp->nxttail[i] = &rdp->nxtlist;
1241 }
1242 
1243 /*
1244  * Determine the value that ->completed will have at the end of the
1245  * next subsequent grace period.  This is used to tag callbacks so that
1246  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1247  * been dyntick-idle for an extended period with callbacks under the
1248  * influence of RCU_FAST_NO_HZ.
1249  *
1250  * The caller must hold rnp->lock with interrupts disabled.
1251  */
rcu_cbs_completed(struct rcu_state * rsp,struct rcu_node * rnp)1252 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1253 				       struct rcu_node *rnp)
1254 {
1255 	/*
1256 	 * If RCU is idle, we just wait for the next grace period.
1257 	 * But we can only be sure that RCU is idle if we are looking
1258 	 * at the root rcu_node structure -- otherwise, a new grace
1259 	 * period might have started, but just not yet gotten around
1260 	 * to initializing the current non-root rcu_node structure.
1261 	 */
1262 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1263 		return rnp->completed + 1;
1264 
1265 	/*
1266 	 * Otherwise, wait for a possible partial grace period and
1267 	 * then the subsequent full grace period.
1268 	 */
1269 	return rnp->completed + 2;
1270 }
1271 
1272 /*
1273  * Trace-event helper function for rcu_start_future_gp() and
1274  * rcu_nocb_wait_gp().
1275  */
trace_rcu_future_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long c,const char * s)1276 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1277 				unsigned long c, const char *s)
1278 {
1279 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1280 				      rnp->completed, c, rnp->level,
1281 				      rnp->grplo, rnp->grphi, s);
1282 }
1283 
1284 /*
1285  * Start some future grace period, as needed to handle newly arrived
1286  * callbacks.  The required future grace periods are recorded in each
1287  * rcu_node structure's ->need_future_gp field.  Returns true if there
1288  * is reason to awaken the grace-period kthread.
1289  *
1290  * The caller must hold the specified rcu_node structure's ->lock.
1291  */
1292 static bool __maybe_unused
rcu_start_future_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long * c_out)1293 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1294 		    unsigned long *c_out)
1295 {
1296 	unsigned long c;
1297 	int i;
1298 	bool ret = false;
1299 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1300 
1301 	/*
1302 	 * Pick up grace-period number for new callbacks.  If this
1303 	 * grace period is already marked as needed, return to the caller.
1304 	 */
1305 	c = rcu_cbs_completed(rdp->rsp, rnp);
1306 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1307 	if (rnp->need_future_gp[c & 0x1]) {
1308 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1309 		goto out;
1310 	}
1311 
1312 	/*
1313 	 * If either this rcu_node structure or the root rcu_node structure
1314 	 * believe that a grace period is in progress, then we must wait
1315 	 * for the one following, which is in "c".  Because our request
1316 	 * will be noticed at the end of the current grace period, we don't
1317 	 * need to explicitly start one.  We only do the lockless check
1318 	 * of rnp_root's fields if the current rcu_node structure thinks
1319 	 * there is no grace period in flight, and because we hold rnp->lock,
1320 	 * the only possible change is when rnp_root's two fields are
1321 	 * equal, in which case rnp_root->gpnum might be concurrently
1322 	 * incremented.  But that is OK, as it will just result in our
1323 	 * doing some extra useless work.
1324 	 */
1325 	if (rnp->gpnum != rnp->completed ||
1326 	    ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
1327 		rnp->need_future_gp[c & 0x1]++;
1328 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1329 		goto out;
1330 	}
1331 
1332 	/*
1333 	 * There might be no grace period in progress.  If we don't already
1334 	 * hold it, acquire the root rcu_node structure's lock in order to
1335 	 * start one (if needed).
1336 	 */
1337 	if (rnp != rnp_root) {
1338 		raw_spin_lock(&rnp_root->lock);
1339 		smp_mb__after_unlock_lock();
1340 	}
1341 
1342 	/*
1343 	 * Get a new grace-period number.  If there really is no grace
1344 	 * period in progress, it will be smaller than the one we obtained
1345 	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1346 	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1347 	 */
1348 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1349 	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1350 		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1351 			rdp->nxtcompleted[i] = c;
1352 
1353 	/*
1354 	 * If the needed for the required grace period is already
1355 	 * recorded, trace and leave.
1356 	 */
1357 	if (rnp_root->need_future_gp[c & 0x1]) {
1358 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1359 		goto unlock_out;
1360 	}
1361 
1362 	/* Record the need for the future grace period. */
1363 	rnp_root->need_future_gp[c & 0x1]++;
1364 
1365 	/* If a grace period is not already in progress, start one. */
1366 	if (rnp_root->gpnum != rnp_root->completed) {
1367 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1368 	} else {
1369 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1370 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1371 	}
1372 unlock_out:
1373 	if (rnp != rnp_root)
1374 		raw_spin_unlock(&rnp_root->lock);
1375 out:
1376 	if (c_out != NULL)
1377 		*c_out = c;
1378 	return ret;
1379 }
1380 
1381 /*
1382  * Clean up any old requests for the just-ended grace period.  Also return
1383  * whether any additional grace periods have been requested.  Also invoke
1384  * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1385  * waiting for this grace period to complete.
1386  */
rcu_future_gp_cleanup(struct rcu_state * rsp,struct rcu_node * rnp)1387 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1388 {
1389 	int c = rnp->completed;
1390 	int needmore;
1391 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1392 
1393 	rcu_nocb_gp_cleanup(rsp, rnp);
1394 	rnp->need_future_gp[c & 0x1] = 0;
1395 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1396 	trace_rcu_future_gp(rnp, rdp, c,
1397 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1398 	return needmore;
1399 }
1400 
1401 /*
1402  * Awaken the grace-period kthread for the specified flavor of RCU.
1403  * Don't do a self-awaken, and don't bother awakening when there is
1404  * nothing for the grace-period kthread to do (as in several CPUs
1405  * raced to awaken, and we lost), and finally don't try to awaken
1406  * a kthread that has not yet been created.
1407  */
rcu_gp_kthread_wake(struct rcu_state * rsp)1408 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1409 {
1410 	if (current == rsp->gp_kthread ||
1411 	    !ACCESS_ONCE(rsp->gp_flags) ||
1412 	    !rsp->gp_kthread)
1413 		return;
1414 	wake_up(&rsp->gp_wq);
1415 }
1416 
1417 /*
1418  * If there is room, assign a ->completed number to any callbacks on
1419  * this CPU that have not already been assigned.  Also accelerate any
1420  * callbacks that were previously assigned a ->completed number that has
1421  * since proven to be too conservative, which can happen if callbacks get
1422  * assigned a ->completed number while RCU is idle, but with reference to
1423  * a non-root rcu_node structure.  This function is idempotent, so it does
1424  * not hurt to call it repeatedly.  Returns an flag saying that we should
1425  * awaken the RCU grace-period kthread.
1426  *
1427  * The caller must hold rnp->lock with interrupts disabled.
1428  */
rcu_accelerate_cbs(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1429 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1430 			       struct rcu_data *rdp)
1431 {
1432 	unsigned long c;
1433 	int i;
1434 	bool ret;
1435 
1436 	/* If the CPU has no callbacks, nothing to do. */
1437 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1438 		return false;
1439 
1440 	/*
1441 	 * Starting from the sublist containing the callbacks most
1442 	 * recently assigned a ->completed number and working down, find the
1443 	 * first sublist that is not assignable to an upcoming grace period.
1444 	 * Such a sublist has something in it (first two tests) and has
1445 	 * a ->completed number assigned that will complete sooner than
1446 	 * the ->completed number for newly arrived callbacks (last test).
1447 	 *
1448 	 * The key point is that any later sublist can be assigned the
1449 	 * same ->completed number as the newly arrived callbacks, which
1450 	 * means that the callbacks in any of these later sublist can be
1451 	 * grouped into a single sublist, whether or not they have already
1452 	 * been assigned a ->completed number.
1453 	 */
1454 	c = rcu_cbs_completed(rsp, rnp);
1455 	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1456 		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1457 		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1458 			break;
1459 
1460 	/*
1461 	 * If there are no sublist for unassigned callbacks, leave.
1462 	 * At the same time, advance "i" one sublist, so that "i" will
1463 	 * index into the sublist where all the remaining callbacks should
1464 	 * be grouped into.
1465 	 */
1466 	if (++i >= RCU_NEXT_TAIL)
1467 		return false;
1468 
1469 	/*
1470 	 * Assign all subsequent callbacks' ->completed number to the next
1471 	 * full grace period and group them all in the sublist initially
1472 	 * indexed by "i".
1473 	 */
1474 	for (; i <= RCU_NEXT_TAIL; i++) {
1475 		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1476 		rdp->nxtcompleted[i] = c;
1477 	}
1478 	/* Record any needed additional grace periods. */
1479 	ret = rcu_start_future_gp(rnp, rdp, NULL);
1480 
1481 	/* Trace depending on how much we were able to accelerate. */
1482 	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1483 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1484 	else
1485 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1486 	return ret;
1487 }
1488 
1489 /*
1490  * Move any callbacks whose grace period has completed to the
1491  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1492  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1493  * sublist.  This function is idempotent, so it does not hurt to
1494  * invoke it repeatedly.  As long as it is not invoked -too- often...
1495  * Returns true if the RCU grace-period kthread needs to be awakened.
1496  *
1497  * The caller must hold rnp->lock with interrupts disabled.
1498  */
rcu_advance_cbs(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1499 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1500 			    struct rcu_data *rdp)
1501 {
1502 	int i, j;
1503 
1504 	/* If the CPU has no callbacks, nothing to do. */
1505 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1506 		return false;
1507 
1508 	/*
1509 	 * Find all callbacks whose ->completed numbers indicate that they
1510 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1511 	 */
1512 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1513 		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1514 			break;
1515 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1516 	}
1517 	/* Clean up any sublist tail pointers that were misordered above. */
1518 	for (j = RCU_WAIT_TAIL; j < i; j++)
1519 		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1520 
1521 	/* Copy down callbacks to fill in empty sublists. */
1522 	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1523 		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1524 			break;
1525 		rdp->nxttail[j] = rdp->nxttail[i];
1526 		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1527 	}
1528 
1529 	/* Classify any remaining callbacks. */
1530 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1531 }
1532 
1533 /*
1534  * Update CPU-local rcu_data state to record the beginnings and ends of
1535  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1536  * structure corresponding to the current CPU, and must have irqs disabled.
1537  * Returns true if the grace-period kthread needs to be awakened.
1538  */
__note_gp_changes(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1539 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1540 			      struct rcu_data *rdp)
1541 {
1542 	bool ret;
1543 
1544 	/* Handle the ends of any preceding grace periods first. */
1545 	if (rdp->completed == rnp->completed) {
1546 
1547 		/* No grace period end, so just accelerate recent callbacks. */
1548 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1549 
1550 	} else {
1551 
1552 		/* Advance callbacks. */
1553 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1554 
1555 		/* Remember that we saw this grace-period completion. */
1556 		rdp->completed = rnp->completed;
1557 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1558 	}
1559 
1560 	if (rdp->gpnum != rnp->gpnum) {
1561 		/*
1562 		 * If the current grace period is waiting for this CPU,
1563 		 * set up to detect a quiescent state, otherwise don't
1564 		 * go looking for one.
