• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 
37 #include "rds.h"
38 #include "iw.h"
39 
40 
41 /*
42  * This is stored as mr->r_trans_private.
43  */
44 struct rds_iw_mr {
45 	struct rds_iw_device	*device;
46 	struct rds_iw_mr_pool	*pool;
47 	struct rdma_cm_id	*cm_id;
48 
49 	struct ib_mr	*mr;
50 	struct ib_fast_reg_page_list *page_list;
51 
52 	struct rds_iw_mapping	mapping;
53 	unsigned char		remap_count;
54 };
55 
56 /*
57  * Our own little MR pool
58  */
59 struct rds_iw_mr_pool {
60 	struct rds_iw_device	*device;		/* back ptr to the device that owns us */
61 
62 	struct mutex		flush_lock;		/* serialize fmr invalidate */
63 	struct work_struct	flush_worker;		/* flush worker */
64 
65 	spinlock_t		list_lock;		/* protect variables below */
66 	atomic_t		item_count;		/* total # of MRs */
67 	atomic_t		dirty_count;		/* # dirty of MRs */
68 	struct list_head	dirty_list;		/* dirty mappings */
69 	struct list_head	clean_list;		/* unused & unamapped MRs */
70 	atomic_t		free_pinned;		/* memory pinned by free MRs */
71 	unsigned long		max_message_size;	/* in pages */
72 	unsigned long		max_items;
73 	unsigned long		max_items_soft;
74 	unsigned long		max_free_pinned;
75 	int			max_pages;
76 };
77 
78 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
79 static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
80 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
81 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
82 			  struct rds_iw_mr *ibmr,
83 			  struct scatterlist *sg, unsigned int nents);
84 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
85 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
86 			struct list_head *unmap_list,
87 			struct list_head *kill_list,
88 			int *unpinned);
89 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
90 
rds_iw_get_device(struct sockaddr_in * src,struct sockaddr_in * dst,struct rds_iw_device ** rds_iwdev,struct rdma_cm_id ** cm_id)91 static int rds_iw_get_device(struct sockaddr_in *src, struct sockaddr_in *dst,
92 			     struct rds_iw_device **rds_iwdev,
93 			     struct rdma_cm_id **cm_id)
94 {
95 	struct rds_iw_device *iwdev;
96 	struct rds_iw_cm_id *i_cm_id;
97 
98 	*rds_iwdev = NULL;
99 	*cm_id = NULL;
100 
101 	list_for_each_entry(iwdev, &rds_iw_devices, list) {
102 		spin_lock_irq(&iwdev->spinlock);
103 		list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
104 			struct sockaddr_in *src_addr, *dst_addr;
105 
106 			src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
107 			dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
108 
109 			rdsdebug("local ipaddr = %x port %d, "
110 				 "remote ipaddr = %x port %d"
111 				 "..looking for %x port %d, "
112 				 "remote ipaddr = %x port %d\n",
113 				src_addr->sin_addr.s_addr,
114 				src_addr->sin_port,
115 				dst_addr->sin_addr.s_addr,
116 				dst_addr->sin_port,
117 				src->sin_addr.s_addr,
118 				src->sin_port,
119 				dst->sin_addr.s_addr,
120 				dst->sin_port);
121 #ifdef WORKING_TUPLE_DETECTION
122 			if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr &&
123 			    src_addr->sin_port == src->sin_port &&
124 			    dst_addr->sin_addr.s_addr == dst->sin_addr.s_addr &&
125 			    dst_addr->sin_port == dst->sin_port) {
126 #else
127 			/* FIXME - needs to compare the local and remote
128 			 * ipaddr/port tuple, but the ipaddr is the only
129 			 * available information in the rds_sock (as the rest are
130 			 * zero'ed.  It doesn't appear to be properly populated
131 			 * during connection setup...
