• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 #include <uapi/linux/sched.h>
5 
6 #include <linux/sched/prio.h>
7 
8 
9 struct sched_param {
10 	int sched_priority;
11 };
12 
13 #include <asm/param.h>	/* for HZ */
14 
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt_mask.h>
29 
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33 
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48 
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/kcov.h>
55 #include <linux/task_io_accounting.h>
56 #include <linux/latencytop.h>
57 #include <linux/cred.h>
58 #include <linux/llist.h>
59 #include <linux/uidgid.h>
60 #include <linux/gfp.h>
61 #include <linux/magic.h>
62 
63 #include <asm/processor.h>
64 
65 #define SCHED_ATTR_SIZE_VER0	48	/* sizeof first published struct */
66 
67 /*
68  * Extended scheduling parameters data structure.
69  *
70  * This is needed because the original struct sched_param can not be
71  * altered without introducing ABI issues with legacy applications
72  * (e.g., in sched_getparam()).
73  *
74  * However, the possibility of specifying more than just a priority for
75  * the tasks may be useful for a wide variety of application fields, e.g.,
76  * multimedia, streaming, automation and control, and many others.
77  *
78  * This variant (sched_attr) is meant at describing a so-called
79  * sporadic time-constrained task. In such model a task is specified by:
80  *  - the activation period or minimum instance inter-arrival time;
81  *  - the maximum (or average, depending on the actual scheduling
82  *    discipline) computation time of all instances, a.k.a. runtime;
83  *  - the deadline (relative to the actual activation time) of each
84  *    instance.
85  * Very briefly, a periodic (sporadic) task asks for the execution of
86  * some specific computation --which is typically called an instance--
87  * (at most) every period. Moreover, each instance typically lasts no more
88  * than the runtime and must be completed by time instant t equal to
89  * the instance activation time + the deadline.
90  *
91  * This is reflected by the actual fields of the sched_attr structure:
92  *
93  *  @size		size of the structure, for fwd/bwd compat.
94  *
95  *  @sched_policy	task's scheduling policy
96  *  @sched_flags	for customizing the scheduler behaviour
97  *  @sched_nice		task's nice value      (SCHED_NORMAL/BATCH)
98  *  @sched_priority	task's static priority (SCHED_FIFO/RR)
99  *  @sched_deadline	representative of the task's deadline
100  *  @sched_runtime	representative of the task's runtime
101  *  @sched_period	representative of the task's period
102  *
103  * Given this task model, there are a multiplicity of scheduling algorithms
104  * and policies, that can be used to ensure all the tasks will make their
105  * timing constraints.
106  *
107  * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108  * only user of this new interface. More information about the algorithm
109  * available in the scheduling class file or in Documentation/.
110  */
111 struct sched_attr {
112 	u32 size;
113 
114 	u32 sched_policy;
115 	u64 sched_flags;
116 
117 	/* SCHED_NORMAL, SCHED_BATCH */
118 	s32 sched_nice;
119 
120 	/* SCHED_FIFO, SCHED_RR */
121 	u32 sched_priority;
122 
123 	/* SCHED_DEADLINE */
124 	u64 sched_runtime;
125 	u64 sched_deadline;
126 	u64 sched_period;
127 };
128 
129 struct exec_domain;
130 struct futex_pi_state;
131 struct robust_list_head;
132 struct bio_list;
133 struct fs_struct;
134 struct perf_event_context;
135 struct blk_plug;
136 struct filename;
137 
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141 
142 /*
143  * These are the constant used to fake the fixed-point load-average
144  * counting. Some notes:
145  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
146  *    a load-average precision of 10 bits integer + 11 bits fractional
147  *  - if you want to count load-averages more often, you need more
148  *    precision, or rounding will get you. With 2-second counting freq,
149  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
150  *    11 bit fractions.
151  */
152 extern unsigned long avenrun[];		/* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154 
155 #define FSHIFT		11		/* nr of bits of precision */
156 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
157 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
158 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5		2014		/* 1/exp(5sec/5min) */
160 #define EXP_15		2037		/* 1/exp(5sec/15min) */
161 
162 #define CALC_LOAD(load,exp,n) \
163 	load *= exp; \
164 	load += n*(FIXED_1-exp); \
165 	load >>= FSHIFT;
166 
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176 #ifdef CONFIG_CPU_QUIET
177 extern u64 nr_running_integral(unsigned int cpu);
178 #endif
179 
180 extern void calc_global_load(unsigned long ticks);
181 
182 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
183 extern void update_cpu_load_nohz(void);
184 #else
update_cpu_load_nohz(void)185 static inline void update_cpu_load_nohz(void) { }
186 #endif
187 
188 extern unsigned long get_parent_ip(unsigned long addr);
189 
190 extern void dump_cpu_task(int cpu);
191 
192 struct seq_file;
193 struct cfs_rq;
194 struct task_group;
195 #ifdef CONFIG_SCHED_DEBUG
196 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
197 extern void proc_sched_set_task(struct task_struct *p);
198 extern void
199 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
200 #endif
201 
202 /*
203  * Task state bitmask. NOTE! These bits are also
204  * encoded in fs/proc/array.c: get_task_state().
205  *
206  * We have two separate sets of flags: task->state
207  * is about runnability, while task->exit_state are
208  * about the task exiting. Confusing, but this way
209  * modifying one set can't modify the other one by
210  * mistake.
211  */
212 #define TASK_RUNNING		0
213 #define TASK_INTERRUPTIBLE	1
214 #define TASK_UNINTERRUPTIBLE	2
215 #define __TASK_STOPPED		4
216 #define __TASK_TRACED		8
217 /* in tsk->exit_state */
218 #define EXIT_DEAD		16
219 #define EXIT_ZOMBIE		32
220 #define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
221 /* in tsk->state again */
222 #define TASK_DEAD		64
223 #define TASK_WAKEKILL		128
224 #define TASK_WAKING		256
225 #define TASK_PARKED		512
226 #define TASK_STATE_MAX		1024
227 
228 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP"
229 
230 extern char ___assert_task_state[1 - 2*!!(
231 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
232 
233 /* Convenience macros for the sake of set_task_state */
234 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
235 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
236 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
237 
238 /* Convenience macros for the sake of wake_up */
239 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
240 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
241 
242 /* get_task_state() */
243 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
244 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
245 				 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
246 
247 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
248 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
249 #define task_is_stopped_or_traced(task)	\
250 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
251 #define task_contributes_to_load(task)	\
252 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
253 				 (task->flags & PF_FROZEN) == 0)
254 
255 #define __set_task_state(tsk, state_value)		\
256 	do { (tsk)->state = (state_value); } while (0)
257 #define set_task_state(tsk, state_value)		\
258 	set_mb((tsk)->state, (state_value))
259 
260 /*
261  * set_current_state() includes a barrier so that the write of current->state
262  * is correctly serialised wrt the caller's subsequent test of whether to
263  * actually sleep:
264  *
265  *	set_current_state(TASK_UNINTERRUPTIBLE);
266  *	if (do_i_need_to_sleep())
267  *		schedule();
268  *
269  * If the caller does not need such serialisation then use __set_current_state()
270  */
271 #define __set_current_state(state_value)			\
272 	do { current->state = (state_value); } while (0)
273 #define set_current_state(state_value)		\
274 	set_mb(current->state, (state_value))
275 
276 /* Task command name length */
277 #define TASK_COMM_LEN 16
278 
279 enum task_event {
280 	PUT_PREV_TASK   = 0,
281 	PICK_NEXT_TASK  = 1,
282 	TASK_WAKE       = 2,
283 	TASK_MIGRATE    = 3,
284 	TASK_UPDATE     = 4,
285 	IRQ_UPDATE	= 5,
286 };
287 
288 #include <linux/spinlock.h>
289 
290 /*
291  * This serializes "schedule()" and also protects
292  * the run-queue from deletions/modifications (but
293  * _adding_ to the beginning of the run-queue has
294  * a separate lock).
295  */
296 extern rwlock_t tasklist_lock;
297 extern spinlock_t mmlist_lock;
298 
299 struct task_struct;
300 
301 #ifdef CONFIG_PROVE_RCU
302 extern int lockdep_tasklist_lock_is_held(void);
303 #endif /* #ifdef CONFIG_PROVE_RCU */
304 
305 extern void sched_init(void);
306 extern void sched_init_smp(void);
307 extern asmlinkage void schedule_tail(struct task_struct *prev);
308 extern void init_idle(struct task_struct *idle, int cpu);
309 extern void init_idle_bootup_task(struct task_struct *idle);
310 
311 extern int runqueue_is_locked(int cpu);
312 
313 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
314 extern void nohz_balance_enter_idle(int cpu);
315 extern void set_cpu_sd_state_idle(void);
316 extern int get_nohz_timer_target(int pinned);
317 #else
nohz_balance_enter_idle(int cpu)318 static inline void nohz_balance_enter_idle(int cpu) { }
set_cpu_sd_state_idle(void)319 static inline void set_cpu_sd_state_idle(void) { }
get_nohz_timer_target(int pinned)320 static inline int get_nohz_timer_target(int pinned)
321 {
322 	return smp_processor_id();
323 }
324 #endif
325 
326 /*
327  * Only dump TASK_* tasks. (0 for all tasks)
328  */
329 extern void show_state_filter(unsigned long state_filter);
330 
show_state(void)331 static inline void show_state(void)
332 {
333 	show_state_filter(0);
334 }
335 
336 extern void show_regs(struct pt_regs *);
337 
338 /*
339  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
340  * task), SP is the stack pointer of the first frame that should be shown in the back
341  * trace (or NULL if the entire call-chain of the task should be shown).
342  */
343 extern void show_stack(struct task_struct *task, unsigned long *sp);
344 
345 extern void cpu_init (void);
346 extern void trap_init(void);
347 extern void update_process_times(int user);
348 extern void scheduler_tick(void);
349 
350 extern void sched_show_task(struct task_struct *p);
351 
352 #ifdef CONFIG_LOCKUP_DETECTOR
353 extern void touch_softlockup_watchdog(void);
354 extern void touch_softlockup_watchdog_sync(void);
355 extern void touch_all_softlockup_watchdogs(void);
356 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
357 				  void __user *buffer,
358 				  size_t *lenp, loff_t *ppos);
359 extern unsigned int  softlockup_panic;
360 void lockup_detector_init(void);
361 #else
touch_softlockup_watchdog(void)362 static inline void touch_softlockup_watchdog(void)
363 {
364 }
touch_softlockup_watchdog_sync(void)365 static inline void touch_softlockup_watchdog_sync(void)
366 {
367 }
touch_all_softlockup_watchdogs(void)368 static inline void touch_all_softlockup_watchdogs(void)
369 {
370 }
lockup_detector_init(void)371 static inline void lockup_detector_init(void)
372 {
373 }
374 #endif
375 
376 #ifdef CONFIG_DETECT_HUNG_TASK
377 void reset_hung_task_detector(void);
378 #else
reset_hung_task_detector(void)379 static inline void reset_hung_task_detector(void)
380 {
381 }
382 #endif
383 
384 /* Attach to any functions which should be ignored in wchan output. */
385 #define __sched		__attribute__((__section__(".sched.text")))
386 
387 /* Linker adds these: start and end of __sched functions */
388 extern char __sched_text_start[], __sched_text_end[];
389 
390 /* Is this address in the __sched functions? */
391 extern int in_sched_functions(unsigned long addr);
392 
393 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
394 extern signed long schedule_timeout(signed long timeout);
395 extern signed long schedule_timeout_interruptible(signed long timeout);
396 extern signed long schedule_timeout_killable(signed long timeout);
397 extern signed long schedule_timeout_uninterruptible(signed long timeout);
398 asmlinkage void schedule(void);
399 extern void schedule_preempt_disabled(void);
400 
401 extern long io_schedule_timeout(long timeout);
402 
io_schedule(void)403 static inline void io_schedule(void)
404 {
405 	io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
406 }
407 
408 struct nsproxy;
409 struct user_namespace;
410 
411 #ifdef CONFIG_MMU
412 extern void arch_pick_mmap_layout(struct mm_struct *mm);
413 extern unsigned long
414 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
415 		       unsigned long, unsigned long);
416 extern unsigned long
417 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
418 			  unsigned long len, unsigned long pgoff,
419 			  unsigned long flags);
420 #else
arch_pick_mmap_layout(struct mm_struct * mm)421 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
422 #endif
423 
424 #define SUID_DUMP_DISABLE	0	/* No setuid dumping */
425 #define SUID_DUMP_USER		1	/* Dump as user of process */
426 #define SUID_DUMP_ROOT		2	/* Dump as root */
427 
428 /* mm flags */
429 
430 /* for SUID_DUMP_* above */
431 #define MMF_DUMPABLE_BITS 2
432 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
433 
434 extern void set_dumpable(struct mm_struct *mm, int value);
435 /*
436  * This returns the actual value of the suid_dumpable flag. For things
437  * that are using this for checking for privilege transitions, it must
438  * test against SUID_DUMP_USER rather than treating it as a boolean
439  * value.