1565 		 */
1566 		rdp->gpnum = rnp->gpnum;
1567 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1568 		rdp->passed_quiesce = 0;
1569 		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1570 		zero_cpu_stall_ticks(rdp);
1571 	}
1572 	return ret;
1573 }
1574 
note_gp_changes(struct rcu_state * rsp,struct rcu_data * rdp)1575 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1576 {
1577 	unsigned long flags;
1578 	bool needwake;
1579 	struct rcu_node *rnp;
1580 
1581 	local_irq_save(flags);
1582 	rnp = rdp->mynode;
1583 	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1584 	     rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1585 	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1586 		local_irq_restore(flags);
1587 		return;
1588 	}
1589 	smp_mb__after_unlock_lock();
1590 	needwake = __note_gp_changes(rsp, rnp, rdp);
1591 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1592 	if (needwake)
1593 		rcu_gp_kthread_wake(rsp);
1594 }
1595 
1596 /*
1597  * Initialize a new grace period.  Return 0 if no grace period required.
1598  */
rcu_gp_init(struct rcu_state * rsp)1599 static int rcu_gp_init(struct rcu_state *rsp)
1600 {
1601 	struct rcu_data *rdp;
1602 	struct rcu_node *rnp = rcu_get_root(rsp);
1603 
1604 	rcu_bind_gp_kthread();
1605 	raw_spin_lock_irq(&rnp->lock);
1606 	smp_mb__after_unlock_lock();
1607 	if (!ACCESS_ONCE(rsp->gp_flags)) {
1608 		/* Spurious wakeup, tell caller to go back to sleep.  */
1609 		raw_spin_unlock_irq(&rnp->lock);
1610 		return 0;
1611 	}
1612 	ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1613 
1614 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1615 		/*
1616 		 * Grace period already in progress, don't start another.
1617 		 * Not supposed to be able to happen.
1618 		 */
1619 		raw_spin_unlock_irq(&rnp->lock);
1620 		return 0;
1621 	}
1622 
1623 	/* Advance to a new grace period and initialize state. */
1624 	record_gp_stall_check_time(rsp);
1625 	/* Record GP times before starting GP, hence smp_store_release(). */
1626 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1627 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1628 	raw_spin_unlock_irq(&rnp->lock);
1629 
1630 	/* Exclude any concurrent CPU-hotplug operations. */
1631 	mutex_lock(&rsp->onoff_mutex);
1632 	smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1633 
1634 	/*
1635 	 * Set the quiescent-state-needed bits in all the rcu_node
1636 	 * structures for all currently online CPUs in breadth-first order,
1637 	 * starting from the root rcu_node structure, relying on the layout
1638 	 * of the tree within the rsp->node[] array.  Note that other CPUs
1639 	 * will access only the leaves of the hierarchy, thus seeing that no
1640 	 * grace period is in progress, at least until the corresponding
1641 	 * leaf node has been initialized.  In addition, we have excluded
1642 	 * CPU-hotplug operations.
1643 	 *
1644 	 * The grace period cannot complete until the initialization
1645 	 * process finishes, because this kthread handles both.
1646 	 */
1647 	rcu_for_each_node_breadth_first(rsp, rnp) {
1648 		raw_spin_lock_irq(&rnp->lock);
1649 		smp_mb__after_unlock_lock();
1650 		rdp = this_cpu_ptr(rsp->rda);
1651 		rcu_preempt_check_blocked_tasks(rnp);
1652 		rnp->qsmask = rnp->qsmaskinit;
1653 		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1654 		WARN_ON_ONCE(rnp->completed != rsp->completed);
1655 		ACCESS_ONCE(rnp->completed) = rsp->completed;
1656 		if (rnp == rdp->mynode)
1657 			(void)__note_gp_changes(rsp, rnp, rdp);
1658 		rcu_preempt_boost_start_gp(rnp);
1659 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1660 					    rnp->level, rnp->grplo,
1661 					    rnp->grphi, rnp->qsmask);
1662 		raw_spin_unlock_irq(&rnp->lock);
1663 		cond_resched_rcu_qs();
1664 	}
1665 
1666 	mutex_unlock(&rsp->onoff_mutex);
1667 	return 1;
1668 }
1669 
1670 /*
1671  * Do one round of quiescent-state forcing.
1672  */
rcu_gp_fqs(struct rcu_state * rsp,int fqs_state_in)1673 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1674 {
1675 	int fqs_state = fqs_state_in;
1676 	bool isidle = false;
1677 	unsigned long maxj;
1678 	struct rcu_node *rnp = rcu_get_root(rsp);
1679 
1680 	rsp->n_force_qs++;
1681 	if (fqs_state == RCU_SAVE_DYNTICK) {
1682 		/* Collect dyntick-idle snapshots. */
1683 		if (is_sysidle_rcu_state(rsp)) {
1684 			isidle = true;
1685 			maxj = jiffies - ULONG_MAX / 4;
1686 		}
1687 		force_qs_rnp(rsp, dyntick_save_progress_counter,
1688 			     &isidle, &maxj);
1689 		rcu_sysidle_report_gp(rsp, isidle, maxj);
1690 		fqs_state = RCU_FORCE_QS;
1691 	} else {
1692 		/* Handle dyntick-idle and offline CPUs. */
1693 		isidle = false;
1694 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1695 	}
1696 	/* Clear flag to prevent immediate re-entry. */
1697 	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1698 		raw_spin_lock_irq(&rnp->lock);
1699 		smp_mb__after_unlock_lock();
1700 		ACCESS_ONCE(rsp->gp_flags) =
1701 			ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
1702 		raw_spin_unlock_irq(&rnp->lock);
1703 	}
1704 	return fqs_state;
1705 }
1706 
1707 /*
1708  * Clean up after the old grace period.
1709  */
rcu_gp_cleanup(struct rcu_state * rsp)1710 static void rcu_gp_cleanup(struct rcu_state *rsp)
1711 {
1712 	unsigned long gp_duration;
1713 	bool needgp = false;
1714 	int nocb = 0;
1715 	struct rcu_data *rdp;
1716 	struct rcu_node *rnp = rcu_get_root(rsp);
1717 
1718 	raw_spin_lock_irq(&rnp->lock);
1719 	smp_mb__after_unlock_lock();
1720 	gp_duration = jiffies - rsp->gp_start;
1721 	if (gp_duration > rsp->gp_max)
1722 		rsp->gp_max = gp_duration;
1723 
1724 	/*
1725 	 * We know the grace period is complete, but to everyone else
1726 	 * it appears to still be ongoing.  But it is also the case
1727 	 * that to everyone else it looks like there is nothing that
1728 	 * they can do to advance the grace period.  It is therefore
1729 	 * safe for us to drop the lock in order to mark the grace
1730 	 * period as completed in all of the rcu_node structures.
1731 	 */
1732 	raw_spin_unlock_irq(&rnp->lock);
1733 
1734 	/*
1735 	 * Propagate new ->completed value to rcu_node structures so
1736 	 * that other CPUs don't have to wait until the start of the next
1737 	 * grace period to process their callbacks.  This also avoids
1738 	 * some nasty RCU grace-period initialization races by forcing
1739 	 * the end of the current grace period to be completely recorded in
1740 	 * all of the rcu_node structures before the beginning of the next
1741 	 * grace period is recorded in any of the rcu_node structures.
1742 	 */
1743 	rcu_for_each_node_breadth_first(rsp, rnp) {
1744 		raw_spin_lock_irq(&rnp->lock);
1745 		smp_mb__after_unlock_lock();
1746 		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1747 		rdp = this_cpu_ptr(rsp->rda);
1748 		if (rnp == rdp->mynode)
1749 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1750 		/* smp_mb() provided by prior unlock-lock pair. */
1751 		nocb += rcu_future_gp_cleanup(rsp, rnp);
1752 		raw_spin_unlock_irq(&rnp->lock);
1753 		cond_resched_rcu_qs();
1754 	}
1755 	rnp = rcu_get_root(rsp);
1756 	raw_spin_lock_irq(&rnp->lock);
1757 	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1758 	rcu_nocb_gp_set(rnp, nocb);
1759 
1760 	/* Declare grace period done. */
1761 	ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1762 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1763 	rsp->fqs_state = RCU_GP_IDLE;
1764 	rdp = this_cpu_ptr(rsp->rda);
1765 	/* Advance CBs to reduce false positives below. */
1766 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1767 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1768 		ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1769 		trace_rcu_grace_period(rsp->name,
1770 				       ACCESS_ONCE(rsp->gpnum),
1771 				       TPS("newreq"));
1772 	}
1773 	raw_spin_unlock_irq(&rnp->lock);
1774 }
1775 
1776 /*
1777  * Body of kthread that handles grace periods.
1778  */
rcu_gp_kthread(void * arg)1779 static int __noreturn rcu_gp_kthread(void *arg)
1780 {
1781 	int fqs_state;
1782 	int gf;
1783 	unsigned long j;
1784 	int ret;
1785 	struct rcu_state *rsp = arg;
1786 	struct rcu_node *rnp = rcu_get_root(rsp);
1787 
1788 	for (;;) {
1789 
1790 		/* Handle grace-period start. */
1791 		for (;;) {
1792 			trace_rcu_grace_period(rsp->name,
1793 					       ACCESS_ONCE(rsp->gpnum),
1794 					       TPS("reqwait"));
1795 			rsp->gp_state = RCU_GP_WAIT_GPS;
1796 			wait_event_interruptible(rsp->gp_wq,
1797 						 ACCESS_ONCE(rsp->gp_flags) &
1798 						 RCU_GP_FLAG_INIT);
1799 			/* Locking provides needed memory barrier. */
1800 			if (rcu_gp_init(rsp))
1801 				break;
1802 			cond_resched_rcu_qs();
1803 			WARN_ON(signal_pending(current));
1804 			trace_rcu_grace_period(rsp->name,
1805 					       ACCESS_ONCE(rsp->gpnum),
1806 					       TPS("reqwaitsig"));
1807 		}
1808 
1809 		/* Handle quiescent-state forcing. */
1810 		fqs_state = RCU_SAVE_DYNTICK;
1811 		j = jiffies_till_first_fqs;
1812 		if (j > HZ) {
1813 			j = HZ;
1814 			jiffies_till_first_fqs = HZ;
1815 		}
1816 		ret = 0;
1817 		for (;;) {
1818 			if (!ret)
1819 				rsp->jiffies_force_qs = jiffies + j;
1820 			trace_rcu_grace_period(rsp->name,
1821 					       ACCESS_ONCE(rsp->gpnum),
1822 					       TPS("fqswait"));
1823 			rsp->gp_state = RCU_GP_WAIT_FQS;
1824 			ret = wait_event_interruptible_timeout(rsp->gp_wq,
1825 					((gf = ACCESS_ONCE(rsp->gp_flags)) &
1826 					 RCU_GP_FLAG_FQS) ||
1827 					(!ACCESS_ONCE(rnp->qsmask) &&
1828 					 !rcu_preempt_blocked_readers_cgp(rnp)),
1829 					j);
1830 			/* Locking provides needed memory barriers. */
1831 			/* If grace period done, leave loop. */
1832 			if (!ACCESS_ONCE(rnp->qsmask) &&
1833 			    !rcu_preempt_blocked_readers_cgp(rnp))
1834 				break;
1835 			/* If time for quiescent-state forcing, do it. */
1836 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1837 			    (gf & RCU_GP_FLAG_FQS)) {
1838 				trace_rcu_grace_period(rsp->name,
1839 						       ACCESS_ONCE(rsp->gpnum),
1840 						       TPS("fqsstart"));
1841 				fqs_state = rcu_gp_fqs(rsp, fqs_state);
1842 				trace_rcu_grace_period(rsp->name,
1843 						       ACCESS_ONCE(rsp->gpnum),
1844 						       TPS("fqsend"));
1845 				cond_resched_rcu_qs();
1846 			} else {
1847 				/* Deal with stray signal. */
1848 				cond_resched_rcu_qs();
1849 				WARN_ON(signal_pending(current));
1850 				trace_rcu_grace_period(rsp->name,
1851 						       ACCESS_ONCE(rsp->gpnum),
1852 						       TPS("fqswaitsig"));
1853 			}
1854 			j = jiffies_till_next_fqs;
1855 			if (j > HZ) {
1856 				j = HZ;
1857 				jiffies_till_next_fqs = HZ;
1858 			} else if (j < 1) {
1859 				j = 1;
1860 				jiffies_till_next_fqs = 1;
1861 			}
1862 		}
1863 
1864 		/* Handle grace-period end. */
1865 		rcu_gp_cleanup(rsp);
1866 	}
1867 }
1868 
1869 /*
1870  * Start a new RCU grace period if warranted, re-initializing the hierarchy
1871  * in preparation for detecting the next grace period.  The caller must hold
1872  * the root node's ->lock and hard irqs must be disabled.