132 			 */
133 			if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr) {
134 #endif
135 				spin_unlock_irq(&iwdev->spinlock);
136 				*rds_iwdev = iwdev;
137 				*cm_id = i_cm_id->cm_id;
138 				return 0;
139 			}
140 		}
141 		spin_unlock_irq(&iwdev->spinlock);
142 	}
143 
144 	return 1;
145 }
146 
147 static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
148 {
149 	struct rds_iw_cm_id *i_cm_id;
150 
151 	i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
152 	if (!i_cm_id)
153 		return -ENOMEM;
154 
155 	i_cm_id->cm_id = cm_id;
156 
157 	spin_lock_irq(&rds_iwdev->spinlock);
158 	list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
159 	spin_unlock_irq(&rds_iwdev->spinlock);
160 
161 	return 0;
162 }
163 
164 static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
165 				struct rdma_cm_id *cm_id)
166 {
167 	struct rds_iw_cm_id *i_cm_id;
168 
169 	spin_lock_irq(&rds_iwdev->spinlock);
170 	list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
171 		if (i_cm_id->cm_id == cm_id) {
172 			list_del(&i_cm_id->list);
173 			kfree(i_cm_id);
174 			break;
175 		}
176 	}
177 	spin_unlock_irq(&rds_iwdev->spinlock);
178 }
179 
180 
181 int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
182 {
183 	struct sockaddr_in *src_addr, *dst_addr;
184 	struct rds_iw_device *rds_iwdev_old;
185 	struct rdma_cm_id *pcm_id;
186 	int rc;
187 
188 	src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
189 	dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
190 
191 	rc = rds_iw_get_device(src_addr, dst_addr, &rds_iwdev_old, &pcm_id);
192 	if (rc)
193 		rds_iw_remove_cm_id(rds_iwdev, cm_id);
194 
195 	return rds_iw_add_cm_id(rds_iwdev, cm_id);
196 }
197 
198 void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
199 {
200 	struct rds_iw_connection *ic = conn->c_transport_data;
201 
202 	/* conn was previously on the nodev_conns_list */
203 	spin_lock_irq(&iw_nodev_conns_lock);
204 	BUG_ON(list_empty(&iw_nodev_conns));
205 	BUG_ON(list_empty(&ic->iw_node));
206 	list_del(&ic->iw_node);
207 
208 	spin_lock(&rds_iwdev->spinlock);
209 	list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
210 	spin_unlock(&rds_iwdev->spinlock);
211 	spin_unlock_irq(&iw_nodev_conns_lock);
212 
213 	ic->rds_iwdev = rds_iwdev;
214 }
215 
216 void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
217 {
218 	struct rds_iw_connection *ic = conn->c_transport_data;
219 
220 	/* place conn on nodev_conns_list */
221 	spin_lock(&iw_nodev_conns_lock);
222 
223 	spin_lock_irq(&rds_iwdev->spinlock);
224 	BUG_ON(list_empty(&ic->iw_node));
225 	list_del(&ic->iw_node);
226 	spin_unlock_irq(&rds_iwdev->spinlock);
227 
228 	list_add_tail(&ic->iw_node, &iw_nodev_conns);
229 
230 	spin_unlock(&iw_nodev_conns_lock);
231 
232 	rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
233 	ic->rds_iwdev = NULL;
234 }
235 
236 void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
237 {
238 	struct rds_iw_connection *ic, *_ic;
239 	LIST_HEAD(tmp_list);
240 
241 	/* avoid calling conn_destroy with irqs off */
242 	spin_lock_irq(list_lock);
243 	list_splice(list, &tmp_list);
244 	INIT_LIST_HEAD(list);
245 	spin_unlock_irq(list_lock);
246 
247 	list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
248 		rds_conn_destroy(ic->conn);
249 }
250 
251 static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
252 		struct scatterlist *list, unsigned int sg_len)
253 {
254 	sg->list = list;
255 	sg->len = sg_len;
256 	sg->dma_len = 0;
257 	sg->dma_npages = 0;
258 	sg->bytes = 0;
259 }
260 
261 static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
262 			struct rds_iw_scatterlist *sg)
263 {
264 	struct ib_device *dev = rds_iwdev->dev;
265 	u64 *dma_pages = NULL;
266 	int i, j, ret;
267 
268 	WARN_ON(sg->dma_len);
269 
270 	sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
271 	if (unlikely(!sg->dma_len)) {
272 		printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
273 		return ERR_PTR(-EBUSY);
274 	}
275 