440  */
__get_dumpable(unsigned long mm_flags)441 static inline int __get_dumpable(unsigned long mm_flags)
442 {
443 	return mm_flags & MMF_DUMPABLE_MASK;
444 }
445 
get_dumpable(struct mm_struct * mm)446 static inline int get_dumpable(struct mm_struct *mm)
447 {
448 	return __get_dumpable(mm->flags);
449 }
450 
451 /* coredump filter bits */
452 #define MMF_DUMP_ANON_PRIVATE	2
453 #define MMF_DUMP_ANON_SHARED	3
454 #define MMF_DUMP_MAPPED_PRIVATE	4
455 #define MMF_DUMP_MAPPED_SHARED	5
456 #define MMF_DUMP_ELF_HEADERS	6
457 #define MMF_DUMP_HUGETLB_PRIVATE 7
458 #define MMF_DUMP_HUGETLB_SHARED  8
459 
460 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
461 #define MMF_DUMP_FILTER_BITS	7
462 #define MMF_DUMP_FILTER_MASK \
463 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
464 #define MMF_DUMP_FILTER_DEFAULT \
465 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
466 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
467 
468 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
469 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
470 #else
471 # define MMF_DUMP_MASK_DEFAULT_ELF	0
472 #endif
473 					/* leave room for more dump flags */
474 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
475 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
476 #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
477 
478 #define MMF_HAS_UPROBES		19	/* has uprobes */
479 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
480 
481 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
482 
483 struct sighand_struct {
484 	atomic_t		count;
485 	struct k_sigaction	action[_NSIG];
486 	spinlock_t		siglock;
487 	wait_queue_head_t	signalfd_wqh;
488 };
489 
490 struct pacct_struct {
491 	int			ac_flag;
492 	long			ac_exitcode;
493 	unsigned long		ac_mem;
494 	cputime_t		ac_utime, ac_stime;
495 	unsigned long		ac_minflt, ac_majflt;
496 };
497 
498 struct cpu_itimer {
499 	cputime_t expires;
500 	cputime_t incr;
501 	u32 error;
502 	u32 incr_error;
503 };
504 
505 /**
506  * struct cputime - snaphsot of system and user cputime
507  * @utime: time spent in user mode
508  * @stime: time spent in system mode
509  *
510  * Gathers a generic snapshot of user and system time.
511  */
512 struct cputime {
513 	cputime_t utime;
514 	cputime_t stime;
515 };
516 
517 /**
518  * struct task_cputime - collected CPU time counts
519  * @utime:		time spent in user mode, in &cputime_t units
520  * @stime:		time spent in kernel mode, in &cputime_t units
521  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
522  *
523  * This is an extension of struct cputime that includes the total runtime
524  * spent by the task from the scheduler point of view.
525  *
526  * As a result, this structure groups together three kinds of CPU time
527  * that are tracked for threads and thread groups.  Most things considering
528  * CPU time want to group these counts together and treat all three
529  * of them in parallel.
530  */
531 struct task_cputime {
532 	cputime_t utime;
533 	cputime_t stime;
534 	unsigned long long sum_exec_runtime;
535 };
536 /* Alternate field names when used to cache expirations. */
537 #define prof_exp	stime
538 #define virt_exp	utime
539 #define sched_exp	sum_exec_runtime
540 
541 #define INIT_CPUTIME	\
542 	(struct task_cputime) {					\
543 		.utime = 0,					\
544 		.stime = 0,					\
545 		.sum_exec_runtime = 0,				\
546 	}
547 
548 #ifdef CONFIG_PREEMPT_COUNT
549 #define PREEMPT_DISABLED	(1 + PREEMPT_ENABLED)
550 #else
551 #define PREEMPT_DISABLED	PREEMPT_ENABLED
552 #endif
553 
554 /*
555  * Disable preemption until the scheduler is running.
556  * Reset by start_kernel()->sched_init()->init_idle().
557  *
558  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
559  * before the scheduler is active -- see should_resched().
560  */
561 #define INIT_PREEMPT_COUNT	(PREEMPT_DISABLED + PREEMPT_ACTIVE)
562 
563 /**
564  * struct thread_group_cputimer - thread group interval timer counts
565  * @cputime:		thread group interval timers.
566  * @running:		non-zero when there are timers running and
567  * 			@cputime receives updates.
568  * @lock:		lock for fields in this struct.
569  *
570  * This structure contains the version of task_cputime, above, that is
571  * used for thread group CPU timer calculations.
572  */
573 struct thread_group_cputimer {
574 	struct task_cputime cputime;
575 	int running;
576 	raw_spinlock_t lock;
577 };
578 
579 #include <linux/rwsem.h>
580 struct autogroup;
581 
582 /*
583  * NOTE! "signal_struct" does not have its own
584  * locking, because a shared signal_struct always
585  * implies a shared sighand_struct, so locking
586  * sighand_struct is always a proper superset of
587  * the locking of signal_struct.
588  */
589 struct signal_struct {
590 	atomic_t		sigcnt;
591 	atomic_t		live;
592 	int			nr_threads;
593 	struct list_head	thread_head;
594 
595 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
596 
597 	/* current thread group signal load-balancing target: */
598 	struct task_struct	*curr_target;
599 
600 	/* shared signal handling: */
601 	struct sigpending	shared_pending;
602 
603 	/* thread group exit support */
604 	int			group_exit_code;
605 	/* overloaded:
606 	 * - notify group_exit_task when ->count is equal to notify_count
607 	 * - everyone except group_exit_task is stopped during signal delivery
608 	 *   of fatal signals, group_exit_task processes the signal.
609 	 */
610 	int			notify_count;
611 	struct task_struct	*group_exit_task;
612 
613 	/* thread group stop support, overloads group_exit_code too */
614 	int			group_stop_count;
615 	unsigned int		flags; /* see SIGNAL_* flags below */
616 
617 	/*
618 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
619 	 * manager, to re-parent orphan (double-forking) child processes
620 	 * to this process instead of 'init'. The service manager is
621 	 * able to receive SIGCHLD signals and is able to investigate
622 	 * the process until it calls wait(). All children of this
623 	 * process will inherit a flag if they should look for a
624 	 * child_subreaper process at exit.
625 	 */
626 	unsigned int		is_child_subreaper:1;
627 	unsigned int		has_child_subreaper:1;
628 
629 	/* POSIX.1b Interval Timers */
630 	int			posix_timer_id;
631 	struct list_head	posix_timers;
632 
633 	/* ITIMER_REAL timer for the process */
634 	struct hrtimer real_timer;
635 	struct pid *leader_pid;
636 	ktime_t it_real_incr;
637 
638 	/*
639 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
640 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
641 	 * values are defined to 0 and 1 respectively
642 	 */
643 	struct cpu_itimer it[2];
644 
645 	/*
646 	 * Thread group totals for process CPU timers.
647 	 * See thread_group_cputimer(), et al, for details.
648 	 */
649 	struct thread_group_cputimer cputimer;
650 
651 	/* Earliest-expiration cache. */
652 	struct task_cputime cputime_expires;
653 
654 	struct list_head cpu_timers[3];
655 
656 	struct pid *tty_old_pgrp;
657 
658 	/* boolean value for session group leader */
659 	int leader;
660 
661 	struct tty_struct *tty; /* NULL if no tty */
662 
663 #ifdef CONFIG_SCHED_AUTOGROUP
664 	struct autogroup *autogroup;
665 #endif
666 	/*
667 	 * Cumulative resource counters for dead threads in the group,
668 	 * and for reaped dead child processes forked by this group.
669 	 * Live threads maintain their own counters and add to these
670 	 * in __exit_signal, except for the group leader.
671 	 */
672 	seqlock_t stats_lock;
673 	cputime_t utime, stime, cutime, cstime;
674 	cputime_t gtime;
675 	cputime_t cgtime;
676 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
677 	struct cputime prev_cputime;
678 #endif
679 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
680 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
681 	unsigned long inblock, oublock, cinblock, coublock;
682 	unsigned long maxrss, cmaxrss;
683 	struct task_io_accounting ioac;
684 
685 	/*
686 	 * Cumulative ns of schedule CPU time fo dead threads in the
687 	 * group, not including a zombie group leader, (This only differs
688 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
689 	 * other than jiffies.)
690 	 */
691 	unsigned long long sum_sched_runtime;
692 
693 	/*
694 	 * We don't bother to synchronize most readers of this at all,
695 	 * because there is no reader checking a limit that actually needs
696 	 * to get both rlim_cur and rlim_max atomically, and either one
697 	 * alone is a single word that can safely be read normally.
698 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
699 	 * protect this instead of the siglock, because they really
700 	 * have no need to disable irqs.
701 	 */
702 	struct rlimit rlim[RLIM_NLIMITS];
703 
704 #ifdef CONFIG_BSD_PROCESS_ACCT
705 	struct pacct_struct pacct;	/* per-process accounting information */
706 #endif
707 #ifdef CONFIG_TASKSTATS
708 	struct taskstats *stats;
709 #endif
710 #ifdef CONFIG_AUDIT
711 	unsigned audit_tty;
712 	unsigned audit_tty_log_passwd;
713 	struct tty_audit_buf *tty_audit_buf;
714 #endif
715 #ifdef CONFIG_CGROUPS
716 	/*
717 	 * group_rwsem prevents new tasks from entering the threadgroup and
718 	 * member tasks from exiting,a more specifically, setting of
719 	 * PF_EXITING.  fork and exit paths are protected with this rwsem
720 	 * using threadgroup_change_begin/end().  Users which require
721 	 * threadgroup to remain stable should use threadgroup_[un]lock()
722 	 * which also takes care of exec path.  Currently, cgroup is the
723 	 * only user.
724 	 */
725 	struct rw_semaphore group_rwsem;
726 #endif
727 
728 	oom_flags_t oom_flags;
729 	short oom_score_adj;		/* OOM kill score adjustment */
730 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
731 					 * Only settable by CAP_SYS_RESOURCE. */
732 
733 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
734 					 * credential calculations
735 					 * (notably. ptrace) */
736 };
737 
738 /*
739  * Bits in flags field of signal_struct.
740  */
741 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
742 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
743 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
744 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
745 /*
746  * Pending notifications to parent.
747  */
748 #define SIGNAL_CLD_STOPPED	0x00000010
749 #define SIGNAL_CLD_CONTINUED	0x00000020
750 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
751 
752 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
753 
754 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
755 			  SIGNAL_STOP_CONTINUED)
756 
signal_set_stop_flags(struct signal_struct * sig,unsigned int flags)757 static inline void signal_set_stop_flags(struct signal_struct *sig,
758 					 unsigned int flags)
759 {
760 	WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
761 	sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
762 }
763 
764 /* If true, all threads except ->group_exit_task have pending SIGKILL */
signal_group_exit(const struct signal_struct * sig)765 static inline int signal_group_exit(const struct signal_struct *sig)
766 {
767 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
768 		(sig->group_exit_task != NULL);
769 }
770 
771 /*
772  * Some day this will be a full-fledged user tracking system..
773  */
774 struct user_struct {
775 	atomic_t __count;	/* reference count */
776 	atomic_t processes;	/* How many processes does this user have? */
777 	atomic_t sigpending;	/* How many pending signals does this user have? */
778 #ifdef CONFIG_INOTIFY_USER
779 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
780 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
781 #endif
782 #ifdef CONFIG_FANOTIFY
783 	atomic_t fanotify_listeners;
784 #endif
785 #ifdef CONFIG_EPOLL
786 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
787 #endif
788 #ifdef CONFIG_POSIX_MQUEUE
789 	/* protected by mq_lock	*/
790 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
791 #endif
792 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
793 	unsigned long unix_inflight;	/* How many files in flight in unix sockets */
794 	atomic_long_t pipe_bufs;  /* how many pages are allocated in pipe buffers */
795 
796 #ifdef CONFIG_KEYS
797 	struct key *uid_keyring;	/* UID specific keyring */
798 	struct key *session_keyring;	/* UID's default session keyring */
799 #endif
800 
801 	/* Hash table maintenance information */
802 	struct hlist_node uidhash_node;
803 	kuid_t uid;
804 
805 #ifdef CONFIG_PERF_EVENTS
806 	atomic_long_t locked_vm;
807 #endif
808 };
809 
810 extern int uids_sysfs_init(void);
811 
812 extern struct user_struct *find_user(kuid_t);
813 
814 extern struct user_struct root_user;
815 #define INIT_USER (&root_user)
816 
817 
818 struct backing_dev_info;
819 struct reclaim_state;
820 
821 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
822 struct sched_info {
823 	/* cumulative counters */
824 	unsigned long pcount;	      /* # of times run on this cpu */
825 	unsigned long long run_delay; /* time spent waiting on a runqueue */
826 
827 	/* timestamps */
828 	unsigned long long last_arrival,/* when we last ran on a cpu */
829 			   last_queued;	/* when we were last queued to run */
830 };
831 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
832 
833 #ifdef CONFIG_TASK_DELAY_ACCT
834 struct task_delay_info {
835 	spinlock_t	lock;
836 	unsigned int	flags;	/* Private per-task flags */
837 
838 	/* For each stat XXX, add following, aligned appropriately
839 	 *
840 	 * struct timespec XXX_start, XXX_end;
841 	 * u64 XXX_delay;
842 	 * u32 XXX_count;
843 	 *
844 	 * Atomicity of updates to XXX_delay, XXX_count protected by
845 	 * single lock above (split into XXX_lock if contention is an issue).
846 	 */
847 
848 	/*
849 	 * XXX_count is incremented on every XXX operation, the delay
850 	 * associated with the operation is added to XXX_delay.
851 	 * XXX_delay contains the accumulated delay time in nanoseconds.