1873  *
1874  * Note that it is legal for a dying CPU (which is marked as offline) to
1875  * invoke this function.  This can happen when the dying CPU reports its
1876  * quiescent state.
1877  *
1878  * Returns true if the grace-period kthread must be awakened.
1879  */
1880 static bool
rcu_start_gp_advanced(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1881 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1882 		      struct rcu_data *rdp)
1883 {
1884 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1885 		/*
1886 		 * Either we have not yet spawned the grace-period
1887 		 * task, this CPU does not need another grace period,
1888 		 * or a grace period is already in progress.
1889 		 * Either way, don't start a new grace period.
1890 		 */
1891 		return false;
1892 	}
1893 	ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1894 	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1895 			       TPS("newreq"));
1896 
1897 	/*
1898 	 * We can't do wakeups while holding the rnp->lock, as that
1899 	 * could cause possible deadlocks with the rq->lock. Defer
1900 	 * the wakeup to our caller.
1901 	 */
1902 	return true;
1903 }
1904 
1905 /*
1906  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1907  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
1908  * is invoked indirectly from rcu_advance_cbs(), which would result in
1909  * endless recursion -- or would do so if it wasn't for the self-deadlock
1910  * that is encountered beforehand.
1911  *
1912  * Returns true if the grace-period kthread needs to be awakened.
1913  */
rcu_start_gp(struct rcu_state * rsp)1914 static bool rcu_start_gp(struct rcu_state *rsp)
1915 {
1916 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1917 	struct rcu_node *rnp = rcu_get_root(rsp);
1918 	bool ret = false;
1919 
1920 	/*
1921 	 * If there is no grace period in progress right now, any
1922 	 * callbacks we have up to this point will be satisfied by the
1923 	 * next grace period.  Also, advancing the callbacks reduces the
1924 	 * probability of false positives from cpu_needs_another_gp()
1925 	 * resulting in pointless grace periods.  So, advance callbacks
1926 	 * then start the grace period!
1927 	 */
1928 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
1929 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
1930 	return ret;
1931 }
1932 
1933 /*
1934  * Report a full set of quiescent states to the specified rcu_state
1935  * data structure.  This involves cleaning up after the prior grace
1936  * period and letting rcu_start_gp() start up the next grace period
1937  * if one is needed.  Note that the caller must hold rnp->lock, which
1938  * is released before return.
1939  */
rcu_report_qs_rsp(struct rcu_state * rsp,unsigned long flags)1940 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1941 	__releases(rcu_get_root(rsp)->lock)
1942 {
1943 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1944 	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1945 	rcu_gp_kthread_wake(rsp);
1946 }
1947 
1948 /*
1949  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1950  * Allows quiescent states for a group of CPUs to be reported at one go
1951  * to the specified rcu_node structure, though all the CPUs in the group
1952  * must be represented by the same rcu_node structure (which need not be
1953  * a leaf rcu_node structure, though it often will be).  That structure's
1954  * lock must be held upon entry, and it is released before return.
1955  */
1956 static void
rcu_report_qs_rnp(unsigned long mask,struct rcu_state * rsp,struct rcu_node * rnp,unsigned long flags)1957 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1958 		  struct rcu_node *rnp, unsigned long flags)
1959 	__releases(rnp->lock)
1960 {
1961 	struct rcu_node *rnp_c;
1962 
1963 	/* Walk up the rcu_node hierarchy. */
1964 	for (;;) {
1965 		if (!(rnp->qsmask & mask)) {
1966 
1967 			/* Our bit has already been cleared, so done. */
1968 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1969 			return;
1970 		}
1971 		rnp->qsmask &= ~mask;
1972 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1973 						 mask, rnp->qsmask, rnp->level,
1974 						 rnp->grplo, rnp->grphi,
1975 						 !!rnp->gp_tasks);
1976 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1977 
1978 			/* Other bits still set at this level, so done. */
1979 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1980 			return;
1981 		}
1982 		mask = rnp->grpmask;
1983 		if (rnp->parent == NULL) {
1984 
1985 			/* No more levels.  Exit loop holding root lock. */
1986 
1987 			break;
1988 		}
1989 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1990 		rnp_c = rnp;
1991 		rnp = rnp->parent;
1992 		raw_spin_lock_irqsave(&rnp->lock, flags);
1993 		smp_mb__after_unlock_lock();
1994 		WARN_ON_ONCE(rnp_c->qsmask);
1995 	}
1996 
1997 	/*
1998 	 * Get here if we are the last CPU to pass through a quiescent
1999 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2000 	 * to clean up and start the next grace period if one is needed.
2001 	 */
2002 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2003 }
2004 
2005 /*
2006  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2007  * structure.  This must be either called from the specified CPU, or
2008  * called when the specified CPU is known to be offline (and when it is
2009  * also known that no other CPU is concurrently trying to help the offline
2010  * CPU).  The lastcomp argument is used to make sure we are still in the
2011  * grace period of interest.  We don't want to end the current grace period
2012  * based on quiescent states detected in an earlier grace period!
2013  */
2014 static void
rcu_report_qs_rdp(int cpu,struct rcu_state * rsp,struct rcu_data * rdp)2015 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2016 {
2017 	unsigned long flags;
2018 	unsigned long mask;
2019 	bool needwake;
2020 	struct rcu_node *rnp;
2021 
2022 	rnp = rdp->mynode;
2023 	raw_spin_lock_irqsave(&rnp->lock, flags);
2024 	smp_mb__after_unlock_lock();
2025 	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
2026 	    rnp->completed == rnp->gpnum) {
2027 
2028 		/*
2029 		 * The grace period in which this quiescent state was
2030 		 * recorded has ended, so don't report it upwards.
2031 		 * We will instead need a new quiescent state that lies
2032 		 * within the current grace period.
2033 		 */
2034 		rdp->passed_quiesce = 0;	/* need qs for new gp. */
2035 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2036 		return;
2037 	}
2038 	mask = rdp->grpmask;
2039 	if ((rnp->qsmask & mask) == 0) {
2040 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2041 	} else {
2042 		rdp->qs_pending = 0;
2043 
2044 		/*
2045 		 * This GP can't end until cpu checks in, so all of our
2046 		 * callbacks can be processed during the next GP.
2047 		 */
2048 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2049 
2050 		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
2051 		if (needwake)
2052 			rcu_gp_kthread_wake(rsp);
2053 	}
2054 }
2055 
2056 /*
2057  * Check to see if there is a new grace period of which this CPU
2058  * is not yet aware, and if so, set up local rcu_data state for it.
2059  * Otherwise, see if this CPU has just passed through its first
2060  * quiescent state for this grace period, and record that fact if so.
2061  */
2062 static void
rcu_check_quiescent_state(struct rcu_state * rsp,struct rcu_data * rdp)2063 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2064 {
2065 	/* Check for grace-period ends and beginnings. */
2066 	note_gp_changes(rsp, rdp);
2067 
2068 	/*
2069 	 * Does this CPU still need to do its part for current grace period?
2070 	 * If no, return and let the other CPUs do their part as well.
2071 	 */
2072 	if (!rdp->qs_pending)
2073 		return;
2074 
2075 	/*
2076 	 * Was there a quiescent state since the beginning of the grace
2077 	 * period? If no, then exit and wait for the next call.
2078 	 */
2079 	if (!rdp->passed_quiesce)
2080 		return;
2081 
2082 	/*
2083 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2084 	 * judge of that).
2085 	 */
2086 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2087 }
2088 
2089 #ifdef CONFIG_HOTPLUG_CPU
2090 
2091 /*
2092  * Send the specified CPU's RCU callbacks to the orphanage.  The
2093  * specified CPU must be offline, and the caller must hold the
2094  * ->orphan_lock.
2095  */
2096 static void
rcu_send_cbs_to_orphanage(int cpu,struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)2097 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2098 			  struct rcu_node *rnp, struct rcu_data *rdp)
2099 {
2100 	/* No-CBs CPUs do not have orphanable callbacks. */
2101 	if (rcu_is_nocb_cpu(rdp->cpu))
2102 		return;
2103 
2104 	/*
2105 	 * Orphan the callbacks.  First adjust the counts.  This is safe
2106 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2107 	 * cannot be running now.  Thus no memory barrier is required.
2108 	 */
2109 	if (rdp->nxtlist != NULL) {
2110 		rsp->qlen_lazy += rdp->qlen_lazy;
2111 		rsp->qlen += rdp->qlen;
2112 		rdp->n_cbs_orphaned += rdp->qlen;
2113 		rdp->qlen_lazy = 0;
2114 		ACCESS_ONCE(rdp->qlen) = 0;
2115 	}
2116 
2117 	/*
2118 	 * Next, move those callbacks still needing a grace period to
2119 	 * the orphanage, where some other CPU will pick them up.
2120 	 * Some of the callbacks might have gone partway through a grace
2121 	 * period, but that is too bad.  They get to start over because we
2122 	 * cannot assume that grace periods are synchronized across CPUs.
2123 	 * We don't bother updating the ->nxttail[] array yet, instead
2124 	 * we just reset the whole thing later on.
2125 	 */
2126 	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2127 		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2128 		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2129 		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2130 	}
2131 
2132 	/*
2133 	 * Then move the ready-to-invoke callbacks to the orphanage,
2134 	 * where some other CPU will pick them up.  These will not be
2135 	 * required to pass though another grace period: They are done.
2136 	 */
2137 	if (rdp->nxtlist != NULL) {
2138 		*rsp->orphan_donetail = rdp->nxtlist;
2139 		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2140 	}
2141 
2142 	/* Finally, initialize the rcu_data structure's list to empty.  */
2143 	init_callback_list(rdp);
2144 }
2145 
2146 /*
2147  * Adopt the RCU callbacks from the specified rcu_state structure's
2148  * orphanage.  The caller must hold the ->orphan_lock.
2149  */
rcu_adopt_orphan_cbs(struct rcu_state * rsp,unsigned long flags)2150 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2151 {
2152 	int i;
2153 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2154 
2155 	/* No-CBs CPUs are handled specially. */
2156 	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2157 		return;
2158 
2159 	/* Do the accounting first. */
2160 	rdp->qlen_lazy += rsp->qlen_lazy;
2161 	rdp->qlen += rsp->qlen;
2162 	rdp->n_cbs_adopted += rsp->qlen;
2163 	if (rsp->qlen_lazy != rsp->qlen)
2164 		rcu_idle_count_callbacks_posted();
2165 	rsp->qlen_lazy = 0;
2166 	rsp->qlen = 0;
2167 
2168 	/*
2169 	 * We do not need a memory barrier here because the only way we
2170 	 * can get here if there is an rcu_barrier() in flight is if
2171 	 * we are the task doing the rcu_barrier().