276 	sg->bytes = 0;
277 	sg->dma_npages = 0;
278 
279 	ret = -EINVAL;
280 	for (i = 0; i < sg->dma_len; ++i) {
281 		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
282 		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
283 		u64 end_addr;
284 
285 		sg->bytes += dma_len;
286 
287 		end_addr = dma_addr + dma_len;
288 		if (dma_addr & PAGE_MASK) {
289 			if (i > 0)
290 				goto out_unmap;
291 			dma_addr &= ~PAGE_MASK;
292 		}
293 		if (end_addr & PAGE_MASK) {
294 			if (i < sg->dma_len - 1)
295 				goto out_unmap;
296 			end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
297 		}
298 
299 		sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
300 	}
301 
302 	/* Now gather the dma addrs into one list */
303 	if (sg->dma_npages > fastreg_message_size)
304 		goto out_unmap;
305 
306 	dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
307 	if (!dma_pages) {
308 		ret = -ENOMEM;
309 		goto out_unmap;
310 	}
311 
312 	for (i = j = 0; i < sg->dma_len; ++i) {
313 		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
314 		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
315 		u64 end_addr;
316 
317 		end_addr = dma_addr + dma_len;
318 		dma_addr &= ~PAGE_MASK;
319 		for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
320 			dma_pages[j++] = dma_addr;
321 		BUG_ON(j > sg->dma_npages);
322 	}
323 
324 	return dma_pages;
325 
326 out_unmap:
327 	ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
328 	sg->dma_len = 0;
329 	kfree(dma_pages);
330 	return ERR_PTR(ret);
331 }
332 
333 
334 struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
335 {
336 	struct rds_iw_mr_pool *pool;
337 
338 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
339 	if (!pool) {
340 		printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
341 		return ERR_PTR(-ENOMEM);
342 	}
343 
344 	pool->device = rds_iwdev;
345 	INIT_LIST_HEAD(&pool->dirty_list);
346 	INIT_LIST_HEAD(&pool->clean_list);
347 	mutex_init(&pool->flush_lock);
348 	spin_lock_init(&pool->list_lock);
349 	INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
350 
351 	pool->max_message_size = fastreg_message_size;
352 	pool->max_items = fastreg_pool_size;
353 	pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
354 	pool->max_pages = fastreg_message_size;
355 
356 	/* We never allow more than max_items MRs to be allocated.
357 	 * When we exceed more than max_items_soft, we start freeing
358 	 * items more aggressively.
359 	 * Make sure that max_items > max_items_soft > max_items / 2
360 	 */
361 	pool->max_items_soft = pool->max_items * 3 / 4;
362 
363 	return pool;
364 }
365 
366 void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
367 {
368 	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
369 
370 	iinfo->rdma_mr_max = pool->max_items;
371 	iinfo->rdma_mr_size = pool->max_pages;
372 }
373 
374 void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
375 {
376 	flush_workqueue(rds_wq);
377 	rds_iw_flush_mr_pool(pool, 1);
378 	BUG_ON(atomic_read(&pool->item_count));
379 	BUG_ON(atomic_read(&pool->free_pinned));
380 	kfree(pool);
381 }
382 
383 static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
384 {
385 	struct rds_iw_mr *ibmr = NULL;
386 	unsigned long flags;
387 
388 	spin_lock_irqsave(&pool->list_lock, flags);
389 	if (!list_empty(&pool->clean_list)) {
390 		ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
391 		list_del_init(&ibmr->mapping.m_list);
392 	}
393 	spin_unlock_irqrestore(&pool->list_lock, flags);
394 
395 	return ibmr;
396 }
397 
398 static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
399 {
400 	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
401 	struct rds_iw_mr *ibmr = NULL;
402 	int err = 0, iter = 0;
403 
404 	while (1) {
405 		ibmr = rds_iw_reuse_fmr(pool);
406 		if (ibmr)
407 			return ibmr;
408 
409 		/* No clean MRs - now we have the choice of either
410 		 * allocating a fresh MR up to the limit imposed by the
411 		 * driver, or flush any dirty unused MRs.