852 	 */
853 	u64 blkio_start;	/* Shared by blkio, swapin */
854 	u64 blkio_delay;	/* wait for sync block io completion */
855 	u64 swapin_delay;	/* wait for swapin block io completion */
856 	u32 blkio_count;	/* total count of the number of sync block */
857 				/* io operations performed */
858 	u32 swapin_count;	/* total count of the number of swapin block */
859 				/* io operations performed */
860 
861 	u64 freepages_start;
862 	u64 freepages_delay;	/* wait for memory reclaim */
863 	u32 freepages_count;	/* total count of memory reclaim */
864 };
865 #endif	/* CONFIG_TASK_DELAY_ACCT */
866 
sched_info_on(void)867 static inline int sched_info_on(void)
868 {
869 #ifdef CONFIG_SCHEDSTATS
870 	return 1;
871 #elif defined(CONFIG_TASK_DELAY_ACCT)
872 	extern int delayacct_on;
873 	return delayacct_on;
874 #else
875 	return 0;
876 #endif
877 }
878 
879 enum cpu_idle_type {
880 	CPU_IDLE,
881 	CPU_NOT_IDLE,
882 	CPU_NEWLY_IDLE,
883 	CPU_MAX_IDLE_TYPES
884 };
885 
886 /*
887  * Increase resolution of cpu_capacity calculations
888  */
889 #define SCHED_CAPACITY_SHIFT	10
890 #define SCHED_CAPACITY_SCALE	(1L << SCHED_CAPACITY_SHIFT)
891 
892 struct sched_capacity_reqs {
893 	unsigned long cfs;
894 	unsigned long rt;
895 	unsigned long dl;
896 
897 	unsigned long total;
898 };
899 
900 /*
901  * sched-domains (multiprocessor balancing) declarations:
902  */
903 #ifdef CONFIG_SMP
904 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
905 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
906 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
907 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
908 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
909 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
910 #define SD_SHARE_CPUCAPACITY	0x0080	/* Domain members share cpu power */
911 #define SD_SHARE_POWERDOMAIN	0x0100	/* Domain members share power domain */
912 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
913 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
914 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
915 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
916 #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
917 #define SD_NUMA			0x4000	/* cross-node balancing */
918 #define SD_SHARE_CAP_STATES	0x8000  /* Domain members share capacity state */
919 
920 #ifdef CONFIG_SCHED_SMT
cpu_smt_flags(void)921 static inline int cpu_smt_flags(void)
922 {
923 	return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
924 }
925 #endif
926 
927 #ifdef CONFIG_SCHED_MC
cpu_core_flags(void)928 static inline int cpu_core_flags(void)
929 {
930 	return SD_SHARE_PKG_RESOURCES;
931 }
932 #endif
933 
934 #ifdef CONFIG_NUMA
cpu_numa_flags(void)935 static inline int cpu_numa_flags(void)
936 {
937 	return SD_NUMA;
938 }
939 #endif
940 
941 struct sched_domain_attr {
942 	int relax_domain_level;
943 };
944 
945 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
946 	.relax_domain_level = -1,			\
947 }
948 
949 extern int sched_domain_level_max;
950 
951 struct capacity_state {
952 	unsigned long cap;	/* compute capacity */
953 	unsigned long power;	/* power consumption at this compute capacity */
954 };
955 
956 struct idle_state {
957 	unsigned long power;	 /* power consumption in this idle state */
958 };
959 
960 struct sched_group_energy {
961 	unsigned int nr_idle_states;	/* number of idle states */
962 	struct idle_state *idle_states;	/* ptr to idle state array */
963 	unsigned int nr_cap_states;	/* number of capacity states */
964 	struct capacity_state *cap_states; /* ptr to capacity state array */
965 };
966 
967 unsigned long capacity_curr_of(int cpu);
968 
969 struct sched_group;
970 
971 struct sched_domain {
972 	/* These fields must be setup */
973 	struct sched_domain *parent;	/* top domain must be null terminated */
974 	struct sched_domain *child;	/* bottom domain must be null terminated */
975 	struct sched_group *groups;	/* the balancing groups of the domain */
976 	unsigned long min_interval;	/* Minimum balance interval ms */
977 	unsigned long max_interval;	/* Maximum balance interval ms */
978 	unsigned int busy_factor;	/* less balancing by factor if busy */
979 	unsigned int imbalance_pct;	/* No balance until over watermark */
980 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
981 	unsigned int busy_idx;
982 	unsigned int idle_idx;
983 	unsigned int newidle_idx;
984 	unsigned int wake_idx;
985 	unsigned int forkexec_idx;
986 	unsigned int smt_gain;
987 
988 	int nohz_idle;			/* NOHZ IDLE status */
989 	int flags;			/* See SD_* */
990 	int level;
991 
992 	/* Runtime fields. */
993 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
994 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
995 	unsigned int nr_balance_failed; /* initialise to 0 */
996 
997 	/* idle_balance() stats */
998 	u64 max_newidle_lb_cost;
999 	unsigned long next_decay_max_lb_cost;
1000 
1001 #ifdef CONFIG_SCHEDSTATS
1002 	/* load_balance() stats */
1003 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1004 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1005 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1006 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1007 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1008 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1009 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1010 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1011 
1012 	/* Active load balancing */
1013 	unsigned int alb_count;
1014 	unsigned int alb_failed;
1015 	unsigned int alb_pushed;
1016 
1017 	/* SD_BALANCE_EXEC stats */
1018 	unsigned int sbe_count;
1019 	unsigned int sbe_balanced;
1020 	unsigned int sbe_pushed;
1021 
1022 	/* SD_BALANCE_FORK stats */
1023 	unsigned int sbf_count;
1024 	unsigned int sbf_balanced;
1025 	unsigned int sbf_pushed;
1026 
1027 	/* try_to_wake_up() stats */
1028 	unsigned int ttwu_wake_remote;
1029 	unsigned int ttwu_move_affine;
1030 	unsigned int ttwu_move_balance;
1031 #endif
1032 #ifdef CONFIG_SCHED_DEBUG
1033 	char *name;
1034 #endif
1035 	union {
1036 		void *private;		/* used during construction */
1037 		struct rcu_head rcu;	/* used during destruction */
1038 	};
1039 
1040 	unsigned int span_weight;
1041 	/*
1042 	 * Span of all CPUs in this domain.
1043 	 *
1044 	 * NOTE: this field is variable length. (Allocated dynamically
1045 	 * by attaching extra space to the end of the structure,
1046 	 * depending on how many CPUs the kernel has booted up with)
1047 	 */
1048 	unsigned long span[0];
1049 };
1050 
sched_domain_span(struct sched_domain * sd)1051 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1052 {
1053 	return to_cpumask(sd->span);
1054 }
1055 
1056 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1057 				    struct sched_domain_attr *dattr_new);
1058 
1059 /* Allocate an array of sched domains, for partition_sched_domains(). */
1060 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1061 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1062 
1063 bool cpus_share_cache(int this_cpu, int that_cpu);
1064 
1065 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1066 typedef int (*sched_domain_flags_f)(void);
1067 typedef
1068 const struct sched_group_energy * const(*sched_domain_energy_f)(int cpu);
1069 
1070 #define SDTL_OVERLAP	0x01
1071 
1072 struct sd_data {
1073 	struct sched_domain **__percpu sd;
1074 	struct sched_group **__percpu sg;
1075 	struct sched_group_capacity **__percpu sgc;
1076 };
1077 
1078 struct sched_domain_topology_level {
1079 	sched_domain_mask_f mask;
1080 	sched_domain_flags_f sd_flags;
1081 	sched_domain_energy_f energy;
1082 	int		    flags;
1083 	int		    numa_level;
1084 	struct sd_data      data;
1085 #ifdef CONFIG_SCHED_DEBUG
1086 	char                *name;
1087 #endif
1088 };
1089 
1090 extern struct sched_domain_topology_level *sched_domain_topology;
1091 
1092 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1093 extern void wake_up_if_idle(int cpu);
1094 
1095 #ifdef CONFIG_SCHED_DEBUG
1096 # define SD_INIT_NAME(type)		.name = #type
1097 #else
1098 # define SD_INIT_NAME(type)
1099 #endif
1100 
1101 #else /* CONFIG_SMP */
1102 
1103 struct sched_domain_attr;
1104 
1105 static inline void
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)1106 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1107 			struct sched_domain_attr *dattr_new)
1108 {
1109 }
1110 
cpus_share_cache(int this_cpu,int that_cpu)1111 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1112 {
1113 	return true;
1114 }
1115 
1116 #endif	/* !CONFIG_SMP */
1117 
1118 
1119 struct io_context;			/* See blkdev.h */
1120 
1121 
1122 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1123 extern void prefetch_stack(struct task_struct *t);
1124 #else
prefetch_stack(struct task_struct * t)1125 static inline void prefetch_stack(struct task_struct *t) { }
1126 #endif
1127 
1128 struct audit_context;		/* See audit.c */
1129 struct mempolicy;
1130 struct pipe_inode_info;
1131 struct uts_namespace;
1132 
1133 struct load_weight {
1134 	unsigned long weight;
1135 	u32 inv_weight;
1136 };
1137 
1138 /*
1139  * The load_avg/util_avg accumulates an infinite geometric series.
1140  * 1) load_avg factors frequency scaling into the amount of time that a
1141  * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1142  * aggregated such weights of all runnable and blocked sched_entities.
1143  * 2) util_avg factors frequency and cpu scaling into the amount of time
1144  * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1145  * For cfs_rq, it is the aggregated such times of all runnable and
1146  * blocked sched_entities.
1147  * The 64 bit load_sum can:
1148  * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1149  * the highest weight (=88761) always runnable, we should not overflow
1150  * 2) for entity, support any load.weight always runnable
1151  */
1152 struct sched_avg {
1153 	u64 last_update_time, load_sum;
1154 	u32 util_sum, period_contrib;
1155 	unsigned long load_avg, util_avg;
1156 };
1157 
1158 #ifdef CONFIG_SCHEDSTATS
1159 struct sched_statistics {
1160 	u64			wait_start;
1161 	u64			wait_max;
1162 	u64			wait_count;
1163 	u64			wait_sum;
1164 	u64			iowait_count;
1165 	u64			iowait_sum;
1166 
1167 	u64			sleep_start;
1168 	u64			sleep_max;
1169 	s64			sum_sleep_runtime;
1170 
1171 	u64			block_start;
1172 	u64			block_max;
1173 	u64			exec_max;
1174 	u64			slice_max;
1175 
1176 	u64			nr_migrations_cold;
1177 	u64			nr_failed_migrations_affine;
1178 	u64			nr_failed_migrations_running;
1179 	u64			nr_failed_migrations_hot;
1180 	u64			nr_forced_migrations;
1181 
1182 	u64			nr_wakeups;
1183 	u64			nr_wakeups_sync;
1184 	u64			nr_wakeups_migrate;
1185 	u64			nr_wakeups_local;
1186 	u64			nr_wakeups_remote;
1187 	u64			nr_wakeups_affine;
1188 	u64			nr_wakeups_affine_attempts;
1189 	u64			nr_wakeups_passive;
1190 	u64			nr_wakeups_idle;
1191 };
1192 #endif
1193 
1194 #ifdef CONFIG_SCHED_WALT
1195 #define RAVG_HIST_SIZE_MAX  5
1196 
1197 /* ravg represents frequency scaled cpu-demand of tasks */
1198 struct ravg {
1199 	/*
1200 	 * 'mark_start' marks the beginning of an event (task waking up, task
1201 	 * starting to execute, task being preempted) within a window
1202 	 *
1203 	 * 'sum' represents how runnable a task has been within current
1204 	 * window. It incorporates both running time and wait time and is
1205 	 * frequency scaled.
1206 	 *
1207 	 * 'sum_history' keeps track of history of 'sum' seen over previous
1208 	 * RAVG_HIST_SIZE windows. Windows where task was entirely sleeping are
1209 	 * ignored.
1210 	 *
1211 	 * 'demand' represents maximum sum seen over previous
1212 	 * sysctl_sched_ravg_hist_size windows. 'demand' could drive frequency
1213 	 * demand for tasks.