2172 	 */
2173 
2174 	/* First adopt the ready-to-invoke callbacks. */
2175 	if (rsp->orphan_donelist != NULL) {
2176 		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2177 		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2178 		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2179 			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2180 				rdp->nxttail[i] = rsp->orphan_donetail;
2181 		rsp->orphan_donelist = NULL;
2182 		rsp->orphan_donetail = &rsp->orphan_donelist;
2183 	}
2184 
2185 	/* And then adopt the callbacks that still need a grace period. */
2186 	if (rsp->orphan_nxtlist != NULL) {
2187 		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2188 		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2189 		rsp->orphan_nxtlist = NULL;
2190 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2191 	}
2192 }
2193 
2194 /*
2195  * Trace the fact that this CPU is going offline.
2196  */
rcu_cleanup_dying_cpu(struct rcu_state * rsp)2197 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2198 {
2199 	RCU_TRACE(unsigned long mask);
2200 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2201 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2202 
2203 	RCU_TRACE(mask = rdp->grpmask);
2204 	trace_rcu_grace_period(rsp->name,
2205 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2206 			       TPS("cpuofl"));
2207 }
2208 
2209 /*
2210  * The CPU has been completely removed, and some other CPU is reporting
2211  * this fact from process context.  Do the remainder of the cleanup,
2212  * including orphaning the outgoing CPU's RCU callbacks, and also
2213  * adopting them.  There can only be one CPU hotplug operation at a time,
2214  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2215  */
rcu_cleanup_dead_cpu(int cpu,struct rcu_state * rsp)2216 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2217 {
2218 	unsigned long flags;
2219 	unsigned long mask;
2220 	int need_report = 0;
2221 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2222 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2223 
2224 	/* Adjust any no-longer-needed kthreads. */
2225 	rcu_boost_kthread_setaffinity(rnp, -1);
2226 
2227 	/* Exclude any attempts to start a new grace period. */
2228 	mutex_lock(&rsp->onoff_mutex);
2229 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2230 
2231 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2232 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2233 	rcu_adopt_orphan_cbs(rsp, flags);
2234 
2235 	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2236 	mask = rdp->grpmask;	/* rnp->grplo is constant. */
2237 	do {
2238 		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2239 		smp_mb__after_unlock_lock();
2240 		rnp->qsmaskinit &= ~mask;
2241 		if (rnp->qsmaskinit != 0) {
2242 			if (rnp != rdp->mynode)
2243 				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2244 			break;
2245 		}
2246 		if (rnp == rdp->mynode)
2247 			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2248 		else
2249 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2250 		mask = rnp->grpmask;
2251 		rnp = rnp->parent;
2252 	} while (rnp != NULL);
2253 
2254 	/*
2255 	 * We still hold the leaf rcu_node structure lock here, and
2256 	 * irqs are still disabled.  The reason for this subterfuge is
2257 	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2258 	 * held leads to deadlock.
2259 	 */
2260 	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2261 	rnp = rdp->mynode;
2262 	if (need_report & RCU_OFL_TASKS_NORM_GP)
2263 		rcu_report_unblock_qs_rnp(rnp, flags);
2264 	else
2265 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2266 	if (need_report & RCU_OFL_TASKS_EXP_GP)
2267 		rcu_report_exp_rnp(rsp, rnp, true);
2268 	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2269 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2270 		  cpu, rdp->qlen, rdp->nxtlist);
2271 	init_callback_list(rdp);
2272 	/* Disallow further callbacks on this CPU. */
2273 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2274 	mutex_unlock(&rsp->onoff_mutex);
2275 }
2276 
2277 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2278 
rcu_cleanup_dying_cpu(struct rcu_state * rsp)2279 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2280 {
2281 }
2282 
rcu_cleanup_dead_cpu(int cpu,struct rcu_state * rsp)2283 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2284 {
2285 }
2286 
2287 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2288 
2289 /*
2290  * Invoke any RCU callbacks that have made it to the end of their grace
2291  * period.  Thottle as specified by rdp->blimit.
2292  */
rcu_do_batch(struct rcu_state * rsp,struct rcu_data * rdp)2293 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2294 {
2295 	unsigned long flags;
2296 	struct rcu_head *next, *list, **tail;
2297 	long bl, count, count_lazy;
2298 	int i;
2299 
2300 	/* If no callbacks are ready, just return. */
2301 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2302 		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2303 		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2304 				    need_resched(), is_idle_task(current),
2305 				    rcu_is_callbacks_kthread());
2306 		return;
2307 	}
2308 
2309 	/*
2310 	 * Extract the list of ready callbacks, disabling to prevent
2311 	 * races with call_rcu() from interrupt handlers.
2312 	 */
2313 	local_irq_save(flags);
2314 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2315 	bl = rdp->blimit;
2316 	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2317 	list = rdp->nxtlist;
2318 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2319 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2320 	tail = rdp->nxttail[RCU_DONE_TAIL];
2321 	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2322 		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2323 			rdp->nxttail[i] = &rdp->nxtlist;
2324 	local_irq_restore(flags);
2325 
2326 	/* Invoke callbacks. */
2327 	count = count_lazy = 0;
2328 	while (list) {
2329 		next = list->next;
2330 		prefetch(next);
2331 		debug_rcu_head_unqueue(list);
2332 		if (__rcu_reclaim(rsp->name, list))
2333 			count_lazy++;
2334 		list = next;
2335 		/* Stop only if limit reached and CPU has something to do. */
2336 		if (++count >= bl &&
2337 		    (need_resched() ||
2338 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2339 			break;
2340 	}
2341 
2342 	local_irq_save(flags);
2343 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2344 			    is_idle_task(current),
2345 			    rcu_is_callbacks_kthread());
2346 
2347 	/* Update count, and requeue any remaining callbacks. */
2348 	if (list != NULL) {
2349 		*tail = rdp->nxtlist;
2350 		rdp->nxtlist = list;
2351 		for (i = 0; i < RCU_NEXT_SIZE; i++)
2352 			if (&rdp->nxtlist == rdp->nxttail[i])
2353 				rdp->nxttail[i] = tail;
2354 			else
2355 				break;
2356 	}
2357 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2358 	rdp->qlen_lazy -= count_lazy;
2359 	ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
2360 	rdp->n_cbs_invoked += count;
2361 
2362 	/* Reinstate batch limit if we have worked down the excess. */
2363 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2364 		rdp->blimit = blimit;
2365 
2366 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2367 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2368 		rdp->qlen_last_fqs_check = 0;
2369 		rdp->n_force_qs_snap = rsp->n_force_qs;
2370 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2371 		rdp->qlen_last_fqs_check = rdp->qlen;
2372 	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2373 
2374 	local_irq_restore(flags);
2375 
2376 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2377 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2378 		invoke_rcu_core();
2379 }
2380 
2381 /*
2382  * Check to see if this CPU is in a non-context-switch quiescent state
2383  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2384  * Also schedule RCU core processing.
2385  *
2386  * This function must be called from hardirq context.  It is normally
2387  * invoked from the scheduling-clock interrupt.  If rcu_pending returns
2388  * false, there is no point in invoking rcu_check_callbacks().
2389  */
rcu_check_callbacks(int cpu,int user)2390 void rcu_check_callbacks(int cpu, int user)
2391 {
2392 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2393 	increment_cpu_stall_ticks();
2394 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2395 
2396 		/*
2397 		 * Get here if this CPU took its interrupt from user
2398 		 * mode or from the idle loop, and if this is not a
2399 		 * nested interrupt.  In this case, the CPU is in
2400 		 * a quiescent state, so note it.
2401 		 *
2402 		 * No memory barrier is required here because both
2403 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2404 		 * variables that other CPUs neither access nor modify,
2405 		 * at least not while the corresponding CPU is online.
2406 		 */
2407 
2408 		rcu_sched_qs();
2409 		rcu_bh_qs();
2410 
2411 	} else if (!in_softirq()) {
2412 
2413 		/*
2414 		 * Get here if this CPU did not take its interrupt from
2415 		 * softirq, in other words, if it is not interrupting
2416 		 * a rcu_bh read-side critical section.  This is an _bh
2417 		 * critical section, so note it.
2418 		 */
2419 
2420 		rcu_bh_qs();
2421 	}
2422 	rcu_preempt_check_callbacks(cpu);
2423 	if (rcu_pending(cpu))
2424 		invoke_rcu_core();
2425 	if (user)
2426 		rcu_note_voluntary_context_switch(current);
2427 	trace_rcu_utilization(TPS("End scheduler-tick"));
2428 }
2429 
2430 /*
2431  * Scan the leaf rcu_node structures, processing dyntick state for any that
2432  * have not yet encountered a quiescent state, using the function specified.
2433  * Also initiate boosting for any threads blocked on the root rcu_node.
2434  *
2435  * The caller must have suppressed start of new grace periods.
2436  */
force_qs_rnp(struct rcu_state * rsp,int (* f)(struct rcu_data * rsp,bool * isidle,unsigned long * maxj),bool * isidle,unsigned long * maxj)2437 static void force_qs_rnp(struct rcu_state *rsp,
2438 			 int (*f)(struct rcu_data *rsp, bool *isidle,
2439 				  unsigned long *maxj),
2440 			 bool *isidle, unsigned long *maxj)
2441 {
2442 	unsigned long bit;
2443 	int cpu;
2444 	unsigned long flags;
2445 	unsigned long mask;
2446 	struct rcu_node *rnp;
2447 
2448 	rcu_for_each_leaf_node(rsp, rnp) {
2449 		cond_resched_rcu_qs();
2450 		mask = 0;
2451 		raw_spin_lock_irqsave(&rnp->lock, flags);
2452 		smp_mb__after_unlock_lock();
2453 		if (!rcu_gp_in_progress(rsp)) {
2454 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2455 			return;
2456 		}
2457 		if (rnp->qsmask == 0) {
2458 			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2459 			continue;
2460 		}
2461 		cpu = rnp->grplo;
2462 		bit = 1;
2463 		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2464 			if ((rnp->qsmask & bit) != 0) {
2465 				if ((rnp->qsmaskinit & bit) != 0)
2466 					*isidle = false;
2467 				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2468 					mask |= bit;
2469 			}
2470 		}
2471 		if (mask != 0) {
2472 
2473 			/* rcu_report_qs_rnp() releases rnp->lock. */
2474 			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2475 			continue;
2476 		}
2477 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2478 	}
2479 	rnp = rcu_get_root(rsp);
2480 	if (rnp->qsmask == 0) {
2481 		raw_spin_lock_irqsave(&rnp->lock, flags);
2482 		smp_mb__after_unlock_lock();
2483 		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2484 	}
2485 }
2486 
2487 /*
2488  * Force quiescent states on reluctant CPUs, and also detect which
2489  * CPUs are in dyntick-idle mode.
2490  */
force_quiescent_state(struct rcu_state * rsp)2491 static void force_quiescent_state(struct rcu_state *rsp)
2492 {
2493 	unsigned long flags;
2494 	bool ret;
2495 	struct rcu_node *rnp;
2496 	struct rcu_node *rnp_old = NULL;
2497 
2498 	/* Funnel through hierarchy to reduce memory contention. */
2499 	rnp = __this_cpu_read(rsp->rda->mynode);
2500 	for (; rnp != NULL; rnp = rnp->parent) {
2501 		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2502 		      !raw_spin_trylock(&rnp->fqslock);
2503 		if (rnp_old != NULL)
2504 			raw_spin_unlock(&rnp_old->fqslock);
2505 		if (ret) {
2506 			rsp->n_force_qs_lh++;
2507 			return;
2508 		}
2509 		rnp_old = rnp;
2510 	}
2511 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2512 
2513 	/* Reached the root of the rcu_node tree, acquire lock. */
2514 	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2515 	smp_mb__after_unlock_lock();
2516 	raw_spin_unlock(&rnp_old->fqslock);
2517 	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2518 		rsp->n_force_qs_lh++;
2519 		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2520 		return;  /* Someone beat us to it. */
2521 	}
2522 	ACCESS_ONCE(rsp->gp_flags) =
2523 		ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
2524 	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2525 	rcu_gp_kthread_wake(rsp);
2526 }
2527 
2528 /*
2529  * This does the RCU core processing work for the specified rcu_state
2530  * and rcu_data structures.  This may be called only from the CPU to
2531  * whom the rdp belongs.