412 		 * We try to avoid stalling in the send path if possible,
413 		 * so we allocate as long as we're allowed to.
414 		 *
415 		 * We're fussy with enforcing the FMR limit, though. If the driver
416 		 * tells us we can't use more than N fmrs, we shouldn't start
417 		 * arguing with it */
418 		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
419 			break;
420 
421 		atomic_dec(&pool->item_count);
422 
423 		if (++iter > 2) {
424 			rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
425 			return ERR_PTR(-EAGAIN);
426 		}
427 
428 		/* We do have some empty MRs. Flush them out. */
429 		rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
430 		rds_iw_flush_mr_pool(pool, 0);
431 	}
432 
433 	ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
434 	if (!ibmr) {
435 		err = -ENOMEM;
436 		goto out_no_cigar;
437 	}
438 
439 	spin_lock_init(&ibmr->mapping.m_lock);
440 	INIT_LIST_HEAD(&ibmr->mapping.m_list);
441 	ibmr->mapping.m_mr = ibmr;
442 
443 	err = rds_iw_init_fastreg(pool, ibmr);
444 	if (err)
445 		goto out_no_cigar;
446 
447 	rds_iw_stats_inc(s_iw_rdma_mr_alloc);
448 	return ibmr;
449 
450 out_no_cigar:
451 	if (ibmr) {
452 		rds_iw_destroy_fastreg(pool, ibmr);
453 		kfree(ibmr);
454 	}
455 	atomic_dec(&pool->item_count);
456 	return ERR_PTR(err);
457 }
458 
459 void rds_iw_sync_mr(void *trans_private, int direction)
460 {
461 	struct rds_iw_mr *ibmr = trans_private;
462 	struct rds_iw_device *rds_iwdev = ibmr->device;
463 
464 	switch (direction) {
465 	case DMA_FROM_DEVICE:
466 		ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
467 			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
468 		break;
469 	case DMA_TO_DEVICE:
470 		ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
471 			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
472 		break;
473 	}
474 }
475 
476 /*
477  * Flush our pool of MRs.
478  * At a minimum, all currently unused MRs are unmapped.
479  * If the number of MRs allocated exceeds the limit, we also try
480  * to free as many MRs as needed to get back to this limit.
481  */
482 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
483 {
484 	struct rds_iw_mr *ibmr, *next;
485 	LIST_HEAD(unmap_list);
486 	LIST_HEAD(kill_list);
487 	unsigned long flags;
488 	unsigned int nfreed = 0, ncleaned = 0, unpinned = 0;
489 	int ret = 0;
490 
491 	rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
492 
493 	mutex_lock(&pool->flush_lock);
494 
495 	spin_lock_irqsave(&pool->list_lock, flags);
496 	/* Get the list of all mappings to be destroyed */
497 	list_splice_init(&pool->dirty_list, &unmap_list);
498 	if (free_all)
499 		list_splice_init(&pool->clean_list, &kill_list);
500 	spin_unlock_irqrestore(&pool->list_lock, flags);
501 
502 	/* Batched invalidate of dirty MRs.
503 	 * For FMR based MRs, the mappings on the unmap list are
504 	 * actually members of an ibmr (ibmr->mapping). They either
505 	 * migrate to the kill_list, or have been cleaned and should be
506 	 * moved to the clean_list.
507 	 * For fastregs, they will be dynamically allocated, and
508 	 * will be destroyed by the unmap function.