1214 	 *
1215 	 * 'curr_window' represents task's contribution to cpu busy time
1216 	 * statistics (rq->curr_runnable_sum) in current window
1217 	 *
1218 	 * 'prev_window' represents task's contribution to cpu busy time
1219 	 * statistics (rq->prev_runnable_sum) in previous window
1220 	 */
1221 	u64 mark_start;
1222 	u32 sum, demand;
1223 	u32 sum_history[RAVG_HIST_SIZE_MAX];
1224 	u32 curr_window, prev_window;
1225 	u16 active_windows;
1226 };
1227 #endif
1228 
1229 struct sched_entity {
1230 	struct load_weight	load;		/* for load-balancing */
1231 	struct rb_node		run_node;
1232 	struct list_head	group_node;
1233 	unsigned int		on_rq;
1234 
1235 	u64			exec_start;
1236 	u64			sum_exec_runtime;
1237 	u64			vruntime;
1238 	u64			prev_sum_exec_runtime;
1239 
1240 	u64			nr_migrations;
1241 
1242 #ifdef CONFIG_SCHEDSTATS
1243 	struct sched_statistics statistics;
1244 #endif
1245 
1246 #ifdef CONFIG_FAIR_GROUP_SCHED
1247 	int			depth;
1248 	struct sched_entity	*parent;
1249 	/* rq on which this entity is (to be) queued: */
1250 	struct cfs_rq		*cfs_rq;
1251 	/* rq "owned" by this entity/group: */
1252 	struct cfs_rq		*my_q;
1253 #endif
1254 
1255 #ifdef CONFIG_SMP
1256 	/* Per entity load average tracking */
1257 	struct sched_avg	avg;
1258 #endif
1259 };
1260 
1261 struct sched_rt_entity {
1262 	struct list_head run_list;
1263 	unsigned long timeout;
1264 	unsigned long watchdog_stamp;
1265 	unsigned int time_slice;
1266 
1267 	struct sched_rt_entity *back;
1268 #ifdef CONFIG_RT_GROUP_SCHED
1269 	struct sched_rt_entity	*parent;
1270 	/* rq on which this entity is (to be) queued: */
1271 	struct rt_rq		*rt_rq;
1272 	/* rq "owned" by this entity/group: */
1273 	struct rt_rq		*my_q;
1274 #endif
1275 };
1276 
1277 struct sched_dl_entity {
1278 	struct rb_node	rb_node;
1279 
1280 	/*
1281 	 * Original scheduling parameters. Copied here from sched_attr
1282 	 * during sched_setattr(), they will remain the same until
1283 	 * the next sched_setattr().
1284 	 */
1285 	u64 dl_runtime;		/* maximum runtime for each instance	*/
1286 	u64 dl_deadline;	/* relative deadline of each instance	*/
1287 	u64 dl_period;		/* separation of two instances (period) */
1288 	u64 dl_bw;		/* dl_runtime / dl_deadline		*/
1289 
1290 	/*
1291 	 * Actual scheduling parameters. Initialized with the values above,
1292 	 * they are continously updated during task execution. Note that
1293 	 * the remaining runtime could be < 0 in case we are in overrun.
1294 	 */
1295 	s64 runtime;		/* remaining runtime for this instance	*/
1296 	u64 deadline;		/* absolute deadline for this instance	*/
1297 	unsigned int flags;	/* specifying the scheduler behaviour	*/
1298 
1299 	/*
1300 	 * Some bool flags:
1301 	 *
1302 	 * @dl_throttled tells if we exhausted the runtime. If so, the
1303 	 * task has to wait for a replenishment to be performed at the
1304 	 * next firing of dl_timer.
1305 	 *
1306 	 * @dl_new tells if a new instance arrived. If so we must
1307 	 * start executing it with full runtime and reset its absolute
1308 	 * deadline;
1309 	 *
1310 	 * @dl_boosted tells if we are boosted due to DI. If so we are
1311 	 * outside bandwidth enforcement mechanism (but only until we
1312 	 * exit the critical section);
1313 	 *
1314 	 * @dl_yielded tells if task gave up the cpu before consuming
1315 	 * all its available runtime during the last job.
1316 	 */
1317 	int dl_throttled, dl_new, dl_boosted, dl_yielded;
1318 
1319 	/*
1320 	 * Bandwidth enforcement timer. Each -deadline task has its
1321 	 * own bandwidth to be enforced, thus we need one timer per task.
1322 	 */
1323 	struct hrtimer dl_timer;
1324 };
1325 
1326 union rcu_special {
1327 	struct {
1328 		bool blocked;
1329 		bool need_qs;
1330 	} b;
1331 	short s;
1332 };
1333 struct rcu_node;
1334 
1335 enum perf_event_task_context {
1336 	perf_invalid_context = -1,
1337 	perf_hw_context = 0,
1338 	perf_sw_context,
1339 	perf_nr_task_contexts,
1340 };
1341 
1342 struct task_struct {
1343 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1344 	void *stack;
1345 	atomic_t usage;
1346 	unsigned int flags;	/* per process flags, defined below */
1347 	unsigned int ptrace;
1348 
1349 #ifdef CONFIG_SMP
1350 	struct llist_node wake_entry;
1351 	int on_cpu;
1352 	unsigned int wakee_flips;
1353 	unsigned long wakee_flip_decay_ts;
1354 	struct task_struct *last_wakee;
1355 
1356 	int wake_cpu;
1357 #endif
1358 	int on_rq;
1359 
1360 	int prio, static_prio, normal_prio;
1361 	unsigned int rt_priority;
1362 	const struct sched_class *sched_class;
1363 	struct sched_entity se;
1364 	struct sched_rt_entity rt;
1365 #ifdef CONFIG_SCHED_WALT
1366 	struct ravg ravg;
1367 	/*
1368 	 * 'init_load_pct' represents the initial task load assigned to children
1369 	 * of this task
1370 	 */
1371 	u32 init_load_pct;
1372 #endif
1373 
1374 #ifdef CONFIG_CGROUP_SCHED
1375 	struct task_group *sched_task_group;
1376 #endif
1377 	struct sched_dl_entity dl;
1378 
1379 #ifdef CONFIG_PREEMPT_NOTIFIERS
1380 	/* list of struct preempt_notifier: */
1381 	struct hlist_head preempt_notifiers;
1382 #endif
1383 
1384 #ifdef CONFIG_BLK_DEV_IO_TRACE
1385 	unsigned int btrace_seq;
1386 #endif
1387 
1388 	unsigned int policy;
1389 	int nr_cpus_allowed;
1390 	cpumask_t cpus_allowed;
1391 
1392 #ifdef CONFIG_PREEMPT_RCU
1393 	int rcu_read_lock_nesting;
1394 	union rcu_special rcu_read_unlock_special;
1395 	struct list_head rcu_node_entry;
1396 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1397 #ifdef CONFIG_TREE_PREEMPT_RCU
1398 	struct rcu_node *rcu_blocked_node;
1399 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1400 #ifdef CONFIG_TASKS_RCU
1401 	unsigned long rcu_tasks_nvcsw;
1402 	bool rcu_tasks_holdout;
1403 	struct list_head rcu_tasks_holdout_list;
1404 	int rcu_tasks_idle_cpu;
1405 #endif /* #ifdef CONFIG_TASKS_RCU */
1406 
1407 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1408 	struct sched_info sched_info;
1409 #endif
1410 
1411 	struct list_head tasks;
1412 #ifdef CONFIG_SMP
1413 	struct plist_node pushable_tasks;
1414 	struct rb_node pushable_dl_tasks;
1415 #endif
1416 
1417 	struct mm_struct *mm, *active_mm;
1418 #ifdef CONFIG_COMPAT_BRK
1419 	unsigned brk_randomized:1;
1420 #endif
1421 	/* per-thread vma caching */
1422 	u32 vmacache_seqnum;
1423 	struct vm_area_struct *vmacache[VMACACHE_SIZE];
1424 #if defined(SPLIT_RSS_COUNTING)
1425 	struct task_rss_stat	rss_stat;
1426 #endif
1427 /* task state */
1428 	int exit_state;
1429 	int exit_code, exit_signal;
1430 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1431 	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
1432 
1433 	/* Used for emulating ABI behavior of previous Linux versions */
1434 	unsigned int personality;
1435 
1436 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1437 				 * execve */
1438 	unsigned in_iowait:1;
1439 
1440 	/* Revert to default priority/policy when forking */
1441 	unsigned sched_reset_on_fork:1;
1442 	unsigned sched_contributes_to_load:1;
1443 
1444 	unsigned long atomic_flags; /* Flags needing atomic access. */
1445 
1446 	struct restart_block restart_block;
1447 
1448 	pid_t pid;
1449 	pid_t tgid;
1450 
1451 #ifdef CONFIG_CC_STACKPROTECTOR
1452 	/* Canary value for the -fstack-protector gcc feature */
1453 	unsigned long stack_canary;
1454 #endif
1455 	/*
1456 	 * pointers to (original) parent process, youngest child, younger sibling,
1457 	 * older sibling, respectively.  (p->father can be replaced with
1458 	 * p->real_parent->pid)
1459 	 */
1460 	struct task_struct __rcu *real_parent; /* real parent process */
1461 	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1462 	/*
1463 	 * children/sibling forms the list of my natural children
1464 	 */
1465 	struct list_head children;	/* list of my children */
1466 	struct list_head sibling;	/* linkage in my parent's children list */
1467 	struct task_struct *group_leader;	/* threadgroup leader */
1468 
1469 	/*
1470 	 * ptraced is the list of tasks this task is using ptrace on.
1471 	 * This includes both natural children and PTRACE_ATTACH targets.
1472 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1473 	 */
1474 	struct list_head ptraced;
1475 	struct list_head ptrace_entry;
1476 
1477 	/* PID/PID hash table linkage. */
1478 	struct pid_link pids[PIDTYPE_MAX];
1479 	struct list_head thread_group;
1480 	struct list_head thread_node;
1481 
1482 	struct completion *vfork_done;		/* for vfork() */
1483 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1484 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1485 
1486 	cputime_t utime, stime, utimescaled, stimescaled;
1487 	cputime_t gtime;
1488 	unsigned long long cpu_power;
1489 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1490 	struct cputime prev_cputime;
1491 #endif
1492 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1493 	seqlock_t vtime_seqlock;
1494 	unsigned long long vtime_snap;
1495 	enum {
1496 		VTIME_SLEEPING = 0,
1497 		VTIME_USER,
1498 		VTIME_SYS,
1499 	} vtime_snap_whence;
1500 #endif
1501 	unsigned long nvcsw, nivcsw; /* context switch counts */
1502 	u64 start_time;		/* monotonic time in nsec */
1503 	u64 real_start_time;	/* boot based time in nsec */
1504 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1505 	unsigned long min_flt, maj_flt;
1506 
1507 	struct task_cputime cputime_expires;
1508 	struct list_head cpu_timers[3];
1509 
1510 /* process credentials */
1511 	const struct cred __rcu *real_cred; /* objective and real subjective task
1512 					 * credentials (COW) */
1513 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1514 					 * credentials (COW) */
1515 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1516 				     - access with [gs]et_task_comm (which lock
1517 				       it with task_lock())
1518 				     - initialized normally by setup_new_exec */
1519 /* file system info */
1520 	int link_count, total_link_count;
1521 #ifdef CONFIG_SYSVIPC
1522 /* ipc stuff */
1523 	struct sysv_sem sysvsem;
1524 	struct sysv_shm sysvshm;
1525 #endif
1526 #ifdef CONFIG_DETECT_HUNG_TASK
1527 /* hung task detection */
1528 	unsigned long last_switch_count;
1529 #endif
1530 /* CPU-specific state of this task */
1531 	struct thread_struct thread;
1532 /* filesystem information */
1533 	struct fs_struct *fs;
1534 /* open file information */
1535 	struct files_struct *files;
1536 /* namespaces */
1537 	struct nsproxy *nsproxy;
1538 /* signal handlers */
1539 	struct signal_struct *signal;
1540 	struct sighand_struct *sighand;
1541 
1542 	sigset_t blocked, real_blocked;
1543 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1544 	struct sigpending pending;
1545 
1546 	unsigned long sas_ss_sp;
1547 	size_t sas_ss_size;
1548 	int (*notifier)(void *priv);
1549 	void *notifier_data;
1550 	sigset_t *notifier_mask;
1551 	struct callback_head *task_works;
1552 
1553 	struct audit_context *audit_context;
1554 #ifdef CONFIG_AUDITSYSCALL
1555 	kuid_t loginuid;
1556 	unsigned int sessionid;
1557 #endif
1558 	struct seccomp seccomp;
1559 
1560 /* Thread group tracking */
1561    	u32 parent_exec_id;
1562    	u32 self_exec_id;
1563 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1564  * mempolicy */
1565 	spinlock_t alloc_lock;
1566 
1567 	/* Protection of the PI data structures: */
1568 	raw_spinlock_t pi_lock;
1569 
1570 #ifdef CONFIG_RT_MUTEXES
1571 	/* PI waiters blocked on a rt_mutex held by this task */
1572 	struct rb_root pi_waiters;
1573 	struct rb_node *pi_waiters_leftmost;
1574 	/* Deadlock detection and priority inheritance handling */
1575 	struct rt_mutex_waiter *pi_blocked_on;
1576 #endif
1577 
1578 #ifdef CONFIG_DEBUG_MUTEXES
1579 	/* mutex deadlock detection */
1580 	struct mutex_waiter *blocked_on;
1581 #endif
1582 #ifdef CONFIG_TRACE_IRQFLAGS
1583 	unsigned int irq_events;
1584 	unsigned long hardirq_enable_ip;
1585 	unsigned long hardirq_disable_ip;
1586 	unsigned int hardirq_enable_event;
1587 	unsigned int hardirq_disable_event;
1588 	int hardirqs_enabled;
1589 	int hardirq_context;
1590 	unsigned long softirq_disable_ip;
1591 	unsigned long softirq_enable_ip;
1592 	unsigned int softirq_disable_event;
1593 	unsigned int softirq_enable_event;
1594 	int softirqs_enabled;
1595 	int softirq_context;
1596 #endif
1597 #ifdef CONFIG_LOCKDEP
1598 # define MAX_LOCK_DEPTH 48UL
1599 	u64 curr_chain_key;
1600 	int lockdep_depth;
1601 	unsigned int lockdep_recursion;
1602 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1603 	gfp_t lockdep_reclaim_gfp;
1604 #endif
1605 
1606 /* journalling filesystem info */
1607 	void *journal_info;
1608 
1609 /* stacked block device info */
1610 	struct bio_list *bio_list;
1611 
1612 #ifdef CONFIG_BLOCK
1613 /* stack plugging */
1614 	struct blk_plug *plug;
1615 #endif
1616 
1617 /* VM state */
1618 	struct reclaim_state *reclaim_state;
1619 
1620 	struct backing_dev_info *backing_dev_info;
1621 
1622 	struct io_context *io_context;
1623 
1624 	unsigned long ptrace_message;
1625 	siginfo_t *last_siginfo; /* For ptrace use.  */
1626 	struct task_io_accounting ioac;
1627 #if defined(CONFIG_TASK_XACCT)
1628 	u64 acct_rss_mem1;	/* accumulated rss usage */
1629 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1630 	cputime_t acct_timexpd;	/* stime + utime since last update */
1631 #endif
1632 #ifdef CONFIG_CPUSETS
1633 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1634 	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1635 	int cpuset_mem_spread_rotor;
1636 	int cpuset_slab_spread_rotor;
1637 #endif
1638 #ifdef CONFIG_CGROUPS
1639 	/* Control Group info protected by css_set_lock */
1640 	struct css_set __rcu *cgroups;
1641 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1642 	struct list_head cg_list;
1643 #endif
1644 #ifdef CONFIG_FUTEX
1645 	struct robust_list_head __user *robust_list;
1646 #ifdef CONFIG_COMPAT
1647 	struct compat_robust_list_head __user *compat_robust_list;
1648 #endif
1649 	struct list_head pi_state_list;
1650 	struct futex_pi_state *pi_state_cache;
1651 #endif
1652 #ifdef CONFIG_PERF_EVENTS
1653 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1654 	struct mutex perf_event_mutex;
1655 	struct list_head perf_event_list;
1656 #endif
1657 #ifdef CONFIG_DEBUG_PREEMPT
1658 	unsigned long preempt_disable_ip;
1659 #endif
1660 #ifdef CONFIG_NUMA
1661 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1662 	short il_next;
1663 	short pref_node_fork;
1664 #endif
1665 #ifdef CONFIG_NUMA_BALANCING
1666 	int numa_scan_seq;
1667 	unsigned int numa_scan_period;
1668 	unsigned int numa_scan_period_max;
1669 	int numa_preferred_nid;
1670 	unsigned long numa_migrate_retry;
1671 	u64 node_stamp;			/* migration stamp  */
1672 	u64 last_task_numa_placement;
1673 	u64 last_sum_exec_runtime;
1674 	struct callback_head numa_work;
1675 
1676 	struct list_head numa_entry;
1677 	struct numa_group *numa_group;
1678 
1679 	/*
1680 	 * Exponential decaying average of faults on a per-node basis.