2532  */
2533 static void
__rcu_process_callbacks(struct rcu_state * rsp)2534 __rcu_process_callbacks(struct rcu_state *rsp)
2535 {
2536 	unsigned long flags;
2537 	bool needwake;
2538 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2539 
2540 	WARN_ON_ONCE(rdp->beenonline == 0);
2541 
2542 	/* Update RCU state based on any recent quiescent states. */
2543 	rcu_check_quiescent_state(rsp, rdp);
2544 
2545 	/* Does this CPU require a not-yet-started grace period? */
2546 	local_irq_save(flags);
2547 	if (cpu_needs_another_gp(rsp, rdp)) {
2548 		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2549 		needwake = rcu_start_gp(rsp);
2550 		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2551 		if (needwake)
2552 			rcu_gp_kthread_wake(rsp);
2553 	} else {
2554 		local_irq_restore(flags);
2555 	}
2556 
2557 	/* If there are callbacks ready, invoke them. */
2558 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2559 		invoke_rcu_callbacks(rsp, rdp);
2560 
2561 	/* Do any needed deferred wakeups of rcuo kthreads. */
2562 	do_nocb_deferred_wakeup(rdp);
2563 }
2564 
2565 /*
2566  * Do RCU core processing for the current CPU.
2567  */
rcu_process_callbacks(struct softirq_action * unused)2568 static void rcu_process_callbacks(struct softirq_action *unused)
2569 {
2570 	struct rcu_state *rsp;
2571 
2572 	if (cpu_is_offline(smp_processor_id()))
2573 		return;
2574 	trace_rcu_utilization(TPS("Start RCU core"));
2575 	for_each_rcu_flavor(rsp)
2576 		__rcu_process_callbacks(rsp);
2577 	trace_rcu_utilization(TPS("End RCU core"));
2578 }
2579 
2580 /*
2581  * Schedule RCU callback invocation.  If the specified type of RCU
2582  * does not support RCU priority boosting, just do a direct call,
2583  * otherwise wake up the per-CPU kernel kthread.  Note that because we
2584  * are running on the current CPU with interrupts disabled, the
2585  * rcu_cpu_kthread_task cannot disappear out from under us.
2586  */
invoke_rcu_callbacks(struct rcu_state * rsp,struct rcu_data * rdp)2587 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2588 {
2589 	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2590 		return;
2591 	if (likely(!rsp->boost)) {
2592 		rcu_do_batch(rsp, rdp);
2593 		return;
2594 	}
2595 	invoke_rcu_callbacks_kthread();
2596 }
2597 
invoke_rcu_core(void)2598 static void invoke_rcu_core(void)
2599 {
2600 	if (cpu_online(smp_processor_id()))
2601 		raise_softirq(RCU_SOFTIRQ);
2602 }
2603 
2604 /*
2605  * Handle any core-RCU processing required by a call_rcu() invocation.
2606  */
__call_rcu_core(struct rcu_state * rsp,struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2607 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2608 			    struct rcu_head *head, unsigned long flags)
2609 {
2610 	bool needwake;
2611 
2612 	/*
2613 	 * If called from an extended quiescent state, invoke the RCU
2614 	 * core in order to force a re-evaluation of RCU's idleness.
2615 	 */
2616 	if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2617 		invoke_rcu_core();
2618 
2619 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2620 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2621 		return;
2622 
2623 	/*
2624 	 * Force the grace period if too many callbacks or too long waiting.
2625 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2626 	 * if some other CPU has recently done so.  Also, don't bother
2627 	 * invoking force_quiescent_state() if the newly enqueued callback
2628 	 * is the only one waiting for a grace period to complete.
2629 	 */
2630 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2631 
2632 		/* Are we ignoring a completed grace period? */
2633 		note_gp_changes(rsp, rdp);
2634 
2635 		/* Start a new grace period if one not already started. */
2636 		if (!rcu_gp_in_progress(rsp)) {
2637 			struct rcu_node *rnp_root = rcu_get_root(rsp);
2638 
2639 			raw_spin_lock(&rnp_root->lock);
2640 			smp_mb__after_unlock_lock();
2641 			needwake = rcu_start_gp(rsp);
2642 			raw_spin_unlock(&rnp_root->lock);
2643 			if (needwake)
2644 				rcu_gp_kthread_wake(rsp);
2645 		} else {
2646 			/* Give the grace period a kick. */
2647 			rdp->blimit = LONG_MAX;
2648 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2649 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2650 				force_quiescent_state(rsp);
2651 			rdp->n_force_qs_snap = rsp->n_force_qs;
2652 			rdp->qlen_last_fqs_check = rdp->qlen;
2653 		}
2654 	}
2655 }
2656 
2657 /*
2658  * RCU callback function to leak a callback.
2659  */
rcu_leak_callback(struct rcu_head * rhp)2660 static void rcu_leak_callback(struct rcu_head *rhp)
2661 {
2662 }
2663 
2664 /*
2665  * Helper function for call_rcu() and friends.  The cpu argument will
2666  * normally be -1, indicating "currently running CPU".  It may specify
2667  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
2668  * is expected to specify a CPU.
2669  */
2670 static void
__call_rcu(struct rcu_head * head,void (* func)(struct rcu_head * rcu),struct rcu_state * rsp,int cpu,bool lazy)2671 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2672 	   struct rcu_state *rsp, int cpu, bool lazy)
2673 {
2674 	unsigned long flags;
2675 	struct rcu_data *rdp;
2676 
2677 	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2678 	if (debug_rcu_head_queue(head)) {
2679 		/* Probable double call_rcu(), so leak the callback. */
2680 		ACCESS_ONCE(head->func) = rcu_leak_callback;
2681 		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2682 		return;
2683 	}
2684 	head->func = func;
2685 	head->next = NULL;
2686 
2687 	/*
2688 	 * Opportunistically note grace-period endings and beginnings.
2689 	 * Note that we might see a beginning right after we see an
2690 	 * end, but never vice versa, since this CPU has to pass through
2691 	 * a quiescent state betweentimes.
2692 	 */
2693 	local_irq_save(flags);
2694 	rdp = this_cpu_ptr(rsp->rda);
2695 
2696 	/* Add the callback to our list. */
2697 	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2698 		int offline;
2699 
2700 		if (cpu != -1)
2701 			rdp = per_cpu_ptr(rsp->rda, cpu);
2702 		offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2703 		WARN_ON_ONCE(offline);
2704 		/* _call_rcu() is illegal on offline CPU; leak the callback. */
2705 		local_irq_restore(flags);
2706 		return;
2707 	}
2708 	ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
2709 	if (lazy)
2710 		rdp->qlen_lazy++;
2711 	else
2712 		rcu_idle_count_callbacks_posted();
2713 	smp_mb();  /* Count before adding callback for rcu_barrier(). */
2714 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
2715 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2716 
2717 	if (__is_kfree_rcu_offset((unsigned long)func))
2718 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2719 					 rdp->qlen_lazy, rdp->qlen);
2720 	else
2721 		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2722 
2723 	/* Go handle any RCU core processing required. */
2724 	__call_rcu_core(rsp, rdp, head, flags);
2725 	local_irq_restore(flags);
2726 }
2727 
2728 /*
2729  * Queue an RCU-sched callback for invocation after a grace period.
2730  */
call_rcu_sched(struct rcu_head * head,void (* func)(struct rcu_head * rcu))2731 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2732 {
2733 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2734 }
2735 EXPORT_SYMBOL_GPL(call_rcu_sched);
2736 
2737 /*
2738  * Queue an RCU callback for invocation after a quicker grace period.
2739  */
call_rcu_bh(struct rcu_head * head,void (* func)(struct rcu_head * rcu))2740 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2741 {
2742 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2743 }
2744 EXPORT_SYMBOL_GPL(call_rcu_bh);
2745 
2746 /*
2747  * Queue an RCU callback for lazy invocation after a grace period.
2748  * This will likely be later named something like "call_rcu_lazy()",
2749  * but this change will require some way of tagging the lazy RCU
2750  * callbacks in the list of pending callbacks. Until then, this
2751  * function may only be called from __kfree_rcu().
2752  */
kfree_call_rcu(struct rcu_head * head,void (* func)(struct rcu_head * rcu))2753 void kfree_call_rcu(struct rcu_head *head,
2754 		    void (*func)(struct rcu_head *rcu))
2755 {
2756 	__call_rcu(head, func, rcu_state_p, -1, 1);
2757 }
2758 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2759 
2760 /*
2761  * Because a context switch is a grace period for RCU-sched and RCU-bh,
2762  * any blocking grace-period wait automatically implies a grace period
2763  * if there is only one CPU online at any point time during execution
2764  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
2765  * occasionally incorrectly indicate that there are multiple CPUs online
2766  * when there was in fact only one the whole time, as this just adds
2767  * some overhead: RCU still operates correctly.
2768  */
rcu_blocking_is_gp(void)2769 static inline int rcu_blocking_is_gp(void)
2770 {
2771 	int ret;
2772 
2773 	might_sleep();  /* Check for RCU read-side critical section. */
2774 	preempt_disable();
2775 	ret = num_online_cpus() <= 1;
2776 	preempt_enable();
2777 	return ret;
2778 }
2779 
2780 /**
2781  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2782  *
2783  * Control will return to the caller some time after a full rcu-sched
2784  * grace period has elapsed, in other words after all currently executing
2785  * rcu-sched read-side critical sections have completed.   These read-side
2786  * critical sections are delimited by rcu_read_lock_sched() and
2787  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
2788  * local_irq_disable(), and so on may be used in place of
2789  * rcu_read_lock_sched().
2790  *
2791  * This means that all preempt_disable code sequences, including NMI and
2792  * non-threaded hardware-interrupt handlers, in progress on entry will
2793  * have completed before this primitive returns.  However, this does not
2794  * guarantee that softirq handlers will have completed, since in some
2795  * kernels, these handlers can run in process context, and can block.
2796  *
2797  * Note that this guarantee implies further memory-ordering guarantees.
2798  * On systems with more than one CPU, when synchronize_sched() returns,
2799  * each CPU is guaranteed to have executed a full memory barrier since the
2800  * end of its last RCU-sched read-side critical section whose beginning
2801  * preceded the call to synchronize_sched().  In addition, each CPU having
2802  * an RCU read-side critical section that extends beyond the return from
2803  * synchronize_sched() is guaranteed to have executed a full memory barrier
2804  * after the beginning of synchronize_sched() and before the beginning of
2805  * that RCU read-side critical section.  Note that these guarantees include
2806  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2807  * that are executing in the kernel.
2808  *
2809  * Furthermore, if CPU A invoked synchronize_sched(), which returned
2810  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2811  * to have executed a full memory barrier during the execution of
2812  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2813  * again only if the system has more than one CPU).
2814  *
2815  * This primitive provides the guarantees made by the (now removed)
2816  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
2817  * guarantees that rcu_read_lock() sections will have completed.
2818  * In "classic RCU", these two guarantees happen to be one and
2819  * the same, but can differ in realtime RCU implementations.