509 	 */
510 	if (!list_empty(&unmap_list)) {
511 		ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list,
512 						     &kill_list, &unpinned);
513 		/* If we've been asked to destroy all MRs, move those
514 		 * that were simply cleaned to the kill list */
515 		if (free_all)
516 			list_splice_init(&unmap_list, &kill_list);
517 	}
518 
519 	/* Destroy any MRs that are past their best before date */
520 	list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
521 		rds_iw_stats_inc(s_iw_rdma_mr_free);
522 		list_del(&ibmr->mapping.m_list);
523 		rds_iw_destroy_fastreg(pool, ibmr);
524 		kfree(ibmr);
525 		nfreed++;
526 	}
527 
528 	/* Anything that remains are laundered ibmrs, which we can add
529 	 * back to the clean list. */
530 	if (!list_empty(&unmap_list)) {
531 		spin_lock_irqsave(&pool->list_lock, flags);
532 		list_splice(&unmap_list, &pool->clean_list);
533 		spin_unlock_irqrestore(&pool->list_lock, flags);
534 	}
535 
536 	atomic_sub(unpinned, &pool->free_pinned);
537 	atomic_sub(ncleaned, &pool->dirty_count);
538 	atomic_sub(nfreed, &pool->item_count);
539 
540 	mutex_unlock(&pool->flush_lock);
541 	return ret;
542 }
543 
544 static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
545 {
546 	struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
547 
548 	rds_iw_flush_mr_pool(pool, 0);
549 }
550 
551 void rds_iw_free_mr(void *trans_private, int invalidate)
552 {
553 	struct rds_iw_mr *ibmr = trans_private;
554 	struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
555 
556 	rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
557 	if (!pool)
558 		return;
559 
560 	/* Return it to the pool's free list */
561 	rds_iw_free_fastreg(pool, ibmr);
562 
563 	/* If we've pinned too many pages, request a flush */
564 	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
565 	    atomic_read(&pool->dirty_count) >= pool->max_items / 10)
566 		queue_work(rds_wq, &pool->flush_worker);
567 
568 	if (invalidate) {
569 		if (likely(!in_interrupt())) {
570 			rds_iw_flush_mr_pool(pool, 0);
571 		} else {
572 			/* We get here if the user created a MR marked
573 			 * as use_once and invalidate at the same time. */
574 			queue_work(rds_wq, &pool->flush_worker);
575 		}
576 	}
577 }
578 
579 void rds_iw_flush_mrs(void)
580 {
581 	struct rds_iw_device *rds_iwdev;
582 
583 	list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
584 		struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
585 
586 		if (pool)
587 			rds_iw_flush_mr_pool(pool, 0);
588 	}
589 }
590 
591 void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
592 		    struct rds_sock *rs, u32 *key_ret)
593 {
594 	struct rds_iw_device *rds_iwdev;
595 	struct rds_iw_mr *ibmr = NULL;
596 	struct rdma_cm_id *cm_id;
597 	struct sockaddr_in src = {
598 		.sin_addr.s_addr = rs->rs_bound_addr,
599 		.sin_port = rs->rs_bound_port,
600 	};
601 	struct sockaddr_in dst = {
602 		.sin_addr.s_addr = rs->rs_conn_addr,
603 		.sin_port = rs->rs_conn_port,
604 	};
605 	int ret;
606 
607 	ret = rds_iw_get_device(&src, &dst, &rds_iwdev, &cm_id);
608 	if (ret || !cm_id) {
609 		ret = -ENODEV;
610 		goto out;
611 	}
612 
613 	if (!rds_iwdev->mr_pool) {
614 		ret = -ENODEV;
615 		goto out;
616 	}
617 
618 	ibmr = rds_iw_alloc_mr(rds_iwdev);
619 	if (IS_ERR(ibmr))
620 		return ibmr;
621 
622 	ibmr->cm_id = cm_id;
623 	ibmr->device = rds_iwdev;
624 
625 	ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
626 	if (ret == 0)
627 		*key_ret = ibmr->mr->rkey;
628 	else
629 		printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
630 
631 out:
632 	if (ret) {
633 		if (ibmr)
634 			rds_iw_free_mr(ibmr, 0);
635 		ibmr = ERR_PTR(ret);
636 	}
637 	return ibmr;
638 }
639 
640 /*
641  * iWARP fastreg handling
642  *
643  * The life cycle of a fastreg registration is a bit different from
644  * FMRs.