1681 	 * Scheduling placement decisions are made based on the these counts.
1682 	 * The values remain static for the duration of a PTE scan
1683 	 */
1684 	unsigned long *numa_faults_memory;
1685 	unsigned long total_numa_faults;
1686 
1687 	/*
1688 	 * numa_faults_buffer records faults per node during the current
1689 	 * scan window. When the scan completes, the counts in
1690 	 * numa_faults_memory decay and these values are copied.
1691 	 */
1692 	unsigned long *numa_faults_buffer_memory;
1693 
1694 	/*
1695 	 * Track the nodes the process was running on when a NUMA hinting
1696 	 * fault was incurred.
1697 	 */
1698 	unsigned long *numa_faults_cpu;
1699 	unsigned long *numa_faults_buffer_cpu;
1700 
1701 	/*
1702 	 * numa_faults_locality tracks if faults recorded during the last
1703 	 * scan window were remote/local. The task scan period is adapted
1704 	 * based on the locality of the faults with different weights
1705 	 * depending on whether they were shared or private faults
1706 	 */
1707 	unsigned long numa_faults_locality[2];
1708 
1709 	unsigned long numa_pages_migrated;
1710 #endif /* CONFIG_NUMA_BALANCING */
1711 
1712 	struct rcu_head rcu;
1713 
1714 	/*
1715 	 * cache last used pipe for splice
1716 	 */
1717 	struct pipe_inode_info *splice_pipe;
1718 
1719 	struct page_frag task_frag;
1720 
1721 #ifdef	CONFIG_TASK_DELAY_ACCT
1722 	struct task_delay_info *delays;
1723 #endif
1724 #ifdef CONFIG_FAULT_INJECTION
1725 	int make_it_fail;
1726 #endif
1727 	/*
1728 	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1729 	 * balance_dirty_pages() for some dirty throttling pause
1730 	 */
1731 	int nr_dirtied;
1732 	int nr_dirtied_pause;
1733 	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1734 
1735 #ifdef CONFIG_LATENCYTOP
1736 	int latency_record_count;
1737 	struct latency_record latency_record[LT_SAVECOUNT];
1738 #endif
1739 	/*
1740 	 * time slack values; these are used to round up poll() and
1741 	 * select() etc timeout values. These are in nanoseconds.
1742 	 */
1743 	unsigned long timer_slack_ns;
1744 	unsigned long default_timer_slack_ns;
1745 
1746 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1747 	/* Index of current stored address in ret_stack */
1748 	int curr_ret_stack;
1749 	/* Stack of return addresses for return function tracing */
1750 	struct ftrace_ret_stack	*ret_stack;
1751 	/* time stamp for last schedule */
1752 	unsigned long long ftrace_timestamp;
1753 	/*
1754 	 * Number of functions that haven't been traced
1755 	 * because of depth overrun.
1756 	 */
1757 	atomic_t trace_overrun;
1758 	/* Pause for the tracing */
1759 	atomic_t tracing_graph_pause;
1760 #endif
1761 #ifdef CONFIG_TRACING
1762 	/* state flags for use by tracers */
1763 	unsigned long trace;
1764 	/* bitmask and counter of trace recursion */
1765 	unsigned long trace_recursion;
1766 #endif /* CONFIG_TRACING */
1767 #ifdef CONFIG_KCOV
1768 	/* Coverage collection mode enabled for this task (0 if disabled). */
1769 	enum kcov_mode kcov_mode;
1770 	/* Size of the kcov_area. */
1771 	unsigned	kcov_size;
1772 	/* Buffer for coverage collection. */
1773 	void		*kcov_area;
1774 	/* kcov desciptor wired with this task or NULL. */
1775 	struct kcov	*kcov;
1776 #endif
1777 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1778 	unsigned int memcg_kmem_skip_account;
1779 	struct memcg_oom_info {
1780 		struct mem_cgroup *memcg;
1781 		gfp_t gfp_mask;
1782 		int order;
1783 		unsigned int may_oom:1;
1784 	} memcg_oom;
1785 #endif
1786 #ifdef CONFIG_UPROBES
1787 	struct uprobe_task *utask;
1788 #endif
1789 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1790 	unsigned int	sequential_io;
1791 	unsigned int	sequential_io_avg;
1792 #endif
1793 };
1794 
1795 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1796 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1797 
1798 #define TNF_MIGRATED	0x01
1799 #define TNF_NO_GROUP	0x02
1800 #define TNF_SHARED	0x04
1801 #define TNF_FAULT_LOCAL	0x08
1802 
1803 #ifdef CONFIG_NUMA_BALANCING
1804 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1805 extern pid_t task_numa_group_id(struct task_struct *p);
1806 extern void set_numabalancing_state(bool enabled);
1807 extern void task_numa_free(struct task_struct *p);
1808 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1809 					int src_nid, int dst_cpu);
1810 #else
task_numa_fault(int last_node,int node,int pages,int flags)1811 static inline void task_numa_fault(int last_node, int node, int pages,
1812 				   int flags)
1813 {
1814 }
task_numa_group_id(struct task_struct * p)1815 static inline pid_t task_numa_group_id(struct task_struct *p)
1816 {
1817 	return 0;
1818 }
set_numabalancing_state(bool enabled)1819 static inline void set_numabalancing_state(bool enabled)
1820 {
1821 }
task_numa_free(struct task_struct * p)1822 static inline void task_numa_free(struct task_struct *p)
1823 {
1824 }
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1825 static inline bool should_numa_migrate_memory(struct task_struct *p,
1826 				struct page *page, int src_nid, int dst_cpu)
1827 {
1828 	return true;
1829 }
1830 #endif
1831 
task_pid(struct task_struct * task)1832 static inline struct pid *task_pid(struct task_struct *task)
1833 {
1834 	return task->pids[PIDTYPE_PID].pid;
1835 }
1836 
task_tgid(struct task_struct * task)1837 static inline struct pid *task_tgid(struct task_struct *task)
1838 {
1839 	return task->group_leader->pids[PIDTYPE_PID].pid;
1840 }
1841 
1842 /*
1843  * Without tasklist or rcu lock it is not safe to dereference
1844  * the result of task_pgrp/task_session even if task == current,
1845  * we can race with another thread doing sys_setsid/sys_setpgid.
1846  */
task_pgrp(struct task_struct * task)1847 static inline struct pid *task_pgrp(struct task_struct *task)
1848 {
1849 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1850 }
1851 
task_session(struct task_struct * task)1852 static inline struct pid *task_session(struct task_struct *task)
1853 {
1854 	return task->group_leader->pids[PIDTYPE_SID].pid;
1855 }
1856 
1857 struct pid_namespace;
1858 
1859 /*
1860  * the helpers to get the task's different pids as they are seen
1861  * from various namespaces
1862  *
1863  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1864  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1865  *                     current.
1866  * task_xid_nr_ns()  : id seen from the ns specified;
1867  *
1868  * set_task_vxid()   : assigns a virtual id to a task;
1869  *
1870  * see also pid_nr() etc in include/linux/pid.h
1871  */
1872 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1873 			struct pid_namespace *ns);
1874 
task_pid_nr(struct task_struct * tsk)1875 static inline pid_t task_pid_nr(struct task_struct *tsk)
1876 {
1877 	return tsk->pid;
1878 }
1879 
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1880 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1881 					struct pid_namespace *ns)
1882 {
1883 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1884 }
1885 
task_pid_vnr(struct task_struct * tsk)1886 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1887 {
1888 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1889 }
1890 
1891 
task_tgid_nr(struct task_struct * tsk)1892 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1893 {
1894 	return tsk->tgid;
1895 }
1896 
1897 
1898 static inline int pid_alive(const struct task_struct *p);
1899 
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1900 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1901 					struct pid_namespace *ns)
1902 {
1903 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1904 }
1905 
task_pgrp_vnr(struct task_struct * tsk)1906 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1907 {
1908 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1909 }
1910 
1911 
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1912 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1913 					struct pid_namespace *ns)
1914 {
1915 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1916 }
1917 
task_session_vnr(struct task_struct * tsk)1918 static inline pid_t task_session_vnr(struct task_struct *tsk)
1919 {
1920 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1921 }
1922 
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1923 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1924 {
1925 	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1926 }
1927 
task_tgid_vnr(struct task_struct * tsk)1928 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1929 {
1930 	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1931 }
1932 
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1933 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1934 {
1935 	pid_t pid = 0;
1936 
1937 	rcu_read_lock();
1938 	if (pid_alive(tsk))
1939 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1940 	rcu_read_unlock();
1941 
1942 	return pid;
1943 }
1944 
task_ppid_nr(const struct task_struct * tsk)1945 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1946 {
1947 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1948 }
1949 
1950 /* obsolete, do not use */
task_pgrp_nr(struct task_struct * tsk)1951 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1952 {
1953 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1954 }
1955 
1956 /**
1957  * pid_alive - check that a task structure is not stale
1958  * @p: Task structure to be checked.
1959  *
1960  * Test if a process is not yet dead (at most zombie state)
1961  * If pid_alive fails, then pointers within the task structure
1962  * can be stale and must not be dereferenced.
1963  *
1964  * Return: 1 if the process is alive. 0 otherwise.
1965  */
pid_alive(const struct task_struct * p)1966 static inline int pid_alive(const struct task_struct *p)
1967 {
1968 	return p->pids[PIDTYPE_PID].pid != NULL;
1969 }
1970 
1971 /**
1972  * is_global_init - check if a task structure is init
1973  * @tsk: Task structure to be checked.
1974  *
1975  * Check if a task structure is the first user space task the kernel created.
1976  *
1977  * Return: 1 if the task structure is init. 0 otherwise.