2820  */
synchronize_sched(void)2821 void synchronize_sched(void)
2822 {
2823 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2824 			   !lock_is_held(&rcu_lock_map) &&
2825 			   !lock_is_held(&rcu_sched_lock_map),
2826 			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2827 	if (rcu_blocking_is_gp())
2828 		return;
2829 	if (rcu_expedited)
2830 		synchronize_sched_expedited();
2831 	else
2832 		wait_rcu_gp(call_rcu_sched);
2833 }
2834 EXPORT_SYMBOL_GPL(synchronize_sched);
2835 
2836 /**
2837  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2838  *
2839  * Control will return to the caller some time after a full rcu_bh grace
2840  * period has elapsed, in other words after all currently executing rcu_bh
2841  * read-side critical sections have completed.  RCU read-side critical
2842  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2843  * and may be nested.
2844  *
2845  * See the description of synchronize_sched() for more detailed information
2846  * on memory ordering guarantees.
2847  */
synchronize_rcu_bh(void)2848 void synchronize_rcu_bh(void)
2849 {
2850 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2851 			   !lock_is_held(&rcu_lock_map) &&
2852 			   !lock_is_held(&rcu_sched_lock_map),
2853 			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2854 	if (rcu_blocking_is_gp())
2855 		return;
2856 	if (rcu_expedited)
2857 		synchronize_rcu_bh_expedited();
2858 	else
2859 		wait_rcu_gp(call_rcu_bh);
2860 }
2861 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2862 
2863 /**
2864  * get_state_synchronize_rcu - Snapshot current RCU state
2865  *
2866  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2867  * to determine whether or not a full grace period has elapsed in the
2868  * meantime.
2869  */
get_state_synchronize_rcu(void)2870 unsigned long get_state_synchronize_rcu(void)
2871 {
2872 	/*
2873 	 * Any prior manipulation of RCU-protected data must happen
2874 	 * before the load from ->gpnum.
2875 	 */
2876 	smp_mb();  /* ^^^ */
2877 
2878 	/*
2879 	 * Make sure this load happens before the purportedly
2880 	 * time-consuming work between get_state_synchronize_rcu()
2881 	 * and cond_synchronize_rcu().
2882 	 */
2883 	return smp_load_acquire(&rcu_state_p->gpnum);
2884 }
2885 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2886 
2887 /**
2888  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2889  *
2890  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2891  *
2892  * If a full RCU grace period has elapsed since the earlier call to
2893  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2894  * synchronize_rcu() to wait for a full grace period.
2895  *
2896  * Yes, this function does not take counter wrap into account.  But
2897  * counter wrap is harmless.  If the counter wraps, we have waited for
2898  * more than 2 billion grace periods (and way more on a 64-bit system!),
2899  * so waiting for one additional grace period should be just fine.
2900  */
cond_synchronize_rcu(unsigned long oldstate)2901 void cond_synchronize_rcu(unsigned long oldstate)
2902 {
2903 	unsigned long newstate;
2904 
2905 	/*
2906 	 * Ensure that this load happens before any RCU-destructive
2907 	 * actions the caller might carry out after we return.
2908 	 */
2909 	newstate = smp_load_acquire(&rcu_state_p->completed);
2910 	if (ULONG_CMP_GE(oldstate, newstate))
2911 		synchronize_rcu();
2912 }
2913 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2914 
synchronize_sched_expedited_cpu_stop(void * data)2915 static int synchronize_sched_expedited_cpu_stop(void *data)
2916 {
2917 	/*
2918 	 * There must be a full memory barrier on each affected CPU
2919 	 * between the time that try_stop_cpus() is called and the
2920 	 * time that it returns.
2921 	 *
2922 	 * In the current initial implementation of cpu_stop, the
2923 	 * above condition is already met when the control reaches
2924 	 * this point and the following smp_mb() is not strictly
2925 	 * necessary.  Do smp_mb() anyway for documentation and
2926 	 * robustness against future implementation changes.
2927 	 */
2928 	smp_mb(); /* See above comment block. */
2929 	return 0;
2930 }
2931 
2932 /**
2933  * synchronize_sched_expedited - Brute-force RCU-sched grace period
2934  *
2935  * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2936  * approach to force the grace period to end quickly.  This consumes
2937  * significant time on all CPUs and is unfriendly to real-time workloads,
2938  * so is thus not recommended for any sort of common-case code.  In fact,
2939  * if you are using synchronize_sched_expedited() in a loop, please
2940  * restructure your code to batch your updates, and then use a single
2941  * synchronize_sched() instead.
2942  *
2943  * This implementation can be thought of as an application of ticket
2944  * locking to RCU, with sync_sched_expedited_started and
2945  * sync_sched_expedited_done taking on the roles of the halves
2946  * of the ticket-lock word.  Each task atomically increments
2947  * sync_sched_expedited_started upon entry, snapshotting the old value,
2948  * then attempts to stop all the CPUs.  If this succeeds, then each
2949  * CPU will have executed a context switch, resulting in an RCU-sched
2950  * grace period.  We are then done, so we use atomic_cmpxchg() to
2951  * update sync_sched_expedited_done to match our snapshot -- but
2952  * only if someone else has not already advanced past our snapshot.
2953  *
2954  * On the other hand, if try_stop_cpus() fails, we check the value
2955  * of sync_sched_expedited_done.  If it has advanced past our
2956  * initial snapshot, then someone else must have forced a grace period
2957  * some time after we took our snapshot.  In this case, our work is
2958  * done for us, and we can simply return.  Otherwise, we try again,
2959  * but keep our initial snapshot for purposes of checking for someone
2960  * doing our work for us.
2961  *
2962  * If we fail too many times in a row, we fall back to synchronize_sched().
2963  */
synchronize_sched_expedited(void)2964 void synchronize_sched_expedited(void)
2965 {
2966 	long firstsnap, s, snap;
2967 	int trycount = 0;
2968 	struct rcu_state *rsp = &rcu_sched_state;
2969 
2970 	/*
2971 	 * If we are in danger of counter wrap, just do synchronize_sched().
2972 	 * By allowing sync_sched_expedited_started to advance no more than
2973 	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2974 	 * that more than 3.5 billion CPUs would be required to force a
2975 	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
2976 	 * course be required on a 64-bit system.
2977 	 */
2978 	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2979 			 (ulong)atomic_long_read(&rsp->expedited_done) +
2980 			 ULONG_MAX / 8)) {
2981 		synchronize_sched();
2982 		atomic_long_inc(&rsp->expedited_wrap);
2983 		return;
2984 	}
2985 
2986 	/*
2987 	 * Take a ticket.  Note that atomic_inc_return() implies a
2988 	 * full memory barrier.
2989 	 */
2990 	snap = atomic_long_inc_return(&rsp->expedited_start);
2991 	firstsnap = snap;
2992 	if (!try_get_online_cpus()) {
2993 		/* CPU hotplug operation in flight, fall back to normal GP. */
2994 		wait_rcu_gp(call_rcu_sched);
2995 		atomic_long_inc(&rsp->expedited_normal);
2996 		return;
2997 	}
2998 	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2999 
3000 	/*
3001 	 * Each pass through the following loop attempts to force a
3002 	 * context switch on each CPU.
3003 	 */
3004 	while (try_stop_cpus(cpu_online_mask,
3005 			     synchronize_sched_expedited_cpu_stop,
3006 			     NULL) == -EAGAIN) {
3007 		put_online_cpus();
3008 		atomic_long_inc(&rsp->expedited_tryfail);
3009 
3010 		/* Check to see if someone else did our work for us. */
3011 		s = atomic_long_read(&rsp->expedited_done);
3012 		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3013 			/* ensure test happens before caller kfree */
3014 			smp_mb__before_atomic(); /* ^^^ */
3015 			atomic_long_inc(&rsp->expedited_workdone1);
3016 			return;
3017 		}
3018 
3019 		/* No joy, try again later.  Or just synchronize_sched(). */
3020 		if (trycount++ < 10) {
3021 			udelay(trycount * num_online_cpus());
3022 		} else {
3023 			wait_rcu_gp(call_rcu_sched);
3024 			atomic_long_inc(&rsp->expedited_normal);
3025 			return;
3026 		}
3027 
3028 		/* Recheck to see if someone else did our work for us. */
3029 		s = atomic_long_read(&rsp->expedited_done);
3030 		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3031 			/* ensure test happens before caller kfree */
3032 			smp_mb__before_atomic(); /* ^^^ */
3033 			atomic_long_inc(&rsp->expedited_workdone2);
3034 			return;
3035 		}
3036 
3037 		/*
3038 		 * Refetching sync_sched_expedited_started allows later
3039 		 * callers to piggyback on our grace period.  We retry
3040 		 * after they started, so our grace period works for them,
3041 		 * and they started after our first try, so their grace
3042 		 * period works for us.
3043 		 */
3044 		if (!try_get_online_cpus()) {
3045 			/* CPU hotplug operation in flight, use normal GP. */
3046 			wait_rcu_gp(call_rcu_sched);
3047 			atomic_long_inc(&rsp->expedited_normal);
3048 			return;
3049 		}
3050 		snap = atomic_long_read(&rsp->expedited_start);
3051 		smp_mb(); /* ensure read is before try_stop_cpus(). */
3052 	}
3053 	atomic_long_inc(&rsp->expedited_stoppedcpus);
3054 
3055 	/*
3056 	 * Everyone up to our most recent fetch is covered by our grace
3057 	 * period.  Update the counter, but only if our work is still
3058 	 * relevant -- which it won't be if someone who started later
3059 	 * than we did already did their update.
3060 	 */
3061 	do {
3062 		atomic_long_inc(&rsp->expedited_done_tries);
3063 		s = atomic_long_read(&rsp->expedited_done);
3064 		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3065 			/* ensure test happens before caller kfree */
3066 			smp_mb__before_atomic(); /* ^^^ */
3067 			atomic_long_inc(&rsp->expedited_done_lost);
3068 			break;
3069 		}
3070 	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3071 	atomic_long_inc(&rsp->expedited_done_exit);
3072 
3073 	put_online_cpus();
3074 }
3075 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3076 
3077 /*
3078  * Check to see if there is any immediate RCU-related work to be done
3079  * by the current CPU, for the specified type of RCU, returning 1 if so.
3080  * The checks are in order of increasing expense: checks that can be
3081  * carried out against CPU-local state are performed first.  However,
3082  * we must check for CPU stalls first, else we might not get a chance.
3083  */
__rcu_pending(struct rcu_state * rsp,struct rcu_data * rdp)3084 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3085 {
3086 	struct rcu_node *rnp = rdp->mynode;
3087 
3088 	rdp->n_rcu_pending++;
3089 
3090 	/* Check for CPU stalls, if enabled. */
3091 	check_cpu_stall(rsp, rdp);
3092 
3093 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3094 	if (rcu_nohz_full_cpu(rsp))
3095 		return 0;
3096 
3097 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3098 	if (rcu_scheduler_fully_active &&
3099 	    rdp->qs_pending && !rdp->passed_quiesce) {
3100 		rdp->n_rp_qs_pending++;
3101 	} else if (rdp->qs_pending && rdp->passed_quiesce) {
3102 		rdp->n_rp_report_qs++;
3103 		return 1;
3104 	}
3105 
3106 	/* Does this CPU have callbacks ready to invoke? */
3107 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3108 		rdp->n_rp_cb_ready++;
3109 		return 1;
3110 	}
3111 
3112 	/* Has RCU gone idle with this CPU needing another grace period? */
3113 	if (cpu_needs_another_gp(rsp, rdp)) {
3114 		rdp->n_rp_cpu_needs_gp++;
3115 		return 1;
3116 	}
3117 
3118 	/* Has another RCU grace period completed?  */
3119 	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3120 		rdp->n_rp_gp_completed++;
3121 		return 1;
3122 	}
3123 
3124 	/* Has a new RCU grace period started? */
3125 	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
3126 		rdp->n_rp_gp_started++;
3127 		return 1;
3128 	}
3129 
3130 	/* Does this CPU need a deferred NOCB wakeup? */
3131 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3132 		rdp->n_rp_nocb_defer_wakeup++;
3133 		return 1;
3134 	}
3135 
3136 	/* nothing to do */
3137 	rdp->n_rp_need_nothing++;
3138 	return 0;
3139 }
3140 
3141 /*
3142  * Check to see if there is any immediate RCU-related work to be done
3143  * by the current CPU, returning 1 if so.  This function is part of the
3144  * RCU implementation; it is -not- an exported member of the RCU API.