645  * The idea behind fastreg is to have one MR, to which we bind different
646  * mappings over time. To avoid stalling on the expensive map and invalidate
647  * operations, these operations are pipelined on the same send queue on
648  * which we want to send the message containing the r_key.
649  *
650  * This creates a bit of a problem for us, as we do not have the destination
651  * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
652  * RDMA to be correctly setup.  If a fastreg request is present, rds_iw_xmit
653  * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
654  * before queuing the SEND. When completions for these arrive, they are
655  * dispatched to the MR has a bit set showing that RDMa can be performed.
656  *
657  * There is another interesting aspect that's related to invalidation.
658  * The application can request that a mapping is invalidated in FREE_MR.
659  * The expectation there is that this invalidation step includes ALL
660  * PREVIOUSLY FREED MRs.
661  */
662 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
663 				struct rds_iw_mr *ibmr)
664 {
665 	struct rds_iw_device *rds_iwdev = pool->device;
666 	struct ib_fast_reg_page_list *page_list = NULL;
667 	struct ib_mr *mr;
668 	int err;
669 
670 	mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
671 	if (IS_ERR(mr)) {
672 		err = PTR_ERR(mr);
673 
674 		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
675 		return err;
676 	}
677 
678 	/* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
679 	 * is not filled in.
680 	 */
681 	page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
682 	if (IS_ERR(page_list)) {
683 		err = PTR_ERR(page_list);
684 
685 		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
686 		ib_dereg_mr(mr);
687 		return err;
688 	}
689 
690 	ibmr->page_list = page_list;
691 	ibmr->mr = mr;
692 	return 0;
693 }
694 
695 static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
696 {
697 	struct rds_iw_mr *ibmr = mapping->m_mr;
698 	struct ib_send_wr f_wr, *failed_wr;
699 	int ret;
700 
701 	/*
702 	 * Perform a WR for the fast_reg_mr. Each individual page
703 	 * in the sg list is added to the fast reg page list and placed
704 	 * inside the fast_reg_mr WR.  The key used is a rolling 8bit
705 	 * counter, which should guarantee uniqueness.
706 	 */
707 	ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
708 	mapping->m_rkey = ibmr->mr->rkey;
709 
710 	memset(&f_wr, 0, sizeof(f_wr));
711 	f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
712 	f_wr.opcode = IB_WR_FAST_REG_MR;
713 	f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
714 	f_wr.wr.fast_reg.rkey = mapping->m_rkey;
715 	f_wr.wr.fast_reg.page_list = ibmr->page_list;
716 	f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
717 	f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
718 	f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
719 				IB_ACCESS_REMOTE_READ |
720 				IB_ACCESS_REMOTE_WRITE;
721 	f_wr.wr.fast_reg.iova_start = 0;
722 	f_wr.send_flags = IB_SEND_SIGNALED;
723 
724 	failed_wr = &f_wr;
725 	ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
726 	BUG_ON(failed_wr != &f_wr);
727 	if (ret)
728 		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
729 			__func__, __LINE__, ret);
730 	return ret;
731 }
732 
733 static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
734 {
735 	struct ib_send_wr s_wr, *failed_wr;
736 	int ret = 0;
737 
738 	if (!ibmr->cm_id->qp || !ibmr->mr)
739 		goto out;
740 
741 	memset(&s_wr, 0, sizeof(s_wr));
742 	s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
743 	s_wr.opcode = IB_WR_LOCAL_INV;
744 	s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
745 	s_wr.send_flags = IB_SEND_SIGNALED;
746 
747 	failed_wr = &s_wr;