1978  */
is_global_init(struct task_struct * tsk)1979 static inline int is_global_init(struct task_struct *tsk)
1980 {
1981 	return tsk->pid == 1;
1982 }
1983 
1984 extern struct pid *cad_pid;
1985 
1986 extern void free_task(struct task_struct *tsk);
1987 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1988 
1989 extern void __put_task_struct(struct task_struct *t);
1990 
put_task_struct(struct task_struct * t)1991 static inline void put_task_struct(struct task_struct *t)
1992 {
1993 	if (atomic_dec_and_test(&t->usage))
1994 		__put_task_struct(t);
1995 }
1996 
1997 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1998 extern void task_cputime(struct task_struct *t,
1999 			 cputime_t *utime, cputime_t *stime);
2000 extern void task_cputime_scaled(struct task_struct *t,
2001 				cputime_t *utimescaled, cputime_t *stimescaled);
2002 extern cputime_t task_gtime(struct task_struct *t);
2003 #else
task_cputime(struct task_struct * t,cputime_t * utime,cputime_t * stime)2004 static inline void task_cputime(struct task_struct *t,
2005 				cputime_t *utime, cputime_t *stime)
2006 {
2007 	if (utime)
2008 		*utime = t->utime;
2009 	if (stime)
2010 		*stime = t->stime;
2011 }
2012 
task_cputime_scaled(struct task_struct * t,cputime_t * utimescaled,cputime_t * stimescaled)2013 static inline void task_cputime_scaled(struct task_struct *t,
2014 				       cputime_t *utimescaled,
2015 				       cputime_t *stimescaled)
2016 {
2017 	if (utimescaled)
2018 		*utimescaled = t->utimescaled;
2019 	if (stimescaled)
2020 		*stimescaled = t->stimescaled;
2021 }
2022 
task_gtime(struct task_struct * t)2023 static inline cputime_t task_gtime(struct task_struct *t)
2024 {
2025 	return t->gtime;
2026 }
2027 #endif
2028 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2029 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2030 
2031 extern int task_free_register(struct notifier_block *n);
2032 extern int task_free_unregister(struct notifier_block *n);
2033 
2034 /*
2035  * Per process flags
2036  */
2037 #define PF_EXITING	0x00000004	/* getting shut down */
2038 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
2039 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
2040 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
2041 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
2042 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
2043 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
2044 #define PF_DUMPCORE	0x00000200	/* dumped core */
2045 #define PF_SIGNALED	0x00000400	/* killed by a signal */
2046 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
2047 #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
2048 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
2049 #define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
2050 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
2051 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
2052 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
2053 #define PF_KSWAPD	0x00040000	/* I am kswapd */
2054 #define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
2055 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
2056 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
2057 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
2058 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
2059 #define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
2060 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
2061 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
2062 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
2063 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
2064 
2065 /*
2066  * Only the _current_ task can read/write to tsk->flags, but other
2067  * tasks can access tsk->flags in readonly mode for example
2068  * with tsk_used_math (like during threaded core dumping).
2069  * There is however an exception to this rule during ptrace
2070  * or during fork: the ptracer task is allowed to write to the
2071  * child->flags of its traced child (same goes for fork, the parent
2072  * can write to the child->flags), because we're guaranteed the
2073  * child is not running and in turn not changing child->flags
2074  * at the same time the parent does it.
2075  */
2076 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2077 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2078 #define clear_used_math() clear_stopped_child_used_math(current)
2079 #define set_used_math() set_stopped_child_used_math(current)
2080 #define conditional_stopped_child_used_math(condition, child) \
2081 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2082 #define conditional_used_math(condition) \
2083 	conditional_stopped_child_used_math(condition, current)
2084 #define copy_to_stopped_child_used_math(child) \
2085 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2086 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2087 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2088 #define used_math() tsk_used_math(current)
2089 
2090 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2091  * __GFP_FS is also cleared as it implies __GFP_IO.
2092  */
memalloc_noio_flags(gfp_t flags)2093 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2094 {
2095 	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2096 		flags &= ~(__GFP_IO | __GFP_FS);
2097 	return flags;
2098 }
2099 
memalloc_noio_save(void)2100 static inline unsigned int memalloc_noio_save(void)
2101 {
2102 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2103 	current->flags |= PF_MEMALLOC_NOIO;
2104 	return flags;
2105 }
2106 
memalloc_noio_restore(unsigned int flags)2107 static inline void memalloc_noio_restore(unsigned int flags)
2108 {
2109 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2110 }
2111 
2112 /* Per-process atomic flags. */
2113 #define PFA_NO_NEW_PRIVS 0	/* May not gain new privileges. */
2114 #define PFA_SPREAD_PAGE  1      /* Spread page cache over cpuset */
2115 #define PFA_SPREAD_SLAB  2      /* Spread some slab caches over cpuset */
2116 
2117 
2118 #define TASK_PFA_TEST(name, func)					\
2119 	static inline bool task_##func(struct task_struct *p)		\
2120 	{ return test_bit(PFA_##name, &p->atomic_flags); }
2121 #define TASK_PFA_SET(name, func)					\
2122 	static inline void task_set_##func(struct task_struct *p)	\
2123 	{ set_bit(PFA_##name, &p->atomic_flags); }
2124 #define TASK_PFA_CLEAR(name, func)					\
2125 	static inline void task_clear_##func(struct task_struct *p)	\
2126 	{ clear_bit(PFA_##name, &p->atomic_flags); }
2127 
2128 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2129 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2130 
2131 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2132 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2133 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2134 
2135 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2136 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2137 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2138 
2139 /*
2140  * task->jobctl flags
2141  */
2142 #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
2143 
2144 #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
2145 #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
2146 #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
2147 #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
2148 #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
2149 #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
2150 #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
2151 
2152 #define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
2153 #define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
2154 #define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
2155 #define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
2156 #define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
2157 #define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
2158 #define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
2159 
2160 #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2161 #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2162 
2163 extern bool task_set_jobctl_pending(struct task_struct *task,
2164 				    unsigned int mask);
2165 extern void task_clear_jobctl_trapping(struct task_struct *task);
2166 extern void task_clear_jobctl_pending(struct task_struct *task,
2167 				      unsigned int mask);
2168 
rcu_copy_process(struct task_struct * p)2169 static inline void rcu_copy_process(struct task_struct *p)
2170 {
2171 #ifdef CONFIG_PREEMPT_RCU
2172 	p->rcu_read_lock_nesting = 0;
2173 	p->rcu_read_unlock_special.s = 0;
2174 	p->rcu_blocked_node = NULL;
2175 	INIT_LIST_HEAD(&p->rcu_node_entry);
2176 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2177 #ifdef CONFIG_TASKS_RCU
2178 	p->rcu_tasks_holdout = false;
2179 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2180 	p->rcu_tasks_idle_cpu = -1;
2181 #endif /* #ifdef CONFIG_TASKS_RCU */
2182 }
2183 
tsk_restore_flags(struct task_struct * task,unsigned long orig_flags,unsigned long flags)2184 static inline void tsk_restore_flags(struct task_struct *task,
2185 				unsigned long orig_flags, unsigned long flags)
2186 {
2187 	task->flags &= ~flags;
2188 	task->flags |= orig_flags & flags;
2189 }
2190 
2191 #ifdef CONFIG_SMP
2192 extern void do_set_cpus_allowed(struct task_struct *p,
2193 			       const struct cpumask *new_mask);
2194 
2195 extern int set_cpus_allowed_ptr(struct task_struct *p,
2196 				const struct cpumask *new_mask);
2197 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2198 static inline void do_set_cpus_allowed(struct task_struct *p,
2199 				      const struct cpumask *new_mask)
2200 {
2201 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2202 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2203 				       const struct cpumask *new_mask)
2204 {
2205 	if (!cpumask_test_cpu(0, new_mask))
2206 		return -EINVAL;
2207 	return 0;
2208 }
2209 #endif
2210 
2211 #ifdef CONFIG_NO_HZ_COMMON
2212 void calc_load_enter_idle(void);
2213 void calc_load_exit_idle(void);
2214 #else
calc_load_enter_idle(void)2215 static inline void calc_load_enter_idle(void) { }
calc_load_exit_idle(void)2216 static inline void calc_load_exit_idle(void) { }
2217 #endif /* CONFIG_NO_HZ_COMMON */
2218 
2219 /*
2220  * Do not use outside of architecture code which knows its limitations.
2221  *
2222  * sched_clock() has no promise of monotonicity or bounded drift between
2223  * CPUs, use (which you should not) requires disabling IRQs.
2224  *
2225  * Please use one of the three interfaces below.
2226  */
2227 extern unsigned long long notrace sched_clock(void);
2228 /*
2229  * See the comment in kernel/sched/clock.c
2230  */
2231 extern u64 cpu_clock(int cpu);
2232 extern u64 local_clock(void);
2233 extern u64 sched_clock_cpu(int cpu);
2234 
2235 
2236 extern void sched_clock_init(void);
2237 
2238 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_tick(void)2239 static inline void sched_clock_tick(void)
2240 {
2241 }
2242 
sched_clock_idle_sleep_event(void)2243 static inline void sched_clock_idle_sleep_event(void)
2244 {
2245 }
2246 
sched_clock_idle_wakeup_event(u64 delta_ns)2247 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2248 {
2249 }
2250 #else
2251 /*
2252  * Architectures can set this to 1 if they have specified
2253  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2254  * but then during bootup it turns out that sched_clock()
2255  * is reliable after all:
2256  */
2257 extern int sched_clock_stable(void);
2258 extern void set_sched_clock_stable(void);
2259 extern void clear_sched_clock_stable(void);
2260 
2261 extern void sched_clock_tick(void);
2262 extern void sched_clock_idle_sleep_event(void);
2263 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2264 #endif
2265 
2266 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2267 /*
2268  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2269  * The reason for this explicit opt-in is not to have perf penalty with
2270  * slow sched_clocks.
2271  */
2272 extern void enable_sched_clock_irqtime(void);
2273 extern void disable_sched_clock_irqtime(void);
2274 #else
enable_sched_clock_irqtime(void)2275 static inline void enable_sched_clock_irqtime(void) {}
disable_sched_clock_irqtime(void)2276 static inline void disable_sched_clock_irqtime(void) {}
2277 #endif
2278 
2279 extern unsigned long long
2280 task_sched_runtime(struct task_struct *task);
2281 
2282 /* sched_exec is called by processes performing an exec */
2283 #ifdef CONFIG_SMP
2284 extern void sched_exec(void);
2285 #else
2286 #define sched_exec()   {}
2287 #endif
2288 
2289 extern void sched_clock_idle_sleep_event(void);
2290 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2291 
2292 #ifdef CONFIG_HOTPLUG_CPU
2293 extern void idle_task_exit(void);
2294 #else
idle_task_exit(void)2295 static inline void idle_task_exit(void) {}
2296 #endif
2297 
2298 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2299 extern void wake_up_nohz_cpu(int cpu);
2300 #else
wake_up_nohz_cpu(int cpu)2301 static inline void wake_up_nohz_cpu(int cpu) { }
2302 #endif
2303 
2304 #ifdef CONFIG_NO_HZ_FULL
2305 extern bool sched_can_stop_tick(void);
2306 extern u64 scheduler_tick_max_deferment(void);
2307 #else
sched_can_stop_tick(void)2308 static inline bool sched_can_stop_tick(void) { return false; }
2309 #endif
2310 
2311 #ifdef CONFIG_SCHED_AUTOGROUP
2312 extern void sched_autogroup_create_attach(struct task_struct *p);
2313 extern void sched_autogroup_detach(struct task_struct *p);
2314 extern void sched_autogroup_fork(struct signal_struct *sig);
2315 extern void sched_autogroup_exit(struct signal_struct *sig);
2316 #ifdef CONFIG_PROC_FS
2317 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2318 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2319 #endif
2320 #else
sched_autogroup_create_attach(struct task_struct * p)2321 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
sched_autogroup_detach(struct task_struct * p)2322 static inline void sched_autogroup_detach(struct task_struct *p) { }
sched_autogroup_fork(struct signal_struct * sig)2323 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
sched_autogroup_exit(struct signal_struct * sig)2324 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2325 #endif
2326 
2327 extern int yield_to(struct task_struct *p, bool preempt);
2328 extern void set_user_nice(struct task_struct *p, long nice);
2329 extern int task_prio(const struct task_struct *p);
2330 /**
2331  * task_nice - return the nice value of a given task.
2332  * @p: the task in question.
2333  *
2334  * Return: The nice value [ -20 ... 0 ... 19 ].
2335  */
task_nice(const struct task_struct * p)2336 static inline int task_nice(const struct task_struct *p)
2337 {
2338 	return PRIO_TO_NICE((p)->static_prio);
2339 }
2340 extern int can_nice(const struct task_struct *p, const int nice);
2341 extern int task_curr(const struct task_struct *p);
2342 extern int idle_cpu(int cpu);
2343 extern int sched_setscheduler(struct task_struct *, int,
2344 			      const struct sched_param *);
2345 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2346 				      const struct sched_param *);
2347 extern int sched_setattr(struct task_struct *,
2348 			 const struct sched_attr *);
2349 extern struct task_struct *idle_task(int cpu);
2350 /**
2351  * is_idle_task - is the specified task an idle task?
2352  * @p: the task in question.
2353  *
2354  * Return: 1 if @p is an idle task. 0 otherwise.
2355  */
is_idle_task(const struct task_struct * p)2356 static inline bool is_idle_task(const struct task_struct *p)
2357 {
2358 	return p->pid == 0;
2359 }
2360 extern struct task_struct *curr_task(int cpu);
2361 extern void set_curr_task(int cpu, struct task_struct *p);
2362 
2363 void yield(void);
2364 
2365 /*
2366  * The default (Linux) execution domain.