3145  */
rcu_pending(int cpu)3146 static int rcu_pending(int cpu)
3147 {
3148 	struct rcu_state *rsp;
3149 
3150 	for_each_rcu_flavor(rsp)
3151 		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
3152 			return 1;
3153 	return 0;
3154 }
3155 
3156 /*
3157  * Return true if the specified CPU has any callback.  If all_lazy is
3158  * non-NULL, store an indication of whether all callbacks are lazy.
3159  * (If there are no callbacks, all of them are deemed to be lazy.)
3160  */
rcu_cpu_has_callbacks(int cpu,bool * all_lazy)3161 static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
3162 {
3163 	bool al = true;
3164 	bool hc = false;
3165 	struct rcu_data *rdp;
3166 	struct rcu_state *rsp;
3167 
3168 	for_each_rcu_flavor(rsp) {
3169 		rdp = per_cpu_ptr(rsp->rda, cpu);
3170 		if (!rdp->nxtlist)
3171 			continue;
3172 		hc = true;
3173 		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3174 			al = false;
3175 			break;
3176 		}
3177 	}
3178 	if (all_lazy)
3179 		*all_lazy = al;
3180 	return hc;
3181 }
3182 
3183 /*
3184  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3185  * the compiler is expected to optimize this away.
3186  */
_rcu_barrier_trace(struct rcu_state * rsp,const char * s,int cpu,unsigned long done)3187 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3188 			       int cpu, unsigned long done)
3189 {
3190 	trace_rcu_barrier(rsp->name, s, cpu,
3191 			  atomic_read(&rsp->barrier_cpu_count), done);
3192 }
3193 
3194 /*
3195  * RCU callback function for _rcu_barrier().  If we are last, wake
3196  * up the task executing _rcu_barrier().
3197  */
rcu_barrier_callback(struct rcu_head * rhp)3198 static void rcu_barrier_callback(struct rcu_head *rhp)
3199 {
3200 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3201 	struct rcu_state *rsp = rdp->rsp;
3202 
3203 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3204 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3205 		complete(&rsp->barrier_completion);
3206 	} else {
3207 		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3208 	}
3209 }
3210 
3211 /*
3212  * Called with preemption disabled, and from cross-cpu IRQ context.
3213  */
rcu_barrier_func(void * type)3214 static void rcu_barrier_func(void *type)
3215 {
3216 	struct rcu_state *rsp = type;
3217 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3218 
3219 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3220 	atomic_inc(&rsp->barrier_cpu_count);
3221 	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3222 }
3223 
3224 /*
3225  * Orchestrate the specified type of RCU barrier, waiting for all
3226  * RCU callbacks of the specified type to complete.
3227  */
_rcu_barrier(struct rcu_state * rsp)3228 static void _rcu_barrier(struct rcu_state *rsp)
3229 {
3230 	int cpu;
3231 	struct rcu_data *rdp;
3232 	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3233 	unsigned long snap_done;
3234 
3235 	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3236 
3237 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3238 	mutex_lock(&rsp->barrier_mutex);
3239 
3240 	/*
3241 	 * Ensure that all prior references, including to ->n_barrier_done,
3242 	 * are ordered before the _rcu_barrier() machinery.
3243 	 */
3244 	smp_mb();  /* See above block comment. */
3245 
3246 	/*
3247 	 * Recheck ->n_barrier_done to see if others did our work for us.
3248 	 * This means checking ->n_barrier_done for an even-to-odd-to-even
3249 	 * transition.  The "if" expression below therefore rounds the old
3250 	 * value up to the next even number and adds two before comparing.
3251 	 */
3252 	snap_done = rsp->n_barrier_done;
3253 	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3254 
3255 	/*
3256 	 * If the value in snap is odd, we needed to wait for the current
3257 	 * rcu_barrier() to complete, then wait for the next one, in other
3258 	 * words, we need the value of snap_done to be three larger than
3259 	 * the value of snap.  On the other hand, if the value in snap is
3260 	 * even, we only had to wait for the next rcu_barrier() to complete,
3261 	 * in other words, we need the value of snap_done to be only two
3262 	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
3263 	 * this for us (thank you, Linus!).
3264 	 */
3265 	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3266 		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3267 		smp_mb(); /* caller's subsequent code after above check. */
3268 		mutex_unlock(&rsp->barrier_mutex);
3269 		return;
3270 	}
3271 
3272 	/*
3273 	 * Increment ->n_barrier_done to avoid duplicate work.  Use
3274 	 * ACCESS_ONCE() to prevent the compiler from speculating
3275 	 * the increment to precede the early-exit check.
3276 	 */
3277 	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3278 	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3279 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3280 	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3281 
3282 	/*
3283 	 * Initialize the count to one rather than to zero in order to
3284 	 * avoid a too-soon return to zero in case of a short grace period
3285 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3286 	 * to ensure that no offline CPU has callbacks queued.
3287 	 */
3288 	init_completion(&rsp->barrier_completion);
3289 	atomic_set(&rsp->barrier_cpu_count, 1);
3290 	get_online_cpus();
3291 
3292 	/*
3293 	 * Force each CPU with callbacks to register a new callback.
3294 	 * When that callback is invoked, we will know that all of the
3295 	 * corresponding CPU's preceding callbacks have been invoked.
3296 	 */
3297 	for_each_possible_cpu(cpu) {
3298 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3299 			continue;
3300 		rdp = per_cpu_ptr(rsp->rda, cpu);
3301 		if (rcu_is_nocb_cpu(cpu)) {
3302 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3303 				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3304 						   rsp->n_barrier_done);
3305 			} else {
3306 				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3307 						   rsp->n_barrier_done);
3308 				atomic_inc(&rsp->barrier_cpu_count);
3309 				__call_rcu(&rdp->barrier_head,
3310 					   rcu_barrier_callback, rsp, cpu, 0);
3311 			}
3312 		} else if (ACCESS_ONCE(rdp->qlen)) {
3313 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3314 					   rsp->n_barrier_done);
3315 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3316 		} else {
3317 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3318 					   rsp->n_barrier_done);
3319 		}
3320 	}
3321 	put_online_cpus();
3322 
3323 	/*
3324 	 * Now that we have an rcu_barrier_callback() callback on each
3325 	 * CPU, and thus each counted, remove the initial count.
3326 	 */
3327 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3328 		complete(&rsp->barrier_completion);
3329 
3330 	/* Increment ->n_barrier_done to prevent duplicate work. */
3331 	smp_mb(); /* Keep increment after above mechanism. */
3332 	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3333 	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3334 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3335 	smp_mb(); /* Keep increment before caller's subsequent code. */
3336 
3337 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3338 	wait_for_completion(&rsp->barrier_completion);
3339 
3340 	/* Other rcu_barrier() invocations can now safely proceed. */
3341 	mutex_unlock(&rsp->barrier_mutex);
3342 }
3343 
3344 /**
3345  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3346  */
rcu_barrier_bh(void)3347 void rcu_barrier_bh(void)
3348 {
3349 	_rcu_barrier(&rcu_bh_state);
3350 }
3351 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3352 
3353 /**
3354  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3355  */
rcu_barrier_sched(void)3356 void rcu_barrier_sched(void)
3357 {
3358 	_rcu_barrier(&rcu_sched_state);
3359 }
3360 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3361 
3362 /*
3363  * Do boot-time initialization of a CPU's per-CPU RCU data.
3364  */
3365 static void __init
rcu_boot_init_percpu_data(int cpu,struct rcu_state * rsp)3366 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3367 {
3368 	unsigned long flags;
3369 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3370 	struct rcu_node *rnp = rcu_get_root(rsp);
3371 
3372 	/* Set up local state, ensuring consistent view of global state. */
3373 	raw_spin_lock_irqsave(&rnp->lock, flags);
3374 	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3375 	init_callback_list(rdp);
3376 	rdp->qlen_lazy = 0;
3377 	ACCESS_ONCE(rdp->qlen) = 0;
3378 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3379 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3380 	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3381 	rdp->cpu = cpu;
3382 	rdp->rsp = rsp;
3383 	rcu_boot_init_nocb_percpu_data(rdp);
3384 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3385 }
3386 
3387 /*
3388  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3389  * offline event can be happening at a given time.  Note also that we
3390  * can accept some slop in the rsp->completed access due to the fact
3391  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3392  */
3393 static void
rcu_init_percpu_data(int cpu,struct rcu_state * rsp)3394 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3395 {
3396 	unsigned long flags;
3397 	unsigned long mask;
3398 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3399 	struct rcu_node *rnp = rcu_get_root(rsp);
3400 
3401 	/* Exclude new grace periods. */
3402 	mutex_lock(&rsp->onoff_mutex);
3403 
3404 	/* Set up local state, ensuring consistent view of global state. */
3405 	raw_spin_lock_irqsave(&rnp->lock, flags);
3406 	rdp->beenonline = 1;	 /* We have now been online. */
3407 	rdp->qlen_last_fqs_check = 0;
3408 	rdp->n_force_qs_snap = rsp->n_force_qs;
3409 	rdp->blimit = blimit;
3410 	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3411 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3412 	rcu_sysidle_init_percpu_data(rdp->dynticks);
3413 	atomic_set(&rdp->dynticks->dynticks,
3414 		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3415 	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3416 
3417 	/* Add CPU to rcu_node bitmasks. */
3418 	rnp = rdp->mynode;
3419 	mask = rdp->grpmask;
3420 	do {
3421 		/* Exclude any attempts to start a new GP on small systems. */
3422 		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
3423 		rnp->qsmaskinit |= mask;
3424 		mask = rnp->grpmask;
3425 		if (rnp == rdp->mynode) {
3426 			/*
3427 			 * If there is a grace period in progress, we will
3428 			 * set up to wait for it next time we run the
3429 			 * RCU core code.
3430 			 */
3431 			rdp->gpnum = rnp->completed;
3432 			rdp->completed = rnp->completed;
3433 			rdp->passed_quiesce = 0;
3434 			rdp->qs_pending = 0;
3435 			trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3436 		}
3437 		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3438 		rnp = rnp->parent;
3439 	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
3440 	local_irq_restore(flags);
3441 
3442 	mutex_unlock(&rsp->onoff_mutex);
3443 }
3444 
rcu_prepare_cpu(int cpu)3445 static void rcu_prepare_cpu(int cpu)
3446 {
3447 	struct rcu_state *rsp;
3448 
3449 	for_each_rcu_flavor(rsp)
3450 		rcu_init_percpu_data(cpu, rsp);
3451 }
3452 
3453 /*
3454  * Handle CPU online/offline notification events.