748 	ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
749 	if (ret) {
750 		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
751 			__func__, __LINE__, ret);
752 		goto out;
753 	}
754 out:
755 	return ret;
756 }
757 
758 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
759 			struct rds_iw_mr *ibmr,
760 			struct scatterlist *sg,
761 			unsigned int sg_len)
762 {
763 	struct rds_iw_device *rds_iwdev = pool->device;
764 	struct rds_iw_mapping *mapping = &ibmr->mapping;
765 	u64 *dma_pages;
766 	int i, ret = 0;
767 
768 	rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
769 
770 	dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
771 	if (IS_ERR(dma_pages)) {
772 		ret = PTR_ERR(dma_pages);
773 		dma_pages = NULL;
774 		goto out;
775 	}
776 
777 	if (mapping->m_sg.dma_len > pool->max_message_size) {
778 		ret = -EMSGSIZE;
779 		goto out;
780 	}
781 
782 	for (i = 0; i < mapping->m_sg.dma_npages; ++i)
783 		ibmr->page_list->page_list[i] = dma_pages[i];
784 
785 	ret = rds_iw_rdma_build_fastreg(mapping);
786 	if (ret)
787 		goto out;
788 
789 	rds_iw_stats_inc(s_iw_rdma_mr_used);
790 
791 out:
792 	kfree(dma_pages);
793 
794 	return ret;
795 }
796 
797 /*
798  * "Free" a fastreg MR.
799  */
800 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
801 		struct rds_iw_mr *ibmr)
802 {
803 	unsigned long flags;
804 	int ret;
805 
806 	if (!ibmr->mapping.m_sg.dma_len)
807 		return;
808 
809 	ret = rds_iw_rdma_fastreg_inv(ibmr);
810 	if (ret)
811 		return;
812 
813 	/* Try to post the LOCAL_INV WR to the queue. */
814 	spin_lock_irqsave(&pool->list_lock, flags);
815 
816 	list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
817 	atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
818 	atomic_inc(&pool->dirty_count);
819 
820 	spin_unlock_irqrestore(&pool->list_lock, flags);
821 }
822 
823 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
824 				struct list_head *unmap_list,
825 				struct list_head *kill_list,
826 				int *unpinned)
827 {
828 	struct rds_iw_mapping *mapping, *next;
829 	unsigned int ncleaned = 0;
830 	LIST_HEAD(laundered);
831 
832 	/* Batched invalidation of fastreg MRs.
833 	 * Why do we do it this way, even though we could pipeline unmap
834 	 * and remap? The reason is the application semantics - when the
835 	 * application requests an invalidation of MRs, it expects all
836 	 * previously released R_Keys to become invalid.
837 	 *
838 	 * If we implement MR reuse naively, we risk memory corruption
839 	 * (this has actually been observed). So the default behavior
840 	 * requires that a MR goes through an explicit unmap operation before
841 	 * we can reuse it again.
842 	 *
843 	 * We could probably improve on this a little, by allowing immediate
844 	 * reuse of a MR on the same socket (eg you could add small
845 	 * cache of unused MRs to strct rds_socket - GET_MR could grab one
846 	 * of these without requiring an explicit invalidate).
847 	 */
848 	while (!list_empty(unmap_list)) {
849 		unsigned long flags;
850 
851 		spin_lock_irqsave(&pool->list_lock, flags);
852 		list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
853 			*unpinned += mapping->m_sg.len;
854 			list_move(&mapping->m_list, &laundered);
855 			ncleaned++;
856 		}
857 		spin_unlock_irqrestore(&pool->list_lock, flags);
858 	}
859 
860 	/* Move all laundered mappings back to the unmap list.
861 	 * We do not kill any WRs right now - it doesn't seem the
862 	 * fastreg API has a max_remap limit. */
863 	list_splice_init(&laundered, unmap_list);
864 
865 	return ncleaned;
866 }
867 
868 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
869 		struct rds_iw_mr *ibmr)
870 {
871 	if (ibmr->page_list)
872 		ib_free_fast_reg_page_list(ibmr->page_list);
873 	if (ibmr->mr)
874 		ib_dereg_mr(ibmr->mr);
875 }
876