2367  */
2368 extern struct exec_domain	default_exec_domain;
2369 
2370 union thread_union {
2371 	struct thread_info thread_info;
2372 	unsigned long stack[THREAD_SIZE/sizeof(long)];
2373 };
2374 
2375 #ifndef __HAVE_ARCH_KSTACK_END
kstack_end(void * addr)2376 static inline int kstack_end(void *addr)
2377 {
2378 	/* Reliable end of stack detection:
2379 	 * Some APM bios versions misalign the stack
2380 	 */
2381 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2382 }
2383 #endif
2384 
2385 extern union thread_union init_thread_union;
2386 extern struct task_struct init_task;
2387 
2388 extern struct   mm_struct init_mm;
2389 
2390 extern struct pid_namespace init_pid_ns;
2391 
2392 /*
2393  * find a task by one of its numerical ids
2394  *
2395  * find_task_by_pid_ns():
2396  *      finds a task by its pid in the specified namespace
2397  * find_task_by_vpid():
2398  *      finds a task by its virtual pid
2399  *
2400  * see also find_vpid() etc in include/linux/pid.h
2401  */
2402 
2403 extern struct task_struct *find_task_by_vpid(pid_t nr);
2404 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2405 		struct pid_namespace *ns);
2406 
2407 /* per-UID process charging. */
2408 extern struct user_struct * alloc_uid(kuid_t);
get_uid(struct user_struct * u)2409 static inline struct user_struct *get_uid(struct user_struct *u)
2410 {
2411 	atomic_inc(&u->__count);
2412 	return u;
2413 }
2414 extern void free_uid(struct user_struct *);
2415 
2416 #include <asm/current.h>
2417 
2418 extern void xtime_update(unsigned long ticks);
2419 
2420 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2421 extern int wake_up_process(struct task_struct *tsk);
2422 extern void wake_up_new_task(struct task_struct *tsk);
2423 #ifdef CONFIG_SMP
2424  extern void kick_process(struct task_struct *tsk);
2425 #else
kick_process(struct task_struct * tsk)2426  static inline void kick_process(struct task_struct *tsk) { }
2427 #endif
2428 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2429 extern void sched_dead(struct task_struct *p);
2430 
2431 extern void proc_caches_init(void);
2432 extern void flush_signals(struct task_struct *);
2433 extern void __flush_signals(struct task_struct *);
2434 extern void ignore_signals(struct task_struct *);
2435 extern void flush_signal_handlers(struct task_struct *, int force_default);
2436 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2437 
dequeue_signal_lock(struct task_struct * tsk,sigset_t * mask,siginfo_t * info)2438 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2439 {
2440 	unsigned long flags;
2441 	int ret;
2442 
2443 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2444 	ret = dequeue_signal(tsk, mask, info);
2445 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2446 
2447 	return ret;
2448 }
2449 
2450 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2451 			      sigset_t *mask);
2452 extern void unblock_all_signals(void);
2453 extern void release_task(struct task_struct * p);
2454 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2455 extern int force_sigsegv(int, struct task_struct *);
2456 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2457 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2458 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2459 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2460 				const struct cred *, u32);
2461 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2462 extern int kill_pid(struct pid *pid, int sig, int priv);
2463 extern int kill_proc_info(int, struct siginfo *, pid_t);
2464 extern __must_check bool do_notify_parent(struct task_struct *, int);
2465 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2466 extern void force_sig(int, struct task_struct *);
2467 extern int send_sig(int, struct task_struct *, int);
2468 extern int zap_other_threads(struct task_struct *p);
2469 extern struct sigqueue *sigqueue_alloc(void);
2470 extern void sigqueue_free(struct sigqueue *);
2471 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2472 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2473 
restore_saved_sigmask(void)2474 static inline void restore_saved_sigmask(void)
2475 {
2476 	if (test_and_clear_restore_sigmask())
2477 		__set_current_blocked(&current->saved_sigmask);
2478 }
2479 
sigmask_to_save(void)2480 static inline sigset_t *sigmask_to_save(void)
2481 {
2482 	sigset_t *res = &current->blocked;
2483 	if (unlikely(test_restore_sigmask()))
2484 		res = &current->saved_sigmask;
2485 	return res;
2486 }
2487 
kill_cad_pid(int sig,int priv)2488 static inline int kill_cad_pid(int sig, int priv)
2489 {
2490 	return kill_pid(cad_pid, sig, priv);
2491 }
2492 
2493 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2494 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2495 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2496 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2497 
2498 /*
2499  * True if we are on the alternate signal stack.
2500  */
on_sig_stack(unsigned long sp)2501 static inline int on_sig_stack(unsigned long sp)
2502 {
2503 #ifdef CONFIG_STACK_GROWSUP
2504 	return sp >= current->sas_ss_sp &&
2505 		sp - current->sas_ss_sp < current->sas_ss_size;
2506 #else
2507 	return sp > current->sas_ss_sp &&
2508 		sp - current->sas_ss_sp <= current->sas_ss_size;
2509 #endif
2510 }
2511 
sas_ss_flags(unsigned long sp)2512 static inline int sas_ss_flags(unsigned long sp)
2513 {
2514 	if (!current->sas_ss_size)
2515 		return SS_DISABLE;
2516 
2517 	return on_sig_stack(sp) ? SS_ONSTACK : 0;
2518 }
2519 
sigsp(unsigned long sp,struct ksignal * ksig)2520 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2521 {
2522 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2523 #ifdef CONFIG_STACK_GROWSUP
2524 		return current->sas_ss_sp;
2525 #else
2526 		return current->sas_ss_sp + current->sas_ss_size;
2527 #endif
2528 	return sp;
2529 }
2530 
2531 /*
2532  * Routines for handling mm_structs
2533  */
2534 extern struct mm_struct * mm_alloc(void);
2535 
2536 /* mmdrop drops the mm and the page tables */
2537 extern void __mmdrop(struct mm_struct *);
mmdrop(struct mm_struct * mm)2538 static inline void mmdrop(struct mm_struct * mm)
2539 {
2540 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2541 		__mmdrop(mm);
2542 }
2543 
2544 /* mmput gets rid of the mappings and all user-space */
2545 extern void mmput(struct mm_struct *);
2546 /* same as above but performs the slow path from the async kontext. Can
2547  * be called from the atomic context as well
2548  */
2549 extern void mmput_async(struct mm_struct *);
2550 
2551 /* Grab a reference to a task's mm, if it is not already going away */
2552 extern struct mm_struct *get_task_mm(struct task_struct *task);
2553 /*
2554  * Grab a reference to a task's mm, if it is not already going away
2555  * and ptrace_may_access with the mode parameter passed to it
2556  * succeeds.
2557  */
2558 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2559 /* Remove the current tasks stale references to the old mm_struct */
2560 extern void mm_release(struct task_struct *, struct mm_struct *);
2561 
2562 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2563 			struct task_struct *);
2564 extern void flush_thread(void);
2565 
2566 #ifdef CONFIG_HAVE_EXIT_THREAD
2567 extern void exit_thread(struct task_struct *tsk);
2568 #else
exit_thread(struct task_struct * tsk)2569 static inline void exit_thread(struct task_struct *tsk)
2570 {
2571 }
2572 #endif
2573 
2574 extern void exit_files(struct task_struct *);
2575 extern void __cleanup_sighand(struct sighand_struct *);
2576 
2577 extern void exit_itimers(struct signal_struct *);
2578 extern void flush_itimer_signals(void);
2579 
2580 extern void do_group_exit(int);
2581 
2582 extern int do_execve(struct filename *,
2583 		     const char __user * const __user *,
2584 		     const char __user * const __user *);
2585 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2586 struct task_struct *fork_idle(int);
2587 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2588 
2589 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
set_task_comm(struct task_struct * tsk,const char * from)2590 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2591 {
2592 	__set_task_comm(tsk, from, false);
2593 }
2594 extern char *get_task_comm(char *to, struct task_struct *tsk);
2595 
2596 #ifdef CONFIG_SMP
2597 void scheduler_ipi(void);
2598 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2599 #else
scheduler_ipi(void)2600 static inline void scheduler_ipi(void) { }
wait_task_inactive(struct task_struct * p,long match_state)2601 static inline unsigned long wait_task_inactive(struct task_struct *p,
2602 					       long match_state)
2603 {
2604 	return 1;
2605 }
2606 #endif
2607 
2608 #define next_task(p) \
2609 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2610 
2611 #define for_each_process(p) \
2612 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2613 
2614 extern bool current_is_single_threaded(void);
2615 
2616 /*
2617  * Careful: do_each_thread/while_each_thread is a double loop so
2618  *          'break' will not work as expected - use goto instead.
2619  */
2620 #define do_each_thread(g, t) \
2621 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2622 
2623 #define while_each_thread(g, t) \
2624 	while ((t = next_thread(t)) != g)
2625 
2626 #define __for_each_thread(signal, t)	\
2627 	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2628 
2629 #define for_each_thread(p, t)		\
2630 	__for_each_thread((p)->signal, t)
2631 
2632 /* Careful: this is a double loop, 'break' won't work as expected. */
2633 #define for_each_process_thread(p, t)	\
2634 	for_each_process(p) for_each_thread(p, t)
2635 
get_nr_threads(struct task_struct * tsk)2636 static inline int get_nr_threads(struct task_struct *tsk)
2637 {
2638 	return tsk->signal->nr_threads;
2639 }
2640 
thread_group_leader(struct task_struct * p)2641 static inline bool thread_group_leader(struct task_struct *p)
2642 {
2643 	return p->exit_signal >= 0;
2644 }
2645 
2646 /* Do to the insanities of de_thread it is possible for a process
2647  * to have the pid of the thread group leader without actually being
2648  * the thread group leader.  For iteration through the pids in proc
2649  * all we care about is that we have a task with the appropriate
2650  * pid, we don't actually care if we have the right task.
2651  */
has_group_leader_pid(struct task_struct * p)2652 static inline bool has_group_leader_pid(struct task_struct *p)
2653 {
2654 	return task_pid(p) == p->signal->leader_pid;
2655 }
2656 
2657 static inline
same_thread_group(struct task_struct * p1,struct task_struct * p2)2658 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2659 {
2660 	return p1->signal == p2->signal;
2661 }
2662 
next_thread(const struct task_struct * p)2663 static inline struct task_struct *next_thread(const struct task_struct *p)
2664 {
2665 	return list_entry_rcu(p->thread_group.next,
2666 			      struct task_struct, thread_group);
2667 }
2668 
thread_group_empty(struct task_struct * p)2669 static inline int thread_group_empty(struct task_struct *p)
2670 {
2671 	return list_empty(&p->thread_group);
2672 }
2673 
2674 #define delay_group_leader(p) \
2675 		(thread_group_leader(p) && !thread_group_empty(p))
2676 
2677 /*
2678  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2679  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2680  * pins the final release of task.io_context.  Also protects ->cpuset and
2681  * ->cgroup.subsys[]. And ->vfork_done.
2682  *
2683  * Nests both inside and outside of read_lock(&tasklist_lock).
2684  * It must not be nested with write_lock_irq(&tasklist_lock),
2685  * neither inside nor outside.
2686  */
task_lock(struct task_struct * p)2687 static inline void task_lock(struct task_struct *p)
2688 {
2689 	spin_lock(&p->alloc_lock);
2690 }
2691 
task_unlock(struct task_struct * p)2692 static inline void task_unlock(struct task_struct *p)
2693 {
2694 	spin_unlock(&p->alloc_lock);
2695 }
2696 
2697 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2698 							unsigned long *flags);
2699 
lock_task_sighand(struct task_struct * tsk,unsigned long * flags)2700 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2701 						       unsigned long *flags)
2702 {
2703 	struct sighand_struct *ret;
2704 
2705 	ret = __lock_task_sighand(tsk, flags);
2706 	(void)__cond_lock(&tsk->sighand->siglock, ret);
2707 	return ret;
2708 }
2709 
unlock_task_sighand(struct task_struct * tsk,unsigned long * flags)2710 static inline void unlock_task_sighand(struct task_struct *tsk,
2711 						unsigned long *flags)
2712 {
2713 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2714 }
2715 
2716 #ifdef CONFIG_CGROUPS
threadgroup_change_begin(struct task_struct * tsk)2717 static inline void threadgroup_change_begin(struct task_struct *tsk)
2718 {
2719 	down_read(&tsk->signal->group_rwsem);
2720 }
threadgroup_change_end(struct task_struct * tsk)2721 static inline void threadgroup_change_end(struct task_struct *tsk)
2722 {
2723 	up_read(&tsk->signal->group_rwsem);
2724 }
2725 
2726 /**
2727  * threadgroup_lock - lock threadgroup
2728  * @tsk: member task of the threadgroup to lock
2729  *
2730  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2731  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2732  * change ->group_leader/pid.  This is useful for cases where the threadgroup
2733  * needs to stay stable across blockable operations.
2734  *
2735  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2736  * synchronization.  While held, no new task will be added to threadgroup
2737  * and no existing live task will have its PF_EXITING set.
2738  *
2739  * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2740  * sub-thread becomes a new leader.
2741  */
threadgroup_lock(struct task_struct * tsk)2742 static inline void threadgroup_lock(struct task_struct *tsk)
2743 {
2744 	down_write(&tsk->signal->group_rwsem);
2745 }
2746 
2747 /**
2748  * threadgroup_unlock - unlock threadgroup
2749  * @tsk: member task of the threadgroup to unlock
2750  *
2751  * Reverse threadgroup_lock().