3455  */
rcu_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)3456 static int rcu_cpu_notify(struct notifier_block *self,
3457 				    unsigned long action, void *hcpu)
3458 {
3459 	long cpu = (long)hcpu;
3460 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3461 	struct rcu_node *rnp = rdp->mynode;
3462 	struct rcu_state *rsp;
3463 
3464 	trace_rcu_utilization(TPS("Start CPU hotplug"));
3465 	switch (action) {
3466 	case CPU_UP_PREPARE:
3467 	case CPU_UP_PREPARE_FROZEN:
3468 		rcu_prepare_cpu(cpu);
3469 		rcu_prepare_kthreads(cpu);
3470 		rcu_spawn_all_nocb_kthreads(cpu);
3471 		break;
3472 	case CPU_ONLINE:
3473 	case CPU_DOWN_FAILED:
3474 		rcu_boost_kthread_setaffinity(rnp, -1);
3475 		break;
3476 	case CPU_DOWN_PREPARE:
3477 		rcu_boost_kthread_setaffinity(rnp, cpu);
3478 		break;
3479 	case CPU_DYING:
3480 	case CPU_DYING_FROZEN:
3481 		for_each_rcu_flavor(rsp)
3482 			rcu_cleanup_dying_cpu(rsp);
3483 		break;
3484 	case CPU_DEAD:
3485 	case CPU_DEAD_FROZEN:
3486 	case CPU_UP_CANCELED:
3487 	case CPU_UP_CANCELED_FROZEN:
3488 		for_each_rcu_flavor(rsp)
3489 			rcu_cleanup_dead_cpu(cpu, rsp);
3490 		break;
3491 	default:
3492 		break;
3493 	}
3494 	trace_rcu_utilization(TPS("End CPU hotplug"));
3495 	return NOTIFY_OK;
3496 }
3497 
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)3498 static int rcu_pm_notify(struct notifier_block *self,
3499 			 unsigned long action, void *hcpu)
3500 {
3501 	switch (action) {
3502 	case PM_HIBERNATION_PREPARE:
3503 	case PM_SUSPEND_PREPARE:
3504 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3505 			rcu_expedited = 1;
3506 		break;
3507 	case PM_POST_HIBERNATION:
3508 	case PM_POST_SUSPEND:
3509 		rcu_expedited = 0;
3510 		break;
3511 	default:
3512 		break;
3513 	}
3514 	return NOTIFY_OK;
3515 }
3516 
3517 /*
3518  * Spawn the kthreads that handle each RCU flavor's grace periods.
3519  */
rcu_spawn_gp_kthread(void)3520 static int __init rcu_spawn_gp_kthread(void)
3521 {
3522 	unsigned long flags;
3523 	struct rcu_node *rnp;
3524 	struct rcu_state *rsp;
3525 	struct task_struct *t;
3526 
3527 	rcu_scheduler_fully_active = 1;
3528 	for_each_rcu_flavor(rsp) {
3529 		t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3530 		BUG_ON(IS_ERR(t));
3531 		rnp = rcu_get_root(rsp);
3532 		raw_spin_lock_irqsave(&rnp->lock, flags);
3533 		rsp->gp_kthread = t;
3534 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
3535 	}
3536 	rcu_spawn_nocb_kthreads();
3537 	rcu_spawn_boost_kthreads();
3538 	return 0;
3539 }
3540 early_initcall(rcu_spawn_gp_kthread);
3541 
3542 /*
3543  * This function is invoked towards the end of the scheduler's initialization
3544  * process.  Before this is called, the idle task might contain
3545  * RCU read-side critical sections (during which time, this idle
3546  * task is booting the system).  After this function is called, the
3547  * idle tasks are prohibited from containing RCU read-side critical
3548  * sections.  This function also enables RCU lockdep checking.
3549  */
rcu_scheduler_starting(void)3550 void rcu_scheduler_starting(void)
3551 {
3552 	WARN_ON(num_online_cpus() != 1);
3553 	WARN_ON(nr_context_switches() > 0);
3554 	rcu_scheduler_active = 1;
3555 }
3556 
3557 /*
3558  * Compute the per-level fanout, either using the exact fanout specified
3559  * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3560  */
3561 #ifdef CONFIG_RCU_FANOUT_EXACT
rcu_init_levelspread(struct rcu_state * rsp)3562 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3563 {
3564 	int i;
3565 
3566 	rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3567 	for (i = rcu_num_lvls - 2; i >= 0; i--)
3568 		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3569 }
3570 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
rcu_init_levelspread(struct rcu_state * rsp)3571 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3572 {
3573 	int ccur;
3574 	int cprv;
3575 	int i;
3576 
3577 	cprv = nr_cpu_ids;
3578 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3579 		ccur = rsp->levelcnt[i];
3580 		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3581 		cprv = ccur;
3582 	}
3583 }
3584 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3585 
3586 /*
3587  * Helper function for rcu_init() that initializes one rcu_state structure.
3588  */
rcu_init_one(struct rcu_state * rsp,struct rcu_data __percpu * rda)3589 static void __init rcu_init_one(struct rcu_state *rsp,
3590 		struct rcu_data __percpu *rda)
3591 {
3592 	static const char * const buf[] = {
3593 		"rcu_node_0",
3594 		"rcu_node_1",
3595 		"rcu_node_2",
3596 		"rcu_node_3" };  /* Match MAX_RCU_LVLS */
3597 	static const char * const fqs[] = {
3598 		"rcu_node_fqs_0",
3599 		"rcu_node_fqs_1",
3600 		"rcu_node_fqs_2",
3601 		"rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3602 	static u8 fl_mask = 0x1;
3603 	int cpustride = 1;
3604 	int i;
3605 	int j;
3606 	struct rcu_node *rnp;
3607 
3608 	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3609 
3610 	/* Silence gcc 4.8 warning about array index out of range. */
3611 	if (rcu_num_lvls > RCU_NUM_LVLS)
3612 		panic("rcu_init_one: rcu_num_lvls overflow");
3613 
3614 	/* Initialize the level-tracking arrays. */
3615 
3616 	for (i = 0; i < rcu_num_lvls; i++)
3617 		rsp->levelcnt[i] = num_rcu_lvl[i];
3618 	for (i = 1; i < rcu_num_lvls; i++)
3619 		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3620 	rcu_init_levelspread(rsp);
3621 	rsp->flavor_mask = fl_mask;
3622 	fl_mask <<= 1;
3623 
3624 	/* Initialize the elements themselves, starting from the leaves. */
3625 
3626 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3627 		cpustride *= rsp->levelspread[i];
3628 		rnp = rsp->level[i];
3629 		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3630 			raw_spin_lock_init(&rnp->lock);
3631 			lockdep_set_class_and_name(&rnp->lock,
3632 						   &rcu_node_class[i], buf[i]);
3633 			raw_spin_lock_init(&rnp->fqslock);
3634 			lockdep_set_class_and_name(&rnp->fqslock,
3635 						   &rcu_fqs_class[i], fqs[i]);
3636 			rnp->gpnum = rsp->gpnum;
3637 			rnp->completed = rsp->completed;
3638 			rnp->qsmask = 0;
3639 			rnp->qsmaskinit = 0;
3640 			rnp->grplo = j * cpustride;
3641 			rnp->grphi = (j + 1) * cpustride - 1;
3642 			if (rnp->grphi >= nr_cpu_ids)
3643 				rnp->grphi = nr_cpu_ids - 1;
3644 			if (i == 0) {
3645 				rnp->grpnum = 0;
3646 				rnp->grpmask = 0;
3647 				rnp->parent = NULL;
3648 			} else {
3649 				rnp->grpnum = j % rsp->levelspread[i - 1];
3650 				rnp->grpmask = 1UL << rnp->grpnum;
3651 				rnp->parent = rsp->level[i - 1] +
3652 					      j / rsp->levelspread[i - 1];
3653 			}
3654 			rnp->level = i;
3655 			INIT_LIST_HEAD(&rnp->blkd_tasks);
3656 			rcu_init_one_nocb(rnp);
3657 		}
3658 	}
3659 
3660 	rsp->rda = rda;
3661 	init_waitqueue_head(&rsp->gp_wq);
3662 	rnp = rsp->level[rcu_num_lvls - 1];
3663 	for_each_possible_cpu(i) {
3664 		while (i > rnp->grphi)
3665 			rnp++;
3666 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3667 		rcu_boot_init_percpu_data(i, rsp);
3668 	}
3669 	list_add(&rsp->flavors, &rcu_struct_flavors);
3670 }
3671 
3672 /*
3673  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3674  * replace the definitions in tree.h because those are needed to size
3675  * the ->node array in the rcu_state structure.
3676  */
rcu_init_geometry(void)3677 static void __init rcu_init_geometry(void)
3678 {
3679 	ulong d;
3680 	int i;
3681 	int j;
3682 	int n = nr_cpu_ids;
3683 	int rcu_capacity[MAX_RCU_LVLS + 1];
3684 
3685 	/*
3686 	 * Initialize any unspecified boot parameters.
3687 	 * The default values of jiffies_till_first_fqs and
3688 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3689 	 * value, which is a function of HZ, then adding one for each
3690 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3691 	 */
3692 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3693 	if (jiffies_till_first_fqs == ULONG_MAX)
3694 		jiffies_till_first_fqs = d;
3695 	if (jiffies_till_next_fqs == ULONG_MAX)
3696 		jiffies_till_next_fqs = d;
3697 
3698 	/* If the compile-time values are accurate, just leave. */
3699 	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3700 	    nr_cpu_ids == NR_CPUS)
3701 		return;
3702 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3703 		rcu_fanout_leaf, nr_cpu_ids);
3704 
3705 	/*
3706 	 * Compute number of nodes that can be handled an rcu_node tree
3707 	 * with the given number of levels.  Setting rcu_capacity[0] makes
3708 	 * some of the arithmetic easier.
3709 	 */
3710 	rcu_capacity[0] = 1;
3711 	rcu_capacity[1] = rcu_fanout_leaf;
3712 	for (i = 2; i <= MAX_RCU_LVLS; i++)
3713 		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3714 
3715 	/*
3716 	 * The boot-time rcu_fanout_leaf parameter is only permitted
3717 	 * to increase the leaf-level fanout, not decrease it.  Of course,
3718 	 * the leaf-level fanout cannot exceed the number of bits in
3719 	 * the rcu_node masks.  Finally, the tree must be able to accommodate
3720 	 * the configured number of CPUs.  Complain and fall back to the
3721 	 * compile-time values if these limits are exceeded.
3722 	 */
3723 	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3724 	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3725 	    n > rcu_capacity[MAX_RCU_LVLS]) {
3726 		WARN_ON(1);
3727 		return;
3728 	}
3729 
3730 	/* Calculate the number of rcu_nodes at each level of the tree. */
3731 	for (i = 1; i <= MAX_RCU_LVLS; i++)
3732 		if (n <= rcu_capacity[i]) {
3733 			for (j = 0; j <= i; j++)
3734 				num_rcu_lvl[j] =
3735 					DIV_ROUND_UP(n, rcu_capacity[i - j]);
3736 			rcu_num_lvls = i;
3737 			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3738 				num_rcu_lvl[j] = 0;
3739 			break;
3740 		}
3741 
3742 	/* Calculate the total number of rcu_node structures. */
3743 	rcu_num_nodes = 0;
3744 	for (i = 0; i <= MAX_RCU_LVLS; i++)
3745 		rcu_num_nodes += num_rcu_lvl[i];
3746 	rcu_num_nodes -= n;
3747 }
3748 
rcu_init(void)3749 void __init rcu_init(void)
3750 {
3751 	int cpu;
3752 
3753 	rcu_bootup_announce();
3754 	rcu_init_geometry();
3755 	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3756 	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3757 	__rcu_init_preempt();
3758 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3759 
3760 	/*
3761 	 * We don't need protection against CPU-hotplug here because
3762 	 * this is called early in boot, before either interrupts
3763 	 * or the scheduler are operational.
3764 	 */
3765 	cpu_notifier(rcu_cpu_notify, 0);
3766 	pm_notifier(rcu_pm_notify, 0);
3767 	for_each_online_cpu(cpu)
3768 		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3769 }
3770 
3771 #include "tree_plugin.h"
3772