2752  */
threadgroup_unlock(struct task_struct * tsk)2753 static inline void threadgroup_unlock(struct task_struct *tsk)
2754 {
2755 	up_write(&tsk->signal->group_rwsem);
2756 }
2757 #else
threadgroup_change_begin(struct task_struct * tsk)2758 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
threadgroup_change_end(struct task_struct * tsk)2759 static inline void threadgroup_change_end(struct task_struct *tsk) {}
threadgroup_lock(struct task_struct * tsk)2760 static inline void threadgroup_lock(struct task_struct *tsk) {}
threadgroup_unlock(struct task_struct * tsk)2761 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2762 #endif
2763 
2764 #ifndef __HAVE_THREAD_FUNCTIONS
2765 
2766 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2767 #define task_stack_page(task)	((task)->stack)
2768 
setup_thread_stack(struct task_struct * p,struct task_struct * org)2769 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2770 {
2771 	*task_thread_info(p) = *task_thread_info(org);
2772 	task_thread_info(p)->task = p;
2773 }
2774 
2775 /*
2776  * Return the address of the last usable long on the stack.
2777  *
2778  * When the stack grows down, this is just above the thread
2779  * info struct. Going any lower will corrupt the threadinfo.
2780  *
2781  * When the stack grows up, this is the highest address.
2782  * Beyond that position, we corrupt data on the next page.
2783  */
end_of_stack(struct task_struct * p)2784 static inline unsigned long *end_of_stack(struct task_struct *p)
2785 {
2786 #ifdef CONFIG_STACK_GROWSUP
2787 	return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2788 #else
2789 	return (unsigned long *)(task_thread_info(p) + 1);
2790 #endif
2791 }
2792 
2793 #endif
2794 #define task_stack_end_corrupted(task) \
2795 		(*(end_of_stack(task)) != STACK_END_MAGIC)
2796 
object_is_on_stack(void * obj)2797 static inline int object_is_on_stack(void *obj)
2798 {
2799 	void *stack = task_stack_page(current);
2800 
2801 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2802 }
2803 
2804 extern void thread_info_cache_init(void);
2805 
2806 #ifdef CONFIG_DEBUG_STACK_USAGE
stack_not_used(struct task_struct * p)2807 static inline unsigned long stack_not_used(struct task_struct *p)
2808 {
2809 	unsigned long *n = end_of_stack(p);
2810 
2811 	do { 	/* Skip over canary */
2812 		n++;
2813 	} while (!*n);
2814 
2815 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2816 }
2817 #endif
2818 extern void set_task_stack_end_magic(struct task_struct *tsk);
2819 
2820 /* set thread flags in other task's structures
2821  * - see asm/thread_info.h for TIF_xxxx flags available
2822  */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2823 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2824 {
2825 	set_ti_thread_flag(task_thread_info(tsk), flag);
2826 }
2827 
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2828 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2829 {
2830 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2831 }
2832 
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2833 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2834 {
2835 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2836 }
2837 
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2838 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2839 {
2840 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2841 }
2842 
test_tsk_thread_flag(struct task_struct * tsk,int flag)2843 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2844 {
2845 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2846 }
2847 
set_tsk_need_resched(struct task_struct * tsk)2848 static inline void set_tsk_need_resched(struct task_struct *tsk)
2849 {
2850 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2851 }
2852 
clear_tsk_need_resched(struct task_struct * tsk)2853 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2854 {
2855 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2856 }
2857 
test_tsk_need_resched(struct task_struct * tsk)2858 static inline int test_tsk_need_resched(struct task_struct *tsk)
2859 {
2860 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2861 }
2862 
restart_syscall(void)2863 static inline int restart_syscall(void)
2864 {
2865 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2866 	return -ERESTARTNOINTR;
2867 }
2868 
signal_pending(struct task_struct * p)2869 static inline int signal_pending(struct task_struct *p)
2870 {
2871 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2872 }
2873 
__fatal_signal_pending(struct task_struct * p)2874 static inline int __fatal_signal_pending(struct task_struct *p)
2875 {
2876 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2877 }
2878 
fatal_signal_pending(struct task_struct * p)2879 static inline int fatal_signal_pending(struct task_struct *p)
2880 {
2881 	return signal_pending(p) && __fatal_signal_pending(p);
2882 }
2883 
signal_pending_state(long state,struct task_struct * p)2884 static inline int signal_pending_state(long state, struct task_struct *p)
2885 {
2886 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2887 		return 0;
2888 	if (!signal_pending(p))
2889 		return 0;
2890 
2891 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2892 }
2893 
2894 /*
2895  * cond_resched() and cond_resched_lock(): latency reduction via
2896  * explicit rescheduling in places that are safe. The return
2897  * value indicates whether a reschedule was done in fact.
2898  * cond_resched_lock() will drop the spinlock before scheduling,
2899  * cond_resched_softirq() will enable bhs before scheduling.
2900  */
2901 extern int _cond_resched(void);
2902 
2903 #define cond_resched() ({			\
2904 	__might_sleep(__FILE__, __LINE__, 0);	\
2905 	_cond_resched();			\
2906 })
2907 
2908 extern int __cond_resched_lock(spinlock_t *lock);
2909 
2910 #ifdef CONFIG_PREEMPT_COUNT
2911 #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2912 #else
2913 #define PREEMPT_LOCK_OFFSET	0
2914 #endif
2915 
2916 #define cond_resched_lock(lock) ({				\
2917 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2918 	__cond_resched_lock(lock);				\
2919 })
2920 
2921 extern int __cond_resched_softirq(void);
2922 
2923 #define cond_resched_softirq() ({					\
2924 	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2925 	__cond_resched_softirq();					\
2926 })
2927 
cond_resched_rcu(void)2928 static inline void cond_resched_rcu(void)
2929 {
2930 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2931 	rcu_read_unlock();
2932 	cond_resched();
2933 	rcu_read_lock();
2934 #endif
2935 }
2936 
2937 /*
2938  * Does a critical section need to be broken due to another
2939  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2940  * but a general need for low latency)
2941  */
spin_needbreak(spinlock_t * lock)2942 static inline int spin_needbreak(spinlock_t *lock)
2943 {
2944 #ifdef CONFIG_PREEMPT
2945 	return spin_is_contended(lock);
2946 #else
2947 	return 0;
2948 #endif
2949 }
2950 
2951 /*
2952  * Idle thread specific functions to determine the need_resched
2953  * polling state.
2954  */
2955 #ifdef TIF_POLLING_NRFLAG
tsk_is_polling(struct task_struct * p)2956 static inline int tsk_is_polling(struct task_struct *p)
2957 {
2958 	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2959 }
2960 
__current_set_polling(void)2961 static inline void __current_set_polling(void)
2962 {
2963 	set_thread_flag(TIF_POLLING_NRFLAG);
2964 }
2965 
current_set_polling_and_test(void)2966 static inline bool __must_check current_set_polling_and_test(void)
2967 {
2968 	__current_set_polling();
2969 
2970 	/*
2971 	 * Polling state must be visible before we test NEED_RESCHED,
2972 	 * paired by resched_curr()
2973 	 */
2974 	smp_mb__after_atomic();
2975 
2976 	return unlikely(tif_need_resched());
2977 }
2978 
__current_clr_polling(void)2979 static inline void __current_clr_polling(void)
2980 {
2981 	clear_thread_flag(TIF_POLLING_NRFLAG);
2982 }
2983 
current_clr_polling_and_test(void)2984 static inline bool __must_check current_clr_polling_and_test(void)
2985 {
2986 	__current_clr_polling();
2987 
2988 	/*
2989 	 * Polling state must be visible before we test NEED_RESCHED,
2990 	 * paired by resched_curr()
2991 	 */
2992 	smp_mb__after_atomic();
2993 
2994 	return unlikely(tif_need_resched());
2995 }
2996 
2997 #else
tsk_is_polling(struct task_struct * p)2998 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
__current_set_polling(void)2999 static inline void __current_set_polling(void) { }
__current_clr_polling(void)3000 static inline void __current_clr_polling(void) { }
3001 
current_set_polling_and_test(void)3002 static inline bool __must_check current_set_polling_and_test(void)
3003 {
3004 	return unlikely(tif_need_resched());
3005 }
current_clr_polling_and_test(void)3006 static inline bool __must_check current_clr_polling_and_test(void)
3007 {
3008 	return unlikely(tif_need_resched());
3009 }
3010 #endif
3011 
current_clr_polling(void)3012 static inline void current_clr_polling(void)
3013 {
3014 	__current_clr_polling();
3015 
3016 	/*
3017 	 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3018 	 * Once the bit is cleared, we'll get IPIs with every new
3019 	 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3020 	 * fold.
3021 	 */
3022 	smp_mb(); /* paired with resched_curr() */
3023 
3024 	preempt_fold_need_resched();
3025 }
3026 
need_resched(void)3027 static __always_inline bool need_resched(void)
3028 {
3029 	return unlikely(tif_need_resched());
3030 }
3031 
3032 /*
3033  * Thread group CPU time accounting.
3034  */
3035 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3036 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3037 
thread_group_cputime_init(struct signal_struct * sig)3038 static inline void thread_group_cputime_init(struct signal_struct *sig)
3039 {
3040 	raw_spin_lock_init(&sig->cputimer.lock);
3041 }
3042 
3043 /*
3044  * Reevaluate whether the task has signals pending delivery.
3045  * Wake the task if so.
3046  * This is required every time the blocked sigset_t changes.
3047  * callers must hold sighand->siglock.
3048  */
3049 extern void recalc_sigpending_and_wake(struct task_struct *t);
3050 extern void recalc_sigpending(void);
3051 
3052 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3053 
signal_wake_up(struct task_struct * t,bool resume)3054 static inline void signal_wake_up(struct task_struct *t, bool resume)
3055 {
3056 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3057 }
ptrace_signal_wake_up(struct task_struct * t,bool resume)3058 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3059 {
3060 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3061 }
3062 
3063 /*
3064  * Wrappers for p->thread_info->cpu access. No-op on UP.
3065  */
3066 #ifdef CONFIG_SMP
3067 
task_cpu(const struct task_struct * p)3068 static inline unsigned int task_cpu(const struct task_struct *p)
3069 {
3070 	return task_thread_info(p)->cpu;
3071 }
3072 
task_node(const struct task_struct * p)3073 static inline int task_node(const struct task_struct *p)
3074 {
3075 	return cpu_to_node(task_cpu(p));
3076 }
3077 
3078 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3079 
3080 #else
3081 
task_cpu(const struct task_struct * p)3082 static inline unsigned int task_cpu(const struct task_struct *p)
3083 {
3084 	return 0;
3085 }
3086 
set_task_cpu(struct task_struct * p,unsigned int cpu)3087 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3088 {
3089 }
3090 
3091 #endif /* CONFIG_SMP */
3092 
3093 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3094 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3095 
3096 #ifdef CONFIG_CGROUP_SCHED
3097 extern struct task_group root_task_group;
3098 #endif /* CONFIG_CGROUP_SCHED */
3099 
3100 extern int task_can_switch_user(struct user_struct *up,
3101 					struct task_struct *tsk);
3102 
3103 #ifdef CONFIG_TASK_XACCT
add_rchar(struct task_struct * tsk,ssize_t amt)3104 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3105 {
3106 	tsk->ioac.rchar += amt;
3107 }
3108 
add_wchar(struct task_struct * tsk,ssize_t amt)3109 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3110 {
3111 	tsk->ioac.wchar += amt;
3112 }
3113 
inc_syscr(struct task_struct * tsk)3114 static inline void inc_syscr(struct task_struct *tsk)
3115 {
3116 	tsk->ioac.syscr++;
3117 }
3118 
inc_syscw(struct task_struct * tsk)3119 static inline void inc_syscw(struct task_struct *tsk)
3120 {
3121 	tsk->ioac.syscw++;
3122 }
3123 
inc_syscfs(struct task_struct * tsk)3124 static inline void inc_syscfs(struct task_struct *tsk)
3125 {
3126 	tsk->ioac.syscfs++;
3127 }
3128 #else
add_rchar(struct task_struct * tsk,ssize_t amt)3129 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3130 {
3131 }
3132 
add_wchar(struct task_struct * tsk,ssize_t amt)3133 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3134 {
3135 }
3136 
inc_syscr(struct task_struct * tsk)3137 static inline void inc_syscr(struct task_struct *tsk)
3138 {
3139 }
3140 
inc_syscw(struct task_struct * tsk)3141 static inline void inc_syscw(struct task_struct *tsk)
3142 {
3143 }
inc_syscfs(struct task_struct * tsk)3144 static inline void inc_syscfs(struct task_struct *tsk)
3145 {
3146 }
3147 #endif
3148 
3149 #ifndef TASK_SIZE_OF
3150 #define TASK_SIZE_OF(tsk)	TASK_SIZE
3151 #endif
3152 
3153 #ifdef CONFIG_MEMCG
3154 extern void mm_update_next_owner(struct mm_struct *mm);
3155 #else
mm_update_next_owner(struct mm_struct * mm)3156 static inline void mm_update_next_owner(struct mm_struct *mm)
3157 {
3158 }
3159 #endif /* CONFIG_MEMCG */
3160 
task_rlimit(const struct task_struct * tsk,unsigned int limit)3161 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3162 		unsigned int limit)
3163 {
3164 	return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3165 }
3166 
task_rlimit_max(const struct task_struct * tsk,unsigned int limit)3167 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3168 		unsigned int limit)
3169 {
3170 	return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3171 }
3172 
rlimit(unsigned int limit)3173 static inline unsigned long rlimit(unsigned int limit)
3174 {
3175 	return task_rlimit(current, limit);
3176 }
3177 
rlimit_max(unsigned int limit)3178 static inline unsigned long rlimit_max(unsigned int limit)
3179 {
3180 	return task_rlimit_max(current, limit);
3181 }
3182 
3183 #endif
3184